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Abstract 

A significant challenge in our understanding of biological systems is the high number of genes 

with unknown function in many genomes. The fungal genus Aspergillus contains important 

pathogens of humans, model organisms, and microbial cell factories. Aspergillus niger is used to 

produce organic acids, proteins, and is a promising source of new bioactive secondary 

metabolites. Out of the 14,165 open reading frames predicted in the A. niger genome of only 2% 

have been experimentally verified and over 6,000 are hypothetical. Here we show that gene co-

expression network analysis can be used to overcome this limitation. A meta-analysis of 155 

transcriptomics experiments generated co-expression networks for 9,579 genes (~65%) of the 

A. niger genome. By populating this dataset with over 1,200 gene functional experiments from 

the genus Aspergillus and performing gene ontology enrichment, we could infer biological 

processes for 9,263 of A. niger genes, including 2,970 hypothetical genes. Experimental 

validation of selected co-expression sub-networks uncovered four transcription factors involved 

in secondary metabolite synthesis, which were used to activate production of multiple natural 

products. This study constitutes a significant step towards systems-level understanding of A. 

niger, and the datasets can be used to fuel discoveries of model systems, fungal pathogens, and 

biotechnology. 

 

Keywords: Aspergillus niger, systems biology, gene co-expression, network analysis, Tet-on, 

secondary metabolite, natural product synthesis, protein secretion   
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Introduction 

The genus Aspergillus (phylum Ascomycota) is comprised of nearly 200 species of saprophytic 

and ubiquitous fungi, and includes important pathogens of humans (Aspergillus fumigatus), 

model organisms (Aspergillus nidulans) and microbial cell factories (Aspergillus oryzae, 

Aspergillus niger). A. niger has been exploited for over a century by biotechnologists for the 

production of organic acids, proteins and enzymes (1). It is the major worldwide producer of citric 

acid with an estimated value of $2.6 billion in 2014, which is predicted to rise to $3.6 billion by 

2020 (2). As a prolific secretor of proteins, A. niger is used to produce various enzymes at a bulk 

scale (1). The first A. niger genome was sequenced in 2007, which contained an estimated 

14,165 coding genes about 6,000 of which were hypothetical (3). More recent sequencing of 

additional A. niger strains and other genomes from the genus Aspergillus (4,5), combined with 

refinement of online genome analyses portals (6–8), and comparative genomic studies amongst 

the Aspergilli (5), have not significantly increased the percentage of A. niger genes that have 

functional predictions. While the exact number of ‘hypothetical’ genes varies between databases 

and A. niger genomes, recent estimates suggest that between 40 – 50% of the genes still 

remain hypothetical (1,9). Furthermore, only 2% of its genes (247) have a verified function in the 

Aspergillus Genome Database (AspGD (10)). Even for the gold-standard model organism 

Saccharomyces cerevisiae, 21% of its predicted genes remain dubious (11), despite its high 

genetic tractability and a research community with more than 1,800 research labs worldwide. 

Indeed, gene functional predictions for A. nidulans, A. fumigatus, A. oryze and other Aspergilli 

typically cover 40-50% of the genome (9,10)  

Such high frequency of unknown and hypothetical genes severely limits the power of systems-

level analyses. One approach to overcome this limitation involves the generation and 

interrogation of gene expression networks based on transcriptomic datasets (12–14). The 

hypothesis underlying this approach is that genes which are robustly co-expressed under 

diverse conditions are likely to function in the same or in closely related biological processes 
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(15). In this study, we thus conducted a meta-analysis of 155 publically available transcriptomics 

analyses for A. niger, and used these data to generate a genome-level co-expression network 

and sub-networks for more than 9,500 genes. To aid user interpretations of gene biological 

process, gene sub-networks were analysed for enriched gene ontology (GO) terms, and 

integrated with information gleaned from 1,200 validated genes from the genus Aspergillus. 

Interrogation of selected co-expression sub-networks for verified genes and randomly selected 

hypothetical genes confirmed high quality datasets that enable rapid and facile predictions of 

biological processes. This co-expression resource will be integrated in the functional genomic 

database FungiDB (6) for use by the research community.  

