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Abstract 
Studies of the relationship between genetic and phenotypic variation have historically been 

carried out on people of European ancestry.  Efforts are underway to address this limitation, but 

until they succeed, the legacy of a Euro-centric bias in medical genetic studies will continue to 

hinder research, including the use of polygenic scores, which are individual-level metrics of 

genetic risk.  Ongoing debate surrounds the generalizability of polygenic  scores based on 

genome-wide association studies (GWAS) conducted in European ancestry samples, to non-

European ancestry samples.  We analyzed the first decade of polygenic scoring studies (2008-

2017, inclusive), and found that 67% of studies included exclusively European ancestry 

participants and another 19% included only East Asian ancestry participants.  Only 3.8% of 

studies were carried out on samples of African, Hispanic, or Indigenous peoples.  We find that 

effect sizes for European ancestry-derived polygenic scores are only 36% as large in African 

ancestry samples, as in European ancestry samples (t=-10.056, df=22, p=5.5x10-10).  Poorer 

performance was also observed in other non-European ancestry samples.  Analysis of polygenic 

scores in the 1000Genomes samples revealed many strong correlations with global principal 

components, and relationships between height polygenic scores and height phenotypes that were 

highly variable depending on methodological choices in polygenic score construction.  As 

polygenic score use increases in research, precision medicine, and direct-to-consumer testing, 

improved handling of linkage disequilibrium and variant frequencies (both of which currently 

reduce transferability of scores) across populations will improve polygenic score performance.  

These findings bolster the rationale for large-scale GWAS in diverse human populations.  

 

 

Significance Statement 
The modern genetics revolution enabled rough calculations of individuals’ genetic liability for 

many phenotypes, including height, weight, and schizophrenia.  Increasingly, polygenic scores, 

which are individual-level metrics of genetic liability, are available via direct-to-consumer 

testing, and they are already widely used in research.  The performance of these scores depends 

on the availability of very large genetic studies, and consequently it is problematic that people of 

European ancestry are vastly over-represented in these studies.  We quantify the magnitude of 

this problem on the performance of polygenic scores in global samples and also show ancestry-

related properties of polygenic scores.  These findings set benchmarks for future progress, and 

they demonstrate the need for large-scale genetic studies in diverse human populations. 

 

 

Introduction 
Awareness of the over-representation of participants of European ancestry in human genetics 

research has been broadly acknowledged1–5, and increasing the representation of diverse 

populations has recently become a higher priority for the research community5–10.  This has led 

funding agencies such as the National Institutes of Mental Health to make genetic studies of 

diverse populations a priority.  Accordingly, representation of non-European ancestry 

participants in genome-wide association studies (GWAS) increased, from 4% in 20091 to 19% in 

20163.  Most of the increase in non-European ancestry research is attributable to expansion of 

genetic studies of East Asian populations, as reported previously3 and as observed in our data 

(see below).  As such, most populations are still severely underrepresented.  This lack of 
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representation, if not mitigated, will limit our understanding of etiological factors predisposing to 

disease risk, and will hinder efforts to develop precision medicine.  It is also important to 

understand the implications of the European-centric bias of earlier genetic studies, for work that 

builds upon existing research.  For example, researchers want to know how the limited diversity 

in early medical genetic studies impacts the use of polygenic risk scores in non-European 

ancestry populations.  

 

The use of polygenic risk scores11,12 (PRS, also known as risk profile scoring, genetic scoring, 

and genetic risk scoring) has become widespread in biomedical and social science disciplines13–

15.  Businesses have commercialized this technology, including direct-to-consumer testing from 

23&Me and other companies.  Perhaps most importantly, there is hope that polygenic risk scores 

can improve health outcomes by accelerating diagnosis and matching patients to tailored 

treatments16.  Polygenic scoring studies have demonstrated reliable, though modest, prediction 

using straightforward scoring methods11,12 and genetic data alone, for many complex genetic 

phenotypes (e.g. blood pressure13,17, height18, diabetes9,19, depression7,20, and schizophrenia14).  

Polygenic risk scores are calculated by summing risk alleles, which are weighted by effect sizes 

derived from GWAS results11,12,21.  Commonly used methods account for ancestry using 

principal components (calculated on pruned genetic data).  In the parlance of polygenic scoring 

studies, the training GWAS is referred to as the “discovery” sample, and the testing dataset is 

referred to as the “target” sample.  No overlap between discovery and target datasets is 

imperative, as is the removal of related individuals from analyses, as demonstrated by Wray and 

colleagues21.  Methods of prediction that offer modest improvements on this basic framework 

are also available22–25.  
 

