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Abstract

The sparse coding model posits that the visual system has evolved to efficiently code nat-
ural stimuli using a sparse set of features from an overcomplete dictionary. The original
sparse coding model suffered from two key limitations, however: (1) computing the neural
response to an image patch required minimizing a nonlinear objective function via recur-
rent dynamics; (2) fitting relied on approximate inference methods that ignored uncertainty.
Although subsequent work has developed several methods to overcome these obstacles,
we propose a novel solution inspired by the variational auto-encoder (VAE) framework. We
introduce the sparse-coding variational auto-encoder (SVAE), which augments the sparse
coding model with a probabilistic recognition model parametrized by a deep neural network.
This recognition model provides a neurally plausible feedforward implementation for the
mapping from image patches to neural activities, and enables a principled method for fitting
the sparse coding model to data via maximization of the evidence lower bound (ELBO).
The SVAE differs from standard VAEs in three key respects: the latent representation is
overcomplete (there are more latent dimensions than image pixels), the prior is sparse or
heavy-tailed instead of Gaussian, and the decoder network is a linear projection instead
of a deep network. We fit the SVAE to natural image data under different assumed prior
distributions, and show that it obtains higher test performance than previous fitting meth-
ods. Finally, we examine the response properties of the recognition network and show that
it captures important nonlinear properties of neurons in the early visual pathway.

1 Introduction

Generative models have played an important role in computational neuroscience by offer-
ing normative explanations of observed neural response properties (Olshausen & Field,
1996a,b, 1997; M. Lewicki & Olshausen, 1999; Dayan et al., 2003; Berkes & Wiskott, 2005;
Coen-Cagli et al., 2012). These models seek to model the distribution of stimuli in the world
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P (x) in terms of a conditional probability distribution P (x|z), the probability of a stimulus
x given a set of latent variables z, and a prior over the latent variables P (z). The advan-
tage of this approach is that it mimics the causal structure of the world: an image falling
on the retina is generated by “sources” in the world (e.g., the identity and pose of a face,
and the light source illuminating it), which are typically latent or hidden from the observer.
Perception is naturally formulated as the statistical inference problem of identifying the la-
tent sources that generated a particular sensory stimulus (D. Knill & Richards, 1996; Weiss
et al., 2002; D. C. Knill & Pouget, 2004; Moreno-Bote et al., 2011). Mathematically, this
corresponds to applying Bayes’ rule to obtain the posterior over latent sources given sen-
sory data: P (z|x) ∝ P (x|z)P (z), where the terms on the right-hand-side are the likelihood
P (x|z) and prior P (z), which come from the generative model.

Perhaps the famous generative model in neuroscience is the sparse coding model, intro-
duced by Olshausen and Field (Olshausen & Field, 1996a,b) to account for the response
properties of neurons in visual cortex. The sparse coding model posits that neural activity
represents an estimate of the latent features underlying a natural image patch under a linear
generative model. The model’s key feature is sparsity: a heavy-tailed prior over the latent
variables ensures that neurons are rarely active, so each image patch must be explained by
a small number of active features. Remarkably, the feature vectors obtained by fitting this
model to natural images resemble the localized, oriented receptive fields found the early
visual cortex (Olshausen & Field, 1996a). Subsequent work showed the model could ac-
count for a variety of properties of neural activity in the visual pathway (e.g. classical and
non-classical receptive field effects (Rozell et al., 2008; Karklin & Lewicki, 2009; Lee et al.,
2007)).

Although the sparse coding model is a linear generative model, simultaneous recognition
(inferring the latent variables from an image) and learning (optimizing the dictionary of fea-
tures) can be computationally intensive. Instead optimization has thus far relied on ei-
ther variational optimization with a Dirac delta approximate posterior (Olshausen & Field,
1996a; Dayan et al., 2003; Seeger, 2008), which does not include uncertainty informa-
tion, or sampling-based approaches (Berkes et al., 2008; Theis et al., 2012), which lack a
neurally-plausible implementation. In fact, finding neurally-plausible architectures for both
recognition and learning can be challenging in general. For variational methods, such ar-
chitectures exist both for recurrent (Rozell et al., 2008; Charles et al., 2012; Zylberberg et
al., 2011; Zhu & Rozell, 2013) and feed-forward (Gregor & LeCun, 2010), however these
architectures rely on posterior approximations that do not include uncertainty.

In this paper, we propose a unified solution to these two important problems using ideas
from the variational auto-encoder (VAE) (Kingma & Welling, 2014; Rezende et al., 2014).
The VAE is a framework for training a complex generative model by coupling it to a recog-
nition model parametrized by a deep neural network. This deep network offers tractable
inference for latent variables from data and allows for gradient-based learning of the gener-
ative model parameters using a variational objective. Here we adapt the VAE methodology
to the sparse coding model by adjusting its structure and prior assumptions. We compare
the resulting sparse-coding VAE (SVAE) to fits using the original methodology, and show
that our model achieves higher log-likelihood on test data. Furthermore, we show that the
recognition model of the trained SVAE performs accurate inference under the sparse cod-
ing model, and captures important response properties of neurons in visual cortex, including
orientation tuning, surround suppression, and frequency tuning.
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Figure 1: The sparse coding model. A sample from the model is generated by first sampling
the latent variables z from the sparse prior distribution P (z), which provide linear weights
on feature vectors Φi, and finally adding Gaussian noise. The image shown is taken from
the BSDS300 dataset (Martin et al., 2001).

2 Background

2.1 The Sparse Coding Model

The sparse coding model (Olshausen & Field, 1996a,b) posits that the spike response z
from a population of neurons can be interpreted as a set of sparse latent variables under-
lying an image x presented to the visual system. This can be formalized by the following
generative model:

z ∼ P (z) (prior over neural activity) (1)

x = Φz+ ϵ, (noisy linear mapping to images) (2)

where P (z) is a sparse or heavy-tailed prior over neural activities, Φ is matrix of dictionary
elements or “features”, and ϵ ∼ N (0, σ2

ϵ I) is isotropic Gaussian noise with variance σ2
ϵ .

Critically, the sparse coding model is overcomplete, meaning that the dimension of the latent
variable is larger than that of the data: Dim(z) > Dim(x). As a result, multiple settings of z
can reproduce any given image patch x.