We finally validated this co-expression network by selecting two co-expression sub-networks 

predicted to be involved in natural product synthesis of A. niger. The rationale behind was that (i) 

there is an urgent need for new drugs due to the emergence of multiresistant bacteria and fungi 

(16), (ii) most of the natural product repertoire of filamentous fungi such as A. niger is 

unknown(17) and (iii) A. niger has been shown to be a superior expression host for medicinal 

drugs in g/L scale (18). Experimental validation included generation of null and overexpression 

mutants of transcription factors present in these sub-networks, controlled bioreactor cultivations 

and global analysis of gene expression at transcript and metabolite level. The co-expression 

resources and experimental validation developed in this study thus enable high quality gene 

functional predictions in A. niger.  
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Methods 

 

Strains and molecular techniques 

Media compositions, transformation of A. niger, strain purification and fungal chromosomal DNA 

isolation were described earlier (19). Standard PCR and cloning procedures were used for the 

generation of all constructs (20) and all cloned fragments were confirmed by DNA sequencing. 

Correct integrations of constructs in A. niger were verified by Southern analysis (20). In the case 

of overexpressing TF1, TF2 and HD, the respective open reading frames were cloned into the 

Tet-on vector pVG2.2 (21) and the resulting plasmids integrated as single or multiple copies at 

the pyrG locus. Deletion constructs were made by PCR amplification of the 5’- and 3’- flanks of 

the respective open reading frames (at least 0.9 kb long). N402 genomic DNA served as 

template DNA. The histidine selection marker (22) was used for selecting single deletion strains, 

whereas the pyrG marker was used for the establishment of the strain deleted in both TF1 and 

TF2. Details on cloning protocols, primers used and Southern blot results can be requested from 

the authors. 

 

Gene network analysis and quality control 

As of March 02, 2016, 283 microarray data (platform: GPL6758) of A. niger covering 155 

different cultivation conditions were publically available at the GEO database(23), whose 

processing and normalization of the arrays have been published (24). In brief, array data in the 

form of  CEL-files (25) were processed using the Affymetrix analysis package (25) (version 

1.42.1) from Bioconductor (26) and expression data were calculated for genes under each 

condition with an MAS5 background correction. Pairwise correlations of gene expression 

between all A. niger genes were generated by calculating the Spearman's rank correlation 

coefficient (27) using R. To assess a cut-off indicating biological relevance, Spearman 
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correlations were firstly calculated using a pseudo random data set whereby normalized 

transcript values for each individual gene were randomized amongst the 283 arrays and 155 

experimental conditions. Using this pseudo random data set, the Spearman rank coefficient was 

calculated pairwise for all predicted A. niger genes, giving a total of 104,958,315 

comparisons/calculated spearman rank coefficients, from which 52,476,536 were positively 

correlated. From these, only 2 were greater than │0.4│ and none above │0.5│. Subsequently 

│0.5│ was taken as a threshold for co-expression. Sub-networks were calculated at an 

individual gene level using R. All genes that were co-expressed with individual query ORFs will 

be reported at FungiDB (6) and using a │≥0.5│ and │≥0.7│ Spearman cut-off.  

To expedite investigation of the sub-networks and their common biological process, gene 

ontology enrichment (GOE) was implemented using Python version 2.7.13. GO terms and their 

hierarchical structure were downloaded from AspGD(10). Enriched GO Biological Process terms 

for all genes residing in a query sub-network were calculated relative to the A. niger genome and 

statistical significance was defined using the Fishers exact test (p-value <0.05). For informant 

ORFs, experimentally verified A. niger genes were retrieved from AspGD (10). Additionally, A. 

niger orthologs for any gene with wet lab verification in A. fumigatus, A. nidulans or A. oryzae 

were identified using the ENSEMBL BLAST tool using default settings (8). Finally, 81 secondary 

metabolite core enzymes (28,29) were also defined as informant ORFs. We generated informant 

ORF (‘prioritized ORF’) sub-networks, which report significant co-expression of query genes 

exclusively with one or more informant ORFs. 

 

Reporter gene expression 

Protocols for luciferase-based measurement of gene expression in microtiter format based on 

Tet-on (21) or anafp (24) promoter systems have been published. In case of strain BBA17.6, 

unable to form spores, the strain was inoculated on complete medium and allowed to grow for 7 

days at 30°C. Biomass was harvested using physiological salt solution and used for inoculation. 
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All data shown derived from biological duplicates each measured in technical quadruplicates if 

not otherwise indicated. Raw datasets can be requested from the authors.  

