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[ABSTRACT] 10 

In-source fragmentation occurs as a byproduct of electrospray ionization.  We find that 11 

ions produced as a result of in-source fragmentation often match fragment ions produced 12 

during MS/MS fragmentation and we take advantage of this phenomenon in a novel 13 

algorithm to analyze LC-MS metabolomics datasets. Our approach organizes co-eluting 14 

MS1 features into a single peak group and then identifies in-source fragments among co-15 

eluting features using MS/MS spectral libraries.  We tested our approach using 16 

previously published data of verified metabolites, and compared the results to features 17 

detected by other mainstream metabolomics tools.  Our results indicate that considering 18 

in-source fragment information as a part of the identification process increases annotation 19 
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 2 

quality, allowing us to leverage MS/MS data in spectrum libraries even if MS/MS scans 20 

were not collected. 21 

[TEXT] 22 

INTRODUCTION 23 

Confidently identifying metabolites in LC-MS metabolomics datasets is a 24 

challenging problem1.  Both targeted2-3 and untargeted4 LC-MS raw data can be 25 

internally or externally calibrated with chemical standards.  While this can yield highly 26 

accurate metabolite detections, the approach is constrained to only measure endogenous 27 

levels of those standard metabolites.  Additionally, external calibrant data must be 28 

reacquired when chromatographic conditions or instrument settings change, making it 29 

potentially prohibitively expensive and time-consuming to produce. 30 

When internal or external standards are unavailable, metabolomics studies 31 

typically leverage several independent lines of evidence to detect metabolites, including 32 

accurate mass, retention time, and agreement between observed and theoretical isotopic 33 

peak intensities.  Different types of identification information may be aggregated to 34 

produce a single identification score5, or identification probabilities using Bayesian 35 

networks6 and target-decoy approaches7.  A popular alternative for analyzing untargeted 36 

LC-MS/MS data is matching acquired MS/MS against one or more large spectral 37 

libraries, such as NIST8, HMDB9, and METLIN10.  While the number of features without 38 

MS/MS spectra acquired using data dependent acquisition (DDA) experiments remains 39 

significant, efforts to increase the number of MS1 features fragmented by the mass 40 

spectrometer11 and applications of data independent acquisition12-13 may improve data 41 

consistency.   42 
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However, many metabolomics experiments are still collected using LC-MS only, 43 

and even in LC-MS/MS datasets, many features only contain MS1 information. Without 44 

MS/MS information, search engines can only use accurate mass and isotopic distributions 45 

based on molecular formulae to detect metabolites14.  As many metabolites share 46 

molecular formulae, scanning MS1-only data against spectral libraries yields incomplete, 47 

ambiguous, or partial metabolite identifications. Additionally, when individual 48 

metabolites ionize, they can produce unanticipated MS1 features as a result of neutral 49 

losses, in-source fragmentation, multimerization, and adducts12,15, further complicating 50 

the annotation process. 51 

Here we present an approach to identify metabolites in untargeted LC-MS data by 52 

identifying in-source fragments that match to fragment peaks in MS/MS spectral 53 

libraries.  To accomplish this, we have developed an algorithm to form consensus MS1 54 

peak groups from a set of raw data files and use those peak groups in library searching. 55 

We have tested our method by comparing the feature detection, deisotoping and grouping 56 

steps of our algorithm to two mainstream open-source approaches using a complex LC-57 

MS dataset containing 75 verified compounds.  We find that our feature detection, 58 

deisotoping and peak grouping steps identify more of the verified compound features 59 

than other approaches.  We also find that identifying in-source fragments in LC-MS data 60 

and including this information as a part of our identification process improves the 61 

accuracy of metabolite identifications. 62 

 63 

EXPERIMENTAL PROCEDURES 64 
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We downloaded mzML raw data from the Metabolights study 67 (MTBLS67)16 65 

from the Metabolights raw data portal17. We processed raw files with MSConvertGUI 66 

(Proteowizard version 3.0.9987)18 to strip them of MS/MS scans, and generated both a 67 

centroided set and an uncentroided set of sample files (using the parameters cwt 68 

centroiding, snr = 0.1, peakSpace = 0.1). 69 

We independently processed the uncentroided positive and negative mode files 70 

using Scaffold Elements 2.0.0 with search parameters that were chosen to match the 71 

original MTBLS67 study (specific search parameters are listed in Supporting 72 

Information Table 1).  Monoisotopic peaks were searched against the NIST 20178 and 73 