Although this linear generative model is easy to sample, the sparse prior over z make both
inference and model fitting difficult. Full Bayesian inference involves computing the posterior
distribution over latent variables given an image, which is (according to Bayes’ rule):

P (z | x) = N (x | Φz, σ2
ϵ I)P (z)∫

N (x | Φz, σ2
ϵ I)P (z) dz

, (3)

where N(x | Φx, σ2
ϵ I) denotes a multivariate normal density in x with mean Φz and co-

variance σ2
ϵ I. Unfortunately, the denominator cannot be computed in closed form for most

sparsity-promoting priors, such as the Cauchy and Laplace distribution.

Olshausen & Field (1996a) considered a simpler inference problem by setting neural activity
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equal to the MAP estimate of z given the image:

ẑmap | x = argmax
z

logP (z|x) = argmax
z
− 1

2σ2
ϵ
|| x− Φz ||22 + logP (z), (4)

which does not depend on the denominator in (eq. 3). Here ||x−Φz||22 is the sum of squared
errors between the image x and its reconstruction in the basis defined by Φ, and logP (z)
serves as a “sparsity penalty” given by −

∑
i log(1 + z2i ) for a Cauchy prior or −

∑
i |zi| for

a Laplace prior. The noise variance σ2
ϵ serves to trade off the importance of minimizing

the image reconstruction error against the importance of sparsity imposed by the prior. (In
the limit σϵ → 0, the effect of the sparsity penalty logP (z) vanishes, and ẑmap becomes a
least-squares estimate). However, finding ẑmap requires numerical optimization of the right-
hand-side of (eq. 4), which does not easily map onto a model of feed-forward processing in
the visual pathway.

2.2 Fitting the sparse coding model

The procedure for fitting the sparse coding model to data incurs additional steps beyond
the inference problem. The maximum likelihood estimate of the model parameters Φ for a
dataset of images X = {x1, . . . ,xL} is given by

argmax
Φ

P (X|Φ) = argmax
Φ

L∏
l=1

(∫
P (xl|zl,Φ)P (zl) dzl

)
, (5)

where Z = {z1, . . . zL} are the latent variables corresponding to the images in X. Once
again, the integrals over zl have no closed-form solution for the relevant sparsity-promoting
priors of interest.

To circumvent this intractable integral, Olshausen & Field (1996a) employed an approximate
iterative method for optimizing the dictionary Φ. After the initializing the dictionary randomly,
iterate:

1. Take a group of training images X(i) and compute the MAP estimate of the latent
variables Ẑ(i) for each image using the current dictionary Φ(i):

Ẑ(i) = argmax
Z

logP (X(i) | Z,Φ) + logP (Z) (6)

2. Update the dictionary using the gradient of the log-likelihood, conditioned on Z(i):

Φ(i+1) = Φ(i) + η
(
∇Φ logP (X(i) | Z(i),Φ)

)
(7)

where η is a learning rate.

2.3 Fitting as Variational EM

The iterative fitting algorithm from (Olshausen & Field, 1996a,b) can be seen to relate
closely to a form variational expectation-maximization (EM) (Olshausen, 1996; Dayan et
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al., 2003). Variational EM employs a surrogate distribution Q(Z) to optimize a tractable
lower-bound on the log-likelihood known as the evidence lower bound (ELBO):

logP (X | Φ) = log

∫
P (X,Z | Φ) dZ = log

∫
Q(Z)

P (X,Z | Φ)
Q(Z)

dZ (8)

≥
∫

Q(Z) log

(
P (X,Z|Φ)

Q(Z)

)
dZ (9)

= logP (X|Φ)−DKL

[
Q(Z)

∣∣∣∣∣∣P (Z|X,Φ)
]
≜ L(Q,Φ), (10)

where the inequality in (eq. 9) follows from Jensen’s inequality, and DKL[Q(Z)||P (Z)] =∫
Q(Z) log[Q(Z)/P (Z)]dZ denotes the Kullback-Leibler (KL) divergence between two dis-

tributions Q(Z) and P (Z) (Bishop, 2005; Blei et al., 2016).

The expectation or “E” step of variational EM involves setting Q(Z) to minimize the KL-
divergence between Q(Z) and P (Z|X,Φ), the posterior over the latent given the data and
model parameters. Note that when Q(Z) = P (Z|X,Φ), the KL term (Eq. 10) is zero and
the lower bound is tight, so L achieves equality with the log-likelihood. The maximization
or “M” step involves maximizing L(Q,Φ) for Φ with Q held fixed, which is tractable for
appropriate choices of surrogate distribution Q(Z). Variational EM can therefore be viewed
as alternating coordinate ascent of the ELBO:

E-step: Q = argmax
Q
L(Q,Φ) = argmin

Q
DKL

[
Q(Z)

∣∣∣∣∣∣P (Z|X,Φ)
]

M-step: Φ = argmax
Φ
L(Q,Φ) = argmax

Φ
EQ

[
logP (X,Z|Φ)

]
. (11)

It is now possible to see that the fitting algorithm of Olshausen & Field (1996a), as also
discussed by Dayan et al. (2003) is closely related to variational EM in which the surrogate
distribution Q(Z) is a product Dirac delta functions:

Q(Z) =

L∏
l=1

δ(zl − γl), (12)

where {γ1, . . . ,γL} are the variational parameters governing Q. With a Dirac delta poste-
rior, the EM algorithm is formally undefined. Examining Equation 11, the KL divergence in
the E-step between the Dirac delta distribution and the latent variable posterior is infinite,
and the ELBO is formally −∞, always. We can see the source of this catastrophe by writing
out the KL divergence of the E-step above as

DKL

[
Q(Z)

∣∣∣∣∣∣P (Z|X,Φ)
]
=

∫
Q(Z)[log(Q(Z))− log(P (Z | X,Φ))]

= −P (γ | X,Φ) +

∫
Q(Z) log(Q(Z)), (13)

where in the second line we have used our delta-function variational distribution Q(X)
(eq.12) to evaluate the first term, which is simply the posterior evaluated at γ. The sec-
ond term is infinite; note however that this infinite term is independent of Φ, and so the
gradient of the KL divergence with respect to Φ can be computed sensibly, and optimized to
perform the E-step.
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If we neglect the infinite term (which is constant in Φ), the ELBO reduces to:

L(Q,Φ) =
∑
l

∫
δ(zl − γl) logP (xl, zl|Φ) dzl =

∑
l

logP (xl|γl,Φ) + logP (γi) (14)

The E-step involves setting γl to the MAP estimate of the latent vector zl for each image xl,
while the M-step involves updating the dictionary Φ to minimize the reconstruction error of
all images given the inferred latent variables. The original sparse coding algorithm differed
in that it operated on randomly selected sub-sets of the data (stochastic mini-batches), and
took a single gradient step in Φ in place of a full M-step at each iteration. The algorithm
can therefore be seen as a stochastic gradient descent version of variational EM (R. Neal &
Hinton, 1998).