 

Bioreactor cultivation 

Medium composition and the protocol for glucose-limited batch cultivation of A. niger in 5L 

bioreactors have been described (21). In the case of strains overexpressing TF1 (strain 

MJK10.22) and TF2 (strain MJK11.17), the Tet-on system was induced with a final concentration 

of 10 µg/ml doxycycline when the culture reached 1 g/kg dry biomass. Samples for 

transcriptional and metabolome profiling were taken ~6 h (~72 h) after induction, i.e. during 

exponential (post-exponential) growth phase. To ensure constant activation of the Tet-on system 

throughout cultivation, 10 µg/ml doxycycline was added every 10-12 hours (five times in total). 

For control (MJK17.25) and deletion strains (MJK14.7, MJK16.5, MJK18.1), doxycycline was 

added twice; once after the culture reached 1 g/kg dry biomass and 24 hours before samples 

were taken from post-exponential growth phase for transcriptomics and metabolomics analyses.  

 

 

Transcriptional profiling 

Total RNA extraction, RNA quality control, and RNA sequencing were performed at 

GenomeScan (Leiden, the Netherlands). Quality analysis of raw data was done as previously 

described (30). In brief, ~13 million reads of 150 bp were obtained from paired-end mode for 

each sample. Read data were trimmed and quality controlled with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). STAR (31) was used to map the 

reads to the A. niger CBS 513.88 genome (http://fungi.ensembl.org/). On average, the unique 

alignment rate was ~95%. Data normalization was performed with DEseq2 (32). Differential 

gene expression was evaluated with Wald test with a threshold of the Benjamini and Hochberg 

False Discovery Rate (FDR) of 0.05 (33) with DEseq2.  
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Metabolome profiling 

Metabolites were extracted from biomass corresponding to 2.5 mg biomass dry weight by 

Metabolomic Discoveries GmbH (Potsdam, Germany) and identified based on Metabolomic 

Discoveries' database entries of authentic standards. Liquid chromatography (LC) separation 

was performed using hydrophilic interaction chromatography with a iHILIC®-Fusion, 150x2.1 

mm, 5 µm, 200 Å 5 μm, 200 A column (HILICON, Umeå Sweden), operated by an Agilent 1290 

UPLC system (Agilent, Santa Clara, USA). The LC mobile phase was (i) 10 mM ammonium 

acetate (Sigma-Aldrich, USA) in water (Thermo, USA) with 5% and 95% acetonitrile (Thermo, 

USA) (pH 6) and (ii) acetonitrile with 5% 10 mM ammonium acetate in 95% water. The LC 

mobile phase was a linear gradient from 95% to 65% acetonitrile over 8.5 min, followed by linear 

gradient from 65% to 5% acetonitrile over 1 min, 2.5 min wash with 5% and 3 min re-

equilibration with 95% acetonitrile. The flow rate was 400 μl/min and injection volume was 1 μl. 

Mass spectrometry was performed using a high-resolution 6540 QTOF/MS Detector (Agilent, 

Santa Clara, USA) with a mass accuracy of < 2 ppm. Spectra were recorded in a mass range 

from 50 m/z to 1700 m/z at 2 GHz in extended dynamic range in both positive and negative 

ionization mode. The measured metabolite concentrations were normalized to the internal 

standard. Significant concentration changes of metabolites in different samples were analyzed 

by appropriate statistical test procedures (ANOVA, paired t-test) using R. When the adjusted p 

value based on Benjamini and Hochberg FDR(33) was lower than 0.05 and the fold change 

(log2) higher than +/- 1, expression of the metabolites was considered as significantly different.  
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Results 

 

The transcriptomic landscape of A. niger inferred from a gene expression meta-analysis 

We normalized and interrogated gene expression across 155 published transcriptomic analyses 

for the A. niger laboratory wildtype strain N402 (ATCC 64974) and its descendants, comprising 

of 283 Affymetrix microarray experiments in total (24). Experimental parameters include a 

diverse range of cultivation conditions (agar plate, bioreactor, shake flask), developmental and 

morphological stages (germination, mycelial growth, sporulation), deletion and disruption 

mutants, stress conditions (antifungals, secretion stress, pH), different carbon and nitrogen 

sources, starvation, and co-cultivation with bacteria. These experimental conditions represent 

diverse niches inhabited by A. niger as well as industrial cultivation conditions, in addition to 

(a)biotic and genetic perturbations that result in global changes in gene expression. 

