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The cerebral cortex underlies our complex cognitive capabilities, yet we know little 

about the specific genetic loci influencing human cortical structure. To identify genetic 

variants, including structural variants, impacting cortical structure, we conducted a 

genome-wide association meta-analysis of brain MRI data from 51,662 individuals. We 

analysed the surface area and average thickness of the whole cortex and 34 regions with 

known functional specialisations. We identified 255 nominally significant loci (P ≤ 5 x 

10
-8

); 199 survived multiple testing correction (P ≤ 8.3 x 10
-10

; 187 surface area; 12 

thickness). We found significant enrichment for loci influencing total surface area 

within regulatory elements active during prenatal cortical development, supporting the 

radial unit hypothesis. Loci impacting regional surface area cluster near genes in Wnt 

signalling pathways, known to influence progenitor expansion and areal identity. 

Variation in cortical structure is genetically correlated with cognitive function, 

Parkinson’s disease, insomnia, depression and ADHD.  

 

One Sentence Summary: Common genetic variation is associated with inter-individual 

variation in the structure of the human cortex, both globally and within specific regions, and 

is shared with genetic risk factors for some neuropsychiatric disorders. 

 

The human cerebral cortex is the outer grey matter layer of the brain, which is implicated in 

multiple aspects of higher cognitive function. Its distinct folding pattern is characterised by 

convex (gyral) and concave (sulcal) regions. Computational brain mapping approaches use 

the consistent folding patterns across individual cortices to label brain regions(1). During 

fetal development excitatory neurons, the predominant neuronal cell-type in the cortex, are 

generated from neural progenitor cells in the developing germinal zone(2). The radial unit 

hypothesis(3) posits that the expansion of cortical surface area (SA) is driven by the 

proliferation of these neural progenitor cells, whereas thickness (TH) is determined by the 

number of neurogenic divisions. Variation in global and regional measures of cortical SA and 

TH are associated with neuropsychiatric disorders and psychological traits(4) (Table S1). 

Twin and family-based brain imaging studies show that SA and TH measurements are highly 

heritable and are largely influenced by independent genetic factors(5). Despite extensive 

studies of genes impacting cortical structure in model organisms(6), our current 

understanding of genetic variation impacting human cortical size and patterning is limited to 

rare, highly penetrant variants(7, 8). These variants often disrupt cortical development, 

leading to altered post-natal structure. However, little is known about how common genetic 

variants impact human cortical SA and TH.  

 

To address this, we conducted genome-wide association meta-analyses of cortical SA and TH 

measures in 51,662 individuals from 60 cohorts from around the world (Tables S2–S4). 

Cortical measures were extracted from structural brain MRI scans in regions defined by gyral 

anatomy using the Desikan-Killiany atlas(9). We analysed two global measures, total SA and 

average TH, and SA and TH for 34 regions averaged across both hemispheres, yielding 70 

distinct phenotypes (Fig. 1A; Table S1). 

 

Within each cohort genome-wide association (GWAS) for each of the 70 phenotypes was 

conducted using an additive model. To identify genetic influences specific to each region, the 

primary GWAS of regional measures included the global measure of SA or TH as a 

covariate. To better localise the global findings, regional GWAS were also run without 

controlling for global measures. To estimate the multiple testing burden associated with 

analysing 70 phenotypes we used matrix spectral decomposition(10), which yielded 60 

independent traits. Therefore, we adopted a significance threshold of P ≤ 8.3 x 10
-10

. 
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Fig. 1 | Regions of the human cortex and associated genetic loci. A, The 34 cortical 

regions defined by the Desikan-Killiany atlas; B, Ideogram of loci influencing cortical SA 

and TH.  
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The principal meta-analysis comprised results from 49 ENIGMA cohorts of European 

ancestry (23,909 participants) and the UK Biobank(11) (10,083 participants of European 

ancestry). We sought replication for loci reaching P ≤ 5 x 10
-8

 in an additional ENIGMA 

cohort (777 participants) and with the CHARGE consortium(12) (13,950 participants, 

excluding UK Biobank). In addition, we meta-analysed eight cohorts of non-European 

ancestry (2,943 participants) to examine the generalization of these effects. High genetic 

correlations were observed between the meta-analysed ENIGMA European cohorts 

(excluding UK Biobank) and the UK Biobank cohort using LD-score regression (total SA rG 

= 1.00, P = 2.7 x 10
-27

, average TH rG = 0.91, P = 1.7 x 10
-19

), indicating consistent genetic 

architecture between the 49 ENIGMA cohorts and the single-site, single-scanner UK Biobank 

cohort.  

