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Abstract

The sparse coding model posits that the visual system has evolved to efficiently code nat-
ural stimuli using a sparse set of features from an overcomplete dictionary. The classic
sparse coding model suffers from two key limitations, however: (1) computing the neural
response to an image patch requires minimizing a nonlinear objective function, which is not
neurally plausible; and (2) fitting the model to data has typically relied on an approximate
inference method that does not take into account uncertainty. Here we address these two
shortcomings by formulating a variational inference method for the sparse coding model
inspired by the variational auto-encoder (VAE) framework. The sparse-coding variational
auto-encoder (SVAE) augments the classic sparse coding model with a probabilistic recog-
nition model, parametrized by a deep neural network. This recognition model provides a
neurally plausible implementation for the mapping from image patches to neural activities,
and enables a principled method for fitting the sparse coding model to data via maximization
of the evidence lower bound (ELBO). The SVAE differs from the traditional VAE in three im-
portant ways: the generative model is the sparse coding model instead of a deep network;
the latent representation is overcomplete, with more latent dimensions than image pixels;
and the prior over latent variables is a sparse or heavy-tailed instead of Gaussian. We fit
the SVAE to natural image data under different assumed prior distributions, and show that
it obtains higher test performance than previous fitting methods. Finally, we examine the re-
sponse properties of the recognition network and show that it captures important nonlinear
properties of neurons in the early visual pathway.

1 Introduction

Generative models have played an important role in computational neuroscience by offer-
ing normative explanations of observed neural response properties (Olshausen & Field,
1996albl (1997 |Lewicki & Olshausen, |1999; [Dayan et al., 2003|; |[Berkes & Wiskott, |2005;
Coen-Cagli et al., 2012). These models seek to model the distribution of stimuli in the world
P(x) in terms of a conditional probability distribution P(x|z), the probability of a stimulus
x given a set of latent variables z, and a prior over the latent variables P(z). The advan-
tage of this approach is that it mimics the causal structure of the world: an image falling
on the retina is generated by “sources” in the world (e.g., the identity and pose of a face,
and the light source illuminating it), which are typically latent or hidden from the observer.
Perception is naturally formulated as the statistical inference problem of identifying the la-
tent sources that generated a particular sensory stimulus |D. Knill & Richards| (1996);(Weiss
et al.| (2002); D. C. Knill & Pouget| (2004); Moreno-Bote et al.| (2011). Mathematically, this
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corresponds to applying Bayes’ rule to obtain the posterior over latent sources given sen-
sory data: P(z|x) « P(x|z)P(z), where the terms on the right-hand-side are the likelihood
P(x|z) and prior P(z), which come from the generative model.

Perhaps the famous generative model in neuroscience is the sparse coding model, intro-
duced by Olshausen and Field (Olshausen & Field, |1996a,b) to account for the response
properties of neurons in visual cortex. The sparse coding model posits that neural activity
represents an estimate of the latent features underlying a natural image patch under a linear
generative model. The model's key feature is sparsity: a heavy-tailed prior over the latent
variables ensures that neurons are rarely active, so each image patch must be explained by
a small number of active features. Remarkably, the feature vectors obtained by fitting this
model to natural images resemble the localized, oriented receptive fields found the early
visual cortex (Olshausen & Field, |[1996a). Subsequent work showed the model could ac-
count for a variety of properties of neural activity in the visual pathway (e.g. classical and
non-classical receptive field effects (Rozell et al., 2008;; Karklin & Lewicki, |2009; |Lee et al.,
2007)).

Although the sparse coding model is a linear generative model, recognition (inferring the
latent variables from an image) and learning (optimizing the dictionary of features) are both
computationally difficult problems. Early work on the sparse coding model did not provide
a neurally plausible mechanism for neurons to compute their responses to an image patch.
Moreover, fitting the model to data relied on approximate optimization methods.

In this paper, we propose a solution to these two important problems using ideas from the
variational auto-encoder (VAE) (Kingma & Welling, |2014; |Rezende et al., 2014). The VAE
is a framework for training a complex generative model by coupling it to a recognition model
parametrized by a deep neural network. This deep network offers tractable inference for
latent variables from data and allows for gradient-based learning of the generative model
parameters using a variational objective. Here we adapt the VAE methodology to the sparse
coding model by adjusting its structure and prior assumptions. We compare the resulting
sparse-coding VAE (SVAE) to fits using the original methodology, and show that our model
achieves higher log-likelihood on test data. Furthermore, we show that the recognition
model of the trained SVAE performs accurate inference under the sparse coding model, and
captures important response properties of neurons in visual cortex, including orientation
tuning, surround suppression, and frequency tuning.

