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Abstract

Estrogen Receptor-α (ER) is the key driver of 75% of all breast cancers.
Upon stimulation by its ligand estra-2-diol, ER forms a transcriptionally
active complex binding chromatin. Previous studies have reported that
ER binding follows a cyclical binding pattern with a periodicity of 90
minutes. However, these studies have been limited to individual ER target
genes and most were done without replicates. Thus, the robustness and
generality of ER cycling are not well understood.

Here we present a comprehensive genome-wide analysis of the time
dependence of ER binding affinity up to 90 minutes after activation, based
on 6 replicates at 10 time points using our previously reported method for
precise quantification of binding, Parallel-Factor ChIP-seq (pfChIP-seq).
In contrast to previously described cyclical binding, our approach identi-
fies a unidirectional sustained increase in ER binding affinity, as well as
a class of estra-2-diol independent binding sites. Our results are corrob-
orated by a quantitative re-analysis of data from multiple independent
studies.

Our new model reconciles the results of multiple conflicting studies
into the activation of ER at the TFF1 promoter. We provide a detailed
understanding of ER’s response to estra-2-diol in the context of the re-
ceptor’s fundamental role as both the main driver and therapeutic target
of breast cancer.

1 Introduction

The study of the Estrogen Receptor-α (ER) has played a fundamental role in
both our understanding of transcription factors and cancer biology. The ER
is one of a family of transcription factors called nuclear receptors. Nuclear re-
ceptors are intra-cellular and, on activation by their ligand, typically undergo
dimerisation and bind to specific DNA motif (for ER: Estrogen Response Ele-
ments; EREs). On the chromatin, the nuclear receptor recruits a series of cofac-
tors and promotes the basal transcription mechanism at either nearby promoters
or through chromatin loops from distal enhancers. Because of the minimal na-
ture of these systems relative to other signaling pathways, nuclear receptors
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have become a model system for transcription factor analysis. Simultaneously,
the role of nuclear receptors as drivers in a range of hormone dependent cancers
has led to focused studies in the context of the disease.

Previously, it was reported that the ER and key cofactors followed a cyclical
pattern in breast cancer cell lines with maximal binding at 45 minutes after
stimulation with estra-2-diol [1, 2]. Similar results were also reported for the
AR after activation with DHT [3] and several follow-up studies exist looking at
single genomic loci [4, 5, 6, 7]. However, subsequent genome-wide studies have
provided little further detail on the specific nature of the proposed kinetics of
ER binding being either limited in the number of replicates or lacking temporal
resolution [8, 9, 10, 11]. In our own network analysis [12], we focused on 0, 45
and 90 minutes and found no significant reduction in ER signal at 90 minutes. In
the same study, quantitative proteomic analysis of ER interactions at the same
time intervals by qPLEX-RIME [13] shows no significant difference in terms of
ER interactions at 45 and 90 minutes. These conflicting results have so far not
been resolved.

Routinely used assays to measure protein binding to chromatin are based
on Chromatin Immunoprecipitation (ChIP). A major challenge to monitoring
ER activation through ChIP is the normalization of the ChIP signal — either
genome-wide with next generation sequencing or at individual loci by qPCR —
as the standard protocols do not control for a significant number of confounding
factors including the efficiency of the immunoprecipitation step. In the case the
of the two original studies [1, 2], the data only provided limited controls in this
regard. An alternative method that has been applied to normalize ChIP-seq
data is to use the maximal read count obtained at each individual site across
each time point [11]; however, this method is at the expense of monitoring the
magnitude of ER binding and gives equal weight to low read count peaks and
more robust data from stronger binding sites.

In the context of these challenges, we applied two strategies to robustly
and accurately monitor the process of nuclear receptor binding to chromatin
on activation. The first strategy was to increase the number of replicates. We
generated sample data for six independent isogenic experiments to enable better
characterization of the variance within the data. This strategy provided an un-
precedented level of information regarding ER activation with twice the level of
replication used in previous ChIP-qPCR studies [2] and a significant improve-
ment on previous single replicate genome-wide studies. The second strategy
was to use our recently developed method for precise quantification of binding,
Parallel-Factor ChIP (pfChIP) [14], which uses an internal control for quanti-
tative differential ChIP-seq [3]. Combined, these two strategies enabled us to
undertake the most comprehensive and precise analysis of ER activation to date.