In order to demonstrate that accurate values of transcript abundance were derived from this 

meta-analysis, we plotted average gene expression values for each gene throughout the 155 

conditions as a function of chromosomal locus (Fig. 1A). From these data, we categorized low, 

medium, and highly expressed loci. Subsequently, we generated a DNA cassette expressing a 

luciferase reporter gene under control of the inducible Tet-on promoter (21) and targeted it to the 

5`-upstream region of two low and one high expression locus (Fig. 1B). The pyrG locus present 

on chromosome III, routinely used for gene-targeted integration in A. niger, served as locus 

control for Tet-on driven medium expression of luciferase (21). Luciferase levels measured at 

these loci were confirmed to be low, medium and high in relative terms in microtiter cultivations 

of the different A. niger strains (Fig. 1C) and in controlled batch cultivation at bioreactor scale 

(Fig. 1D). We therefore conclude that the microarray data accurately reflect A. niger gene 

expression values. Note that this transcriptomic landscape is a significant addition to the A. niger 

molecular toolkit, as it facilitates rational control of gene dosage (time of induction and absolute 

expression level) by targeted locus-specific integration of a gene of interest. 
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Construction of high quality co-expression networks for A. niger 

Experimentally validated gene expression data from the A. niger transcriptional meta-analysis 

was utilized to generate a gene co-expression network based on Spearman’s rank correlation 

coefficient (27). In order to define a minimum Spearman’s rank correlation coefficient (ρ) for 

which we could be confident in extracting biologically meaningful co-expression, we conducted a 

preliminary quality control experiment, where transcript values for each individual gene were 

randomized amongst the 155 experimental conditions. This gave a dataset with identically 

distributed but randomized expression patterns. Next, we calculated every possible 

transcriptional correlation between genes on the A. niger genome, resulting in over 100 million 

ρ-values. This identified 52 million positive and 48 million negative correlations (Fig. 2). From 

this dataset, only 2 ρ-values were above |0.4|, and none were above |0.5|. Consequently, we 

took ρ ≥ |0.5| as a minimum cut-off for biologically meaningful co-expression relationships. 

Calculations of Spearman correlations using the non-randomized microarray data resulted in 

over 4.5 million correlations which passed the minimum ρ ≥ |0.5| cut-off. From these datasets, 

co-expression sub-networks for every gene in the global network were generated for both 

positively and negatively correlated genes (Fig. 2). We classified them into two groups: 

‘stringent’ (ρ ≥ |0.5|, 9,579 genes) and ‘highly stringent’ (ρ ≥ |0.7|, 6,305 genes) and calculated 

enriched GO terms for each gene sub-network relative to the A. niger genome.  

 

Integration of co-expression networks with community-wide experimental evidence of 

gene function  

The Aspergillus community has functionally characterized over a thousand of genes in different 

species of the genus Aspergillus, which we reasoned can be used to aid a priori predictions of 

hypothetical genes or not yet verified genes in A. niger. In order to integrate such experimental 

data with the co-expression network, we mined the Aspergillus genome database AspGD (10) to 
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generate a near-complete list of ORFs that have been functionally characterized in Aspergilli. All 

experimentally validated ORFs for A. niger (n = 247), A. nidulans (639), A. fumigatus (218) and 

A. oryzae (81) were included in this dataset. Given the strong potential of A. niger as a platform 

for discovery and production of new bioactive molecules, we also included 81 putative polyketide 

synthase (PKS) or nonribosomal peptide synthetase (NRPS) encoding genes of A. niger that 

reside in 78 predicted secondary metabolite clusters (28,29), giving in total 1,266 prioritized 

ORFs. For every gene in the A. niger genome, we calculated co-expression interactions 

specifically with these 1,266 rationally prioritized ORFs. A total of 9,263 (ρ ≥ |0.5|) and 5,178 (ρ ≥ 

|0.7|) candidate genes had one or more correlations with prioritized ORFs. These datasets thus 

constitute the most comprehensive co-expression resource for a filamentous fungus and will be 

accessible at FungiDB(6). 