2 Background

2.1 The Sparse Coding Model

The sparse coding model (Olshausen & Field, [1996alb) posits that the spike response z
from a population of neurons can be interpreted as a set of sparse latent variables under-
lying an image x presented to the visual system. This can be formalized by the following
generative model:

z ~ P(z) (prior over neural activity) (1)
x =Pz + €, (noisy linear mapping to images)  (2)
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Figure 1: The sparse coding model. A sample from the model is generated by first sampling
the latent variables z from the sparse prior distribution P(z), which provide linear weights
on feature vectors ®;, and finally adding Gaussian noise. The image shown is taken from
the BSDS300 datasetMartin et al.| (2001).

where P(z) is a sparse or heavy-tailed prior over neural activities, ® is matrix of dictionary
elements or “features”, and € ~ N(0,02I) is isotropic Gaussian noise with variance o2.
Critically, the sparse coding model is overcomplete, meaning that the dimension of the latent
variable is larger than that of the data: Dim(z) > Dim(x). As a result, multiple settings of z
can reproduce any given image patch x.

Although this linear generative model is easy to sample, the sparse prior over z make both
inference and model fitting difficult. Full Bayesian inference involves computing the posterior
distribution over latent variables given an image, which is (according to Bayes’ rule):

N(x | ®z,021)P(z)

P(a|x) = [ N(x | ®z,021)P(z)dz’ ®)

where N(x | ®x,021) denotes a multivariate normal density in x with mean ®z and co-
variance o21. Unfortunately, the denominator cannot be computed in closed form for most
sparsity-promoting priors, such as the Cauchy and Laplace distribution.

|Olshausen & Field|(1996a) considered a simpler inference problem by setting neural activity
equal to the MAP estimate of z given the image:

Zmap | X = arg max P(z|x) = argmaxﬁ || x — ®z ||3 +log P(z), (4)
z z €

which does not depend on the denominator in (eq. . Here ||x—®z||3 is the sum of squared
errors between the image x and its reconstruction in the basis defined by ®, and log P(z)
serves as a “sparsity penalty” given by — >".log(1 + 2?) for a Cauchy prior or — ", |2;| for
a Laplace prior. The noise variance o2 serves to trade off the importance of minimizing
the image reconstruction error against the importance of sparsity imposed by the prior. (In
the limit o, — 0, the effect of the sparsity penalty log P(z) vanishes, and z,,,, becomes a
least-squares estimate). However, finding z,,,4, requires numerical optimization of the right-
hand-side of (eq.[4), which does not easily map onto a model of feed-forward processing in
the visual pathway.
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2.2 Fitting the sparse coding model

The problem of fitting the sparse coding model to data is even more difficult than the infer-
ence problem. The maximum likelihood estimate of the model parameters ® for a dataset
of images X = {x1,...,x1} is given by

argmaxP(X\(I)) = arg maxH (/ (xi|z, )P (zl)dzl> , (5)

where Z = {z;,...z1} are the latent variables corresponding to the images in X. Once
again, the integrals over z; have no closed-form solution for the relevant sparsity-promoting
priors of interest.

To circumvent this intractable integral, (Olshausen & Field, [1996a) employed an approxi-
mate iterative method for optimizing the dictionary ®. After the initializing the dictionary
randomly, iterate:

1. Take a group of training images X" and compute the MAP estimate of the latent
variables Z(?) for each image using the current dictionary ®(9):

A~

Z0 = arg max log P(XD|Z, ®) +log P(Z) (6)
2. Update the dictionary using the gradient of the log-likelihood, conditioned on Z(®):

P+ — ) 4 n <Vq> log P(X(i)|Z(i), <I>)> (7)

where 7 is a learning rate.

2.3 Fitting as Variational EM

The iterative fitting algorithm from Olshausen & Field (1996alb) can be viewed as a form of
variational expectation-maximization (EM). Variational EM employs a surrogate distribution
Q(Z) to optimize a tractable lower-bound on the log-likelihood known as the evidence lower

bound (ELBO):
log P(X | ®) = log/P(X,Z | ®)dZ = log/Q(Z)W 4z 8)
(X, Z|<I>)>
/Q log< Q2) dz 9)
— log P(X) — Dkr, [Q 7z HP(Z|X, @)} 2 £(Q,), (10)

where the inequality in (eq. [9) follows from Jensen’s inequality, and D [Q(Z)||P(Z)] =
J Q(Z) log[Q(Z)/P(Z)|dZ denotes the Kullback-Leibler (KL) divergence between two dis-
tributions Q(Z) and P(Z) (Bishop, |2005; [Blei et al., 2016).