 

Across the 70 cortical phenotypes we identified 306 loci that were nominally genome-wide 

significant in the principal meta-analysis (P ≤ 5 x 10
-8

; Fig. 1B; Table S5). Of these 118 are 

novel, neither they nor their proxies have been associated with cortical SA or TH or volume 

in previous studies(12-14). Twenty of these were insertions or deletions (INDELs), which 

were not available in the replication data set. Eleven INDELs could be replicated with a 

proxy SNP; however, for six INDELs and one single nucleotide polymorphism (SNP) there 

were no proxies available to assess replication. Of the 299 loci, 255 remained genome-wide 

significant when the replication data were included in the meta-analysis (241 influencing SA 

and 14 influencing TH), with 199 passing multiple testing correction (P ≤ 8.3 x 10
-10

; 187 

influencing SA and 12 influencing TH). Of the 255 loci that replicated in Europeans, eleven 

SNPs were not available or did not pass quality control in the meta-analysis of non-European 

cohorts. Of the remaining 244 loci, 241 were supported in the meta-analysis with the non-

European cohorts, such that the beta from the principal meta-analysis was contained within 

the 95% confidence intervals from the non-European meta-analysis. While most effects 

generalized across ancestry groups, some loci showed evidence of substantial heterogeneity. 

Table S5 details these results and Figure S1 sumarises these meta-analytic steps and results. 

Significant gene-based association was observed for 253 genes across the 70 cortical 

phenotypes (Table S6). Figures summarising the meta-analytic results (Manhattan, QQ, 

Forest, and Locus Zoom plots) are provided in the additional online materials. 

 

Genetics of total SA and average TH 

Common variants explained 34% (SE = 3%) of the variation in total SA and 26% (SE = 2%) 

in average TH, which approaches a third of the heritability estimated from twin and family 

studies(5) (Table S7). We observed a significant negative genetic correlation between total 

SA and average TH (rG = -.32, SE = .05, P = 6.5 x 10
-12

; Fig. 2A), which persisted after 

excluding the chromosome 17 inversion region known to influence brain size(14 ) (rG = -.31, 

SE = .05, P = 3.3 x 10
-12

). The direction of this correlation suggests that opposing genetic 

influences may constrain the total cortical size. The small magnitude of this correlation is 

consistent with the radial unit hypothesis(3), whereby different developmental mechanisms 

promote SA and TH expansion. 

 

As expected, total SA showed a positive genetic correlation with intracranial volume (ICV); 

this correlation remained after controlling for height demonstrating that this relationship is 

not solely driven by body size (Fig. 2A; Table S8). The global cortical measures did not show 

significant genetic correlations with the volumes of major subcortical structures (Fig. 2A) 

except for total SA and the hippocampus, consistent with their shared telencephalic 

developmental origin. This indicates variation in cortical and subcortical structures have 
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predominantly independent genetic influences, consistent with known differences in cell-type 

composition between these structures.  

 

To identify if common variation associated with cortical structure perturbs gene regulation 

during a specific developmental time period or within a given cell-type, we performed 

partitioned heritability analyses(15) using sets of gene regulatory annotations from adult and 

fetal brain tissues(16, 17). The strongest enrichment of the heritability for global SA was seen 

within areas of active gene regulation (promoters and enhancers) in the mid-fetal human 

brain (Fig. 2B). We further identified a stronger enrichment in regions of the fetal cortex with 

more accessible chromatin in the neural progenitor-enriched germinal zone than in the 

neuron-enriched cortical plate(16). There was also enrichment of active regulatory elements 

within embryonic stem cells differentiated to neural progenitors(17). We conducted pathway 

analyses to determine if there was enrichment of association near genes in known biological 

pathways. Among the 998 significant gene-sets a number were involved in chromatin 

modification, a process guiding neurodevelopmental fate decisions(18) (Fig. 3C, Table S9). 

