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Abstract 
 
In complex biological systems, simple individual-level behavioral rules can give rise 
to emergent group-level behavior. While such collective behavior has been well 
studied in cells and larger organisms, the mesoscopic scale is less understood, as it 
is unclear what physical processes matter a priori. Here, we investigate collective 
feeding in the roundworm C. elegans at this intermediate scale, and use quantitative 
phenotyping and agent-based modeling to identify behavioral rules underlying both 
aggregation and a novel swarming phenotype which we report for the first time. 
Using fluorescent multi-worm tracking, we quantify aggregation behavior in terms of 
individual dynamics and population-level statistics. Based on our quantification, we 
use agent-based simulations and approximate Bayesian inference to identify two key 
behavioral rules that give rise to aggregation, namely cluster-edge reversals and 
density-dependent switch between crawling speeds. While this leads to aggregation 
in simulations, extending the model with a mid-range taxis interaction improves 
quantitative agreement with aggregation measured in experiments. Additionally, 
using our extended model we suggest that dynamic swarming is driven by local food 
depletion and otherwise employs the same behavioral mechanisms as the initial 
aggregate formation. Our results suggest that mesoscopic C. elegans uses 
mechanisms familiar from microscopic systems for aggregation, but implemented via 
more complex behaviors, which is characteristic of macroscopic organisms.  
 
 
Keywords: emergent behavior, collective behavior, behavioral quantification, agent-
based modeling, C. elegans, aggregation, animal tracking, swarming 
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Introduction 
 
Collective behavior has been widely studied in living and non-living systems. While 
very different in their details, shared principles have begun to emerge, such as the 
importance of alignment for flocking behavior in both theoretical models and birds 
(Bialek et al., 2012; Pearce, Miller, Rowlands, & Turner, 2014; Reynolds, 1987). Until 
now, the study of collective behavior has mainly focused on cells and active particles 
at the microscale, controlled by molecule diffusion and direct contact between cells 
or particles (Köhler, Schaller, & Bausch, 2011; Palo, Yi, & Endres, 2017; Peruani et 
al., 2012; Starruss et al., 2012), and on animals at the macroscale, aided by long-
range visual cues (Bialek et al., 2012; Katz, Tunstrøm, Ioannou, Huepe, & Couzin, 
2011; Pearce et al., 2014). Collective behavior at the intermediate mesoscale is less 
well-studied, as it is unclear what processes to include a priori. At the mesoscale, 
sensory cues and motility may still be limited by the physics of diffusion and low 
Reynolds numbers, respectively, yet the inclusion of nervous systems allows for 
increased signal processing and a greater behavioral repertoire. So do the rules 
governing collective behavior at this intermediate scale resemble those at the micro- 
or the macro-scale, some mixture of both, or are new principles required?  
 
Dissecting the mechanisms of C. elegans social phenomena can contribute to 
bridging the scale gap in understanding collective behavior. Some strains of this 1 
mm-long roundworm are known to aggregate into groups on food patches (de Bono 
& Bargmann 1998); here we also report a novel dynamic swarming phenotype that 
occurs over longer time periods. C. elegans represents an intermediate scale not 
only in physical size but also in behavioral complexity - crawling with negligible 
inertia, limited to touch and chemical sensing, yet possessing a compact nervous 
system with only 302 neurons (White, Southgate, Thomson, & Brenner, 1986). Wild 
C. elegans form clusters on food at ambient oxygen concentrations, as do loss-of-
function neuropeptide receptor 1 (npr-1) mutants. The laboratory reference strain N2, 
on the other hand, has a gain-of-function mutation in the npr-1 gene that suppresses 
aggregation (de Bono & Bargmann 1998), rendering N2 animals solitary feeders. 
Thus, a small genotypic difference (just two base pairs in one gene for the npr-1 
mutant) has a big effect on the population-level behavioral phenotype. While 
previous research on collective feeding has primarily qualitatively characterized 
behavioral components associated with aggregation, including reversals in crawling 
direction and changes in speed (Busch et al., 2012; Cheung, Cohen, Rogers, 
Albayram, & de Bono, 2005; Jang et al., 2017; Rogers, Persson, Cheung, & de 
Bono, 2006), a quantitative mechanistic understanding of aggregation and dynamic 
swarming in C. elegans is still missing. 
 
In this paper, we initially focus on gaining a mechanistic understanding of steady-
state aggregation; we hypothesize it also underlies dynamic swarming based on 
experimental observations. We use fluorescence imaging followed by multi-worm 
tracking to examine individual behavior inside aggregates for the first time. We 
present new and systematic quantification of the aggregation behavior in hyper-
social npr-1(ad609lf) mutants (henceforth referred to as npr-1 mutants) and hypo-
social N2 worms. Next, we draw on the concept of motility-induced phase transitions 
to explain aggregation as an emergent phenomenon by modulating only a few 
biophysical parameters. Unlike aggregation driven by attractive forces, in motility-
induced phase transitions individuals can also aggregate simply due to their active 
movement and non-attractive interactions, such as volume exclusion (avoidance of 
direct overlap) (Redner, Baskaran, et al. 2013). For instance, this concept has 
contributed understanding to the aggregation of rod-shaped Myxococcus xanthus 
bacteria, which, similar to C. elegans, also exhibit reversals during aggregation 
(Peruani et al., 2012; Starruss et al., 2012). We build an agent-based 
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phenomenological model of simplified worm motility and interactions. By mapping out 
a phase diagram of behavioral phenotypes, we show modulating cluster-edge 
reversals and density-dependent switch between crawling speeds produce various 
aggregation phenotypes. We further discuss how adding a medium-range taxis 
interaction further improves the match of strain-specific clustering details to those 
measured in experiments. Last but not least, our extended model shows that the 
same behavioral rules, when combined with food depletion, give rise to swarming 
over time. Together, these developments provide a powerful framework for 
unraveling the mechanisms underlying collective behavior in C. elegans and other 
systems.  
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Results 
 
Dynamic swarming occurs in social worms at long time scales 
 
Aggregation has previously been depicted as a semi-steady state phenomenon, with 
individual worms moving in and out of clusters. Here we report a novel dynamic 
phenotype, which we call swarming, that is only noticeable at longer time scales 
(hours). A high number of npr-1 mutants not only aggregate into dense clusters, but 
also swarm across the bacteria lawn over time (Figure 1A). Despite being visually 
striking, this phenomenon may have been missed before due to shorter experimental 
durations (minutes) with fewer worms in previous work.  
 