The expectation or “E” step of variational EM involves setting Q(Z) to minimize the KL-
divergence between Q(Z) and P(Z|X, ®), the posterior over the latent given the data and
model parameters. Note that when Q(Z) = P(Z|X, ®), the KL term (eq. is zero and
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the lower bound is tight, so £ achieves equality with the log-likelihood. The maximization
or “M” step involves maximizing £(Q, ®) for & with @ held fixed, which is tractable for
appropriate choices of surrogate distribution (7). Variational EM can therefore be viewed
as alternating coordinate ascent of the ELBO:

Estep: Q= argmax £(Q. ®) = argmin Dy [Q(Z)HP(Z|X, @)]

M-step: ¢ = argmgxﬁ(@, ?) = argm‘gn Eq {log P(X, Z]q))]. (11)

It is now possible to see that the fitting algorithm of |Olshausen & Field| (1996a) is a form of
variational EM in which the surrogate distribution Q(Z) is a product Dirac delta functions:

L
QZ) =[]z — ), (12)
=1
where {~v1,...,~.} are the variational parameters governing (). The ELBO is:

L(Q,P)= Z/&(zl —v)log P(x,2|P)dz; = Zlog P(xi|v;, ®) + log P(v;) (13)
l l

The E-step involves setting ~; to the MAP estimate of the latent vector z; for each image x;,
while the M-step involves updating the dictionary ® to minimize the reconstruction error of
all images given the inferred latent variables. The original sparse coding algorithm differed
in that it operated on randomly selected sub-sets of the data (stochastic mini-batches), and
took a single gradient step in @ in place of a full M-step at each iteration. Thus algorithm
can therefore be seen as a stochastic gradient descent version of variational EM (R. Neal &
Hinton, (1998).

2.4 \Variational Auto-Encoders (VAES)

The variational auto-encoder is a powerful framework for training complex generative mod-
els (Kingma & Welling, [2014; Rezende et al., 2014} Doersch, [2016). In the first papers
describing the VAE, the generative model was defined by a standard Gaussian latent vari-
able mapped through a deep neural network with additive Gaussian noise:

z ~ N(0,1) (14)
x = Gy(z) + €, (15)
where Gy(z) denotes the output of a deep neural network with parameters 6, and € ~
N(0,021) represents Gaussian noise added to the output of this network. By using a suf-

ficiently large, deep network, this model should be able to generate data with arbitrarily
complicated continuous distributions.

The key idea of the VAE framework is to perform variational inference for this model using
a variational distribution parametrized by another pair of deep neural networks:

Q(z) = N (1y(x), 3+ (x)), (16)

where p(x) and X, (x) denote neural networks, with parameters v = {v,, 7.}, that map
data samples x to the mean and covariance (respectively) of a Gaussian variational dis-
tribution over z given x. This pair of networks provide an approximate recognition model

5
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Figure 2: Schematics of traditional VAE and the sparse-coding VAE. (A) The traditional VAE
consists of a generative model (decoder) with a recognition model (encoder) stacked on top
to subserve variational inference. Both models are parametrized by deep neural networks
with Gaussian noise. (B) The sparse-coding VAE results from replacing the generative
model by the sparse coding model. It differs from the original VAE in three key respects:
the latent variable z has higher dimension than the data x; the prior over z is sparse (e.g.,
Cauchy or Laplace) instead of Gaussian; and the generative model is linear instead of a
deep neural network.

for inferring z from x under the generative model (egs. . In VAE parlance, p(-)
and >, (-) comprise the encoder, mapping data samples to distributions over the latent
variables, while the generative network Gy(-) is the decoder, mapping latent variables to
the data space. This terminology is inspired by the model’s structural similarity to classic
auto-encoders, and is consistent with the fact that z is typically lower-dimensional than x,
providing a compressed representation of the structure contained in the data when using
the encoder. Note that the analogy is imprecise, however: the output of the encoder in the
VAE is not a point z in latent space, but an entire distribution over latent variables Q(z).

Fitting the VAE to data involves stochastic gradient ascent of the ELBO (eq. for model
parameters 6 and variational parameters . This can be made practical using several clever
tricks. The first trick is to evaluate the expectation over )(Z) as a Monte Carlo integral. The
contribution to the ELBO from a single data sample x is therefore:

£(Q, 0]x) = /Q Xz|0 Zl XZJW (17)

for z1,...z, ~ Q(z), where m is the number of samples used to evaluate the Monte Carlo
integral.