These findings suggest that total SA in adults is influenced by common genetic variants that 

may alter gene regulatory activity in neural progenitor cells during fetal development, 

supporting the radial unit hypothesis(3). In contrast, the strongest evidence of enrichment for 

average TH was found in active regulatory elements in the adult brain samples, which may 

reflect processes occurring after mid-fetal development, such as myelination, branching, or 

pruning(19). 

 

 
Fig. 2 | Genetics of Global Measures. A, Genetic correlations between global measures and 

selected traits (red indicates significant correlation, FDR<0.05); B, Partitioned heritability 

enrichment values (significant enrichments are coloured, FDR<0.05); C, Manhattan plot of 

loci associated with global SA (top) and TH (bottom), green diamonds indicate lead SNP in 

the principal meta-analysis, black diamonds indicate change in P-value after replication, 

dashed horizontal line is genome-wide significance, solid horizontal like is multiple-testing 

correction threshold. 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/399402doi: bioRxiv preprint 

https://doi.org/10.1101/399402


 

16 

 

Loci influencing total SA and average TH 

Of the replicated loci, 17 loci were nominally associated with total SA; 12 survived 

correction for multiple testing (Fig. 2C, Table S5). Eight loci influencing total SA have been 

previously associated with ICV(14). Of these, rs79600142 (P = 2.3 x 10
-32

; Prep = 3.5 x 10
-43

), 

in the highly pleiotropic chromosome 17q21.31 inversion region, has been associated with 

Parkinson’s disease(20), educational attainment(21), and neuroticism(22). On 10q24.33, 

rs1628768 (P = 1.7 x 10
-13

; Prep = 1.0 x 10
-17

) is a cortical expression quantitative trait locus 

(eQTL)(23) in adult cortex for INA, and schizophrenia candidate genes AS3MT, NT5C2 and 

WBP1L(24) (PADULT = 9.0 x 10
-3

; Tables S10–S11). This region has been associated with 

schizophrenia, however, rs1628768 is in low LD with the schizophrenia-associated SNP 

rs11191419 (r
2 

= 0.15). The 6q21 locus influencing total SA is intronic to FOXO3 (which 

also showed a significant gene-based association with total SA, Table S6). The minor allele 

of the lead variant rs2802295 is associated with decreased total SA (P = 2.5 x 10
-10

; Prep = 2.5 

x 10
-13

) and has previously been associated with lower general cognitive function(25) 

(rs2490272: PCognition = 9.9 x 10
-14

; r
2

rs2802295:rs2490272 = 1).  

 

Of the loci not previously associated with ICV, our novel loci include rs11171739 (P = 8.4 x 

10
-10

; Prep = 8.1 x 10
-11

) on 12q13.2. In high LD with SNPs associated with educational 

attainment(21), rs11171739 is an eQTL for RPS26 in fetal(26) and adult cortex (PFETAL = 6.1 

x 10
-27

, PADULT = 8.8 x 10
-49

; Tables S10–S11). This eQTL association was recently 

highlighted in a brain expression GWAS including subjects with Alzheimer’s disease and 

other brain pathologies(27). On 2q24.2, rs13021985 (P = 3.4 x 10
-9

; Prep = 8.1 x 10
-12

) is a 

fetal cortex eQTL for TBR1 (PFETAL = 1.4 x 10
-4

; Tables S10–S11), a transcription factor 

specifically expressed in postmitotic projection neurons and part of the Pax6-Tbr2-Tbr1 

cascade that modulates numerous neurodevelopmental processes(28). On 3p24.1, rs12630663 