Dynamic swarming occurs with just 40 npr-1 mutants (Figure 1B, top row), making it 
experimentally feasible to study. It is not observed with solitary N2 worms (Figure 1B, 
bottom row). Under our experimental conditions at atmospheric oxygen levels, 
usually a single npr-1 aggregate forms on the food patch and then moves around the 
lawn in a persistent but not necessarily directed manner (Figure 1C, left; 
Supplementary Figure S1A). The onset of this collective movement appears to 
coincide with local food depletion, and continues until complete food depletion, at 
which time the cluster disperses. More than one moving cluster may co-exist, and 
occasionally a cluster may disperse and form elsewhere when it crosses its previous 
path (Supplementary Figure S1A), presumably due to local food depletion. The 
observed pattern of npr-1 cluster motion is reminiscent of a self-avoiding, persistent 
random walk (i.e. not going back to areas that the worms have previously been 
where there is no food left). By contrast, after initially forming transient clusters on 
the lawn, N2 worms move radially outwards with no collective movement (Figure 1C, 
right). 
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Figure 1. npr-1 but not N2 worms show swarming behavior over time. A) A few 
hundred npr-1 mutant worms form dense clusters that move over time on food. B) 
Forty npr-1 mutant worms also cluster and swarm on food (red circles encompass 
the same cluster over time). The same number of N2 worms do not swarm and 
disburse after initial transient aggregation. C) Visualization of persistent swarming 
over time. One frame was sampled every 30 s over the duration of the movies and 
binary segmentation was applied using an intensity threshold to separate worm 
pixels from the background. Blob measurements were made using the regionprops 
function in Matlab and blobs with areas above a threshold value were plotted as 
clusters to show cluster position over time. The same movies as in (B) were used. 
Dashed circles show the outer edge of the food patch. Crosses are cluster centroids 
at each sample frame.  
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Fluorescence imaging and automated animal tracking allows quantification of 
dynamics inside and outside of aggregates 
 
Based on our observation that swarming appears to be driven by food depletion, we 
hypothesize the phenomenon be a dynamic extension of the more steady-state 
aggregation behavior. Therefore, we elect to initially focus on identifying the 
mechanisms underlying aggregation.  
 
The presence of aggregates is clear in bright field images, but it is difficult to track 
individual animals in these strongly overlapping groups for quantitative behavioral 
analysis. We therefore labeled the pharynx of worms with GFP and used 
fluorescence imaging in order to minimize overlap between animals, making it 
possible to track most individuals even when they are inside a dense cluster (Figure 
2A). We also labeled a small number of worms (1-3 animals out of 40 per 
experiment) with an RFP-tagged body wall muscle marker instead of pharynx-GFP. 
These RFP-labeled worms were recorded on a separate channel during two-color 
simultaneous imaging (Figure 2B), thus allowing both longer trajectories and the full 
posture to be obtained in a subset of animals. We wrote a custom module for Tierpsy 
Tracker to segment light objects on a dark background and to identify the anterior 
end of the pharynx automatically, in order to extract trajectories and skeletons of 
multiple worms from our data (Figure 2C).  
 
 

 
 
Figure 2. Fluorescent multi-worm tracking. A) npr-1 mutant and N2 animals 
exhibit different social behaviors on food, with the former being social (top left) and 
the latter being solitary (top right). Using a pharynx-GFP label (bottom row), 
individual animals may be followed inside a cluster. B) In two-color experiments, 
worms are either labeled with pharynx-GFP (top left) or body wall muscle-RFP (top 
right). As the two colors are simultaneously acquired on separate channels, the 
selected few RFP-labeled individuals are readily segmented and may be tracked for 
a long time, even inside a very dense cluster. C) Tierpsy Tracker software tracks 
multiple worms simultaneously, generating both centroid trajectories (left, image 
color inverted for easier visualization; multiple colors show distinct trajectories) and 
skeletons (middle, pharynx-marked animal; right, body wall muscle-marked animal; 
red dots denote the head nodes of the skeleton).  
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Long-range and some short-range interactions are unlikely to drive different 
aggregation phenotypes 
 
We restricted our search for potential behavioral mechanisms to short-range 
interactions. Long-range chemotaxis of food can likely be ignored as our experiments 
were performed on thin, even bacterial lawns. We further excluded any long-range 
interactions through diffusible pheromones. Although pheromones are important for 
processes such as mating and dauer formation in C. elegans (Srinivasan et al., 
2008), it is less clear whether long-range signaling via pheromones plays a role in C. 
elegans aggregation (de Bono, Tobin, Davis, Avery, & Bargmann, 2002; Macosko et 
al., 2009). We removed pheromones from both npr-1 and N2 animals using a daf-22 
mutation and found that the resultant pheromone-deficient strains aggregate to 
quantitatively similar levels compared with their pheromone-intact counterparts 
(Supplementry Figure S2A), thus supporting our focus on searching for interaction 
rules that are local.  
 
One can conceive of some potential short-range mechanisms to promote 
aggregation. We considered posture changes and adhesion, but found no evidence 
for these to be major drivers of aggregation. Posture changes during worm 
locomotion may be informative of behavioral dynamics (Brown, Yemini, Grundy, 
Jucikas, & Schafer, 2013; Stephens, Johnson-Kerner, Bialek, & Ryu, 2008), so we 
investigated whether they inform behavioral changes during aggregation. To test this, 
we performed principal component analysis for the postures of lone versus in-cluster 
npr-1 worms, and found them to be similar between the two categories 
(Supplementary Figure S2B). Thus, postural changes do not appear to be the cause 
of aggregation. Another known mechanism for aggregation in active matter systems 
is attraction between the moving objects (Redner, Baskaran, et al., 2013), but it is not 
known whether this applies to worms. Short-range attraction between worms may 
exist in the form of adhesion mediated through a liquid film (Gart et al. 2011), but we 
have no reason to believe this would differ between npr-1 and N2 strains.  
 
Reversal rates and speed depend on neighbor density more strongly in npr-1 
than in N2 
 
Having excluded a few possible behavioral components from our consideration, we 
found experimental evidence that neighbor density-dependence of both reversal 
rates and motility speed differ between the two strains we studied.  
 
Reversals have been previously observed as a behavior that may enable npr-1 to 
stay in aggregates (Rogers et al., 2006), but this had yet to be systematically 
quantified. Using our tracking of pharynx-labeled worms, we can quantify reversals 
inside aggregates, but at the cost of losing the exact outline of a cluster (since we 
only see the heads). Hence, we opted to avoid cluster definitions based on 
thresholding the distance between worms, and quantify individual worm behavior as 
a function of local density (Figure 3A) instead. Calculating the reversal rates relative 
to that of worms at low densities, we found that npr-1 mutants reverse more at 
increased neighbor densities, while N2 do not (Figure 3B).  
 
Next we calculated the speed distributions of individual worms, binned by local 
neighbor density. We found that both strains slow down when surrounded by many 
other worms, but the shift is much more pronounced for npr-1 animals. npr-1 worms 
move faster than N2 at low densities, showing a distinct peak at high speeds. As 
neighbor density increases, this high speed peak gradually becomes replaced by a 
peak at low speeds, so that the overall speed distribution for npr-1 resembles that of 
N2 at very high densities. Thus, npr-1 mutants and N2 show different density-
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dependent changes in their respective speed profiles (Figure 3C). 
 