Employing a Dirac delta variational posterior introduces bias whereby Φ can grow without
bound to increase the ELBO1. In the case that a variational distribution with finite vari-
ance is used, the norm of Φ is regularized by the KL divergence. To compensate for this
bias, Olshausen and Field introduced a post-hoc normalization procedure which effectively
matches the z variance to the data variance, regularizing Φ in the process. Interestingly,
we can also show how this step can arise in the variational framework. We first write the
M-step, ignoring terms not depending on Φ, and assume for now that Q(Z) has mean zmap

and covariance Σz:

EQ

[
∥x− Φz∥22

]
= ∥x∥22 + EQ

[
x⊤Φz

]
+ EQ

[
z⊤Φ⊤x

]
+ EQ

[
z⊤Φ⊤Φz

]
= ∥x∥22 + x⊤Φzmap + z⊤mapΦ

⊤x+Tr

[
EQ

[
zz⊤

]
Φ⊤Φ

]
= ∥x∥22 + x⊤Φzmap + z⊤mapΦ

⊤x+Tr
[
(Σz + zmapz

⊤
map)Φ

⊤Φ
]

=
∥∥x− Φzmap

∥∥2
2
+Tr[ΣzΦ

⊤Φ]. (15)

If all datapoints were accessible at once, we can solve this optimization directly. In the case
of random mini-batches, we must take small gradient steps. Specifically we consider the
proximal gradient descent algorithm (Boyd & Vandenberghe, 2004) for optimizing over a
batch of data points X = [x1,x1, ...],

argmin
Φ

∥∥X − ΦZmap

∥∥2
F
+Tr

[
ΣzΦ

⊤Φ
]
. (16)

In proximal gradient descent, optimizing a general cost J(Φ) = f(Φ) + g(Φ), where f(·) is
smooth and g(·) is potentially non-smooth, can be solved by alternating between gradient
steps with respect to f(·),

Φ = Φ− µ∇f(Φ), (17)

and updating the solution via a proximal projection

Φ = argmin
Ψ
∥Φ−Ψ∥2F + g(Ψ), (18)

1Note that the ELBO isn’t actually increasing because, as noted above, it is always formally −∞; we could
however justify this approach with a careful appeal a finite-variance Q(x) that approaches delta function only in
the limit.
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which can often be solved in closed form. For example, the proximal gradient algorithm
for the LASSO estimator reduces to the well known iterative soft-thresholding algorithm
(ISTA) (Beck & Teboulle, 2009).

While g(·) here is trivially smooth (i.e., a quadratic cost), we can still apply proximal gradient
descent, obtaining the following updates:

Gradient step: Φ ← Φ+ µZ⊤
map(X − ΦZmap)

Prox projection: Φ ← argmin
Ψ
∥Φ−Ψ∥2F +Tr

[
ΣzΨ

⊤Ψ
]
= (I +Σz)

−1Φ.

A slight re-organization in the projection step gives

Gradient step: Φ ← Φ+ µZ⊤
map(X − ΦZmap)

Prox projection: Φ ← (Σα
z +Σ1+α

z )−1Σα
zΦ, α > 0

which for diagonal Σz introduces a per-dictionary normalization

ϕk ←

(
σ2
z(k)

σ2
z(k)(1 + σ2

z(k))
1/α

)α

ϕk. (19)

Note that this update step has the same form as the re-normalization step in the original
sparse coding algorithm, with σ2

goal = σ2
z(k)(1 + σ2

z(k))
1/α > σ2

z(k). The strict inequality
here ensures that the variance of Φ is larger than the variance in the latents, which is what
drives the solution away from the trivial solution. The degree of how much greater it is is
dictated by the parameter α. One way, then, to interpret this algorithm then is to assume
that in this step, Σz is replaced by the empirical covariance across samples before the limit
as Σz → 0 for the Dirac-delta approximation. Interestingly, in the case where a prior over Φ
is used where ϕj ∼ N (0, σ2

ϕI) ∀j, the same process holds, except the proximal update is

ϕk ←

(
σ2
z(k)

σ2
z(k)(1 + σ2

ϕ + σ2
z(k))

1/α

)α

ϕk. (20)

where now σ2
goal can be modulated arbitrarily in the range [σ2

z(k)(1 + σ2
z(k))

1/α,∞]. This
is interesting since it indicates that the update step in the original sparse coding is implicitly
implementing the regularization only introduced explicitly in later work (Karklin & Lewicki,
2005).

2.4 Variational Auto-Encoders (VAEs)

The variational auto-encoder is a powerful framework for training complex generative mod-
els (Kingma & Welling, 2014; Rezende et al., 2014; Doersch, 2016). In the first papers
describing the VAE, the generative model was defined by a standard Gaussian latent vari-
able mapped through a deep neural network with additive Gaussian noise:

z ∼ N (0, I) (21)

x = Gθ(z) + ϵ, (22)
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Figure 2: Schematics of traditional VAE and the sparse-coding VAE. (A) The traditional VAE
consists of a generative model (decoder) with a recognition model (encoder) stacked on top
to subserve variational inference. Both models are parametrized by deep neural networks
with Gaussian noise. (B) The sparse-coding VAE results from replacing the generative
model by the sparse coding model. It differs from the original VAE in three key respects:
the latent variable z has higher dimension than the data x; the prior over z is sparse (e.g.,
Cauchy or Laplace) instead of Gaussian; and the generative model is linear instead of a
deep neural network.

where Gθ(z) denotes the output of a deep neural network with parameters θ, and ϵ ∼
N (0, σ2

ϵ I) represents Gaussian noise added to the output of this network. By using a suf-
ficiently large, deep network, this model should be able to generate data with arbitrarily
complicated continuous distributions.

The key idea of the VAE framework is to perform variational inference for this model using
a variational distribution parametrized by another deep neural network:

Q(z) = N
(
µγ(x),Σγ(x)

)
, (23)

where µγ(x) and Σγ(x) denote the neural network with parameters γ = {γµ, γσ}, that
map data samples x to the mean and covariance (respectively) of a Gaussian variational
distribution over z given x. These network outputs provide an approximate recognition
model for inferring z from x under the generative model (Eqs. 21-22). In VAE parlance,
µγ(·) and Σγ(·) comprise the encoder, mapping data samples to distributions over the
latent variables, while the generative network Gθ(·) is the decoder, mapping latent variables
to the data space. This terminology is inspired by the model’s structural similarity to classic
auto-encoders, and is consistent with the fact that z is typically lower-dimensional than x,
providing a compressed representation of the structure contained in the data when using
the encoder. Note that the analogy is imprecise, however: the output of the encoder in the
VAE is not a point z in latent space, but a distribution over latent variables Q(z).