(P = 1.3 x 10
-8

; Prep = 1.4 x 10
-8

) is of interest due to its proximity (~200kb) to EOMES (also 

known as TBR2), which is expressed specifically in intermediate progenitor cells(29) in the 

developing fetal cortex(2). rs12630663 is located in a chromosomal region with chromatin 

accessibility specific to the human fetal cortex germinal zone of human(16). This region 

shows significant chromatin interaction with the EOMES promoter(29) and contains 

numerous regulatory elements that when excised via CRISPR/Cas9 in differentiating neural 

progenitor cells significantly reduced EOMES expression(16). A rare homozygous 

chromosomal translocation in the region separating the regulatory elements from EOMES 

(Fig. S2) silences its expression and causes microcephaly(30) demonstrating that rare and 

common non-coding variation can have similar phenotypic consequences, but to different 

degrees. 

 

The two replicated loci associated with average TH, both of which are novel, survived 

correction for multiple testing (Fig. 2C; Table S5). On 3p22.1 rs533577 (P = 8.4 x 10
-11

; Prep 

= 3.7 x 10
-12

) is a fetal cortex eQTL (PFETAL= 8.9 x 10
-6

) for RPSA, encoding a 40S ribosomal 

protein with a potential role as a laminin receptor(31). Laminins are major constituents of 

extracellular matrix, and have critical roles in neurogenesis, neuronal differentiation and 

migration(32). On 2q11.2, rs11692435 (P = 3.2 x 10
-10

; Prep = 4.5 x 10
-10

) encodes a missense 

variant (p.A143V) predicted to impact ACTR1B protein function, and is an ACTR1B eQTL 

in fetal cortex (PFETAL = 6.5 x 10
-3

) (Tables S10–S11). ACTR1B is a subunit of the dynactin 

complex involved in microtubule remodeling, which is important for neuronal migration(33).  

 

Genetics of regional SA and TH 

Within individual cortical regions the amount of phenotypic variance explained by common 

variants was higher for SA (8–31%) than for TH (1–13%) (Fig. 3A–B; Table S7). With few 
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exceptions, the genetic correlations between SA and TH within the same region were 

moderate and negative (Tables S12–S13), suggesting that genetic variants contributing to the 

expansion of SA tend to decrease TH. Most genetic correlations between regional surface 

areas did not survive multiple testing correction, and those that did implied a general pattern 

of positive correlations between physically adjacent regions and negative correlations with 

more distal regions (Fig. 3A). This pattern mirrored the phenotypic correlations between 

regions and was also observed for TH (Fig. 3A–B). The positive genetic correlations were 

typically between SA of regions surrounding the major, early forming sulci (e.g., 

pericalcarine, lingual, cuneus, and lateral occipital regions surrounding the calcarine sulcus), 

which may potentially reflect genetic effects acting on the development of the sulci. 

However, the general pattern of correlations may, in part, depend on the regional partitioning 

by the Desikan-Killiany atlas(9) (supplementary text). Hierarchical clustering of the genetic 

correlations resulted in a general grouping by physical proximity (Fig. S3). 

 

 
Fig. 3 | Genetic and Phenotypic Correlations Between Cortical Regions. A, Surface Area; 

B, Thickness. The regions are numbered according to the legend of Fig. 1A. The proportion 

of variance accounted for by common genetic variants is shown in the first column (h
2

SNP). 

Phenotypic correlations from the UK Biobank are in the upper triangle. Genetic correlations 

from the principal meta-analysis are in the lower triangle. Only significant correlations are 

shown. C, Enrichment of gene ontology annotations for total surface area; D, Enrichment of 

gene ontology annotations for regional surface area. The horizontal red lines (C and D) 

indicate nominal significance. 

 

To further investigate biological pathways influencing areal identity, we summarised the 

individual regional results using multivariate GWAS analyses(34) separately for SA and TH 
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that modelled the phenotypic correlations between regions. Pathway analyses of the 

multivariate SA results showed significant enrichment for 903 gene sets (Fig. 3D; Table S9), 

many of which are involved in Wnt signalling, with the canonical Wnt signalling pathway 

showing the strongest enrichment (P = 8.8 x 10
-11

). Wnt proteins regulate neural progenitor 

fate decisions(35, 36) and are expressed in spatially specific manners influencing areal 

identity(6). Pathway analyses of the multivariate TH results did not yield any findings that 

survived multiple testing. 