Since the observed transition of the speed profiles could occur due to active 
behavioral changes as well as restricted movement in clusters, we also considered 
tracks of individual worms. Using body wall muscle-marked worms allowed us to 
obtain longer trajectories that could be joined for the duration of an entire movie, 
including cluster entry and exit events. We compared the speed of these tracks with 
visual assessment of when a worm entered or exited a cluster based on the proximity 
to pharynx-labeled worms. We show that worms are able to move inside of clusters 
and observed that speed changes can occur prior to cluster entry and exit events 
(Figure 3D, Supplementary Movie S2 and S3). This change of speed is neither purely 
mechanical nor a deterministic response to a certain neighbor density, and suggests 
a mechanism in which worms probabilistically switch between different speeds. 
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Figure 3. Individual-level behavioral quantification. A) Schematic explaining k-
nearest neighbor density estimation. B) Relative rate of reversals as a function of 
local density (k-nearest neighbor density estimation with k=6) for npr-1 (blue) and N2 
(orange) strains. Lines show means and shaded area shows standard deviation 
(bootstrap estimate, 100 samples with replacement). C) Distributions of crawling 
speeds at different local neighbor densities for both strains. Lines show histograms of 
speeds for each density bin, and the color of the line indicated the density (blue is 
high, magenta is low). D) Midbody absolute speed for manually annotated cluster 
entry events (left, n=28) and exit events (right, n=29). Each event was manually 
identified, with time 0 representing the point where the head or tail of a worm starts to 
enter (left) or exit (right) an existing cluster. Skeleton xy-coordinates were linearly 
interpolated for missing frames for each event, before being used to calculate 
midbody speed extending 20 seconds on both sides of time 0 of the event. Speeds 
were smoothed over a one-second window. Shading represents standard deviation 
across events. Red lines show the midbody absolute speed of one representative 
event, as shown in Supplementary Movie S2 (left) or Supplementary Movie S3 
(right).  
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Spatial statistics show group-level differences between npr-1 and N2 animals 
 
The differences in aggregation behavior between npr-1 and N2 are visually striking, 
but previous quantification has been limited to the number of animals in clusters. 
Using the tracked positions of pharynx-labeled worms (Figure 4A), we calculated the 
pair-correlation function (Figure 4B), commonly used to quantify aggregation in 
cellular and physical systems (Gurry, Kahramanogullari, & Endres, 2009). We also 
computed a hierarchical clustering (linkage function in Matlab) of worm positions 
(Figure 4C), which is calculated from the same pairwise distances but emphasizes 
larger scale structure. Using both measures, we found that as a population, npr-1 
animals show quantifiably higher levels of aggregation than N2, especially at scales 
up to 1 mm (pair-correlation “S1”, Figure 4D) and 2 mm (hierarchical clustering “S2”, 
Figure 4E). We also quantified aggregation using scalar spatial statistics, namely the 
average standard deviation (“S3”) and kurtosis (“S4”) of the distribution of positions. 
This confirmed that the positions of npr-1 worms are less spread-out and more 
heavy-tailed than those of N2 (Figure 4D). 
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Figure 4. Population-level behavioral quantification. A) Positions of npr-1 worms 
in example frame. B) Schematic explaining positional correlation function (S1, pcf). 
The pcf counts the number of neighbors at a distance r, normalized by the 
expectation for a uniform distribution. C) Example dendrogram from which 
hierarchical clustering branch length distributions (S2) can be calculated. D) 
Positional correlation function for npr-1 (blue) and N2 (orange). Lines show mean 
and shaded area shows standard error of the mean. E) Hierarchical clustering 
branch length distributions for npr-1 (blue) and N2 (orange). Histograms show 
relative frequency of inter-cluster distances (single linkage distance in agglomerative 
hierarchical clustering, equivalent to the branch lengths in the example dendrogram 
in (C)). F) Mean standard deviation (S3) and kurtosis (S4) of the positions of worms, 
with the mean taken over frames sampled. 
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Agent-based model captures different aggregation phenotypes 
 
To test whether the individual behavioral differences measured between npr-1 and 
N2 worms are sufficient to give rise to the observed differences in aggregation, we 
constructed a phenomenological model of worm movement and interactions. The 
model is made up of self-propelled agents (Figure 5A), and includes density-
dependent interactions motivated by the experimental data, namely reversals at the 
edge of a cluster (Figure 5B) and a switch between movement at different speeds 
(Figure 5C). We ignored spontaneous reversals outside of clusters as these were 
only rarely observed in our experiments. See Supplementary Methods for further 
discussion of the model construction. As a model of collective behavior this differs 
from those commonly considered in the literature, such as the Vicsek model (Vicsek, 
Czirók, Ben-Jacob, Cohen, & Shochet, 1995) and its many related variants. Such 
models typically feature attractive forces or align the direction of motion at ranges 
much longer than the size of the moving objects, and result in flocking or clustering 
with global alignment (Figure 5D), which we do not observe in our experimental data. 
In contrast, our model needs to produce dynamic, disordered aggregates (Figure 1B, 
Figure 2A and Supplementary Movie S1), and should primarily rely on short-range 
interactions that are motivated by behaviors measured in our data.  
 
We initially ran a coarse parameter sweep, sampling uniformly in the two-
dimensional parameter space associated with the density-dependence of reversals 
and speed switching. This demonstrates that our model can capture different 
aggregation phenotypes from solitary movement to aggregation (Figure 5E), by 
varying just two free parameters. Inspection of the model simulations shows that 
each behavior alone (just reversals or slowing) does not give the same level of 
aggregation as when both parameters are modulated (Figure 5E), so that using both 
behavioral components proves important. Quantifying the aggregation and 
comparing it to the npr-1 experiment, however, highlights incomplete quantitative 
agreement with both the pair correlation function and hierarchical clustering 
distribution (Figure 5F). Thus, we reasoned additional interactions may be required to 
match the experimentally observed behaviors.  
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Figure 5. Agent-based modeling of emergent behavior. A) Schematic of 
individual worm in the agent-based model. Each worm made up of M nodes (here 
M=18), connected by springs to enforce non-extensibility. Each node undergoes self-
propelled movement, with the head node (red dot) undergoing a persistent random 
walk, and the rest of the nodes follow in the direction of the body. B) Schematic of 
simulated reversals upon exiting a cluster. Each worm registers contact at the first 
and last 10% of its nodes within a short interaction radius. If contact is registered at 
one of the head/tail, but not the other, the worm is leaving a cluster and thus 
reverses with a Poisson rate dependent on the local density. C) Schematic of 
density-dependent switching between movement speeds. Worms stochastically 
switch between slow and fast movement with Poisson rates kslow and kfast, which 
increase linearly and decrease exponentially with neighbor density, respectively. D) 
Snapshots of simulations with commonly considered aggregation mechanisms, 
which produce unrealistic behavior for worm simulations, with flocking and highly 
aligned clustering. Arrows indicate the direction of movement of large clusters. E) 
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Phase portrait of model simulations, showing snapshots from the last 10% of each 
simulation, for different values of the two free parameters: density-dependence of the 
reversal rate and density-dependence of speed-switching (here kslow = kfast). F) 
Summary statistics S1 (pair correlation, top) and S2 (hierarchical clustering, bottom) 
for the simulation which most closely matches the experimental data for the npr-1 
strain (blue panel in (E)). 