The second trick is the reparametrization trick, which facilitates taking derivatives of the
above expression with respect to the variational parameters v governing Q(z). Instead of
sampling z; ~ Q(z), the idea is to map samples from a standard normal distribution into
samples from the desired variational distribution Q(z) = N (u-(x), X (x)) via a differen-
tiable transformation, namely:

2; = S2(x)n; + i (%) (18)

6
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1
for ny,...,n, ~ N(0,I), where ¥3(x) denotes the matrix square root of the covariance
matrix X (x).

Combining these two tricks, and plugging in the VAE generative and recognition model
components for P(x,z|f) and Q(z), a Monte Carlo evaluation of the per-datum ELBO can
be written:

ﬁMc(Q79|X) =
(x)n; + py(x))
() + py(x))

, (19)

— Gy (22 x)n; + My(x)) ‘ ‘2 + log P(z

Q(

where the first term is the the mean squared error between the original image patch x

and its reconstruction after passing x through the noisy encoder and decoder, and the

second term is the log-ratio of the latent prior P(z) = N(0, I) and the variational distribution
1

Q(z) = N(p(x),X~(x)), evaluated at the sample point z; = £2 (x)n; + - (x).

202 H

Qo[ Qrol=

It is worth noting that the first term in (eq. relies on a stochastic pass through the en-
coder, given by a noisy sample of the latent from Q(z) (which is really an approximation
to P(z|x), the conditional distribution of the latent given x). This sample is then passed
deterministically through the decoder network GGy. The generative model noise variance
o2 serves as an inverse weight that determines how much to penalize reconstruction error
relative to the second term in the ELBO. This second term, in turn, can be seen as a Monte
Carlo estimate for —Dg1,(Q(z)||P(z)), the negative KL divergence between the variational
posterior and the prior over z. Because both these distributions are Gaussian, the standard
approach is to replace the Monte Carlo evaluation of this term with its true expectation, us-
ing the fact that the KL divergence between two Gaussians can be computed analytically
(Kingma & Welling, 2014};|Rezende et al., [2014).

In contrast to the iterative variational EM algorithm used for the classic sparse coding model,
optimization of the VAE is carried out by simultaneous gradient ascent of the ELBO with
respect to generative network parameters 6 and variational parameters ~. During training,
the per-datum ELBO in (eq. is summed over a mini-batch of data for each stochastic
gradient ascent step.

3 Sparse Coding VAEs

In this paper, we adapt the VAE framework to the sparse coding model, a sparse gener-
ative model motivated by theoretical coding principles. This involves three changes to the
standard VAE: (1) We replace the deep neural network from the VAE generative model with
a linear feed-forward network; (2) We change the under-complete latent variable represen-
tation to an overcomplete one, so that the dimension of the latent variables is larger than
the dimension of the data; and (3) We replace the standard normal prior over the latent
variables with heavy-tailed, sparsity-promoting priors (e.g., Laplace and Cauchy).

We leave the remainder of the VAE framework intact, including the conditionally Gaussian
variational distribution Q)(z), parametrized by a pair of neural networks that output the mean
and covariance as a function of x. The parameters of the SVAE are therefore given by
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{®,02% ~} and a prior P(z), where P(z), ® and o? specify the elements of sparse coding
model (a sparse prior, generative weight matrix, and Gaussian noise variance, respectively),
and variational parameters - are the weights of the recognition networks () and ¥ (-)
governing the variational distribution Q(z) = N(u(x), X~(x)). Fig.[2 shows a schematic
comparing the two models.

4 Methods

4.1 Data Preprocessing

We fit the SVAE to 12 x 12 pixel image patches sampled from the BSDS300 dataset (Martin
et al., 2001). Before fitting, we preprocessed the images and split the data into train, test,
and validation sets. In the original sparse coding model, the images were whitened in the
frequency domain, followed by a low-pass filtering stage. In (Olshausen & Field, [1996a)
the whitening step was taken to expedite learning, accentuating high frequency features
that would be far less prominent for natural image data, which is dominated by the low-
frequency features. This is due to the fact that the Fourier (frequency) components are
approximately the principle components of natural images, however the overall variance of
each component scales with the inverse frequency squared (the well known 1/ f spectral
properties of natural images), producing large differences in variance between the high- and
low-frequency features. This poses a problem for gradient-based approaches to fitting the
sparse coding model since low variance directions dominate the gradients. The low-pass
filtering stage then served to reduce noise and artifacts from the rectangular sampling grid.