 

Loci influencing regional SA and TH 

A total of 224 loci were nominally associated with regional SA and 12 with TH; of these 175 

SA and 10 TH loci survived multiple testing correction (Table S5). As shown in Fig. 1C, 

most loci were associated with a single cortical region. Of the loci influencing regional 

measures, few were also associated with global measures, and those that were showed effects 

in the same direction, implying that the significant regional loci were not due to collider 

bias(37) (Fig. S4). 

 

The strongest regional association was observed on chromosome 15q14 with the precentral 

SA (rs1080066, P = 1.8 x 10
-137

; Prep = 4.6 x 10
-189

; variance explained = 1.03%; Fig 4A). 

Across 11 traits we observed 41 independent significant associations from 18 LD blocks (r
2
 

threshold ≤ .02; see Fig. 4D, Table S5). As we observed strong association with the SA of 

both pre- and post-central gyri, we localised the association within the central sulcus in 5,993 

unrelated individuals from the UK Biobank. The maximal association between rs1080066 

and sulcal depth was observed around the pli de passage fronto-pariétal moyen (P = 7.9 x 10
-

21
), a region associated with hand fine-motor function in humans(38) and shows distinct depth 

patterns across different species of primates(39) (Fig. 4C). Variants in the rs1080066 LD 

block are fetal cortex eQTLs for an upsteam lncRNA RP11-275I4.2 (PFETAL = 4.0 x 10
-4

) and 

a downstream gene EIF2AK4 (PFETAL = 7.4 x 10
-3

) encoding the GCN2 protein, a negative 

regulator of synaptic plasticity, memory and neuritogenesis(40). The functional data also 

highlight THBS1, with roles in synaptogenesis and the maintenance of synaptic integrity(41), 

with chromatin interaction between the rs1080066 region and the THBS1 promoter in neural 

progenitor cells and an eQTL effect in whole blood (PBIOSgenelevel = 1.5 x 10
-9

). There was 

evidence of heterogeneity in the effect of rs1080066 across the non-European cohorts (Table 

S5), which might be due in part to the strength of the effect and the disparate power across 

ancestry groups. 

 

At another region containing multiple regional hits, on 14q23.1, we observed 20 significant 

loci (Table S5) from four LD blocks. Our strongest association here was for the precuneus 

SA (rs73313052: P = 1.1 x 10
-24

; Prep = 2.2 x 10
-35

; variance explained = 0.18%). These loci 

are located near DACT1 and DAAM1, both involved in synapse formation and critical 

members of the Wnt signalling cascade(42, 43). rs73313052 and high LD proxies are eQTLs 

for DAAM1 (PADULT = 9.0 x 10
-3

) in adult cortex and for LRRC9 (PFETAL = 3.9 x 10
-3

) in fetal 

cortex, LRRC9 is primarily expressed in brain tissue but is of unknown function (Tables S10–

S11). 
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Fig. 4 | Genetics of Regional Measures. A, Regional plot for rs1080066, including 

additional lead SNPs within the LD block and surrounding genes, chromatin interactions in 

neural progenitor cells, chromatin state in RoadMap brain tissues*, and BRAINSPAN 
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candidate gene expression in brain tissue** (abbreviations detailed below); B, rs1080066 (G 

allele) association with SA of regions; C, rs1080066 association with central sulcus depth and 

depth of several primate species; D ideogram of 15q14, detailing the significant independent 

loci and cortical regions. *TssA:Active Transcription Start Site (TSS); TssAFlnk:Flanking 

Active TSS; TxFlnk:Transcription at gene 5' and 3'; Tx:Strong transcription; TxWk:Weak 

transcription; EnhG:Genic enhancers; Enh:Enhancers; Het:Heterochromatin; 

TssBiv:Bivalent/Poised TSS; BivFlnk:Flanking Bivalent TSS/Enhancer; EnhBiv:Bivalent 