2 Results

Measurement of Genome Copy-Number Discordance We measured
ER-binding in MCF7 cells, a widely used model system for ER biology. To
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maximize the reproducibility of our results, MCF7 cells were grown from ATCC
stocks, keeping passaging to a minimum, and the cell line origin was confirmed
by STR genotyping. Additionally, to ensure the MCF7 cell line did not show
significant genetic drift during culturing within our laboratory, we applied Cell-
Strainer [15] to the input data from our ChIP-seq experiments. The fraction
of genome with copy-number discordance was estimated at 0.2787, within the
range of 0 to 0.3 as published by CellStrainer’s developers to ensure similar
therapeutic response.

Visualization of raw data Sequencing reads from the analysis of 60 pfChip-
seq samples targeting ER and six input samples were demultiplexed and aligned
to the Homo sapiens GRCh38 reference assembly. Visual inspection of the data
using the Integrative Genomics Viewer (IGV) Viewer [16] confirmed enrichment
at known ER binding sites (exemplified by TFF1 in Figure S1) and the pres-
ence of previously reported CTCF control peaks [14]. From visual inspection,
pfChIP-seq samples qualitatively showed minimal ER binding at 0 minutes while
CTCF binding was constant at all time points.

Parallel-Factor Normalization Peak count data from CTCF binding sites
were used to normalize between conditions, with >70 000 binding sites discov-
ered across all samples and >50 000 CTCF binding sites found in over 50% of
samples. Analysis after normalization of the raw data showed similar levels of
variability in terms of signal (Figure S2) as we saw when developing the pfChIP
method [14]. The resultant normalized binding matrix of ER binding was used
for all downstream analyses and is provided as Supplementary Table 1.

ER Binding at the TFF1 Promoter Normalized count data for the TFF1
promoter showed that on activation with estra-2-diol the ER rapidly (in less than
10 minutes) binds the TFF1 promoter. Binding after this time point shows no
significant changes. Analysis of the data by individual replicates (Figure S3) did
not demonstrate evidence of oscillatory binding in individual replicates either
with a period of 90 minutes period or an alternative frequency.

Comparison of the variance in the ER binding after induction shows that
there is significantly more variance (F-test, time points >= 10 minutes, p-value
< 1×10−10) in the ER binding data than in CTCF binding between replicates.
As the variance of CTCF binding in pfChIP-seq is a good estimator of the
technical variance, the most likely source of increased variance in ER binding
is therefore biological. These findings were validated through analysis of the
RARA promoter and proximal CTCF peaks (Figure S4), which gave consistent
results to those seen at the TFF1 promoter.

Locus Specific Variation in Maximal ER Binding Affinity Previously,
ER binding sites were shown to reach maximum occupancy at different time
points depending on genomic location, revealing a P300 squelching mechanism
at early time points [11]. Therefore, to provide a partial validation of this study,
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Figure 1: pfChIP-seq signal at the TFF1 promoter and proximal CTCF binding
site. Binding of ER at the TFF1 promoter has been the classical focus of study
before genome-wide technology and the predicted site for oscillations in ER
binding. ER binding is minimal at 0 minutes; however, by 10 minutes, the
ER has rapidly and robustly bound to give a sustained signal at the TFF1
promoter. In contrast, the closest CTCF binding site demonstrates a constant,
estra-2-diol-independent, signal with significantly less variance.

we applied the same principles of their analysis to our data, i.e. normalizing in
the time-space setting maximum occupancy to 1. Consistent with the previous
study, the two time points with the largest numbers of sites reaching maximal
occupancy in both data sets were at 10 and 40 minutes (Figure 2A). As the
remaining time points were unique to the individual data sets, these could not
be directly compared.

Furthermore, pfChIP-seq allowed us to improve on the previous study by
directly normalizing the data to the internal control. The resultant binding
matrix provided quantification of the absolute binding affinity at each time
point (Figure 2B).

Comparison of Figures 2A and 2B demonstrates the effects of different data
normalization strategies. The relative normalization to maximum binding em-
phasizes binding maxima (red blocks in Figure 2A) while the absolute normal-
ization to an internal control shows that these maxima are very shallow, barely
visible in Figure 2B, and other features dominate the data. A few genes show
very high levels of ER binding (visible as thin red lines in Figure 2B), while most
genes show intermediate levels and some very low levels (blue lines). These dif-
ferent levels of ER binding are preserved over time, with only time point 0
showing very low levels for all genes.