 

Co-expression resources enable facile predictions of gene biological function  

In order to test whether biologically meaningful interpretations of gene and network function can 

be extracted from these resources, we interrogated both stringent and highly stringent datasets 

for genes where the biological processes, molecular function, and subcellular localization of 

encoded proteins have been studied in fungi and which represent the broad range of utilities and 

challenges posed by fungi. From the perspective of industrial biotechnology, we interrogated 

networks for the gene encoding the ATPase BipA, which is required for high secretion yield of 

industrially useful enzymes by acting as chaperone to mediate protein folding in the endoplasmic 

reticulum (34). With regards to potential drug target discovery, we analyzed gene expression 

networks for Erg11 (Cyp51), which is the molecular target for azoles (35). For assessment of 

virulence in both plant and human infecting fungi, we interrogated networks for the NRPS SidD, 

which is necessary for the biosynthesis of the siderophore triacetyl fusarinine C, and ultimately 

iron acquisition during infection (36). Assessment of all control sub-networks at GO and 

individual gene-level revealed striking co-expression of genes encoding proteins involved in 
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respective metabolic pathways, associated biological processes, subcellular organelles, protein 

complexes, known regulatory transcription factors/GTPases/chaperones, and cognate 

transporters, amongst others (Fig. 3). The lowest Spearman correlation coefficient of |0.5| clearly 

results in biologically meaningful gene co-expression as exemplified by the delineation of diverse 

yet related processes, including orchestration of retrograde/anterograde vesicle trafficking via 

COPI/COPII/secretion associated proteins (BipA) (37), coordination of ergosterol biosynthesis by 

sterol regulatory binding element regulators SrbA/SrbB and association of this pathway with 

respiration at the mitochondrial membrane (Erg11) (38), and the linking of respective ergosterol 

and ornithine primary and secondary metabolic pathways during siderophore biosynthesis via 

the interdependent metabolite mevalonate (SidD) (39). With regards co-expressed genes as a 

function of chromosomal location, a hallmark of filamentous fungal genomes is that genes 

necessary for the biosynthesis of secondary metabolite products occur in physically linked 

contiguous clusters. SidD resides in a six-gene cluster with SidJ, SidF, SidH, SitT and MirD, all 

of which were represented in the high stringency network that contained a total of only 13 genes 

(Fig. 3).  

Based on enriched GO terms from gene sub-networks and co-expression with experimentally 

verified ORFs, we could further rapidly infer biological processes for a total of 2,970 (ρ ≥ |0.5|) 

and 1,016 (ρ ≥ |0.7|) hypothetical genes that were positively and/or negatively associated using 

this analysis. Additionally, we interrogated entire families of functionally related genes that have 

been well characterized in the Aspergilli, including phosphatases, chromatin remodelers, and 

transcription factors and were able to assign novel biological processes for all these predicted 

genes. Taken together, these quality control experiments strongly suggest that the co-

expression resources developed in this study can be used for high confidence hypothesis 

generation at a variety of conceptual levels, including biological process, metabolic pathway, 

protein complexes, and individual genes.  
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Co-expression resources accurately predict transcription factors of the ribosomally 

synthesized natural product AnAFP of A. niger 

In order to provide experimental confirmation in predictions of biological processes gleaned from 

this co-expression resource, we interrogated all datasets associated with the gene encoding the 

A. niger antifungal peptide AnAFP. Ribosomally synthesized antifungal peptides of the AFP 

family are promising molecules for use in medical or agricultural applications to combat human- 

and plant-pathogenic fungi(40). We and others could show that expression of their cognate 

genes are under tight temporal and spatial regulation in their native hosts and precedes asexual 

sporulation (24,41–43). 