METLIN10 spectral libraries, as well as an empty library (to generate a baseline list of all 74 

detected features). We also generated an R script (Supporting Information Script 1) 75 

using Bioconductor19 to drive XCMS20-21 (version 3.0.2) and CAMERA22 (version 76 

1.34.0). The script performed peak detection, peak grouping, and isotope detection on 77 

both the uncentroided sample files (using XCMS “matchedFilter”20) and the centroided 78 

sample files (using XCMS “centWave”21).  We analyzed positive mode and negative 79 

mode files separately using search parameters that were chosen to match the original 80 

study (specific search parameters are listed in Supporting Information Script 1). The 81 

m/z and retention time coordinates of the 75 verified metabolites were compared to all 82 

monoisotopic m/z and retention time features identified by XCMS-matchedFilter + 83 

CAMERA, XCMS-centWave + CAMERA, and Scaffold Elements (script available in 84 

Supporting Information Script 2). 85 

 86 

RESULTS AND DISCUSSION 87 
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The Scaffold Elements algorithmic workflow 88 

We have developed an automated workflow to identify metabolites from 89 

untargeted LC-MS raw files using spectral libraries (Fig 1a). Briefly (see Supporting 90 

Information Note 1 and Supporting Information Figure 1 for further details), we first 91 

organize raw data into isotopic feature clusters (IFCs) that contain a monoisotopic [M+0] 92 

feature, and [M+1] and [M+2] isotopic features.  IFCs from the same sample are formed 93 

into MS1 peak groups based on elution profile (Fig 1b).  This step ensures that all ions 94 

produced during ionization of a single metabolite remain organized together.  Failure to 95 

properly account for ionization effects can lead to ion misannotation, especially of in-96 

source fragments23.  We then align MS1 peak groups from all samples in the experiment 97 

to form cross-sample consensus MS1 peak groups.  The formation of consensus elements 98 

is based on a number of independent metrics, including MS1 spectral similarity, peak 99 

shape, and agreement in m/z and retention time (Fig 1c).  Finally, we search consensus 100 

MS1 peak groups against spectral libraries and score metabolite groups and clusters (Fig 101 

1d). Score values increase both with agreement (higher mass accuracy and agreement 102 

with theoretically predicted isotopic distributions) and the amount of evidence associated 103 

with a metabolite annotation (number of ion types and in-source fragments identified). 104 

Figure 1:  105 
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 106 

 107 

Development of a “gold-standard” MS1-only dataset 108 

We benchmarked our approach using the Metabolights study 67 (MTBLS67) 16. 109 

This study identified and quantified 75 yeast metabolites from nitrogen-starved 110 

Saccharomyces Pombe whole cell lysates using DDA-based LC-MS/MS. Sajiki et al 111 

confirmed the MS/MS fragmentation patterns and retention times of these metabolites 112 

using external standards. In an effort to produce a “gold-standard” MS1-only dataset of a 113 
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complex metabolome with endogenous targets, we stripped these raw files of MS/MS 114 

scans. This produced a mock MS1-only data set containing 75 independently verified 115 

compounds. 116 

 117 

Comparing peak detection algorithms 118 

We compared the peak detection, isotopic clustering, and peak grouping steps of 119 

our approach to two XCMS-based workflows, either XCMS “matchedFilter” 20 or XCMS 120 

“centWave” 21 peak detection, both followed by CAMERA isotopic grouping22.  Scaffold 121 

Elements was executed without library matching to generate a list of all dataset 122 

features.  We found that Scaffold Elements was able to detect more of the features 123 

associated with verified metabolites than either XCMS-CAMERA workflow, including 124 

12 that were not identified by either approach (Fig 2a).  However, since Scaffold 125 

Elements reported more features than either XCMS-CAMERA workflow (Supporting 126 

Information Figure 2), we were concerned that there would be a higher chance of noise 127 

matching a verified metabolite m/z and retention time coordinate by chance. To ensure 128 

that Scaffold Elements returned well-formed peaks, we manually investigated the 129 

features associated with the 12 metabolites that were only identified by Scaffold 130 