Visualizing Temporal ER Binding Affinity To elucidate potential dif-
ferent temporal responses to ER activation by estra-2-diol, we applied t-SNE
[17], a widely used method for dimensionality reduction and data visualization
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Figure 2: Heatmaps showing ER binding affinity from 0 to 90 minutes after
stimulation with estra-2-diol normalized in two different ways. Row order is
the same in both plots. (A) Normalized by row to time point with maximal
binding. Data suggests that genomic loci may influence the time point maximal
binding; however, normalizing to CTCF control peaks (B) demonstrates the
effect is potentially overemphasized by normalization choice and that binding
affinity is the biggest variable. In contrast, both plots (A and B) show minimal
ER binding affinity is found at 0 minutes, consistent with the literature response
of MCF7 cells to treatment of estra-2-diol.
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(Figure 3). Each dot in the plot represents a binding site over time, i.e. one
row in the binding matrix shown in Figure 2B. We colored each dot by the
false discovery rate (FDR; [18]) for the change in ER affinity between 0 to 10
minutes. This analysis revealed two major trajectories of binding sites in the
data, one dominated by low FDR (orange) and one by high FDR (blue). Both
trajectories saw an increasing affinity in the direction of the white arrow. This
pattern was stable for a wide range of perplexity, the main t-SNE parameter
(Supplementary Figure S5).

We named the estra-2-diol responsive trajectory A, and the estra-2-diol in-
dependent trajectory B. The set of genomic sites found at the end of each
trajectory were named Class A and B respectively. Motif analysis of Class A
peaks demonstrated significant enrichment for the full estrogen response ele-
ment (ERE, [19]), while Class B gave enrichment for the FOXA1 binding site.
Analysis of Class C (i.e. weaker responding genes on trajectory A) gave a partial
ERE match, suggesting a greater divergence from the ERE motif and consistent
with the lower levels of ER affinity found on ER activation at these sites [20].

Average binding profiles were computed for both Class A and Class B. Class
A showed minimal binding at 0 minutes followed by a robust response before
10 minutes, the binding affinity then remained similar for the remaining time
points. In contrast, Class B displayed estra-2-diol independent binding at 0
minutes and average ER binding affinity saw no significant changes between
time points. Class C gave a similar profile to Class A (not shown), but with
reduced amplitude. The average amplitude of the binding from 10–90 minutes
displayed a greater ER affinity for Class A then Class B.

Genomic regions enrichment of annotations tool (GREAT) analysis [21] of
Class B binding sites (Supplementary Table 2) identified the enrichment of six
amplicons previously identified from the analysis of 191 breast tumor samples, q
= 5.6× 10−41 to q = 3.3× 10−8, [22] and a set of genes upregulated in luminal-
like breast cancer cell lines compared to the mesenchymal-like cell lines, q =
1.9 × 10−13, [23]).

Analysis of Class A ER Binding Sites Class A binding sites showed the
strongest response to estra-2-diol, the greatest enrichment of the estrogen re-
sponse element and contained the classical ER binding site at TFF1. We there-
fore focused further analysis on these peaks to minimize confounding factors. A
t-SNE plot of only Class A sites (Figure 4) did not provide distinct clustering
of points. Partial separation was seen on the basis of time point of maximal
binding (left to right) and amplitude (approximately top to bottom).