Fitting the VAE to data involves stochastic gradient ascent of the ELBO (Eq. 10) for model
parameters θ and variational parameters γ. This can be made practical using several clever
tricks. The first trick is to evaluate the expectation over Q(Z) as a Monte Carlo integral. The
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contribution to the ELBO from a single data sample x is therefore:

L(Q, θ|x) =
∫

Q(z) log
P (x, z|θ)
Q(z)

dz ≈ 1

m

m∑
j=1

log
P (x, zj |θ)
Q(zj)

, (24)

for z1, . . . zm ∼ Q(z), where m is the number of samples used to evaluate the Monte Carlo
integral.

The second trick is the reparametrization trick, which facilitates taking derivatives of the
above expression with respect to the variational parameters γ governing Q(z). Instead of
sampling zj ∼ Q(z), the idea is to map samples from a standard normal distribution into
samples from the desired variational distribution Q(z) = N (µγ(x),Σγ(x)) via a differen-
tiable transformation, namely:

zj = Σ
1
2
γ (x)nj + µγ(x) (25)

for n1, . . . ,nm ∼ N(0, I), where Σ
1
2
γ (x) denotes the matrix square root of the covariance

matrix Σγ(x).

Combining these two tricks, and plugging in the VAE generative and recognition model
components for P (x, z|θ) and Q(z), a Monte Carlo evaluation of the per-datum ELBO can
be written:

LMC(Q, θ|x) =

1

m

m∑
j=1

 1

2σ2
ϵ

∣∣∣∣∣∣x−Gθ

(
Σ

1
2
γ (x)nj + µγ(x)

)∣∣∣∣∣∣2 + log
P (Σ

1
2
γ (x)nj + µγ(x))

Q(Σ
1
2
γ (x)nj + µγ(x))

 , (26)

where the first term is the the mean squared error between the original image patch x
and its reconstruction after passing x through the noisy encoder and decoder, and the
second term is the log-ratio of the latent prior P (z) = N (0, I) and the variational distribution

Q(z) = N(µγ(x),Σγ(x)), evaluated at the sample point zj = Σ
1
2
γ (x)nj + µγ(x).

It is worth noting that the first term in (eq. 26) relies on a stochastic pass through the en-
coder, given by a noisy sample of the latent from Q(z) (which is really an approximation
to P (z|x), the conditional distribution of the latent given x). This sample is then passed
deterministically through the decoder network Gθ. The generative model noise variance
σ2
ϵ serves as an inverse weight that determines how much to penalize reconstruction error

relative to the second term in the ELBO. The second term, in turn, can be seen as a Monte
Carlo estimate for −DKL(Q(z)||P (z)), the negative KL divergence between the variational
posterior and the prior over z. Because both these distributions are Gaussian, the standard
approach is to replace the Monte Carlo evaluation of this term with its true expectation, us-
ing the fact that the KL divergence between two Gaussians can be computed analytically
(Kingma & Welling, 2014; Rezende et al., 2014).

In contrast to the iterative variational EM algorithm used for the classic sparse coding model,
optimization of the VAE is carried out by simultaneous gradient ascent of the ELBO with
respect to generative network parameters θ and variational parameters γ. During training,
the per-datum ELBO in (eq. 26) is summed over a mini-batch of data for each stochastic
gradient ascent step.
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3 Sparse Coding VAEs

In this paper, we adapt the VAE framework to the sparse coding model, a sparse gener-
ative model motivated by theoretical coding principles. This involves three changes to the
standard VAE: (1) We replace the deep neural network from the VAE generative model with
a linear feed-forward network; (2) We change the under-complete latent variable represen-
tation to an overcomplete one, so that the dimension of the latent variables is larger than
the dimension of the data; and (3) We replace the standard normal prior over the latent
variables with heavy-tailed, sparsity-promoting priors (e.g., Laplace and Cauchy).

We leave the remainder of the VAE framework intact, including the conditionally Gaussian
variational distribution Q(z), parametrized by a pair of neural networks that output the mean
and covariance as a function of x. The parameters of the SVAE are therefore given by
{Φ, σ2

ϵ ,γ} and a prior P (z), where P (z), Φ and σ2
ϵ specify the elements of sparse coding

model (a sparse prior, generative weight matrix, and Gaussian noise variance, respectively),
and variational parameters γ are the weights of the recognition networks µγ(·) and Σγ(·)
governing the variational distribution Q(z) = N (µ(x),Σγ(x)). Fig. 2 shows a schematic
comparing the two models.

4 Methods

4.1 Data Preprocessing

We fit the SVAE to 12×12 pixel image patches sampled from the BSDS300 dataset (Martin
et al., 2001). Before fitting, we preprocessed the images and split the data into train, test,
and validation sets. In the original sparse coding model, the images were whitened in the
frequency domain, followed by a low-pass filtering stage. In Olshausen & Field (1996a)
the whitening step was taken to expedite learning, accentuating high frequency features
that would be far less prominent for natural image data, which is dominated by the low-
frequency features. This is due to the fact that the Fourier (frequency) components are
approximately the principal components of natural images, however the overall variance of
each component scales with the inverse frequency squared (the well known 1/f spectral
properties of natural images), producing large differences in variance between the high- and
low-frequency features. This poses a problem for gradient-based approaches to fitting the
sparse coding model since low variance directions dominate the gradients. The low-pass
filtering stage then served to reduce noise and artifacts from the rectangular sampling grid.

We perform a slight variation of these original preprocessing steps, but with the same overall
effect. We whiten the data by performing PCA on the natural images and normalizing each
component by its associated eigenvalue. Our low-pass filtering is achieved by retaining
only the 100π/4% most significant components, which correspond to the 100π/4% lowest
frequency modes, which also roughly corresponds to a circumscribed circle in the square
Fourier space of the image, removing the noisy, high frequency corners of Fourier space.
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4.2 SVAE Parameters

We implemented an SVAE with dim(z) = 169 latent dimensions, resulting in a latent code
that is 1.5× over-complete, and set the Gaussian output noise variance to σ2

ϵ = exp(−2)
(implying a signal-to-noise ratio of exp(2), since the data is whitened). We also tested a
latent code that is 2× over-complete and observed similar results, and thus kept ×1.5 over-
completeness for computational considerations. We implemented the SVAE with three
choices of prior which included Laplace (Eq. 27), Cauchy (Eq. 28), and Gaussian (Eq. 29).