The gene encoding AnAFP (An07g01320), is co-expressed with 986 genes (ρ ≥ |0.5|; 605 

positively correlated / 381 negatively correlated (24)). GO enrichment analyses of positively 

correlated sub-networks uncovered that anafp gene expression parallels with fungal secondary 

metabolism, carbon limitation and autophagy (24). In total, 23 predicted transcription factors are 

co-expressed at a stringent level among which were the transcription factors VelC (An04g07320) 

and StuA (An05g00480; Fig. 4), both of which are key regulators of asexual development and 

secondary metabolism in Aspergilli (44–46). In order to confirm a regulatory function of these 

transcription factors on anafp expression, we used a reporter strain in which the anafp ORF has 

been replaced with a luciferase gene. Deletion of stuA or velC in this background revealed a 

strong increase or decreased/delayed activation of the anafp promoter, respectively (Fig. 4). 

Interestingly, the transcription factor binding site for VelC is unknown, whereas the binding 

sequence for StuA is absent from the predicted promoter region of anafp. These data thus 

indicate that the resources generated in this study enable accurate predictions of (in)direct 

regulatory proteins even in the absence of DNA binding sites. 

 

Co-expression resources accurately predict transcription factors of non-ribosomally 

synthesized natural products of A. niger 
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The transcriptional activation of secondary metabolite (SM) gene clusters in different filamentous 

fungi is one current focus of the fungal research community (9) as more than 60% of currently 

approved clinical drugs are derived from natural products (47). A. niger stands out due to its 

exceptional high number of predicted SM gene clusters in its genome (78), harboring 81 core 

enzymes in total, such as NRPS and PKS (28). However, only a dozen of SMs have been 

identified from A. niger so far (48). Our survey of the expression data of all gene clusters under 

the 155 cultivation conditions uncovered that the majority of SM core genes (53) are expressed 

in at least one condition. The majority of expressed core genes are also co-expressed with their 

cluster members. Notably, not all cluster members are co-expressed with contiguous 

transcription factors. Indeed, only ~30% of the gene clusters display co-expression with 

contiguous transcription factors. We thus questioned which transcription factors are regulating 

these SM gene clusters, and used the co-expression dataset to assign biological processes to 

genes predicted to encode transcription factors. Given the important role of chromatin 

remodelers in activation and silencing of secondary metabolite clusters, we also interrogated 

genes predicted to encode histone deacetylases (49). This identified two ORFs encoding 

putative transcription factors: An07g07370 (TF1) and An12g07690 (TF2), and a histone 

deacetylase (An09g06520, HD) that are positively and negatively (TF1, TF2) or only negatively 

(HD) co-expressed with numerous core SM genes. Notably, all three genes do not reside in 

contiguous SM gene clusters but belong to a large SM sub-network consisting of 152 genes 

including 26 SM core genes, whereby gene expression of TF1 and TF2 correlate very strongly 

(ρ = 0.87). Interrogation of enriched GO terms for both TF1 and TF2 gene sub-networks 

revealed enrichment of fatty acid metabolism, autophagy, mitochondria degradation (positively 

correlated) and maturation of rRNA and tRNA, ribosomal assembly and amino acid metabolism 

(negatively correlated). This analysis thus allowed us to select genes for in vivo functional 

studies based on a non-intuitive selection procedure. Neither TF1, TF2 nor HD have been 

experimentally characterized in fungi so far. In order to confirm a regulatory function of these 
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putative regulators on SM core gene expression, we generated (i) single deletion strains for TF1, 

TF2 and HD, respectively, (ii) a double deletion strain for TF1 and TF2, and (iii) individual 

conditional overexpression mutants for TF1, TF2 and HD using the Tet-on system (21). The 

strongest effect on the metabolome profile of A. niger was observed during overexpression of 

TF1 and TF2 (Fig. 5). SMs up-regulated under these conditions included, but were not limited to 

aurasperones, citreoviridin D, terrein, aspernigrin A, nigerazine A and B, pyranonigrin A and D, 

flavasperone, fonsecin, O-demethylfonsecin, flaviolin, funalenone; among the SMs down-

regulated under these conditions were asperpyrone, L-agaridoxin and nummularine F (Fig. 5). 