As the class profiles may average out site-specific oscillatory kinetics, we
undertook analysis of individual ER binding sites. Peaks were annotated on
the basis of the nearest Transcription Start Sites (TSS) and profiles for key ER
target genes TFF1 and GREB1 were generated. As previously seen in Figure
S1, ER binding at TFF1 was stable after induction. The same response was
seen at the TFF1 enhancer (dark red). Analysis of ER binding proximal to
GREB1 again showed a robust and unidirectional response to estra-2-diol.
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Figure 3: t-SNE plot to explore temporal patterns in ER binding affinity. Two
trajectories, A and B, are highlighted with white arrows and starting a sin-
gle cluster of peaks. Points are colored by FDR value computed by Brun-
dle/DiffBind for the 0 vs 10 minutes contrast. Trajectory A demonstrates in-
creasing ER affinity in response to estra-2-diol at 10 minutes. Trajectory B
shows increasing affinity for all times points, i.e. estra-2-diol independent bind-
ing, but the maximum signal is of a lower intensity than that of Trajectory A.
De novo motif analysis for Class A (the peaks found at the end of trajectory A)
gave strongest enrichment for the ERE (p = 1 × 10−538). The same analysis of
Class C provided a partial ERE (not shown), consistent with ER affinity being
a function of how conserved the ER binding site is with respect to ideal ERE.
Analysis of Class B gave FOXA1 as the most significantly enriched motif (p =
1 × 10−19).
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Figure 4: t-SNE plot of Class A from Figure 3, points colored by time of max-
imum value. Profiles for binding sites near the transcription start site of two
well studied ER target genes, TFF1 and GREB1, gave a robust sustained re-
sponse to estra-2-diol. Binding sites near SNX24 and ACKR3 TSS are shown
to examples of ER binding affinity profiles that indicate potential early or late
maximal binding. Peak coordinates are provided in Supplementary Table 1.

Profiles of ER binding that showed either early or late maximal ER affinity
were individually investigated. Binding near the TSS of SNX24 and ACKR3
are provided as representative examples.

Quantitative re-analysis of independent studies Given we found a ro-
bust and stable response to ER activation by estra-2-diol in contrast to the
cyclical response previously described [1], we reviewed studies that have investi-
gated ER binding at the TFF1 promoter. Several studies either used a different
promoter [24], factor [25] or estra-2-diol concentration/include α-amanitin [2].

By manually reviewing the first 1000 citations of [1], we identified several
studies [7, 4, 6] that undertook the same analysis in the MCF7 cell line, with
the same concentration of estra-2-diol, same crosslinking time scale, and at
the same promoter. Since the numerical values of ER binding occupancy were
not available for these studies, we read the values off the provided charts or
undertook image analysis of figures (Supplementary Table 4).

Comparison of the data from all four studies gave little or no consistency in
the temporal profile of ER, AIB1 and P300 binding at these sites (Figure S6).
Interpretation is further hindered as these studies only report a single replicate
for analysis, thereby making it impossible to quantify uncertainty in the data.
Therefore, there is no consistent evidence for cycling in the studies using the
same conditions as the original observation.
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3 Discussion

By undertaking six biological replicates and incorporating an internal control
with pfChIP, we have produced the most comprehensive analysis to date of ER
binding over the first 90 minutes after stimulation with estra-2-diol. We found
the sites at which we detected ER binding on the chromatin follows two distinct
trajectories, either the rapid activation within 10 minutes followed by a stable
response or ligand independent binding.

Enrichment of the FOXA1 motif in the strongest ligand-independent/Class
B sites supports our hypothesis: that these are as a result of ER interactions at
these sites. Importantly, the de novo motif analysis did not find the presence
of the CTCF motif, confirming that they are not an artifact of utilizing CTCF
to normalize via the pfChIP-seq method. Analysis of the Class B binding sites
with GREAT [21], Supplementary Table 2, gave enrichment for 6 out of 30 ER
regulated amplicons identified in a previous study of 191 breast cancer tumor
samples [22]. On the basis that no ERE was found at Class B sites and that
the affinity of ER at these sites was less than at estra-2-diol response sites,
we propose that these sites represent open regions of chromatin where ER can
be recruited by other transcription factors in the absence of its own ligand.
However, these interactions are weak, and very likely transient, as the average
binding affinity for Class B sites is similar in level (a normalized read count of
30–40) to the binding before activation at Class A binding sites, but greater than
Class C binding sites (≈10 normalized reads increasing to ≈40 on activation).

Ligand dependent activation of ER was seen robustly at Class A sites, but
displayed no evidence of cyclical binding. We propose instead that ER activation
occurs rapidly, within 10 minutes and binding shows no significant change after
this point. The two examples we demonstrated — of increasing or decreasing
ER binding after activation at the SNX24 and ACKR3 TSS (Figure 4) — should
be interpreted with caution as, while downstream effects are likely to modulate
ER binding, searching for individual outliers results within a large data set will
generate false positives. Nonetheless, the two examples imply a secondary level
of modulation does occur as previously seen, but at much lower magnitude than
proposed in studies focused on ER cycling.