PL(z) =
N∏
l=1

1

2
exp(−|zl|) (27)

PC(z) =
N∏
l=1

1

π

(
1 + z2l

)−1
(28)

PG(z) =

N∏
l=1

1√
2π

exp
(
−1

2z
2
l

)
(29)

We parametrized the recognition models µγ(·) and Σγ(·) using feed-forward deep neural
networks (Figure 2). The two networks took as input a vector of preprocessed data and
had a shared initial hidden layer of 128 rectified linear units. Each network had two addi-
tional hidden layers of 256 and 512 rectified linear units respectively, which were not shared.
These networks, parameterizing µγ(·) and Σγ(·), each output a dim(z) = 169 dimensional
vector which encode the mean and main diagonal of the covariance of the posterior, respec-
tively. We set the off-diagonal elements of the posterior covariance matrix to zero — this
assumption, and its implications for the dependencies between latent coefficients, is further
discussed in the Discussion section. The final hidden layer in each network is densely
connected to the output layer, with no nonlinearity for the mean output layer and a sigmoid
nonlinearity for the variance output layer. In principle the variance values should be en-
coded by a non-saturating positive-definite nonlinearity; however we found that this led to
instability during the fitting process and the sigmoid nonlinearity resulted in more stable be-
havior. Intuitively, given that our priors have scales of one, the posteriors will generally have
variances less than 1, and can be expressed sufficiently well with the sigmoid nonlinearity.

4.3 Optimization

We optimized the SVAE using the PyTorch (Paszke et al., 2017) machine learning frame-
work. Gradient descent was performed for 128 epochs (approximately 2× 105 optimization
steps) with the Adam optimizer (Kingma & Ba, 2014) with default parameters, a batch size
of 32, and a learning rate of η = 10−4 . The networks always converged well within this
number of gradient descent steps. We took the number of Monte-Carlo integration samples
to be m = 1 and tested higher values, up to m = 5, but found that this parameter did not
influence the results. We used the same learning hyperparameters for all three priors.

For comparison we fit our own version of the sparse coding model, also cast as a PyTorch
“Module”, using the methods of Olshausen and Field (Olshausen & Field, 1996a) for fitting
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. We utilized the same learning hyperparameters as in the original work, including during
normalization of Φ (see Section 2.3).

4.4 Evaluating Goodness of Fit with Annealed Importance Sampling

To evaluate the goodness of fit we used annealed importance sampling (AIS) (R. M. Neal,
2001). We refer to Appendix §8.1 for a primer on the topic, and the use of the method for
evaluating log-likelihoods. Our estimates used 1000 samples with 16 independent chains,
a linear annealing procedure over 200 intermediate distributions, and a transition oper-
ator consisting of one HMC trajectory with 10 leapfrogs steps. Furthermore, we tuned
the HMC step-size to achieve (within 1% absolute tolerace) the optimal acceptance rate
of 0.65 (R. M. Neal, 2011; Wu et al., 2016). We do so using a simple gradient descent
algorithm: consecutively over single batches of input samples, denoting Aϵ the average
HMC acceptance rate obtained when computing AIS on those input samples, update ϵ ←
ϵ+η (Aϵ − 0.65) with learning rate η ≃ 0.5 until convergence. Finally, we note that AIS only
gives a lower bound on the log-likelihood (Wu et al., 2016). Even though an exact expres-
sion is available for the log likelihood in the Gaussian case, we use AIS for the Gaussian
prior as well so that the resulting values are directly comparable.

5 Results

5.1 Quality of Fit

We first assess our model by calculating goodness-of-fit measures. We compare here the
various choices in prior distributions using both the SVAE optimized with VAE-based in-
ference and the original sparse coding model fit with the method of (Olshausen & Field,
1996a). To perform this assessment, we computed the log-likelihood of test data under the
fit parameters, using AIS. Figure 3A depicts how the log-likelihood is monotonically increas-
ing over training for all priors. We observe that, of the priors tested, sparser distributions
result in higher log-likelihoods, with the Cauchy prior providing the best fit. To explore the
utility of the sparse coding VAE over the approximate EM method, we similarly calculated
the log-likelihoods for the method in (Olshausen & Field, 1996a), again for each of the three
prior distributions. We observe that the log-likelihood goodness-of-fit for the VAE is higher
than the equivalent fits obtained with the method of (Olshausen & Field, 1996a) (Table 1).
This is due to the fact that the sparse coding VAE uses a more robust approximation of
the log-likelihood, and the variational posterior of VAEs are more informative than simply

(nats) Prior
Implementation Cauchy Laplace Gaussian

VAE 57 50 27
Traditional method -221 -117 -127

Table 1: Log-likelihood calculations for the sparse coding VAE (top) versus the traditional
Dirac-delta approximation. Values were calculated using AIS with HMC transitions, and
show improvement across all prior choices.
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Figure 3: Quantitative analysis of quality of fit. Panel A: Log-Likelihood of VAE fit throughout
training for Laplace, Cauchy and Gaussian priors. Panel B: Histogram of inferred latent vari-
ables sampled (10K samples)from the variational posterior under our fit and the fit method
of (Olshausen & Field, 1996a) (“O&F” label) along with the true prior (black line), for both
Laplace (left) and Cauchy (right) priors . Note that the variational posterior in the method of
(Olshausen & Field, 1996a) is a Dirac-delta distribution at the MAP estimate of z.

using the posterior mode. Indeed, we report in Figure 3B the inferred latent values for this
variational posterior in comparison to the posterior mode. The closer the approximation is
to the true posterior, the closer this histogram of latent values would be to the prior. We see
that the inferred latent values of the sparse coding VAEs provide a better approximation of
the prior than those obtained with the Dirac-delta approximation.

Finally, we compare in Figure 4 how the learned basis functions in the sparse coding VAE
framework differ from those learned in the standard sparse coding (Olshausen & Field,
1996a). We analyzed the learned basis functions by fitting a Gabor filter to each feature,
and report the estimated frequency and orientation distributions (see Appendix 8.2 for more
details). We observe a persistent increase in frequency across all priors for the SVAE over
the standard sparse coding. For the orientation, there is less of a discernible trend, but we
do generally observe more variable orientation distribution for the SVAE basis functions, as
opposed to the more flat distribution for the standard sparse coding.