We perform a slight variation of these original preprocessing steps, but with the same overall
effect. We whiten the data by performing PCA on the natural images and normalizing each
component by its associated eigenvalue. Our low-pass filtering is achieved by retaining
only the 1007 /4% most significant components, which correspond to the 1007 /4% lowest
frequency modes, which also roughly corresponds to a circumscribed circle in the square
Fourier space of the image, removing the noisy, high frequency corners of Fourier space.

4.2 SVAE Parameters

We implemented an SVAE with dim(z) = 169 latent dimensions, resulting in a latent code
that is 1.5 times overcomplete, and set the Gaussian output noise variance to o2 = exp(—2).
We implemented the SVAE with three choices of prior which included Laplace (Eq. [20),
Cauchy (Eq. [21), and Gaussian (Eq. [22).

Al
Prlz) = ][ 5 exo(=l) (20)

(1 + zl?) o @1)
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Po(z) =[]

=1

exp (—%z%) (22)

5
3

We parametrized the recognition models p.,(-) and X, (-) using feed-forward deep neural
networks (Figure [2). The two networks took as input a vector of preprocessed data and
had a shared initial hidden layer of 128 rectified linear units. Each network had two addi-
tional hidden layers of 256 and 512 rectified linear units respectively, which were not shared.
These networks, parameterizing p,(-) and 3, (-), each output a dim(z) = 169 dimensional
vector which encode the mean and main diagonal of the covariance of the posterior, respec-
tively. We set the off-diagonal elements of the posterior covariance matrix to zero. The final
hidden layer in each network is densely connected to the output layer, with no nonlinearity
for the mean output layer and a sigmoid nonlinearity for the variance output layer. In princi-
ple the variance values should be encoded by a non-saturating positive-definite nonlinearity;
however we found that this led to instability during the fitting process and the sigmoid nonlin-
earity resulted in more stable behavior. Intuitively, given that our priors have scales of one,
the posteriors will generally have variances less than 1, and can be expressed sufficiently
well with the sigmoid nonlinearity.

4.3 Optimization

We optimized the SVAE using the lasagne (Dieleman et al., 2015) python package with
theano (Theano Development Team, |2016) back-end. Gradient descent was performed for
108 steps with the Adam optimizer (Kingma & Ba, 2014) with default parameters, a batch
size of 32, and a learning rate of n = .001. The networks always converged well within this
number of gradient descent steps. We took the number of Monte-Carlo integration samples
to be m = 1 and tested higher values, up to m = 5, but found that this parameter did not
influence the results. We used the same learning hyperparameters for all three priors.

5 Results

5.1 Quality of Fit

We first assess our model by calculating goodness-of-fit measures. We compare here the
various choices in prior distributions using both the SVAE optimized with VAE-based in-
ference and the original sparse coding model fit with the method of |Olshausen & Field
(1996a). To perform this assessment, we computed the log-likelihood of test data under
the fit parameters. To calculate log-likelihoods (which can be a difficult quantity to obtain
for large models), we used annealed importance sampling (AIS) (R. M. Neal, 2001} |Wu et
al., 2016) with 200 annealing steps and an initial distribution of either a standard normal
distribution (for the Olshausen and Field implementations) or the variational posterior (for
VAE implementations). Note that AIS only gives a lower bound on the log-likelihood (Wu et
al., 2016). Even though an exact expression is available for the log likelihood in the Gaus-
sian case we use AIS for the Gaussian prior as well so that the resulting values are directly
comparable.
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We first compare our chosen priors within the sparse coding VAE framework. Figure
depicts how the log-likelihood is almost universally monotonically increasing over training for
all priors. Small dips are due to the randomness of the stochastic gradient descent (SGD)
learning rule. We observe that, of the priors tested, sparser distributions result in higher log-
likelihoods, with the Cauchy prior providing the best fit. To explore the utility of the sparse
coding VAE over the approximate EM method, we similarly calculated the log-likelihoods for
the method in (Olshausen & Field, |[1996a), again for each of the three prior distributions.
We observe that the log-likelihood goodness-of-fit for the VAE is higher than the equivalent
fits obtained with the method of (Olshausen & Field, [1996a) (Table [f). This is due to the
fact that the sparse coding VAE uses a more robust approximation of the log-likelihood, and
the variational posterior of VAEs are more informative than simply using the posterior mode.
Finally, Figure [3B depicts how the inferred latent values of the sparse coding VAEs provide
a better approximation of the prior than those obtained with the Dirac-delta approximation.
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Figure 3: Quantitative analysis of quality of fit. Panel A: Log-Likelihood of VAE fit throughout
training for Laplace, Cauchy and Gaussian priors. The initial log-likelihoods for the sparse
VAE models are translated to a horizontal position of 50 for visualization purposes. Arrows
indicate the final log-likelihood for the corresponding fit using the method of (Olshausen &
Field, | 1996a). Panel B: Table of final Log-Likelihoods for VAE trained models (our result)
and models fit using the method of (Olshausen & Field, [1996a). Values are rounded to
the nearest integer and reported in nats. Panel C: Histogram of inferred latent variables
sampled from the variational posterior under our fit (left) and the fit method of (Olshausen &
Field, [1996a) (right) along with the true prior (black line). Note that the variational posterior
in the method of (Olshausen & Field,|1996a) is a Dirac-delta distribution at the MAP estimate
of z.
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Implementation Prior .
Laplace | Cauchy | Gaussian