These physiological changes were paralleled by up/down-regulation of thousands of genes as 

determined by RNA-Seq analyses, whereby controlled overexpression of TF1 (TF2) modulated 

expression of 45 (43) SM core genes especially during post-exponential growth phase of A. 

niger (Fig. 5). This strongly suggests that both transcription factors are likely global regulators 

modulating gene expression dynamics during late growth stages of A. niger either directly or 

indirectly.  
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Discussion 

In this study, we performed a transcriptomic meta-analysis to generate a high-quality gene co-

expression network, and used this to predict biological processes for 9,579 (~65%) of all A. niger 

genes including 2,970 hypothetical genes (ρ ≥ |0.5|). The compendium of resources developed 

in this work consists of (i) gene-specific sub-networks with two stringent Spearman cut-offs that 

ensure high confidence in biologically meaningful interpretations; (ii) statistically enriched GO 

terms for each co-expression network, and (iii) a refined list of co-expression relationships which 

incorporate over 1,200 verified ORFs to aid predictions of gene biological process based on 

experimental evidence.  

In order to demonstrate the utility of these resources, we firstly interrogated these datasets at a 

gene-level, demonstrating that transcription factors VelC and StuA, which are critical 

components of ascomycete development and secondary metabolism, also regulate expression 

of the A. niger antifungal peptide AnAFP. Our data provide further evidence of the coupling 

between development, biosynthesis of secondary metabolites, and secreted antifungal  peptides 

(24). The co-expression datasets can also be used to identify global regulators at the level of 

biological processes as demonstrated for fungal secondary metabolism and the two transcription 

factors TF1 and TF2 (which we name MjkA and MjkB). Generation of loss- and gain-of-function 

mutants demonstrated that they likely (in)directly regulate dozens of secondary metabolite loci at 

the transcript and metabolite level. Interestingly, MjkA is a Myb-like transcription factor highly 

conserved in Aspergilli with orthologues present in several plant genomes. Myb transcription 

factors have recently been demonstrated to regulate plant natural product biosynthesis (50), and 

our co-expression data and wet lab experiments suggest that titratable control of MjkA is a 

promising strategy for the activation of ascomycete secondary metabolism during drug discovery 

programs. With regards to the application of our co-expression approach to predict gene 

biological processes in other fungi, interrogation of the GEO database (23) demonstrates that 

several hundred global gene expression experiments are available for industrial cell factories 
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(e.g. A. oryzae, Trichoderma reesei) and human or plant infecting fungi (e.g. A. fumigatus, 

Cryptococcus neoformans, Candida albicans, Magnaporthe oryzae), indicating that our 

approach can be broadly applied for industrial, medically, and agriculturally relevant fungi. As the 

financial costs for gene expression profiling continues to decline, this study paves the way for 

prediction of gene biological function using co-expression network analyses throughout the 

fungal kingdom.  
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Figure legends 

 

Figure 1. The transcriptomic landscape of A. niger. (A) Chromosomal expression values 

expressed as log2 mean from 155 cultivation conditions. Blue arrows indicated centromere 

position on each chromosome(3). (B) Selected chromosomal positions in chromosome III and 

VII for in vivo verification. Red arrow indicates position of chosen integration site at high level 

expression locus, white arrows indicate positions of chosen integration sites at low level 

expression loci, respectively. (C) Data for luciferase activity measured by luminescence in 

counts per second (cps) over time after induction in hours in microtiter plates. Data for strains 

expressing luciferase at the locus An11g08480 (‘low gene expression locus’; strain BG1.1), 

An09g02630 (‘low gene expression locus’; strain BG3.1), An12g03570 (‘medium gene 

expression locus’, pyrG, strain VG8.27), and An11g11310 (‘high gene expression locus’; strain 

BG6.14) are given. Doxycycline was added 16 h after inoculation. (D) Cultivation of strain BG1.1 

and BG6.14 in 5L bioreactors. For each strain, two batch cultivations were performed; one was 

induced with 5 µg/ml doxycycline at a dry biomass concentration of 2 g/kg. Cultivation in the 

presence of doxycycline mediated gene expression as demonstrated by increased luminescence 

after induction measured in technical quintuplicate. 