5.2 Feed Forward Inference Model

As a consequence of training a VAE, we obtain a neural network which performs approxi-
mate Bayesian inference. Previous mechanistic implementations of sparse coding use the
MAP estimates under the true posterior to model trial-averaged neural responses (Rozell et
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Figure 4: Frequency and orientation statistics for the Gabor filter fits to the learned basis
functions. For each basis function we obtain a frequency and orientation statistic, and we re-
port the Kernel density estimate (KDE) of the distribution. The rows indicate which prior was
used over the latent coefficients, and the color in each plot indicates the inference method-
ology (ours against the original sparse coding from Olshausen & Field (1996a) (“O&F”))

al., 2008; Boerlin & Denève, 2011; Gregor & LeCun, 2010; Martins et al., 2011). In our case,
the recognition model performs approximate inference using a more expressive approxima-
tion, suggesting that it may serve as an effective model of visual cortical responses. To study
the response properties of the feed-forward inference network we simulated neural activity
as the mean of the recognition distribution Q(z) ≈ P (z|x) with stimulus x taken to be sinu-
soidal gratings of various sizes, contrasts, angles, frequencies, and phases. For each set
of grating parameters, we measured responses to both a cosine and sine phase grating. To
enforce non-negative responses and approximate phase invariance, the responses shown
in Figure 5 are the root sum-of-squares of responses to both phases.

Fig. 5 shows the performance of the recognition network in response to sinusoidal gratings
of various sizes, contrasts, angles, and phases. We found that the responses of the recog-
nition model exhibited frequency and orientation tuning (Fig. 5B,C), reproducing important
characteristics of cortical neurons (Hubel & Wiesel, 1962) and reflecting the Gabor-like
structure of the dictionary elements. Additionally, Fig. 5D demonstrates that the orientation
tuning of these responses is invariant to grating contrast, which is observed in cortical neu-
rons (Troyer et al., 1998). Fig. 5A shows that the recognition model exhibits the surround
suppression, in which the response to an optimally-tuned grating first increases with grating
size and then decreases as the scale of the grating increases beyond the classical receptive
field (Sceniak et al., 1999). Lastly, Figure 5E shows the receptive fields of recognition model
neurons, as measured by a reverse-correlation experiment (Ringach & Shapley, 2004), ver-
ifying that the linear receptive fields exhibit the same Gabor-like properties as the dictionary
elements.
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Figure 5: Visualization of feed-forward inference model behavior. Curves in Panels A-C are
generated using full-contrast gratings. Dictionary elements associated with each neuron
are visualized on the right. Panel A: size tuning curves of five sample neurons in response
to a grating with optimal orientation and frequency. Panel B: Frequency response function
of five model neurons in response to a full-field, full-contrast grating with optimal orienta-
tion. Panel C: Orientation preference curves of five model neurons in response to full-field,
full-contrast gratings. Panel D: Example orientation preference curves of a single model
neuron in response to a full-field grating at varying contrasts (denoted by line darkness)
demonstrating contrast invariance. Panel E: Comparison of dictionary elements (top) with
receptive fields (bottom) measured as in a reverse-correlation experiment for measuring re-
ceptive field (Ringach & Shapley, 2004). The stimulus used for reconstruction was Gaussian
white noise and receptive fields were averaged over 10000 random stimulus presentations.

6 Discussion

We have introduced a variational inference framework for the sparse coding model based
on the VAE. The resulting SVAE model offers a more principled and accurate method for
fitting the sparse coding model, and comes equipped with a neural implementation of feed-
forward inference under the model. We showed, first of all, that the classic fitting method
of Olshausen & Field is equivalent to variational inference under a delta-function variational
posterior. We then extended the VAE framework to incorporate the sparse coding model
as generative model. In particular, we replaced the standard deep network of the VAE with
an overcomplete latent variable governed by a sparse prior, and showed that variational in-
ference using a conditionally Gaussian recognition distribution provided accurate, neurally
plausible feed-forward inference of latent variables from images. Additionally, the SVAE pro-
vided improved fitting of the sparse coding model to natural images, as measured by the
test log-likelihood. Moreover, we showed that the associated recognition model recapitu-
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lates important response properties of neurons in the early mammalian visual pathway.

Given this demonstration of VAEs for fitting tailor-made generative models, it is important
to ask whether VAEs have additional applications in theoretical neuroscience. Specifically,
many models are constrained by their ability to be fit. Our technique may allow more power-
ful, yet still highly structured, generative models to be practically applied by making learning
tractable. The particular property that VAEs provide an explicit model of the posterior (i.e.
as opposed to the Dirac delta approximation) means that connections can also now be
drawn between generative models, (e.g., sparse coding) and models that depend explicitly
on neural variability — a property often tied to the confidence levels in encoding. Current
models of over-dispersion (e.g. (Goris et al., 2014; Charles et al., 2018)) shy from propos-
ing mechanistic explanations of the explanatory statistical models. Another important line
of future work then is to explore whether the posterior predictions made by SVAEs, or VAEs
tuned to other neuroscience models, can account for observed spiking behaviors.

Relationship to previous work

The success of the sparse coding model as an unsupervised learning method for the statis-
tics of the natural world has prompted an entire field of study into models for sparse rep-
resentation learning and implementations of such models in artificial and biological neural
systems. In terms of the basic mathematical model, many refinements and expansions have
been proposed to better capture the statistics of natural images, including methods to more
strictly induce sparsity (Garrigues & Olshausen, 2008; Girolami, 2001; Olshausen & Mill-
man, 2000; M. S. Lewicki & Olshausen, 1999), hierarchical models to capture higher order
statistics (Karklin & Lewicki, 2003, 2005, 2009; Garrigues & Olshausen, 2010), sampling-
based learning techniques (Berkes et al., 2008; Theis et al., 2012) constrained dictionary
learning for non-negative data (Charles et al., 2011), and applications to other modalities,
such as depth (Tǒsic et al., 2011), motion (Cadieu & Olshausen, 2009) and auditory cod-
ing (Smith & Lewicki, 2006).