 
Adding a medium-range taxis interaction promotes stronger aggregation 
 
To explore improvements in clustering, we extended the model to four parameters: 
density-dependent increase in reversal frequency, density-dependent increase in 
slowing, density-dependent decrease in speeding up, and medium-range taxis 
interaction between worms. The taxis interaction biases the movement of a worm 
towards groups of its neighbors, has a range equal to the length of a worm (the 
natural intermediate length scale in our system), and is weighted inversely 
proportionally to the distance of neighbors (see Supplementary Methods for details). 
 
We selected the closest matching simulations from about 2000 simulations for npr-1 
and about 400 simulations for N2, sampled from a reduced prior parameter space 
(see Supplementary Methods), equally weighting all four summary statistics. Results 
from our extended model (Supplementary Movie S4 and S5) show markedly 
improved quantitative agreement with the experiments (Figure 6), though further 
simulations would be needed to determine the posterior distributions of parameters. 
 
 

 
 
 
Figure 6. Extended model better captures quantitative aggregation 
phenotypes. A) Summary statistics: S1: pair correlation function; S2: hierarchical 
clustering distribution; S3: standard deviation of positions; S4: kurtosis of positions. 
Solid lines show the closest matching simulations, dashed lines show experimental 
means, and error bars show standard deviation of 13 (npr-1) and 9 (N2) replicates. 
B) Sample snapshot of the closest matching simulations for npr-1 (top) and N2 
(bottom).  
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Extending the model with food-depletion captures dynamic swarming 
 
We made one final extension in our model to allow the local depletion of food. Food 
is initially distributed uniformly, and becomes depleted locally by worm feeding (see 
Supplementary Methods for details). Absence of food suppresses the switch to slow 
speeds, thus causing worms to speed up when food is locally depleted. 
 
Selecting the parameter combination best matching the npr-1 strain (Figure 6) and 
an appropriate food depletion rate, the resulting simulation produced long-time 
dynamics qualitatively representative of the experimentally observed swarming 
(Figure 7, Supplementary Movie S6). Thus, the model indicates that dynamic 
swarming of npr-1 aggregates may be explained as an emergent phenomenon 
resulting from individual locomotion, and that the same behavioral mechanisms that 
produce steady-state aggregates, when coupled with local food depletion, produce 
the observed swarming behavior.  
 
 

 
 
Figure 7. Simulations capture dynamic swarming. A) Snapshots of aggregating 
simulation with food depletion. Background color shows food concentration (arbitrary 
units) with white indicating high food and black indicating no food. B) Visualization of 
worm positions in (A) over time, showing cluster displacement of cluster. Note the 
periodic boundary conditions. 
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Discussion  
 
We have investigated the mechanisms of aggregation and swarming in C. elegans 
collective feeding using a combination of quantitative imaging and computational 
modeling. First, we quantified individual- and population-level behaviors in two 
strains with drastically different feeding phenotypes: social npr-1 mutants and more 
solitary worms from the common laboratory strain N2. We then built an agent-based 
computational model to implement the identified individual-level behavioral 
differences, and test whether these are sufficient to explain differences in group-level 
aggregation phenotype between the two strains. Reversals and slowing have been 
previously proposed as behavioral components important for aggregation (Rogers et 
al., 2006). Here, for the first time we explicitly tested their sufficiency to produce 
aggregation, in addition to providing quantitative details of these behaviors in 
aggregating worms. Our modeling results show that a combination of increased 
reversals upon leaving aggregates and a neighbor density-dependent increase in 
speed switching rates captures various aggregation phenotypes, but there was a 
noticeable mismatch in quantitative clustering details between simulations and 
experiments until a medium-range taxis interaction was added. This taxis may be 
attributed to a shallow O2 or CO2 gradient created by a worm cluster (which we 
discuss below), to additional diffusible molecules unaffected by daf-22, or to yet 
another unknown mechanism. Lastly, we extend the model to include food depletion, 
and thus reproduce the dynamic swarming behavior seen in npr-1 worms over time. 
This suggests that the same behavioral mechanisms indeed underlie both steady-
state aggregation and dynamic swarming at different time scales during C. elegans 
collective feeding.  
 
We focused on identifying behavioral components giving rise to aggregation, while 
remaining agnostic as to the sensory cues causing the behaviors, i.e., whether the 
density-dependent interactions and taxis are mediated by oxygen concentration, 
CO2, or another signal. The density-dependent interactions could arise from local 
molecular signaling, or be mediated through contact-sensing, and the 1/r 
dependence of the taxis interaction is compatible with a diffusible, non-degrading 
factor (such as CO2, or O2 depletion; dependence would be exponential for a 
degrading molecule, such as pheromones). Previous work suggests oxygen 
avoidance as a major explanation of behavior changes upon entering or leaving 
aggregates (Rogers et al., 2006). That hypothesis states that oxygen consumption by 
worms locally lowers O2 concentration, thus creating conditions preferred by npr-1 
mutants and promoting their aggregation. To support this, Rogers et al. (2006) report 
measurement of steep O2 gradients inside worm clusters. We think such steep 
gradient can be ruled unlikely by reaction-diffusion calculations: the diffusion of 
oxygen through worm tissue, or their oxygen consumption, would need to be several 
orders of magnitude different to create O2 gradients as steep as reported by Rogers 
et al. (Supplementary Figure S3). However, as worms have been reported to 
respond even to small changes in oxygen concentration (McGrath et al., 2009), the 
behavior sufficient for aggregation may still be mediated through the feasible, 
shallower local oxygen gradients. Therefore, our agent-based simulations are entirely 
compatible with this picture. Further work quantifying the behavior of individual 
worms at different oxygen concentrations may help to distinguish oxygen as a direct 
cue or part of the “sensory triggers that can initiate social behavior by activating 
chemotaxis or mechanotaxis” (Gray et al., 2004); in other words, whether it is just 
necessary or also sufficient to explain aggregation. 
 
The purpose of our modeling approach was to capture the emergent behavior, which 
should be independent of many microscopic details. In the interest of simplicity and 
computational efficiency, we thus favored a more abstract representation than 
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existing models of single-worm motility (Boyle et al. 2012; Cohen & Ranner 2017; 
Majmudar et al. 2012; Keaveny & Brown 2017). We furthermore excluded long-range 
interactions such as chemotaxis and pheromone signaling, and did not consider 
memory effects, e.g. of oxygen exposure (Fenk & de Bono, 2017), or time-dependent 
parameters. Our results indicate these are not crucial for aggregation, though it 
remains feasible that they could be necessary to capture transient behavior during 
initial aggregation. Additional interactions are straight-forward to implement in our 
model, but as our model is relatively intensive computationally (over an hour for 
longer simulations), sampling higher dimensional parameter spaces would provide a 
challenge.  
 