Polygenic scores can be constructed for any complex genetic phenotype for which 
appropriate GWAS (or other robust association) results are available.  The challenges 
inherent in using polygenic scores – including modest predictive ability and considerations 
of statistical power in the interpretation of results – have been reviewed previously21,26.  
Recent research has focused on the generalizability of polygenic scores to non-European 
ancestry populations27.  While there is good reason to anticipate reduced predictive power 
in non-European samples12,28 (due to differences in variant frequencies and linkage 
disequilibrium patterns), some have suggested that scores derived from European-
ancestry samples should not be used in more diverse samples29.  Most researchers expect 
reduced power in non-European ancestry samples, rather than complete non-
transferability of scores.  However, the expected decrease in the performance of polygenic 
scores in target populations that differ from discovery populations is unknown.  Further, 
previous findings may need to be re-evaluated in light of newer findings about 
relationships between ancestry and GWAS results29–31.  Few systematic studies of polygenic 
score performance across different ancestry groups are available, though see Hoffman and 
colleagues13 for a thorough investigation of blood pressure metrics.  To date, all available 
information has been based on individual phenotypes or small numbers of empirical 
observations28,32.   
 

A second major area of inquiry concerns the degree to which distributions of polygenic scores 

differ across global populations27,30,31,33–39.  Multiple potential causes of observed distribution 

differences of polygenic scores have been reported, including drift27, selection33,36–39, artifactual 
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differences due to uncorrected population stratification30,31 and different environmental 

effects40,41.  We investigate relationships between global principal components and polygenic 

scores, and assess relationships between polygenic scores and phenotypes for height, using 

1000Genomes42 data and country-level height information.  Using these data, the dependence of 

polygenic scores on methodological choices in score construction is shown.  Further, we 

demonstrate why it is not straightforward to describe true differences in polygenic risk among 

global populations, using currently available data.  These analyses will be helpful in calibrating 

researcher expectations about polygenic scores, as currently calculated, across diverse global 

populations.    

   

 

Results 
 

Usage and performance of polygenic scores in diverse human populations 

 

How well different ancestry groups have been represented in the first decade of polygenic 

scoring research (2008-2017, inclusive) is shown in Figure 1A, which presents cumulative 

distributions of studies for specific ancestry groups across time.  The field has been dominated 

by European ancestry studies.  Across the 733 studies examined (see Methods for inclusion 

criteria and Supplementary Table 1 for a list of studies), 67% included exclusively European 

ancestry participants.  There have also been 140 studies conducted in exclusively Asian 

populations (19%), most commonly in East Asian countries (e.g., China and Japan).  Only 3.8% 

of the polygenic studies from the first decade of polygenic scoring research concerned 

populations of African, Latino/Hispanic, or Indigenous peoples combined*.  These results are 

similar to those reported by Popejoy and Fullerton3, who noted that non-European ancestry 

representation in GWASs was almost exclusively in Asian populations, and East Asian 

populations in particular.   

 

By comparing representation of particular ancestry groups with world population estimates for 

those groups (Figure 1B), it is possible to quantify the over- or under-representation of each 

major ancestry group.  European ancestry representation was approximately 460% of what it 

would be if representation was proportional to world ancestry.  In contrast, African ancestry 

(17%) and Latino samples (19%) were under-represented relative to world populations.  East and 

South Asian samples are combined in this figure, but it should be noted that representation of 

East Asian samples is much higher than South Asian samples, which have been included in very 

few polygenic scoring studies to date.  Middle Eastern and Oceanic populations have the lowest 

representation in polygenic scoring studies relative to world populations for these groups (10% 

and 0%, respectively). 

 
Figure 1. The first decade of polygenic scoring studies (2008-2017) focused primarily on European ancestry 

samples (N=733 studies).  A. Cumulative numbers of studies by year are denoted by color. The stacked bar graph 

below the cumulative distribution plot shows proportional ancestry by year.  B. Pie charts depict world ancestry 

representation (left) and polygenic scoring study representation (right).  C. The percentage representation for each 

                                                 
*Note that we retain populations names from the original reports (e.g. “Native American” and “Middle 
Eastern”) for Figure 1 in order to maintain consistency in terminology. “Combined” means that more than one 
ancestry group was included in the study (e.g. European ancestry and Asian ancestry participants). 
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ancestry group is given, such that 100% would indicate equal representation in the world and in polygenic scoring 

studies.  For example, European ancestry samples are over-represented (460%) whereas African ancestry samples 

are under-represented (17%). 