In light of our results and the lack of consistency of published results, we
propose that the previously described cyclical response kinetics are likely an
artefact of observing a highly variable process without replicates. With repli-
cates, the cyclical effect is lost when averaging. Even if a cyclical response
existed, our results indicate that it is not regulated tightly enough to be co-
herently visible across multiple replicates. The variance in ER binding may
better be described by heterogeneity in the cell populations before induction
and by current models regarding expression noise as an indicator for greater
transcription responsiveness [26].

While we cannot discount that our cells could have specifically lost the ability
to regulate ER binding in the manner previously described, we have minimized
this possibility through the use of cells direct from ATCC, by confirming the
cell line by STR genotype and applying the latest methods [15] to confirm that
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our cell line is genetically similar to the strains used in other labs. Nonetheless,
we would welcome further replication of this study.

In summary, through the use of stringent internal controls, we have repro-
ducibly shown that estra-2-diol responsive ER binding is sustained and not
cyclical, with the magnitude of the binding primarily defined by the conserva-
tion of the ERE at the binding site.

4 Methods and Materials

Cell Culture MCF7 cells were obtained from ATCC and confirmed by STR
genotype before culture. For each immunoprecipitation, cells from 2 × 15 cm
dishes were used. In each 15 cm plate, 2 × 106 were seeded and grown for 3
days in DMEM (Glibco) with 10% FBS before washing with phosphate buffered
saline. Media was replaced with charcoal stripped and phenol red-free DMEM
medium. Media was replaced daily for 4 days to ensure removal of estrogenic
compounds. Plates were stimulated on day 5 with a final concentration of
100 nM estra-2-diol in EtOH before crosslinking at the required time. All six
replicates were done on different dates and represent different passages.

pfChIP-seq Parallel-factor ChIP-seq was performed as previously described
[14]. CTCF antibody was D31H2 Lot:3 (Cell Signaling). ER antibody was
06-965 Lot:3008172 (Millipore).

Data Analysis Reads were aligned using BWA [27], and ENCODE blacklist
regions [28] were removed as previously described [29]. Duplicate reads were re-
moved and peak calling was undertaken using MACS2 [30, 31]. ER and CTCF
peaks were filtered according to the pfChIP-seq protocol[14], before normaliza-
tion and differential binding analysis with Brundle/DiffBind [14, 32] in R. t-SNE
plots were generated with Rtsne [33]. Perplexity was tested from 2 to 200 to
confirm the stability of the transformation of the data into 2-dimensional space
S5. Lower perplexities, 2 and 5, gave minimal structure. For perplexities tested
between 30 and 200, two stable trajectories were seen in all cases. GREAT [21]
was used to analyze Class B binding sites. Band intensities from previously
published studies were measured with ImageJ [34].

Data Repositories All sequencing data is available from NCBI Gene Ex-
pression Omnibus. Data set reference waiting allocation.
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Figure S1: TFF1 Promoter and Enhancer. Illustrative screenshot of aligned
reads from one lane of sequencing after demultiplexing. Key features are the
pile-up of reads at the TFF1 promoter (left) and enhancer (middle) and the
CTCF control peak (right). From top to bottom is 0 to 90 minutes in 10
minute intervals, six replicates of each. Light gray samples are input controls.
Row height normalized to maximum read count in region.
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Figure S2: Normalization plots for each time point as generated by Brundle
[14]. Each point represents a CTCF control binding site. After establishing the
normalization factor for parity of CTCF binding, the ER binding was corrected
using the same parameters. As expected, the levels of normalization required
varies between time points and correction is greatest for the largest magnitude
peaks.
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Figure S3: Line plot of pfChIP-seq signal at the TFF1 promoter and proximal
CTCF binding site.
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Figure S4: Plot of pfChIP-seq signal at the RARA promoter and proximal
CTCF binding site.
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Figure S5: Multiple t-SNE plots of ER binding affinity changes in response
to estra-2-diol at increasing perplexity (top left of each figure). For perplexity
30–200, two consistent trajectories are seen, with exact pattern depending on
random seed provided. A perplexity of 200 was used to render Figure 3.
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Figure S6: Analysis of ER and cofactor binding at the TFF1 promoter in four
studies [7, 4, 1, 6]. Data was either read directly from plots within the original
publication or using ImageJ [34] to calculate band density. To ensure data was
comparable, data was normalized to the maximum value and all studies were
chosen for replicating the conditions in Shang et al.’s original study.
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