In the broader context of collective behavior, C. elegans bridges the gap between the 
commonly studied micro- and macro-scales, and finding the behavioral rules 
underlying this mesoscale system indeed allow us to examine overarching principles 
governing collective behavior across scales. Both key behavioral rules identified here 
for C. elegans aggregation also find importance in collective systems at other scales.   
Spontaneous reversals have been implicated in bacterial aggregation at the 
microscale (Starruss et al., 2012; Thutupalli, Sun, Bunyak, Palaniappan, & Shaevitz, 
2015). By contrast, aggregating worms reverse mainly in response to leaving a 
cluster, thus requiring more complex sensory processing and behavioral response 
than seen in bacterial systems. Changes in movement speed, too, have been 
considered more widely in many microscale theoretical systems in the field of 
motility-induced phase transitions (Redner, Hagan, et al. 2013; Großmann et al. 
2016). The emergent phenomena observed in models of interacting particles 
generally range from diffusion-limited aggregation to jamming at high volume 
fractions to flocking of self-propelled rods through volume exclusion (in two-
dimensions). Aggregation in C. elegans occurs at much lower numbers of objects 
(tens of worms) and lower densities (area fraction of 4-6%) than typically studied in 
this field (thousands of objects at area fractions of 20-80%), and the density 
dependence of motility changes again emphasizes the role of more complex sensing 
and behavioral modulations. Thus, the mesoscale collective behavior of C. elegans 
indeed draws from both ends of the size and complexity spectrum, linking the 
physical mechanisms familiar from microscopic cellular and active matter systems 
with the behavioral repertoire of larger multicellular organisms.  
 
A key advantage of using C. elegans to study collective behavior is the opportunity to 
experimentally control and perturb the system, which is rarely possible with other 
organisms. One may envisage using reversal, dwelling, and oxygen-sensing mutants 
to experimentally modify our key behavioral parameters, or employing optogenetic 
methods to apply acute changes to the system. Thus, there are ample opportunities 
for future studies to further integrate the experimental and theoretical methods in the 
study of C. elegans collective behavior. The insights generated in this paper also 
offer scope for explaining variations in collective behavior of wild isolates. Our work 
presented here focused on explaining the differences in aggregation between the N2 
and npr-1 mutant strains. Many wild isolate strains show different degrees of 
aggregation (de Bono & Bargmann 1998), but the quantitative details remain scant. 
The approach presented here offers the possibility to explain the variability of 
collective behaviors seen in the wild isolates based on the modulation of a few 
behavioral components, and suggests a combined experimental-computational 
pipeline for such an endeavor. 
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Materials and Methods  
 
Strain maintenance and bleach synchronization  
 
C. elegans strains used in this study are listed in Supplementary Table 1. All animals 
were grown on E. coli OP50 at 20°C as mixed-stage cultures and maintained as 
described (Brenner, 1974). All animals used in imaging experiments are 
synchronized young adults obtained by bleaching gravid hermaphrodites grown on E. 
coli OP50 under uncrowded and unstarved conditions, allowing isolated eggs to 
hatch and enter L1 diapause on unseeded plates overnight, and re-feeding starved 
L1’s for 65-72 hours on OP50.  
 
Bright field high-number swarming imaging 
 
The strain used here (Figure 1A) is DA609. On imaging day, synchronized adults 
were collected and washed in M9 buffer twice before several hundred animals were 
transferred to a seeded 90 mm NGM plate using a glass pipette. After M9 is 
absorbed into the media, ten-hour time-lapse recordings were taken with a Dino-Lite 
camera (AM-7013MT) at room temperature (20°C) using the DinoCapture 2.0 
software (v1.5.3.c) for the maximal field of view. Two independent replicates were 
performed. 
 
Bright field standard swarming imaging  
 
The strains used here (Figure 1B) are OMG2 and OMG10. Prior to collecting the full 
dataset, a single batch OP50 was grown overnight, diluted to OD600 = 0.75, aliquoted 
for use on each imaging day, and stored at 4°C until use. Imaging plates were 35 
mm Petri dishes containing 3.5 mL low peptone (0.013% Difco Bacto) NGM agar (2% 
Bio/Agar, BioGene) to limit bacteria growth. A separate batch of plates was poured 
exactly seven days before each imaging day, stored at 4°C, and dried at 37°C 
overnight with the agar side down before imaging. The center of an imaging plate 
was seeded with a single 20 μL spot of cold diluted OP50 one to three hours before 
imaging. The overnight plate drying step allowed the bacteria to quickly dry atop the 
media in order to achieve a more uniform lawn, by minimizing the “coffee ring” effect 
that would thicken the circular edge of the bacteria lawn. For each imaging day, 
synchronized young adults were collected and washed in M9 buffer twice before 40 
animals were transferred to a seeded imaging plate using a glass pipette. 
 
Imaging commenced immediately following animal transfer in a liquid drop, on a 
custom-built six-camera rig equipped with Dalsa Genie cameras (G2-GM10-T2041). 
Seven-hour recordings with red illumination (630 nm LED illumination, CCS Inc.) 
were taken at 25 Hz using Gecko software (v2.0.3.1), whilst the rig maintained the 
imaging plates at 20°C throughout the recording durations. Images were segmented 
in real time by the Gecko software. The recordings were manually truncated post-
acquisition to retain aggregation and swarming dynamics only. The start time was 
defined as the moment when the liquid dried and the all the worms crawled out from 
the initial location of the drop, and the end time was when the food was depleted and 
worms dispersed with increased crawling speed. Twelve independent replicates were 
performed for each strain.  
 
Bright field big patch swarming imaging  
 
The experiments here (Supplementary Figure S1A) are identical to those in the bright 
field standard swarming imaging, except for two differences. First, the imaging plates 
were seeded with a 50 μL spot of diluted OP50 (OD600 = 0.38) and allowed to 
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inoculate overnight at room temperature before being used for imaging the next day. 
Second, recordings were taken over 20 hours instead of seven. Eight independent 
replicates were performed for each strain. 
 
Bright field pheromone imaging  
 
The strains used here (Supplementary Figure 2A) are OMG2, OMG10, DR476, and 
AX994. Bacteria aliquots and imaging plates were prepared as in the bright field 
standard swarming imaging assay. For each imaging day, synchronized young adults 
were collected and washed in M9 buffer twice before 40 animals were transferred to 
a seeded imaging plate using a glass pipette. After M9 was absorbed into the media 
following worm transfer in liquid, imaging plates containing the animals were 
subjected to a gentle vibration at 600 rpm for 10 s on a Vortex Genie 2 shaker 
(Scientific Industries) to disburse animals and synchronize aggregation start across 
replicates. Imaging commenced 20 s after the vibration finish, using the same rig set-
up as swarming imaging above, except one-hour recordings were taken. Images 
were segmented in real time by the Gecko software. At least eight independent 
replicates were performed for each strain. Automated animal tracking was performed 
post-acquisition using Tierpsy Tracker software (http://ver228.github.io/tierpsy-
tracker/, v1.3), which we developed in-house (Javer et al., 2018). Images with were 
tracked with customized parameters to create centroid trajectories, 49-point worm 
skeletons, and a battery of features. 
 