VAE -135 -128 -167

Traditional Method -229 -241 -277

Table 1: Log-likelihood calculations for the sparse coding VAE (top) versus the traditional
Dirac-delta approximation. Values were calculated using the AIS and show improvement
across all prior choices.

5.2 Feed Forward Inference Model

As a consequence of training a VAE, we obtain a neural network which performs approxi-
mate Bayesian inference. Previous mechanistic implementations of sparse coding use the
MAP estimates under the true posterior to model trial-averaged neural responses (Rozell et
al.,[2008; |Boerlin & Deneve, 2011}, |Gregor & LeCun,2010; Martins et al.,[2011). In our case,
the recognition model performs approximate inference using a more expressive approxima-
tion, suggesting that it may serve as an effective model of visual cortical responses. To study
the response properties of the feed-forward inference network we simulated neural activity
as the mean of the recognition distribution Q(z) ~ P(z|x) with stimulus x taken to be sinu-
soidal gratings of various sizes, contrasts, angles, frequencies, and phases. For each set
of grating parameters, we measured responses to both a cosine and sine phase grating. To
enforce non-negative responses and approximate phase invariance, the responses shown
in Figure [4] are the root sum-of-squares of responses to both phases.

Fig. |4 shows the performance of the recognition network in response to sinusoidal gratings
of various sizes, contrasts, angles, and phases. We found that the responses of the recog-
nition model exhibited frequency and orientation tuning (Fig. [4B,C), reproducing important
characteristics of cortical neurons (Hubel & Wiesel, [1962) and reflecting the Gabor-like
structure of the dictionary elements. Additionally, Fig. demonstrates that the orientation
tuning of these responses is invariant to grating contrast, which is observed in cortical neu-
rons (Troyer et al, [1998). Fig. shows that the recognition model exhibits the surround
suppression, in which the response to an optimally-tuned grating first increases with grating
size and then decreases as the scale of the grating increases beyond the classical receptive
field (Sceniak et al.,[1999). Lastly, Figure 4E shows the receptive fields of recognition model
neurons, as measured by a reverse-correlation experiment (Ringach & Shapley, [2004), ver-
ifying that the linear receptive fields exhibit the same Gabor-like properties as the dictionary
elements.

6 Discussion

We have introduced a variational inference framework for the sparse coding model based
on the VAE. The resulting SVAE model offers a more principled and accurate method for
fitting the sparse coding model, and comes equipped with a neural implementation of feed-
forward inference under the model. We showed, first of all, that the classic fitting method
of Olshausen & Field is equivalent to variational inference under a delta-function variational
posterior. We then extended the VAE framework to incorporate the sparse coding model
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Figure 4: Visualization of feed-forward inference model behavior. Curves in Panels A-C are
generated using full-contrast gratings. Dictionary elements associated with each neuron
are visualized on the right. Panel A: size tuning curves of five sample neurons in response
to a grating with optimal orientation and frequency. Panel B: Frequency response function
of five model neurons in response to a full-field, full-contrast grating with optimal orienta-
tion. Panel C: Orientation preference curves of five model neurons in response to full-field,
full-contrast gratings. Panel D: Example orientation preference curves of a single model
neuron in response to a full-field grating at varying contrasts (denoted by line darkness)
demonstrating contrast invariance. Panel E: Comparison of dictionary elements (top) with
receptive fields (bottom) measured as in a reverse-correlation experiment for measuring
receptive field (Ringach & Shapley, [2004). The stimulus used for reconstruction was Gaus-
sian (low-pass) filtered white noise with Gaussian filter width s = 0.6 px. and receptive
fields were averaged over 10000 random stimulus presentations.

as generative model. In particular, we replaced the standard deep network of the VAE with
an overcomplete latent variable governed by a sparse prior, and showed that variational
inference using a conditionally Gaussian recognition distribution provided accurate, neu-
rally plausible inference of latent variables from images. Additionally, the SVAE provided
improved fitting of the sparse coding model to natural images, as measured by the test
log-likelihood. Moreover, we showed that the associated recognition model recapitulates
important response properties of neurons in the early mammalian visual pathway.