Elements. We found that 11 of these 12 verified metabolite features had a clear, 131 

reproducible signal (Supporting Information Figure 3). Extracted ion chromatograms 132 

of features corresponding to one representative verified metabolite (Lysine) are shown in 133 

Fig 2b. 134 

Figure 2: 135 
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 136 

 137 

Using in-source fragments in scoring improves annotation quality 138 

We next aimed to determine if searching for in-source fragments in MS1 peak 139 

groups improved metabolite annotation quality.  We searched the MTBLS67 sample files 140 

with the NIST8 and METLIN10 spectral libraries, which together contained 65 of the 75 141 

verified metabolites (Supporting Information Table 2).  Our feature detection 142 

algorithm identified the correct m/z and retention time feature for 63 of these 65 143 

metabolites.  However, multiple library annotations were returned for these features.  144 
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Scaffold Elements’ scoring algorithm organized these annotations into clusters of 145 

metabolite groups, and ranked the annotations within each metabolite group. 146 

We evaluated metabolite detection performance based on three metrics.  For each 147 

independent search, we determined the proportion of correct annotations (where the 148 

annotation had the highest score in the metabolite group), unambiguous annotations 149 

(where the correct annotation had a uniquely higher score than all other annotations in the 150 

metabolite group), and unmistakable annotations (where the correct annotation was the 151 

only annotation in the metabolite group).  Our approach of incorporating in-source 152 

fragment information in scoring improved all three of these metrics, notably increasing 153 

the proportion of unambiguous and unmistakable annotations by 22% and 60%, 154 

respectively (Table 1).  In many cases, the inclusion of in-source fragments in the search 155 

yielded rich MS1 peak groups that matched multiple MS/MS fragment peaks from the 156 

corresponding library spectrum with high mass accuracy (Fig 3). 157 

 158 

Table 1: 159 

Search Correcta Unambiguousb Unmistakablec 

Major Ion  96.8% 59.7% 40.3% 

Major Ion + ISFs 98.4% 72.6% 64.5% 

 160 
Figure 3: 161 
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 162 

CONCLUSIONS 163 

We have developed an approach to account for ionization effects by forming 164 

consensus MS1 peak groups prior to spectral library matching, and to use in-source 165 

fragments in those groups to perform pseudo-MS/MS library searching. Our results 166 

indicate that considering in-source fragments as part of the identification process 167 

improves confidence in metabolite detections.  To increase the availability of these 168 

algorithms, we have made this tool available as a module in the Scaffold Elements 169 

software package distributed by Proteome Software. 170 

Our results also demonstrate a caveat of spectral library search-based approaches: 171 

it is only possible to identify metabolites that are present in the specific spectral library 172 

(or libraries) searched.  In our case, only 65 (86.7%) of the verified compounds were 173 

present in the NIST and METLIN spectral libraries (Supporting Information Table 174 

2).  If a compound is present in the data but absent from the library, the compound will 175 
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either be misidentified or remain unidentified. Without prior knowledge of which 176 

compounds are actually contained in the data, we can use our scoring approach to 177 

determine which annotations correspond to real compounds and which are 178 

misidentifications. We believe that improving candidate scoring is particularly important 179 

for analyzing untargeted metabolomics LC-MS data, as the ground truth identification 180 

might be absent from the library. 181 

 182 

[FIGURES] 183 

Figure 1. Scaffold Elements metabolite identification and scoring algorithm 184 

(a) Complete workflow of Scaffold Elements identification and scoring algorithm.  Tan, 185 

rounded boxes indicate algorithmic steps, green boxes indicate user-specified inputs, and 186 

blue boxes indicate algorithmic inputs and outputs. (b) An MS1 peak group is formed in 187 

a single sample by combining four co-eluting isotopic feature clusters (IFCs) (I, II, III, 188 

and IV).  IFCs are represented as green circles on a line, with an asterisk indicating the 189 

most intense IFC in the peak group.  (c) A consensus MS1 peak group is formed by 190 

comparing MS1 peak groups from each sample.  A cross-sample MS1 spectrum 191 

similarity score is evaluated considering all IFCs in each peak group, and additional 192 

comparisons are made between a representative IFC from each MS1 peak group 193 

individually (light yellow boxes). The resulting consensus MS1 peak group is represented 194 

as green diamonds on a line, with an asterisk indicating the most intense consensus IFC 195 

in the consensus MS1 peak group.  (d) Multiple putatively identified metabolites are 196 

organized into groups and clusters based on the consensus IFCs within a consensus MS1 197 

peak group.  In this schematic, a consensus MS1 spectrum of five IFCs was identified by 198 
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five metabolites, which were organized into a cluster containing three groups, one of 199 

which contained only a single metabolite.  Identification scores (shown next to each 200 

group in parentheses) indicate the most likely metabolite annotation for this cluster. 201 