Fluorescent aggregation imaging 
 
The strains used here (Figure 2) are OMG2, OMG10, OMG19, and OMG24. One-
color imaging consisted of pharynx-GFP labeled worms only, whereas two-color 
imaging also included a small number of body wall muscle-RFP labeled worms that 
were recorded simultaneously on a separate channel (thus readily segmented from 
the rest of the worms). The latter was necessary to follow individuals over a long 
period of time, particularly while inside a cluster, as frequent pharynx collisions inside 
clusters lead to lost individual identities and broken trajectories. For two-color 
imaging, animals with different fluorescent markers were mixed in desired proportion 
(1-3 red animals out of 40 per experiment) during the washing stage before being 
transferred together for imaging.  
 
The data collection paradigm was identical to the bright field pheromone imaging 
assay in terms of bacteria aliquot and imaging plate preparation and vibration 
implementation following animal transfer. The only difference is that image 
acquisition was performed on a DMI6000 inverted microscope (Leica) equipped with 
a 1.25x PL Fluotar objective (Leica), a TwinCam LS image splitter (Cairn) with a 
dichroic cube (Cairn), and two Zyla 5.5 cameras (Andor) to enable simultaneous 
green-red imaging with maximal field of view. One-hour recordings were taken with 
constant blue (470 nm, 0.8A) and green (cool white, 1.4A) OptoLED illumination 
(Cairn), and images were acquired with 100 ms exposure at 9 Hz using Andor Solis 
software (v4.29.30005.0). The microscopy room was maintained at 21°C throughout 
the recording durations. Ten or more independent replicates were performed for 
each strain. We were able to reproduce stereotyped aggregation dynamics across 
replicates under our experimental paradigm (Supplementary Figure S1B). Image 
segmentation and automated animal tracking was performed post-acquisition using 
Tierpsy Tracker software (v1.3) with customized parameters, to create centroid 
trajectories, obtain two-point skeleton from pharynx-labeled individuals and 49-point 
midline skeletons from body wall muscle-marked ones, and extract various  
features. For body wall muscle-marked animals, trajectories were manually joined 
where broken due to tracking errors.  
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Fluorescent aggregation tracking data analysis 
 
Tracked blobs were filtered for minimum fluorescence intensity and maximum area, 
to exclude any larvae and tracking artifacts, respectively, which appeared on the 
occasional plate. Local worm densities around each individual were calculated using 
k-nearest neighbor density estimation, where the density is k divided by the area of a 
circle encompassing the k-th nearest neighbor. We chose ! = 6 ≈ 	√' and verified 
based on visual assessment that the overall distribution of local densities changes 
very little with increasing k. 
 
Reversals were detected based on a change of sign of speed from positive to 
negative, which was calculated from the dot-product of the skeleton vector (of the 
pharynx) and the velocity vector, and smoothed with a moving average over half a 
second. We only counted reversals that were at least 50 µm in length, and that 
moved at least half a pixel per frame before and after the reversal. Reversal events 
thus detected where binned by their local density. For each density bin, reversal rate 
was estimated as the number of events divided by the time spent in forward motion 
for that bin. The variability was estimated using a subsampling bootstrap: the 
reversal rate was estimated 100 times, sampling worm-frames with replacement, and 
estimating mean and standard deviation.  
 
Summary statistics of aggregation, such as pair-correlation and hierarchical 
clustering, where calculated as described in the supplementary computational 
methods. 
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Supplementary Figures 
 
 

 
	
Supplementary Figure S1. npr-1 aggregation and swarming dynamics. A) Forty 
npr-1 animals swarm over a big food patch, following a persistent random walk. More 
than one large moving clusters co-exist towards the end of the movie (orange and 
yellow), and a cluster (orange) disperses and re-forms elsewhere (orange and 
yellow) when it crosses its previous path (blue), presumably due to local food 
depletion.	 B) One-hour fluorescent recordings of npr-1 animals under our 
experimental conditions consist of reproducible temporal dynamics encompassing 
three phases: transient (animals move about the lawn and start to form clusters), 
aggregation (clusters largely remain stable with individuals entering and exiting), and 
swarming (worms move across the lawn in persistent clusters). Percentage of in-
cluster worms remain largely consistent throughout the latter two phases, except that 
clusters remain in place during the aggregation phase and become dynamic during 
the swarming phase. The average duration of each phase derived from npr-1 
experiments are applied to N2 data to maintain temporal consistency, even though 
N2 does not exhibit aggregation or swarming. Subsequent quantitative analyses for 
both strains were restricted to using the data from the aggregation phase, in order to 
reveal the mechanisms necessary for producing aggregation.  
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Supplementary Figure S2. Pheromones and shape changes appear 
unimportant for aggregation. A) npr-1 and N2 animals with pheromones removed 
by a daf-22 mutation aggregate to similar levels to their pheromone-intact 
counterparts. Top row: snapshots of 40 worms from each strain behaving on a thin, 
uniform lawn. Bottom left: quantification of average cluster area relative to 
corresponding feature of single worms, shown for each strain; dashed line shows the 
cut-off values used to generate the violin plot on the bottom right. Bottom right: 
probability of having a relative cluster area above the threshold values indicated by 
corresponding dashed lines on the bottom left. Blob area were extracted as tracking 
features. For each recording, a random sample (without replacement) of 500 single 
worms was used to calculate single-worm mean area, which was used to normalize 
multi-worm cluster areas from that recording. Relative cluster area values for each 
strain were pooled across recording replicates, and histograms were created with a 
bin width of 0.5. B) Shape analysis for lone and in-cluster npr-1 worms. Left two 
panels: first four eigenworms (Stephens et al., 2008) plotted in real space for lone 
worms and in-cluster worms. Right: variance explained as a function of the number 
of eigenworms. Eigenworms are based on common reference (Brown et al., 2013) 
set for both strains and worm categories. 
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Supplementary Figure S3. Oxygen consumption-diffusion calculations predict 
shallow O2 concentration gradients. A) Plot of feasible oxygen gradients inside 
worm aggregates. The oxygen concentration decays with length constant 	 (/µ ≈
+	mm	, with diffusion constant ( ≈ -. +×+012	 cm-

s
 (in water) and oxygen consumption rate 

µ ≈ 0. +3	min1+ (estimated as an upper bound for 200 pl/min (Shoyama, Shimizu, & 
Suda, 2009; Suda, Shouyama, Yasuda, & Ishii, 2005) at 21% oxygen and 8000 pl 
worm volume). The thinnest dimension of a cluster is relevant for diffusion, which is 
its thickness. We can approximate the cluster geometry either as flat, which results in 
a 1D diffusion gradient (solid line), or as hemispherical, which we approximate by 
spherically symmetric diffusion in 3D (dashed line). In either case the reaction-
diffusion equation 6768 = 9:-7 − µ7	  was solved at steady state. B) Gradient of diffusible, 
non-degrading signal, e.g. CO2, outside a point source. Without decay, this problem 
is equivalent to calculating the potential around a point charge, and the concentration 
would be 7 = <

3=(>, in 3D, where < is the production rate times the volume of a worm, 
0.14/min (equal and opposite to the O2 consumption, based on mass conservation). 
A point source represents the contribution of a short section of a worm, and the 
contributions of many worms in an aggregate would integrate to give an 
approximately logarithmic gradient of signal outside the aggregate. 
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Supplementary Movie Captions 

	
Supplementary Movie S1. Sample movie showing npr-1 collective feeding 
dynamics.  