Given this demonstration of VAEs for fitting tailor-made generative models, it is important
to ask whether VAEs have additional applications in theoretical neuroscience. Specifically,
many models are constrained by their ability to be fit. Our technique may allow more power-
ful, yet still highly structured, generative models to be practically applied by making learning
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tractable. The particular property that VAEs model the entire posterior means that connec-
tions can also now be drawn between generative models, (e.g., sparse coding) and models
that depend explicitly on neural variability — a property often tied to the confidence levels in
encoding. Current models of over-dispersion (e.g. (Goris et al., 2014; Charles et al., [2018))
shy from proposing mechanistic explanations of the explanatory statistical models. Another
important line of future work then is to explore whether the posterior predictions made by
SVAEs, or VAEs tuned to other neuroscience models, can account for observed spiking
behaviors.

Relationship to previous work

The success of the sparse coding model as an unsupervised learning method for the statis-
tics of the natural world has prompted an entire field of study into models for sparse rep-
resentation learning and implementations of such models in artificial and biological neural
systems. In terms of the basic mathematical model, many refinements and expansions have
been proposed to better capture the statistics of natural images, including methods to more
strictly induce sparsity (Garrigues & Olshausen, 2008, |Girolami, 2001), hierarchical mod-
els to capture higher order statistics (Karklin & Lewicki, 2003} |2005, [2009; Garrigues & Ol-
shausen, [2010), constrained dictionary learning for non-negative data (Charles et al., 2011),
and applications to other modalities, such as depth (Tosic et al., )2011), motion (Cadieu &
Olshausen, [2009) and auditory coding (Smith & Lewickil, [2006).

Given the success of such models in statistically describing visual responses, the mecha-
nistic question as to how a neural substrate could implement sparse coding also became an
important research area. Neural implementations of sparse coding have branched into two
main directions: recurrent (Rozell et al.| 2008;; Boerlin & Denevel 2011) and feed-forward
neural networks (Gregor & LeCunl, [2010; Martins et al., [2011). The recurrent network mod-
els have been shown to provably solve the sparse-coding problem (Rozell et al., [2008;
Shapero et al., [2014;|Schwemmer et al., 2015). Furthermore, recurrent models can imple-
ment hierarchical extensions (Charles et al., |2012) as well as replicate key properties of
visual cortical processing, such as non-classical receptive fields (Zhu & Rozell,[2013). The
feed-forward models are typically based off of either mimicking the iterative processing of
recursive algorithms, such as the iterative soft-thresholding algorithm (ISTA) (Daubechies et
al.,[2004) or by leveraging unsupervised techniques for learning deep neural networks, such
as optimizing auto-encoders (Makhzani & Frey, 2013). The resulting methods, such as the
learned ISTA (LISTA) (Gregor & LeCun, 2010; |Borgerding et al., [2017), provide faster feed-
forward inference than their RNN counterpartsm at the cost of losing theoretical guarantees
on the estimates.

Although the details of these implementations vary, all essentially retain the Dirac-delta pos-
terior approximation and are thus constructed to calculate MAP estimates of the coefficients
for use in a gradient-based feedback to update the dictionary. None of these methods re-
assess this basic assumption, and so are limited in the overall accuracy of the marginal-log-
likelihood estimation of the model ®, as well as their ability to generalize beyond inference-
based networks to other theories of neural processing, such as probabilistic coding (Fiser
et al., [2010; |Orban et al.l |2016). In this work we have taken advantage of the refinement of

1We note that this is true for digital processing only, and that analog recurrent systems can be far
faster (Shapero et al.,[2014).
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VAEs in the machine learning literature to revisit this initial assumption from the influential
early work and create just such a posterior-seeking neural network. Specifically, VAEs can
provide a nontrivial approximation of the posterior via a fully Bayesian learning procedure in
a feed-forward neural network model of inference under the sparse coding model.