 

 
 

Having analyzed the use of polygenic scores in different ancestry groups (above), we next 

assessed the performance of polygenic scores among ancestry groups.  We assembled a 

comprehensive collection of polygenic scoring results (see Methods) and found that polygenic 

scores yield statistically significant predictions for numerous complex genetic phenotypes, across 

diverse populations.  The transferability of polygenic scores across populations is consistent with 

evidence about shared risk loci6,43 and findings of positive, significant genetic correlations across 

ancestry for numerous complex genetic phenotypes44.  This means that concerns about complete 

non-transferability of polygenic scores to diverse populations are likely unwarranted.29  Rather, 

empirical data and population genetic theory suggest that polygenic scores will not work as well 

in populations that differ from the discovery GWAS population28,44.  Thus, we sought to quantify 

how well polygenic scores performed across ancestry groups in published studies, for a variety of 
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complex genetic phenotypes (e.g. blood pressure and schizophrenia).  Since most large-scale 

GWAS have been conducted in primarily (or exclusively) European ancestry individuals our a 

priori hypothesis was that polygenic scores would perform best among European ancestry 

individuals, and less well for other populations.   

 

Figure 2 provides an overview of polygenic score performance across ancestry groups.  Results 

from all complex genetic phenotypes are analyzed together in order to increase the amount of 

data available for analysis.  Data used for these analyses were extracted from 29 studies that met 

eligibility criteria (see Methods).  Briefly, we extracted effect-size metrics for polygenic scores 

from every study that conducted polygenic scoring in at least two different ancestry groups, and 

we required that the same polygenic scoring procedures were used for all ancestry groups within 

each study (e.g. same genotyping chip, same discovery GWAS weights for all participants in a 

given study, etc.).  We deemed these sets of analyses (within each study), “matched analyses”.  

For each of the 29 studies, polygenic score performance was normalized to performance in the 

European-ancestry sample in that study.  For example, the first polygenic scoring study of 

schizophrenia12 found that polygenic scores explained only 0.4% of phenotypic variance in an 

African ancestry sample, whereas 3.2% of phenotypic variance was explained in a matched 

European ancestry sample.  Consequently, the value of 12.5% (100*(0.004/.032)) is represented 

as one yellow point in Figure 2, among the African ancestry observations displayed on the right 

side of the Figure 2.  Thus, each small point represents one comparison between a non-European 

ancestry sample and a match European ancestry sample.  European ancestry performance is 

standardized to 100% in all comparisons and is represented by the blue circle on the left side of 

the figure.  By normalizing within-study effect sizes to European ancestry effect sizes, we were 

able to combine observations across phenotypes, and therefore to obtain general estimates of 

polygenic score performance across ancestry groups and complex genetic phenoypes.  We only 

analyzed results from studies employing the “classical” polygenic scoring approach, which 

includes “pruning and thresholding”, and allele weights derived from an independent discovery 

GWAS11,12,21,26. 

 

Polygenic score performance, on average, was worst among African ancestry samples.  The 

median effect size of polygenic scores in African ancestry samples was only 36% that of 

matched European ancestry samples (t=-10.056, df=22, p=5.5x10-10).  Relative to matched 

European ancestry samples, performance was also lower in South (80%) and East Asian (93%) 

samples, but not significantly so.  In sum, an expectation of poorer polygenic score performance 

in non-European ancestry populations seems reasonable given these data.  Attenuation of 

predictive performances is likely to be most extreme in samples of African ancestry, consistent 

with, on average, greater genetic distance between European and African ancestry populations, 

than between European and other ancestry populations28,45.   

 
Figure 2 Performance of polygenic scores in Latino, East Asian, South Asian, and African ancestry samples, 

relative to performance in matched European ancestry samples (29 total studies).  In order to make data 

comparable across studies, performance in each study was standardized to European ancestry performance, hence 

the single European ancestry y-axis value of 100%.  Each point represents one pair of polygenic scoring analyses 

between a European ancestry sample and a matched sample from another ancestry (see text for details).  
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Correlations between global principal components (PCs) and polygenic scores, as currently 

calculated 

 

We now consider questions about putative differences in polygenic scores across ancestral 

populations.  Polygenic scores, as currently calculated, vary with ancestry.  Indeed, polygenic 

scoring practices from as early as 2009 accounted for this12.  The method used by Purcell and 

colleagues in 2009 (and frequently since) includes two steps for mixed ancestry samples.  First, 

samples are separated into more ancestrally homogeneous subgroups (using visual inspection of 

plots of principal components calculated on all genetic data from all samples).  Second, principal 

components are calculated again within each ancestrally homogeneous subgroup, and are used as 

covariates in polygenic scoring analyses, which are conducted separately within each subgroup.  

Figure 3 demonstrates why these ancestry analysis procedures have been used, given that many 

global PCs are strongly correlated with polygenic risk scores, as currently calculated.   

 
 

Figure 3 Properties of polygenic scores for 1000Genomes participants, across phenotypes (heightGIANT, 

heightUK_Biobank, body mass index, and schizophrenia) and across a range of p-values thresholds used to 

construct polygenic scores.  A. Polygenic scores are oftentimes correlated with global principal components.  For 

each phenotype, polygenic scores were constructed using 13 different p-value thresholds as applied to the discovery 

GWAS (denoted in the left-most column).  Twenty global principal components (PCs) were calculated on 

1000Genomes participants and are denoted across the top.  Within the plot, correlations between each PC and each 

polygenic score are color-coded to reflect magnitude and direction of correlations from sky blue=-1 to lime=1.  Stars 

indicate statistical significance of each correlation as follows: *p<0.05, **p<0.005, ***Bonferroni significant.  B. 