Supplementary Movie S2. A single event showing switch from high to low 
motility state prior to cluster entry. The red worm at the bottom (arrow) decreases 
speed before entering a cluster. Inset: midbody absolute speed of that individual with 
respect to time 0 as the point of the head entering a cluster; open blue circle shows 
the current speed matched to the movie frame.  

Supplementary Movie S3. A single event showing switch from low to high 
motility state prior to cluster exit. The red worm increases speed before exiting a 
cluster. Inset: midbody absolute speed of that individual with respect to time 0 as the 
point of the head exiting a cluster; open blue circle shows the current speed matched 
to the movie frame. 

Supplementary Movie S4. Sample extended model simulation describing npr-1 
mutants. 

Supplementary Movie S5. Sample extended model simulation describing N2. 

Supplementary Movie S6. Sample swarming simulation describing npr-1 
mutants. 
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Supplementary Methods

1 Agent-based simulations
We aim to create a model of worm locomotion and interaction that recapitulates aggregation and sweeping
behaviour. Many mechanical models of worm locomotion exist in the literature, but we aim for a
simpler representation of each individual worm, so that computationally inexpensive simulations of tens
to hundreds of worms allow rapid hypothesis exploration and testing.

1.1 SPP worm model
Each agent is represented by M nodes connected linearly by M � 1 segments. Each node moves as a
self-propelled particle with a preferred speed v. At each time-step, the direction of movement is updated
based on phenomenological forces representing active movement, interactions with other worms, and
constrains to ensure the worm does not extend in length or bend excessively. Nodes follow forces in the
over-damped regime, v ⇠ F, with periodic boundary conditions.

The code for model simulations is available at github.com/ljschumacher/sworm-model.

1.1.1 Self-propelled movement

To mimic a worm’s persistent movement with directional changes over time, we add a stochastic contri-
bution to the head node’s movement, given by �t+1

1 = �t
1 + ⌘⇠, where ⌘ is the noise strength, and ⇠ is a

normally distributed random variable.
For the nodes following the head node, the direction of movement is given by the tangent vector

towards the next node. For node i, the tangent vector is calculated as si = [(xi �xi+1)+ (xi�1 �xi)]/2,
i.e., the average between the direction towards the previous node and the direction from the next node.
The motile force is then given by Ft+1

mi
= vsi.

After forces have been applied and the nodes’ positions updated, the headings are updated to reflect
the direction of the displacement for calculating the movement in the next time step.

1.1.2 Taxis

To investigate the effect of taxis in our simulations, we treat the movement of the head node as a
self-attracting walk with respect to other worm’s nodes within an interaction radius Rt [see Hannezo
et al., 2017, SI]. This was implemented as an additional term fhph added to the motile force that affects
its direction as well as its the magnitude (reflecting additive contribution from multiple neighbouring
worms). The parameter fh controls the strength of taxis per other worm. The taxis force is additionally
weighted by 1/r to reflect that nearby neighbours exert a stronger attraction, i.e. as if mediated by
a non-degrading, diffusible factor, such as oxygen or CO2. The vector ph is the sum of the directions
towards other worms’ nodes within the interaction radius, Rt, so that for worm k, the taxis contribution
to the motile force is

fhphk =
fh
M

X

rjk<Rt

1

rjk

xj � xk

|xj � xk|
. (1)

The force is normalised by M to make it independent on the number of nodes in a worm.

1.1.3 Length constraints

To enforce approximately constant length of the worm, each node is connected by non-linear springs of
rest length l0 that resist an extension �l = l � l0, where l is the length of the segment, with opposing
force

Fl = kl l̂
�l

1� ( �ll )
2
, (2)

which points along the direction of the segment, l̂ = l/l.

1.1.4 Adhesion

To assess how aggregation is affected by a moderate adhesion (equal to both strains), such as could arise
through liquid film forces [Gart et al., 2011], we implemented a soft-core version of the Lennard-Jones
potential. This gives rise to a force between any two nodes of different worms that is repulsive at short
distances, attractive at intermediate distances, and zero at long distances. The force between two nodes

2
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separated by r < 3.75rc (the cut-off was chosen to limit adhesive force to nearest neighbours) is given
by a soft-core potential of a generalised Lennard-Jones form [Heyes, 2010]:

Fa = 8
✏a
r̃

⇣�a

r̃

⌘2
� �a

2r̃

�
, (3)

where r̃ = 2�a/3 + r. The parameter �a = 2rc was chosen so that the force becomes attractive at
approximately above the node particle size, the exponent of the attractive term was chosen as �1 to
reflect the 1/r dependence estimated for liquid film tension between two worms [Gart et al., 2011], and
the exponent of the repulsive term was set as �2 to win over the attractive term at short distances (to
ensure volume exclusion).

1.1.5 Switching between slow and fast movement

Worms stochastically switch between movement at speeds v0 and vs with rates that depend on the local
density of worms surrounding them. In the absence of other worms, the (Poisson) rates are ks0 to slow
down from v0 to vs, and kf0 to speed up from vs to v0. These rates increase and decrease, respectively,
with the number of neighbouring worm nodes within ri of any node of the worm, such that

kslow = ks0 +
dks
d⇢

, (4)

where the linear dependence is chosen for simplicity, and dks
d⇢ is a free parameter, and

kfast = kf0 exp


�dkf

d⇢
⇢

�
, (5)

where the exponential decay was chosen to provide a lower bound of 0.
The local density ⇢ is estimated by counting the average number of other worms’ nodes in a radius

ri around each node of the current worm.

⇢ =
1

M

MX

m

NX

n

MX

j

⇥(ri � |rm � rnj |), (6)

where |rm � rnj | is the distance from the current node m to node j of worm m, ⇥ is the Heaviside step
function (such that ⇥(x) = 1 if x > 0), and the sum over other worms skips the index of the current
worm.

1.1.6 Reversals

To model reverse movement, we switch the direction of the nodes for the duration of the reversal, such
that movement originates from the tail and the rest of the body follows. Reversals events are generated
stochastically, with Poisson-rate rrev, which depends on the local density via

rrev =
dr

d⇢
, , (7)

where dr
d⇢ is a free parameter, and ⇢ is the local density as estimated above. Once a reversal rate has

started, it lasts for trev = 2s, unless otherwise aborted (see Contact-dependent reversal events).

1.1.7 Contact-dependent reversal events

The rate of reversal events depends on whether the head and tail are in close proximity with other
worms, being rrev when only the head or tail is in close proximity to another worm, but not both, and
zero otherwise. Head and tail nodes are specified as the first and last 10% of the nodes (rounded),
respectively. Contact is registered if any other worm’s nodes are within ri of the head/tail nodes. If the
worm is going forward and the tail is in contact, but the head is not, reversals occur with rate rrev. If
the worm is already reversing, and the tail is not in contact, but the head is, reversals stop with the
same rate. If both or neither head and tail are in contact, no reversals occur (adding reversal rates as
measured for freely moving worms did not qualitatively change the aggregation outcome of simulations).