 202 

Figure 2: Scaffold Elements feature detection comparison 203 

(a) Comparison of verified metabolite features identified by XCMS-centWave + 204 

CAMERA (centWave), XCMS-matchedFilter + CAMERA (matchedFilter) and Scaffold 205 

Elements (elements).  Scaffold Elements identified 73 of the 75 features associated with 206 

verified metabolites, including 12 that were not detected by either XCMS-CAMERA 207 

workflow. (b) Extracted ion chromatograms (XICs) of a verified metabolite ion for 208 

Lysine ([M-H]- ion), which was identified only in Elements.  The overlay plot of XICs 209 

shows a reasonable peak shape for this ion, which was independently identified in all 12 210 

negative mode samples and correctly organized together into a single feature group. 211 

 212 

Figure 3: UDP-glucose MS1 peak group 213 

(a) An extracted ion chromatogram (XIC) of [M-H]- ion of UDP-glucose and (b) XICs of 214 

three detected in-source fragment peaks.  (c) A butterfly plot comparing observed MS1 215 

peak group of UDP-glucose ([M-H]- ion and three in-source fragment peaks) to METLIN 216 

library spectrum ID:6698 (METLIN ID 3598).  Intensities are shown as a relative 217 

percentage to max spectral peak on a logarithmic scale to allow visualization of low-218 

intensity peaks.  The mass tolerance in ppm for each peak match is shown below butterfly 219 

plot.  (d) The structure of UDP-glucose, with fragmentation sites corresponding to 220 
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observed in-source fragments indicated by yellow lightning bolts.  All observed data in 221 

figure was taken from the sample “EMM2-N_0min_2nd_NEG”. 222 

 223 

[TABLES] 224 

Table 1. Annotation of verified metabolites with and without consideration of in-source 225 

fragmentation (ISF) events in the identification process. aThe annotation had the highest 226 

score. bThe correct annotation had a uniquely higher score than all other annotations. 227 

cThe correct annotation was the only annotation in the metabolite group. 228 

 229 

[ASSOCIATED CONTENT] 230 

Supporting Information Note 1: Detailed description of Scaffold Elements 2.0 231 

metabolite identification and scoring algorithm.  A detailed description of the Scaffold 232 

Elements 2.0 metabolite identification and scoring algorithm.  Also includes a description 233 

of feature finding and isotopic grouping. 234 

Supporting Information Figure 1: Feature finding algorithm Diagram of major steps 235 

of Scaffold Elements feature detection algorithm. 236 

Supporting Information Figure 2: Number of features identified by different 237 

programs Summary of number of features identified by XCMS-centWave + CAMERA, 238 

XCMS-matchedFilter + CAMERA, and Scaffold Elements. 239 
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Supporting Information Figure 3: XICs of verified features only detected by 240 

Scaffold Elements Description and summary of 12 verified features only detected by 241 

Scaffold Elements, including overlaid XICs (showing XIC of each feature in all samples 242 

where it was detected). 243 

Supporting Information Table 1: Scaffold Elements parameters Table of parameter 244 

used in all Scaffold Elements analyses. 245 

Supporting Information Table 2: Detailed Results of in-source fragment annotation 246 

comparison analysis Detailed summary of the annotation results for 75 verified 247 

metabolites with and without consideration of in-source fragments. 248 

Supporting Information Script 1: XCMS CAMERA workflows (R script).  R Script 249 

for generating (m/z, RT) feature list files using both XCMS-matchedFilter on profile 250 

mode files and XCMS-centWave on centroided files.  Uses Bioconductor, XCMS, and 251 

CAMERA (for isotopic grouping). 252 

Supporting Information Script 2: Comparison of XCMS CAMERA workflows vs 253 

Scaffold Elements (Java script)  Java script comparing output of Scaffold Elements and 254 

XCMS-CAMERA workflows to features corresponding to verified metabolites. 255 
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