Histograms of height polygenic scores for 1000Genomes participants are color-coded according to super-population.  

Two height GWAS were used to construct scores: GIANT (top) and UK biobank (bottom).  Scores were constructed 
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using two p-value thresholds: genome-wide significant variants (left) and using all variants (right).  As can be seen 

for both GIANT and UK Biobank-based scores, the choice of p-value threshold applied to the discovery GWAS has 

a dramatic impact on score distributions among different populations.  In general, inclusion of more variants in 

polygenic scores leads to greater differentiation in distributions of polygenic scores for global populations.  

 

 

 
Pt=p-value threshold applied to discovery GWAS in order to construct polygenic scores, PRS=polygenic risk score, 

GIANT=Genetic Investigation of ANthropomorphic Traits, UK=United Kingdom, BMI=body mass index, 

PCs=principal components. 

 

Figure 3 shows that polygenic risk scores for the complex genetic phenotypes of height, body 

mass index (BMI), and schizophrenia are all significantly correlated with various global PCs 

(3A) and also that distributions of scores, as currently calculated, vary across global populations 

(3B).  In order to construct Figure 3, we calculated polygenic scores and global PCs on all 

1000Genomes individuals.  We applied standard procedures including pruning and weighting 

alleles based on discovery GWAS results (see Methods for additional details).  The results show 

that multiple, sometimes non-consecutive, PCs are strongly correlated with polygenic risk scores, 

as currently calculated.  Many significant correlations are higher than r=.5, and 17.3% of 

correlations in Figure 3 are significant after Bonferroni correction for 1,040 tests (i.e. 

0.05/1,040= p<5x10-5; 20 PCs x 4 phenotypes x 13 p-value thresholds for each discovery GWAS 
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= 1,040 tests).  See Supplementary Table 2 for correlations and corresponding p-values for 

Figure 3A. 

 

In addition to showing the existence of significant correlations between global PCs and 

polygenic scores, as currently calculated, Figure 3 also demonstrates that the choice of p-value 

threshold applied to the discovery GWAS (in the construction of polygenic scores) has a 

dramatic effect on score distributions across populations.  The differences are so pronounced that 

the direction of the correlation between individuals’ values for a given PC and their polygenic 

scores may reverse across the range of p-value thresholds used to construct polygenic scores.  

For example, 1000Genomes participants’ scores for the first global principal component and 

their GIANT18-based polygenic scores for height are modestly positively correlated when only 

genome wide significant variants are used to construct scores (r=.14, p=3.4x10-12, faint green), 

whereas they are strongly negatively correlated when using all variants to construct polygenic 

scores (r=-.59, p=1.9x10-223, blue).  In other words, there are many highly significant 

correlations, which vary not only in magnitude, but also in direction across the range of p-values 

used in the construction of polygenic scores.  The effects of the methodological choice of p-value 

threshold on polygenic scores is further demonstrated on the right-hand side of Figure 3B, which 

shows the distributions of GIANT-based height polygenic scores for 1000Genomes participants, 

using two choices of p-value thresholds (top: genome-wide significant variants, bottom: all 

variants).  Plots of distributions of UK Biobank-based46 polygenic scores for height are also 

shown on the right (bottom two plots).   

 

Figure 3 demonstrates key points relevant to the use of polygenic scores in diverse human 

populations.  First, polygenic scores are often correlated with global PCs, and the correlated PCs 

are not necessarily consecutive (e.g. global PCs 1-4, 7, and 12 are correlated with height 

polygenic scores).  Second, methodological choices of p-value threshold and discovery GWAS 

can have dramatic effects on polygenic scores, such that the magnitude and even the direction of 

observed relationships (e.g. between polygenic scores and PCs) may change across the range of 

commonly used parameters (e.g. across the range of p-value thresholds used to construct scores).  

These findings highlight the importance of treating ancestry properly in all analyses involving 

polygenic risk scores.   Indeed, these findings suggest that a conservative approach that analyzes 

polygenic scores separately in each ancestry group may be warranted, at least until a better 

understanding of polygenic score differences across populations (and across different 

phenotypes) is achieved.  As noted by Chen and colleagues, explicit modeling of ancestry may 

afford even greater predictive power with polygenic scores47.   

 

Assessing putative correlations between global phenotypes and polygenic scores 

 

Finally, we turn to the most difficult question: what causes differences in polygenic scores, as 

currently calculated, among global populations (e.g. see Figure 3B)?  Differences could be real 

or artifactual (i.e. due to bias in data and/or methods), and five categories of explanations are 

listed below.   