Given the success of such models in statistically describing visual responses, the mecha-
nistic question as to how a neural substrate could implement sparse coding also became an
important research area. Neural implementations of sparse coding have branched into two
main directions: recurrent (Rozell et al., 2008; Boerlin & Denève, 2011) and feed-forward
neural networks (Gregor & LeCun, 2010; Martins et al., 2011). The recurrent network mod-
els have been shown to provably solve the sparse-coding problem (Rozell et al., 2008;
Shapero et al., 2014; Schwemmer et al., 2015). Furthermore, recurrent models can imple-
ment hierarchical extensions (Charles et al., 2012) as well as replicate key properties of
visual cortical processing, such as non-classical receptive fields (Zhu & Rozell, 2013). The
feed-forward models are typically based off of either mimicking the iterative processing of
recursive algorithms, such as the iterative soft-thresholding algorithm (ISTA) (Daubechies et
al., 2004) or by leveraging unsupervised techniques for learning deep neural networks, such
as optimizing auto-encoders (Makhzani & Frey, 2013). The resulting methods, such as the
learned ISTA (LISTA) (Gregor & LeCun, 2010; Borgerding et al., 2017), provide faster feed-
forward inference than their RNN counterparts2, at the cost of losing theoretical guarantees
on the estimates.

2We note that this is true for digital processing only, and that analog recurrent systems can be far
faster (Shapero et al., 2014).
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Although the details of these implementations vary, all essentially retain the Dirac-delta
posterior approximation and are thus constructed to calculate MAP estimates of the co-
efficients for use in a gradient-based feedback to update the dictionary. None of these
methods re-assess this basic assumption, and so are limited in the overall accuracy of the
marginal-log-likelihood estimation of the model Φ, as well as their ability to generalize be-
yond inference-based networks to other theories of neural processing, such as probabilistic
coding (Fiser et al., 2010; Orbán et al., 2016). In this work we have taken advantage of the
refinement of VAEs in the machine learning literature to revisit this initial assumption from
the influential early work and create just such a posterior-seeking neural network. Specif-
ically, VAEs can provide a nontrivial approximation of the posterior via a fully Bayesian
learning procedure in a feed-forward neural network model of inference under the sparse
coding model. Additional benefits of VAEs over non-variational autoencoders with similar
goals (e.g., LISTA) are the emerging properties of robustness to outliers and local minima,
as observed in recent analysis (Dai et al., 2018). Recent work by Velychko et al. (2023)
has also leveraged the formalism offered by the variational framework, focusing on analyt-
ical and entropy-based derivations of the ELBO instead of the parallelism with the original
sparse coding work presented here. As VAEs have advanced, so have their abilities to
account for more complex statistics in the latent representation layer. Discrete-type dis-
tributions, such as the enabled by the Concrete or Gumbal Softmax distributions enable
categorical modeling that more closely resembles a version of sparsity (Van Den Oord et
al., 2017; Maddison et al., 2016a; Jang et al., 2016). Nonlinear ICA (Khemakhem et al.,
2020), or other disentangling methods (Chen et al., 2018) seek distributions that maximize
independence between the latent representation variables, however rely on highly nonlinear
decoding networks, removing interpretability as related to the data itself.

Obtaining the posterior distribution is especially important given that neural variability and
spike-rate over-dispersion can be related to the uncertainty in the generative coefficients’
posterior (e.g., via probabilistic coding (Fiser et al., 2010; Orbán et al., 2016)). Finding a
neural implementation of sparse coding that also estimates the full posterior would be an
important step towards bridging the efficient and probabilistic coding theories. Other varia-
tional sparse coding models tended to sacrifice neurally-plausible implementation (Berkes
et al., 2008; Theis et al., 2012; Seeger, 2008). Our work complements recent efforts to con-
nect the sparse coding model with tractable variational inference networks. These works
have focused on either the non-linear sparsity model (Salimans, 2016), or the linear gen-
erative model of sparse coding (Aitchison et al., 2018). Our work can also be thought of
as generalizing models that use, for example Expectation Propagation (EP), to approximate
the posterior distribution (Seeger, 2008). Other related work uses traditional VAEs and
then performs sparse coding in the latent space (Sun et al., 2018). To date, however, no
neurally-plausible variational method has been designed to capture the three fundamental
characteristics of sparse coding: overcomplete codes, sparse priors, and a linear-generative
model.

Limitations and future directions

The state-of-the-art results of this work are primarily the result of orienting sparse coding
in a variational framework where more expressive variational posterior distributions can
be used for model fitting. Nevertheless this work represents only the first steps in this
direction. One area for improvement is our selection of a Gaussian variational posterior
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with diagonal covariance matrix Σγ(·). This choice was meant to expand the Dirac-delta
posterior approximation of traditional sparse coding to include uncertainty. This model,
however, still restricts the latent variables to be uncorrelated under the posterior distribution
and can limit the variational inference method’s performance (Mnih & Gregor, 2014; Turner
& Sahani, 2011).

For example, SVAE posterior employed here cannot directly account for the “explaining
away” effect which occurs between the activations of overlapping dictionary elements (Pearl,
1988; Yu et al., 2022). Instead, “explaining away” is learned in the recognition model pa-
rameters the same way the MAP estimation in sparse coding allows for interplay between
estimates under the factorial Dirac-delta posterior of sparse coding. This form of “explain-
ing away” can indeed be seen from the simulated encoding responses in Fig. 5, capturing
“extra-classical” receptive field effects such as end-stopping and contrast invariant orienta-
tion tuning (Zhu & Rozell, 2013). One important difference here is that traditional sparse
coding infers all posterior parameters for small batches, allowing for more flexible explaining
away if certain parameters are set to zero. Relearning the neural networks from scratch is
much more computationally intensive, and thus an important next step is to build non-trivial
correlations directly into the variational posteriors.

In addition to improved learning, a more complex posterior would give the recognition model
the potential to exhibit interesting phenomena associated with correlations between dictio-
nary element activations. While some computational models aim to account for such corre-
lations (e.g., (Cadieu & Olshausen, 2009; Karklin & Lewicki, 2009; Averbeck et al., 2006)),
the SVAE framework would allow for the systematic analysis of the many assumptions pos-
sible in the population coding layer within the sparse coding framework. These various
assumptions can thus be validated against the population correlations observed in biologi-
cal networks (e.g., (Ecker et al., 2011; Cohen & Kohn, 2011)). For example, if V1 responses
are interpreted as arising via the sampling hypothesis (Fiser et al., 2010) then “explaining
away” may account for correlations in neural variability observed in supra- and infra-granular
layers of V1 (Hansen et al., 2012). Additionally, such correlations can be related to prob-
abilistic population coding (e.g. (Fiser et al., 2010; Orbán et al., 2016)) where correlated
variability represents correlated uncertainty in the neural code.

In this work we restricted the sparse coding model by choosing the magnitude of the output
noise variance σϵ a priori. This was done in order to make this work comparable to the
original sparse coding implementations of (Olshausen & Field, 1996a). Nevertheless, this
parameter can be fit in a data-driven way as well, providing additional performance beyond
the current work. In future explorations this constraint may be relaxed.