Enhancer; ReprPC:Repressed; PolyComb; ReprPCWk:Weak Repressed PolyComb; 

Quies:Quiescent/Low; **DFC:dorsolateral prefrontal cortex; VFC:ventrolateral prefrontal 

cortex; MFC:anterior cingulate cortex; OFC:orbital frontal cortex; M1C:primary motor 

cortex; M1C-S1C:primary motor-sensory cortex; PCx:parietal neocortex; S1C:primary 

somatosensory cortex; IPC:posteroventral parietal cortex; A1C:primary auditory cortex; 

TCx:temporal neocortex; STC:posterior superior temporal cortex; ITC:inferolateral temporal 

cortex; Ocx:occipital neocortex; V1C:primary visual cortex. 

 

Consistent with enrichment in the pathway analyses, a number of other loci were located in 

regions with functional links to genes involved in Wnt signalling, including 1p13.2, where 

rs2999158 (lingual SA, P = 1.9 x 10
-11

, Prep = 3.0 x 10
-11

; pericalcarine SA, P = 1.9 x 10
-11

; 

Prep = 9.9 x 10
-16

) is an eQTL for for ST7L and WNT2B (minimum PADULT = 9.0 x 10
-3

) in 

adult cortex (Tables S10–S11). A number of our novel regional associations occur near genes 

with known roles in brain development. For example, on chromosome 1p22.2, rs1413536 

(inferior parietal SA: P = 1.6 x 10
-10

; Prep = 3.1 x 10
-14

) is an eQTL in adult cortex for LMO4 

(PADULT = 9.0 x 10
-3

), with chromatin interactions between the region housing both this SNP 

and rs59373415 (precuneus SA: Prep = 5.3 x 10
-12

) and the LMO4 promoter in neural 

progenitor cells (Table S10–S11). Lmo4 is one of the few genes already known to be 

involved in areal identity specification in mammalian brain(44). 

 

Genetic correlations with other traits 

To examine shared genetic effects between cortical structure and other traits, we performed 

genetic correlation analyses with GWAS summary statistics from 23 selected traits. We 

observed significant positive genetic correlations between total SA and general cognitive 

function(45), educational attainment(21), and Parkinson’s disease(46). For total SA, 

significant negative genetic correlations were detected with insomnia(47), attention deficit 

hyperactivity disorder (ADHD)(48), depressive symptoms(49), major depressive 

disorder(50), and neuroticism(51)(Fig. 5A; Table S14). Genetic correlations with average TH 

did not survive multiple testing correction due to the weaker genetic association seen in the 

TH analyses. We mapped genetic correlation patterns across the cortical regions without 

correction for the global measures to map the magnitude of these effects across the brain (Fig. 

5B). No additional neuropsychiatric or psychological traits were significant at a regional 

level.  
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Fig. 5 | Genetic correlations with neuropsychiatric and psychological traits. A, genetic 

correlations with total SA and average TH positive correlations are shown in red, while 

negative correlations are shown in blue; B, regional variation in the strength of genetic 

correlations between regional surface area (without correction for total surface area) and traits 

showing significant genetic correlations with total surface area. 

 

Discussion 

Here we present a large-scale collaborative investigation of the effects of common genetic 

variation on human cortical structure using data from 51,662 individuals from 60 cohorts 

from around the world. We identify specific loci influencing cortical surface area (187 loci 

surviving multiple testing) and thickness (12 loci), implicating genes involved in areal 

patterning and cortical development. Our results support the radial unit hypothesis of surface 

area expansion in humans(3): genetic variation within regulatory elements in fetal neural 

progenitor cells(16) is associated with variability in adult cortical surface area. We also find 

that Wnt signalling genes influence areal expansion in humans, as has been reported in model 

organisms such as mice(6). Cortical thickness was associated with loci near genes implicated 

in cell differentiation, migration, adhesion, and myelination. Consequently, molecular studies 

in the appropriate tissues, such as neural progenitor cells and their differentiated neurons, will 

be critical to map the involvement of specific genes. Genetic variation associated with brain 

structure is functionally relevant, as evidenced by genetic correlations with a range of 

neuropsychiatric disorders and psychological traits, including general cognitive function, 