1) True differences due to drift 
2) True differences due to selection 
3) True differences in genetic effects due to environmental differences (gene-

environment interactions) 
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4) Bias due to uncorrected population stratification in discovery and/or training 
samples 

5) Bias due to discovery/training population data and/or polygenic scoring methods.  
Specifically, linkage disequilibrium (LD) structure and variant frequency are 
captured imperfectly with current methods (including genotyping and imputation), 
and they vary across populations, and currently available data resources are 
unequally representative of diverse global populations. 
 

Drift has been implicated as an explanation for population differences in polygenic scores across 

populations27, but others reported that drift is insufficient to explain such differences33.  Further, 

initial estimates of the strength of polygenic selection on height in European ancestry 

populations33,37 have recently been greatly reduced30,31, based on findings of uncorrected 

population stratification in summary statistics from the GIANT Consortium30,31.  There is also 

disagreement about whether or not polygenic score differences across populations might 

contribute to phenotypic differences across populations (which could also be due to 

environmental variation).  Some have noted apparent positive correlations between polygenic 

scores and phenotypes for BMI34, lupus35, and height as calculated using GIANT Consortium 

scores33,36,37 and one group argued that there is no such correlation for height based on GIANT 

Consortium scores27.  As described below, we include more data than used previously to address 

questions about putative correlations between global height polygenic scores and height 

phenotypes. 

 

Briefly, using 1000Genomes data (as described in the Methods), we provide evidence consistent 

with artifacts contributing to differences in polygenic scores among global populations.  In 

Figure 4 we plot average polygenic scores for height of 1000Genomes populations on the x-axis, 

using three sources of weights for constructing scores (PRS=polygenic risk score):  

- 4A (top row) GIANT Consortium18 based scores:  PRSheight_GIANT 

- 4B (middle row) UKBiobank46 based scores from the NealeLab:  PRSheight_UKBiobank 

- 4C (bottom row) East-Asian GWAS based scores48 from He et al:  PRSheight_EastAsian 

On the y-axis, we plot average height for countries of origin for 1000Genomes populations, 

when available (see Methods for details and exclusions).   

 
Figure 4 Scatterplots of height polygenic scores (x-axis) and phenotypic height (y-axis) show that correlations 

are not consistent across discovery GWAS.  The y-values for phenotypic height are the same for each plot, and 

reflect average height of individuals in the country of origin or each population included.  Three different GWAS of 

height were used to score populations (i.e. three rows), and three p-value thresholds (i.e. three columns) were used 

for polygenic score construction as applied to the relevant discovery GWAS. A. GIANT-based polygenic scores for 

height. B. UK Biobank-based scores for height. C. East-Asian-based polygenic scores for height.  The last two plots 

are missing because only genome-wide significant variants were available for the East Asian GWAS of height48.    
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GWAS=genome-wide association study, GIANT=Genetic Investigation of ANthropomorphic Traits, 

PRS=polygenic risk score, UK=United Kingdom, PCs=principal components.  Population abbreviations are standard 

abbreviations from the 1000Genomes project42,45 and are included in Supplementary Table 3. 

 

As shown in Figure 4A, height phenotypes for global populations (y-axes) are positively 

correlated with GIANT-based18 polygenic scores for height (x-axes), but not with UK-Biobank-

based polygenic scores (4B) or East-Asian GWAS based polygenic scores (4C).  Polygenic 

scores constructed using only genome-wide significant variants from GIANT (top left) were 

positively correlated with height phenotypes (r=.67, p=.002), as were scores constructed using 

larger numbers of GIANT-based variants (e.g. all variants, top right, r=.59, p=.008).  Results in 

4B and 4C demonstrate that correlations (or lack of correlations) between height and polygenic 

scores for height are dependent on discovery GWAS.  Recent findings suggest that correction for 

population stratification may not have been adequate in GIANT30,31, and therefore the positive 

correlations observed in 4A may be partially due to uncorrected population stratification.  The 
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dependence of correlation estimates on discovery GWAS is further illustrated in 4C, in which 

the point estimate for correlation between height and East Asian GWAS based polygenic scores 

for height is negative (r=-.11, p=.643).  Power in discovery GWAS is also relevant, and greater 

confidence should be attributed to the results in 4A and 4B because both European ancestry 

discovery GWAS were adequately powered to detect hundreds of height loci, whereas the East 

Asian height GWAS was only adequately powered to detect 17 loci. 

 

These results suggest that both the ancestry of the participants in the discovery GWAS (e.g. 