One of the favorable properties of sparse coding using MAP inference with a Laplace prior
is that truly sparse representations are produced in the sense that a finite fraction of latent
variables are inferred to be exactly zero. As a consequence of the more robust variational
inference we perform here, the SVAE no longer has this property. Sparse representations
could be regained within the SVAE framework if truly sparse priors, which have a finite
fraction of their probability mass at exactly zero, were used such as “spike and slab” pri-
ors (Garrigues & Olshausen, 2008; Ziniel & Schniter, 2013). Such sparse priors are not
differentiable and thus cannot be directly incorporated into the framework presented here,
however continuous approximations of sparse priors do exist and during this work we im-
plemented an approximate spike and slab prior using a sum of Gaussians with a small and
large variance respectively. We were unable in our setting, however, to replicate the su-
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perior performance of such priors seen elsewhere, and recommend additional explorations
into incorporating hard-sparse priors such as the spike-and-slab or concrete (Maddison et
al., 2016b) distributions.

We have restricted ourselves in this work to a relatively simple generative model of natural
images. It as been noted, however, that the sparse coding model does not account entirely
for the statistics of natural images (Simoncelli & Olshausen, 2001). Hierarchical variants
of the sparse coding model (Karklin & Lewicki, 2003, 2005, 2009; Garrigues & Olshausen,
2010) provide superior generative models of natural images. These more complex gen-
erative models can be implemented and fit using the same methods we present here by
explicitly constructing the VAE generative model in their image.

VAEs have an inherent tendency to prune unused features in the generative networks (Dai
et al., 2018). Previous work has noted this effect in the case of the standard Gaussian
priors. We note that similar pruning occurs in the SVAE when the priors are exponential
or Cauchy as well. In these cases, the feature representation remains overcomplete, to a
level of ≈1.3, which is similar to the inferred optimal overcompleteness seen in previous
work (Berkes et al., 2008). Therefore the SVAE implicitly infers the overcompleteness level,
a feature that previous models had to explicitly account for (Karklin & Lewicki, 2005).

The biological plausibility or our method relies on a feed-forward architecture that quickly
turns input stimuli into approximate posterior distributions over the latent coefficients. While
inference under this model is completely local and feed-forward, the learning through back-
propagation can potentially result in more complex interactions that are at first not obviously
tractable in a local neural setting. An interesting branch of work, however, aims to place
backpropagation as used here and in LISTA in a biological framework (Durbin & Rumelhart,
1989; Bengio et al., 2015).

One final note is that the SVAE breaks the typical symmetry between encoder and de-
coder complexity. The encoder is very high-dimensional, while the decoder is a simple
linear model. Despite the added complexity, we retain the ability in the SVAE to orient the
encoder’s complexity towards the underlying statistics, extracting both in an unsupervised
fashion. In this optimization, however, burdening the encoder with added complexity is not a
concern. It is, in fact, the details of the linear decoder that matter and there are likely many
local minima in the deep neural network that would help achieve similar performance under
that assessment. In other statistical regimes and desired tasks, the opposite may be true
(i.e., only the encoder details matter in the cost) and so flipping the complexity would be a
very interesting additional path forward to expanding this philosophy further.

7 Conclusion

In summary, we have cast the sparse coding model in the framework of variational inference,
and demonstrated how modern tools such as the VAE can be used to develop neurally plau-
sible algorithms for inference under generative models. We feel that this work strengthens
the connection between machine learning methods for unsupervised learning of natural im-
age statistics and efforts to understand neural computation in the brain, and hope it will
inspire future studies along these lines.
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8 Appendix

8.1 A Primer on Annealed Importance Sampling

To evaluate the goodness of fit we used annealed importance sampling (AIS) (R. M. Neal,
2001). Annealed importance sampling is a method to generate i.i.d. samples from an un-
normalized distribution by starting with i.i.d. samples from a distribution that can be sampled
from easily, and using Markov-Chain Monte-Carlo (MCMC) sampling to iteratively generate
samples from distributions along a family of distributions linking the initial, known distribution
to the desired distribution. It can also be used to calculate the ratio of normalizing constants
for two unnormalized distributions using a family of distributions joining them. This can be
used to calculate the log-likelihood by noting that

P [z|x, θ] = P [x|z, θ]P [z|θ]
P [x|θ]

(30)

In particular, the likelihood is the factor N that normalizes the posterior in the expression
P [z|x, θ] = 1

NP [x|z, θ]P [z|θ].

To apply AIS, let [p0, p1, ..., pN ] be a family of (unnormalized) distributions such that p0 can
be sampled from, pN is the distribution of interest, and pn and pn+1 are “close” to each-other
in a suitable sense (for details see (R. M. Neal, 2001)). Let M be an MCMC method acting
as our transition operator, such as Hamiltonian Monte Carlo (HMC, R. M. Neal (2011)) .
Then, starting with a sample from p0, denoted s0, we generate a sample from p1, s1, using
s0 as the initialization for MCMC, and by iterating M sufficiently long to generate unbiased
samples from p1. We then iterate this procedure for p2 and so on until finally samples from
pN are generated. If wn are the values of the unnormalized distributions evaluated at sn,
then the ratio of the normalizing factors for pN and p0 (denoted NN and N0 respectively)
can be calculated as

W =
NN

N0
=

N−1∏
i=0

wi+1

wi
(31)

The value W gives an unbiased estimate of the normalizing ratio, which in the case that p0
is normalized and pN is the unnormalized posterior above is equal to the likelihood. This
generally leads to numerical overflow problems so we instead calculate logW , which in
general gives a biased estimate of (a lower bound on) the log-likelihood. Averaging over
many independent samples generated from AIS gives a lower-bound on the log-likelihood.
The AIS method has been applied previously to evaluating goodness of fit for VAEs and
other deep generative models (Wu et al., 2016).

8.2 Methodological Details

Analysis of learned basis functions In the main text, we provide more details on the ba-
sis functions that emerge out of the SVAE inference procedure against the standard sparse
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coding. We analyzed the learned basis functions by fitting Gabor filters to the basis func-
tions. Gabor filters in pixel space are Gaussian densities in Fourier space, and the orien-
tation and frequency statistics we seek can readily be read from this density. The density
peak [f1, f2] is at the spatial-(x, y) frequency of the filter (Gabor, 1946; Movellan, 2002),
and the “frequency” and orientation metrics we report are its polar coordinate. Indeed, we
report the frequency as the magnitude of the peak, and the orientation is given by the angle
to the peak.
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