3
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1.1.8 Adaptive time-step

The time-step of simulations is chosen adaptively to maintain accuracy at higher forces. To achieve this
the time-step scales inversely with the maximum magnitude of forces in the system, dT ⇠ dT0/max (Fi).
The precise scaling is chosen so that the node with the highest force acting on it moves no further in one
time-step than 1/2 of the node radius.

1.2 Food depletion
For simulations with food depletion, food is initialised uniformly on a grid of size L/(4rc), where rc is
the node radius. Food concentration is set equal to 1 in arbitrary units. Before worm movement is
calculated, food concentrations are checked. If the food is depleted at the grid-point closest to the head
node of a worm, the worm moves at the faster speed v0, regardless of other interactions (i.e. does not
slow down and speeds up if previously slowed down). After worm movements, food is consumed in each
grid-point by an amount rfeed per worm-head in that grid-point, with a minimum of zero food.

2 Parameter inference

2.1 Reduction to feasible parameter space
For the model 4 parameter model, with independent speed-switching rates and taxis interactions, we
employ a strategy to exclude unfeasible regions of parameter space before running long simulations. Our
reasoning is that interactions must be such that pairs of worms should not be stable for long times,
and cluster of worms should be stable/unstable for npr-1/N2. We first sample parameters for pilot
simulations from a regular grid, with 10d samples, where d is the dimensionality of our parameter space.
We then run simulations of worms starting as an overlapping pair, and assess whether they are within
1 mm of each other after 1 min of simulation (taking the median of 10 repeated simulations). If their
separation is below the threshold, we discard the parameter sample. The remaining parameter samples
are used to run simulations in which worms start out in a cluster (by confining their initial positions
to a circle of 1.8 mm radius). These simulations are run for 300s, after which stability of the cluster is
assessed by calculating the radius of gyration of the head-nodes of the worms. If the radius of gyration
is above 3 mm (which corresponds approximately to worms being uniform distributed within a square of
7.5 mm side length), the cluster is deemed not stable and the parameter sample is discarded for npr-1
simulations, and kept for N2 simulations. Both the pair- and cluster-stability thresholds are chosen
conservatively to include rather than exclude potential parameter samples. Never the less, only a few
percent of the initial parameter space remain as feasible for further inference. The remaining parameter
samples are used to construct a prior distribution via kernel density estimation, i.e., centring a Gaussian
distribution on each sample.

2.2 Summary statistics
We use the following summary statistics to quantify aggregation and compute the similarity between
simulations and the experimental data:

1. The pair-correlation function compares the density of neighbours at a distance r to that expected
under a uniform random distribution [Gurry et al., 2009]:

S1 = g(r) =
A

N(N � 1)

PN
i

PN
j 6=i 1ij(r � a < rij  r)

⇡(r2 � (r � a)2)
, (8)

where rij is the distance between objects i and j, A = L2 is the size of the simulation domain,
chosen to match the estimated are of the food patch in experiments.

2. Hierarchical clustering (as implemented in Matlab’s linkage) quantifies the structure of a point
pattern through agglomerative clustering. Each frame results in a dendrogram, or clustering tree.
We summarize the distribution of these clustering trees through the overall distribution of branch
lengths, S2.

3. The standard deviation of the positions, �(x) =
p
�(x)2 + �(y)2, is a simple way to quantify the

spread of points x = (x, y), which we average over time to give

S3 = h�(x)it. (9)
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4. The kurtosis or the sharpness of the distribution of positions,

S4 = hKurt(x)it. (10)

To compute these summary statistics, we randomly sample frames from experiments and simulations
such that on average we have one frame every three seconds. To mimic the partial information about
a worms position obtained from the pharynx-labelled imaging, we restricted the simulation analysis to
the first 16% of the nodes (based on measurements of pharynx size relative to worm body length), from
which centroid positions for each worm were obtained. We also computed the nematic order parameter
[Weitz et al., 2015], but found these to be low (⇡ 0.2), and hence not an informative summary statistic
of aggregation in our system.

2.2.1 Distance function

Before combining the summary statistics into a single distance function, we scale them for their overall
magnitude and dimensionality as follows: We take the log-ratio of the summary statistics from ex-
periments and simulations [Barnes et al., 2012] to adjust both for the different scale of bins within
distributions, and the different scales of summary statistics overall, such that such that each statistic is
waited approximately equally, irrespective of its average magnitude.

We further note that higher dimensional summary statistics result in larger distance values, even if
the difference in each dimension is equal to that of a lower dimensional statistic. We choose to normalise
for this by dividing the distance by the square root of the dimensionality.

Thus, our distance function for summary statistic Si with dimensionality Di is given by

di = || logSi,obs � logSi,sim||2/
p
Di. (11)
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Supplementary Tables

Table 1: C. elegans strains used in this study
Name Genotype Source
DA609 npr-1(ad609)X CGC
OMG2 mIs12[myo-2p::GFP]II; npr-1(ad609)X Originated from CB5584 and DA609
OMG10 mIs12[myo-2p::GFP]II Originated from CB5584; outcrossed 6x to CGC N2
OMG19 rmIs349[myo3p::RFP]; npr-1(ad609)X Originated from AM1065 and DA609
OMG24 rmIs349[myo3p::RFP] Originated from AM1065; outcrossed 6x to CGC N2
DR476 daf-22(m130)II CGC
AX994 daf-22(m130)II; npr-1(ad609)X Gift from Mario de Bono

Table 2: Model parameters
Parameter values listed were used as a default, unless otherwise stated. The following parameters were
set to (or otherwise derived from) values as measured in the single worm behavioural database [Yemini
et al., 2013]: v0, rc, Lw,!,� , trev, vs, kslow(⇢ = 0), kfast(⇢ = 0).

Description Value Units
Motility:
v0 worm speed 0.33 (npr-1), 0.14 (N2) mm/s
dT0 time-step rc/v0/8 s
⌘ angular noise strength 0.05 (npr-1), 0.0326 (N2) rad
Shape:
rc node radius 0.035 mm
Lw worm length 1.2 mm
M number of segments 18
l segment length (Lw � 2 ⇤ rc)/(M � 1) mm
kl linear spring stiffness 40 (rods) [F]/[l]
Reversals:
dr
d⇢ increase in reversal rate with density free parameter 1/s
trev reversal duration 2 s
ri interaction radius 3rc mm
Slowing:
vs speed when moving slow 0.018 (npr-1), 0.014 (N2) mm/s
ks0(⇢ = 0) rate to switch to slow movement 1/275 (npr-1), 1/4 (N2) 1/s
kf0(⇢ = 0) rate to switch to fast movement 1/0.9 (npr-1), 1/2.2 (N2) 1/s
dk/d⇢ increase in rate with density free parameter 1/s
Taxis:
ftaxis strength of taxis force free parameter [F]
Rt maximal interaction range for taxis L mm
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