 

Figure 2: Workflow to generate gene co-expression resources. (A) Various transcriptional 

signatures across 155 cultivation conditions of A. niger obtained from 283 microarrays are 

schematically represented. Spearman’s rank correlation coefficients were calculated pairwise 

between all remaining predicted genes in the A. niger genome. Over 96 million correlations 

between gene pairs were not defined as co-expressed based on the │0.5│cut-off (black and 

orange lines), whereas 2.7 million were positively correlated (black and green lines) and 1.8 
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million were negatively correlated (black and red lines). These >4.5 million significant co-

expression relationships are visualized as a network in (B), with genes shown as grey squares, 

and correlations as lines. The length of each line is proportional to the Spearman correlation 

between gene pairs. Genes predicted to encode transcription factors(3) are highlighted in blue. 

(C) For each individual gene in the network (13,975 in total; this number deviates from 14,165 

reported in 2007(3), because we have omitted truncated ORFs reported there from our 

analysis), sub-networks were calculated which report all significant correlations with the query 

gene of ρ ≥ │0.5│ (stringent dataset) and of ρ ≥ │0.7│ (very stringent dataset). Both sub-

networks were analyzed for significantly enriched GO Terms (biological processes). Additionally, 

we highlight co-expression between query genes and ‘informant ORFs’, which have either been 

experimentally validated in the Aspergilli, or are predicted to encode key secondary metabolite 

biosynthetic enzymes (D).  

 

Figure 3: Schematic representation of co-expression networks for BipA, SidD, and Erg11 

encoding genes. Genes are represented by circles, with positive and negative correlations 

depicted by grey and red lines, respectively. For simplicity, protein names are given in the centre 

of each circle. Where names were not available in A. niger, we used the name for either A. 

nidulans or S. cerevisiae ortholog. Query genes encoding BipA, SidD, or Erg11 are given in 

black diamond boxes. Co-expression sub-networks are given for gene pairs passing │0.7│ (A) 

and │0.5│ (B) Spearman correlation coefficient cut-offs. Both sub-networks were assessed for 

enriched GO terms, and genes were sorted into functional categories based on these analyses 

and manual interrogation of research literature (C). Note that in each instance, hypothetical 

proteins were co-expressed with each query gene, indicating the encoded products are 

somehow associated with these biological processes.  
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Figure 4: In vivo proof of the predictive power of gene-coexpression sub-networks. (A) 

Depicted are 23 predicted transcription factors in the anafp sub-network which either positively 

(19) or negatively (4) correlate with the expression of the anafp gene. Two of these (velC and 

stuA) were selected for in vivo verification by establishing velC and stuA deletion strains in an 

anafp::mluc reporter strain published earlier (strain PK2.9)(24). (B, C) Analysis of anafp 

promoter activity in a strain deleted for velC (strain BBA17.9) and for stuA (strain BBA13.2), 

respectively, which was compared to the progenitor strain PK2.9 abbreviated as ‘wt’. Data are 

from liquid microtiter plate cultures, where a defined amount of biomass was used for inoculation 

and luciferase expression monitored online during cultivation. Expression levels are depicted for 

one representative example from three independent experiments. Each experiment was 

performed in quintuplicate. 

 

Figure 5: Co-expression sub-networks uncover global regulators of secondary 

metabolism in A. niger. Controlled batch cultivations using 5L bioreactor systems were 

performed with the progenitor strain and strains deleted for HD, TF1 and/or TF2 (ΔTF1, ΔTF2, 

ΔΔTF12, ΔHD) or overexpressing either transcription factors (OETF1, OETF2). Note that we 

excluded the strain overexpressing HD from this analysis because its gene expression is 

negatively correlated with the mostly silent SM core genes. Samples were taken for untargeted 

metabolome analyses (LC-QTOF/MS) and global RNA-Seq during exponential and post-

exponential growth phase. Note that the maximum growth rate was for all strains 0.24 h-1 except 

for TF1OE (0.19 h-1). (A) Differential gene expression for 81 predicted secondary metabolite core 

genes in mutant isolates relative to the progenitor control as determined by RNA-Seq analysis. 

(B) Assessment of metabolite abundance demonstrated differential abundance of hundreds of A. 

niger metabolites following deletion or over-expression of HD, TF1 and TF2. In total, 3,410 

primary and secondary metabolites were detected in all runs, 1,260 of which were known 
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compounds and 478 thereof were differentially expressed upon deletion or overexpression of 

these putative regulators. (C) Relative abundance of the SM aurasperone B is shown in 

progenitor control and mutant isolates throughout bioreactor cultivation as an exemplar.  
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