European18,46 vs. East Asian48) and uncorrected population stratification30,31 contribute to 

observed positive correlations between GIANT-based polygenic scores for height and height 

phenotypes across global populations.  UK Biobank-based polygenic scores provide no evidence 

of a positive correlation between global heights and mean height polygenic scores for global 

populations.  eMore research is needed to better understand the exact causes of differences in 

score distributions across populations and their putative relationships to phenotypes.  Future 

research must also account for environmental effects on phenotypes, as well as variability in 

measurement validity and reliability across populations. Even for the relatively simple example 

of height (which is easily measured and for which major environmental influences are relatively 

well-understood) our analyses suggest that a great deal of caution should be used in drawing 

conclusions about polygenic score differences underling global phenotypic differences, until data 

resources are significantly improved (i.e. well-powered GWAS in diverse populations), and until 

a deeper understanding of relevant population genetics principles has emerged.  As discussed 

further below, even more caution will be required for other phenotypes such as psychiatric 

disorders. 

 

 

Discussion 
As the discussion about personalized medicine is making its way to the general public, it is 

important to recognize the need to include underrepresented populations in genetic studies.  

Among other concerns, the inclusion of participants representing diverse ancestries in research is 

imperative to ensure equitable benefit from scientific discoveries for diverse populations, and to 

prevent further increase long-standing health disparities.  Relevant to these longer-term 

objectives, our findings provide foundational information about polygenic risk score usage 

among diverse populations, summarized in four key points.  First, polygenic scoring studies have 

primarily been conducted in European and East Asian ancestry populations.  Second, the 

performance of polygenic scores in non-European populations is generally poorer than 

performance in European ancestry samples.  Third, polygenic scores for complex genetic 

phenotypes are often correlated with global principal components.  Fourth, appropriate data 

resources are lacking to address most questions about putative differences in polygenic scores 

across global (non-European ancestry) populations.  The straightforward, albeit expensive and 

time-consuming, solution to improving polygenic score performance across diverse populations 

is to create well-powered GWAS data resources for many different global populations.  Perhaps 

the most tractable near-term goal is large-scale multi-population GWAS of an easily measurable 

trait such as height, and the GIANT Consortium is taking on this important goal.   

 

Concerning expectations about polygenic score performance in diverse (non-European ancestry) 

samples we note that polygenic scores for many complex genetic phenotypes are strongly 
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correlated with global PCs.  The existence of such correlations highlights the critical importance 

of appropriate statistical methods for the analysis of genetic data from diverse ancestry 

populations, including analyst/statistical geneticist familiarity with multi-ethnic samples.  

Testing future polygenic scoring results for robustness to the inclusion of variable combinations 

of PCs can reduce chances for spurious results, that are actually due to ancestry.  We also 

provide benchmarks for the relative performance of polygenic scores in diverse populations, as 

compared to performance in populations of European ancestry.  This is important, because it not 

only informs power calculations for future research but also highlights relative differences in 

predictive utility across diverse populations.  We find that currently available data resources are 

inadequate for polygenic scoring among African ancestry populations, as compared to data 

resources available for European ancestry samples.  Furthermore, estimates of relative polygenic 

risk score effect sizes, provided here, can inform power calculations in future studies. In sum, the 

preponderance of genetic studies based on European ancestry samples has led to a situation in 

which polygenic scores are approximately one-third as informative for African ancestry 

individuals, as they are for European ancestry individuals.  This is presumably true for 

commercially available tests as well, and consumers should be aware of the differential 

performance of tests across individuals.   

 

Regarding scientific and public perception of polygenic scores, it is important to address 

apparent differences in polygenic score distributions across populations.  Our findings suggest 

that it is currently not possible to know precisely the distribution of polygenic scores for diverse 

non-European populations, for any complex genetic phenotype, because data resources for most 

populations are currently inadequate.  Further, as we have shown, the ordering of population 

distributions of polygenic scores varies across accepted methods of constructing polygenic 

scores (i.e. using different p-value thresholds for variant inclusion in scores and using alternative 

discovery GWAS).  Explanations for these differences are currently incomplete.  Until vastly 

superior data resources are available – including large scale GWAS in multiple global 

populations – scientists are unlikely to reach consensus regarding the existence, nature, and exact 

causes of polygenic score differences among populations.   

 

We chose to examine the phenotype of height because it is easily measured across populations 

and because factors affecting height (e.g. nutrition) are also relatively easily quantified.  In 

contrast, research on other variables such as weight, smoking status, psychological symptoms, 

and cognitive performance will require more careful control for environmental confounders, 

which may often be correlated with ancestry and thus global principal components and polygenic 

scores, as currently calculated.  This means that confounding of environmental and genetic 

effects is likely.  For example, social experiences such as being subjected to racism are prime 

candidates for confounding in genetic studies.   