Obtaining the posterior distribution is especially important given that neural variability and
spike-rate over-dispersion can be related to the uncertainty in the generative coefficients’
posterior (e.g., via probabilistic coding (Fiser et al., 2010} Orban et al., 2016)). Finding a
neural implementation of sparse coding that also estimates the full posterior would be an
important step towards bridging the efficient and probabilistic coding theories. Our work
complements other recent efforts to connect the sparse coding model with tractable vari-
ational inference networks. These works have focused on either the non-linear sparsity
model (Salimans| 2016) or the linear generative model of sparse coding (Aitchison et al.,
2018). Other related work uses traditional VAEs and then performs sparse coding in the
latent space (Sun et al., 2018). To date, however, no variational method has been designed
to capture the three fundamental characteristics of sparse coding: overcomplete codes,
sparse priors, and a linear-generative model.

Limitations and future directions

The state-of-the-art results of this work are primarily the result of orienting sparse coding
in a variational framework where more expressive variational posterior distributions can be
used for model fitting. Nevertheless this work represents only the first steps in this direction.
One area for improvement is our selection of a Gaussian variational posterior with diagonal
covariance matrix ¥ (-) . This choice restricts the latent variables to be uncorrelated under
the posterior distribution and can limit the variational inference method’s performance (Mnih
& Gregor, 2014; [Turner & Sahani, 2011). For example, SVAE posterior employed here
cannot directly account for the “explaining away” effect which occurs between the activations
of overlapping dictionary elements. An important next step is thus to expand this work to
the case of variational posteriors with nontrivial correlations.

In addition to improved learning, a more complex posterior would give the recognition model
the potential to exhibit interesting phenomena associated with correlations between dictio-
nary element activations. While some computational models aim to account for such corre-
lations (e.g., (Cadieu & Olshausen, |2009; Karklin & Lewicki, [2009; |Averbeck et al., 2006)),
the SVAE framework would allow for the systematic analysis of the many assumptions pos-
sible in the population coding layer within the sparse coding framework. These various
assumptions can thus be validated against the population correlations observed in biologi-
cal networks (e.g., (Ecker et al.l 2011};|Cohen & Kohn, 2011)). For example, if V1 responses
are interpreted as arising via the sampling hypothesis (Fiser et al., [2010) then “explaining
away” may account for correlations in neural variability observed in supra- and infra-granular
layers of V1 (Hansen et al., [2012). Additionally, such correlations can be related to prob-
abilistic population coding (e.g. (Fiser et al., 2010; Orban et al., 2016)) where correlated
variability represents correlated uncertainty in the neural code.

In this work we restricted the sparse coding model by choosing the magnitude of the output
noise variance o. a priori. This was done in order to make this work comparable to the
original sparse coding implementations of Olshausen & Field (1996a). Nevertheless, this
parameter can be fit in a data-driven way as well, providing additional performance beyond
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the current work. In future explorations this constraint may be relaxed.

One of the favorable properties of sparse coding using MAP inference with a Laplace prior
is that truly sparse representations are produced in the sense that a finite fraction of latent
variables are inferred to be exactly zero. As a consequence of the more robust variational
inference we perform here, the SVAE no longer has this property. Sparse representations
could be regained within the SVAE framework if truly sparse priors, which have a finite
fraction of their probability mass at exactly zero, were used such as “spike and slab” pri-
ors |Garrigues & Olshausen| (2008); Ziniel & Schniter| (2013). Such sparse priors are not
differentiable and thus cannot be directly incorporated into the framework presented here,
however continuous approximations of sparse priors do exist and during this work we im-
plemented an approximate spike and slab prior using a sum of Gaussians with a small and
large variance respectively. We were unable in our setting, however, to replicate the su-
perior performance of such priors seen elsewhere, and recommend additional explorations
into incorporating hard-sparse priors such as the spike-and-slab or concrete Maddison et
al.| (2016) distributions.

We have restricted ourselves in this work to a relatively simple generative model of natural
images. Hierarchical variants of the sparse coding model (Karklin & Lewicki, 2003} 2005),
2009, |Garrigues & Olshausen, [2010) provide superior generative models of natural images.
These more complex generative models can be implemented and fit using the same meth-
ods we present here by explicitly constructing the VAE generative model in their image.

7 Conclusion

In summary, we have cast the sparse coding model in the framework of variational inference,
and demonstrated how modern tools such as the VAE can be used to develop neurally plau-
sible algorithms for inference under generative models. We feel that this work strengthens
the connection between machine learning methods for unsupervised learning of natural im-
age statistics and efforts to understand neural computation in the brain, and hope it will
inspire future studies along these lines.
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