 

We specifically addressed the topic of potential ancestry-based differences in genetic 

contributions to complex genetic phenotypes because future findings could hold both promise for 

precision medicine, and peril if information is misused.  Already it is known that certain 

Mendelian disorders vary, in part, with ancestry (e.g. cystic fibrosis49 and sickle cell disease50), 

and scientists should be aware that ancestry-based differences in polygenic influences might 

exist.  However, given the sensitivity of certain complex genetic phenotypes such as cognitive 

and psychological variables – combined with the historical precedent for misuse of scientific 
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claims (even those that proved to be false) by governments and racist groups51 – it is critical that 

scientists proceed with caution.  For these reasons, our findings about the inadequacy of 

currently available data to assess putative correlations between polygenic scores and phenotypes 

across global populations are particularly important.   

 

In closing, we emphasize the need to engage experts from other disciplines, such as social 

psychology and bioethicists, as geneticists attempt to characterize genetic effects on phenotypes 

such as cognitive variables.  This is necessary because societal influences including 

socioeconomic status and discrimination can powerfully influence such phenotypes as cognitive 

performance52, and these causal social factors often co-vary with ancestry.  In genetic research, 

there is potential for relative blindness to non-genetic influences on phenotypes.  Consequently, 

experts must be consulted in order to properly account for non-genetic influences on many 

complex genetic phenotypes and gene-environment interplay (i.e. correlations and interactions).  

This precaution applies to psychiatric phenotypes as well, which may be differentially reported 

(and manifested) across cultures.  Nevertheless, with cautious and broadly-informed research, 

potential medical benefits of correctly interpreting polygenic variation within and among 

populations can be realized. 

 

 

Materials and Methods 
This study has two major parts.  First, we analyzed data extracted from previous polygenic 

scoring studies in order to describe trends in polygenic scoring research and to provide the most 

comprehensive analysis of polygenic scoring performance available to date.  Second, we 

analyzed properties of polygenic scores as calculated for the 1000Genomes individuals.  

Relevant procedures for these two parts are described below.  This work received a notice of 

determination that this was not human subjects research from Stanford University. 

 

Part 1: Extracting and analyzing data from previous polygenic scoring studies.  We first 

identified studies with data suitable for extraction, via PubMed on January 23rd, 2018 using the 

following search terms: (Genome-Wide Association Stud* OR GWAS OR Genome Wide 

Association Stud*) and (polygenic risk score OR genetic risk score OR polygenic risk scor* OR 

genetic risk scor* OR risk profile scor* OR “genomic profile”).  We sought to identify all 

polygenic scoring studies, of any complex genetic phenotype, from the first decade of polygenic 

scoring research (note Purcell et al. 2009 was manually added).  This yielded 1,226 studies, 733 

of which were polygenic scoring studies (see Figure 1).  From these 733 studies we extracted 

data about the ancestry of participants and methods of constructing polygenic scores.  We then 

applied criteria to identify studies that contained valid comparisons of the performance of 

polygenic scores in European ancestry participants and at least one other ancestry.  Specifically, 

matched analyses (from two or more ancestry groups, from any given publication) had to use the 

same genotyping chip for all samples, the same weights for variants, the same for constructing 

polygenic scores, and the same methods of measuring phenotypes across all participants.  Data 

from 29 studies met inclusion criteria.  From these studies we then extracted effect size metrics 

for each ancestry group and then normalized score performance for all ancestry groups to 

performance within the European ancestry participants, by dividing all effect sizes (within each 

study) by the effect size of the relevant European ancestry sample.  We multiplied values by 100 

so that performance for each non-European ancestry sample could be expressed as a percentage 
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of European ancestry performance, which was standardized to 100%.  This yielded the data in 

Figure 2, wherein each point represents one within-study comparison between a non-European 

ancestry sample and the matched (within-study) European ancestry sample. 

 

Part 2: Examining polygenic scores in 1000Genomes individuals.  For part 2, we used 

publicly available data from 1000Genomes42; genotype data for 2,557 individuals was 

downloaded from ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/.  Weights for 

constructing polygenic scores came from multiple, publicly-available sources of GWAS 

results14,18,46,48.  Data about average human height, for countries of origin for 1000Genomes 

populations, was downloaded from a pre-compiled table with male and female heights by 

country: https://en.wikipedia.org/wiki/List_of_average_human_height_worldwide.  

 

Data preparation and analysis included the following steps.  The full 1000Genomes dataset was 

first filtered to include only bi-allelic single nucleotide polymorphisms (SNPs) with greater than 

.1% minor allele frequency.  Prior to calculating principal components across 1000Genomes 

genotypes, we used second generation PLINK53 to obtain variants in approximate linkage 

equilibrium, and we also removed the MHC region of chromosome 6 (25-35Mb) and the large 

inversion region on chromosome 8 (7-13Mb).  We then calculated 20 PCs across all individuals.  

Summary statistics files (i.e. GWAS results) were pruned to include only variants in approximate 

linkage equilibrium, using second generation PLINK53,54 and the following thresholds:  --clump-

kb 500, --clump-p1 1, --clump-p2 1, --clump-r2 0.2.  1000Genomes European ancestry data was 

used as the source of linkage disequilibrium information for pruning all summary statistic files 

given the primarily European ancestry of discovery GWAS datasets.  We could not use 

individual-level genotype data for linkage disequilibrium pruning of the GWAS results files 

because it was not available.  Second generation PLINK53 was used to construct polygenic 

scores for each phenotype for the 1000Genomes participants, using 13 thresholds for including 

pruned discovery GWAS variants in scores, as follows: p<5x10-8, p<1x10-6, p<1x10-4, p<1x10-3, 

p<1x10-2, p<.05, p<.1, p<.2, p<.3, p<.4, p<.5, p<.75, p</=1. Plotting, t-tests, and correlations 

were conducted in R55.  Height phenotype data was downloaded from a compiled table of 

average heights, for males and females, by countries.  Heights for males and females were 

averaged.  Certain populations were excluded from the analysis of correlations between 

polygenic risk scores for height and height phenotypes for three reasons: Four populations were 

excluded due to lack of height phenotype data: Puerto Rican in Puerto Rico (PUR), Bengali in 

Bangladesh (BEB), Punjabi in Lahore, Pakistan (PJL), Mende in Sierra Leone (MSL).  Two 

populations were excluded due to the combination of highly mixed country ancestry (impacting 

validity of height phenotype) and admixture of the 1000Genomes population (impacting 

variability in the polygenic scores for height): African Ancestry in Southwest US (ASW), 

African Caribbean in Barbados (ACB).  One population was excluded due to the absence of a 

single European country of origin: Utah residents with Northern and Western European ancestry 

(CEU).  Details are given in Supplementary_Table_3_1000Genomes_countries of origin.xlsx 
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Figure Legends 
For ease of review, figure legends are also supplied in the main text. 

 
Figure 1. The first decade of polygenic scoring studies (2008-2017) focused primarily on European ancestry 

samples (N=733 studies).  A. Cumulative numbers of studies by year are denoted by color. The stacked bar graph 

below the cumulative distribution plot shows proportional ancestry by year.  B. Pie charts depict world ancestry 

representation (left) and polygenic scoring study representation (right).  C. The percentage representation for each 

ancestry group is given, such that 100% would indicate equal representation in the world and in polygenic scoring 

studies.  For example, European ancestry samples are over-represented (460%) whereas African ancestry samples 

are under-represented (17%). 
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Figure 2 Performance of polygenic scores in Latino, East Asian, South Asian, and African ancestry samples, 

relative to performance in matched European ancestry samples (29 total studies).  In order to make data 

comparable across studies, performance in each study was standardized to European ancestry performance, hence 

the single European ancestry y-axis value of 100%.  Each point represents one pair of polygenic scoring analyses 

between a European ancestry sample and a matched sample from another ancestry (see text for details).  

 

Figure 3 Properties of polygenic scores for 1000Genomes participants, across phenotypes (heightGIANT, 

heightUK_Biobank, body mass index, and schizophrenia) and across a range of p-values thresholds used to 

construct polygenic scores.  A. Polygenic scores are oftentimes correlated with global principal components.  For 

each phenotype, polygenic scores were constructed using 13 different p-value thresholds as applied to the discovery 

GWAS (denoted in the left-most column).  Twenty global principal components (PCs) were calculated on 

1000Genomes participants and are denoted across the top.  Within the plot, correlations between each PC and each 

polygenic score are color-coded to reflect magnitude and direction of correlations from sky blue=-1 to lime=1.  Stars 

indicate statistical significance of each correlation as follows: *p<0.05, **p<0.005, ***Bonferroni significant.  B. 

Histograms of height polygenic scores for 1000Genomes participants are color-coded according to super-population.  

Two height GWAS were used to construct scores: GIANT (top) and UK biobank (bottom).  Scores were constructed 

using two p-value thresholds: genome-wide significant variants (left) and using all variants (right).  As can be seen 

for both GIANT and UK Biobank-based scores, the choice of p-value threshold applied to the discovery GWAS has 

a dramatic impact on score distributions among different populations.  In general, inclusion of more variants in 

polygenic scores leads to greater differentiation in distributions of polygenic scores for global populations.  

 

Figure 4 Scatterplots of height polygenic scores (x-axis) and phenotypic height (y-axis) show that correlations 

are not consistent across discovery GWAS.  The y-values for phenotypic height are the same for each plot, and 

reflect average height of individuals in the country of origin or each population included.  Three different GWAS of 

height were used to score populations (i.e. three rows), and three p-value thresholds (i.e. three columns) were used 

for polygenic score construction as applied to the relevant discovery GWAS. A. GIANT-based polygenic scores for 

height. B. UK Biobank-based scores for height. C. East-Asian-based polygenic scores for height.  The last two plots 

are missing because only genome-wide significant variants were available for the East Asian GWAS of height48.    
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