Parkinson’s disease, depression, ADHD and insomnia. This work identifies novel genome-

wide significant loci associated with cortical surface area and thickness based on the largest 

imaging genetics study to date, providing a deeper understanding of the genetic architecture 

of the human cerebral cortex and its patterning. 
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Supplementary Materials: 

Materials and Methods 

 

Ethical approval and data availability 

Participants in all cohorts in this study gave written informed consent and sites involved 

obtained approval from local research ethics committees or Institutional Review Boards. 

Ethics approval for the meta-analysis was granted by the QIMR Berghofer Medical Research 

Institute Human Research Ethics Committee (approval: P2204). 

 

Imaging 

Measures of cortical surface area (SA) and thickness (TH) were derived from in-vivo whole 

brain T1-weighted magnetic resonance imaging (MRI) scans using FreeSurfer MRI 

processing software(1) (Table S3). SA and TH were quantified for each subject within 34 

distinct gyral-defined regions in each brain hemisphere according to the Desikan-Killiany 

atlas(9) (Fig. 1A). SA was measured at the grey-white matter boundary. TH was measured as 

the average distance between the white matter and pial surfaces. The total SA and average 

TH of each hemisphere was computed separately. High test-retest correlations have been 

reported for all measures with the exception of the frontal and temporal poles(5). Image 

processing and quality control were implemented at the cohort level following detailed, 

harmonized protocols (see http://enigma.ini.usc.edu/protocols/imaging-protocols/ for 

protocols); phenotype distributions for all traits in all cohorts were inspected centrally prior to 

meta-analysis. Any cohort where the phenotypic distribution for a given trait showed 

deviation from expectations that could not be resolved through reanalysis or outlier 

inspection were excluded from analyses of that trait. 

 

Genome-wide association analyses 
At each site, genotypes were imputed using either the 1000 Genomes Project(52) or 

Haplotype Reference Consortium(53) references (Table S4). To ensure consistency in the 

correction for ancestry and stability of the correction given the relatively small sample sizes, 

each cohort also ran the same multidimensional scaling (MDS) analysis protocol in which the 

data from the HapMap 3 populations were merged with the site level data and MDS 

components were calculated across this combined data set. Within each cohort, genome-wide 

association (GWAS) was conducted using an additive model including covariates to control 

for the effects of age, sex, ancestry (the first four MDS components), diagnostic status (when 

the cohort followed a case-control design), and scanner (when multiple scanners were used at 

the same site).  

 

The primary GWAS of regional measures included the global measure of SA or TH as an 

additional covariate, to test for genetic influences specific to each region. However, to aid 

interpretation, the regional GWAS were also run without controlling for global measures. 

Cohort level GWAS results underwent quality control (excluding variants with an imputation 

R
2
 ≤ .5 and MAF ≤ .005). Across all cohorts, for each phenotype, GWAS summary plots 

(Manhattan and QQ plots) were visually inspected by the central analysis group, if a given 

trait showed deviation from expectations that could not be resolved through reanalysis that 

cohort was excluded from analyses of that trait. 

 

Multiple testing correction 

We analysed 70 traits (total SA, average TH, and the SA and TH of 34 cortical regions 

averaged across right and left hemispheres). However, after accounting for the correlation 

between the traits in the UK Biobank (residuals correcting for sex, age, ancestry and global 
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measures) using matrix spectral decomposition (matSpD(10)) the effective number of traits 

was estimated to be 60. Therefore, we applied the significance threshold of P ≤ 8.3 x 10
-10 

to 

correct for multiple testing in the GWAS meta-analysis results. Multiple testing corrections 

applied to each of the follow-up analyses are described below. 

 

Meta-analysis 

The initial meta-analysis was conducted on all of the ENIGMA European cohorts with 

genome-wide imputed data, which were then meta-anlysed with the UK Biobank European 

participants to give the principal results. We took the significant principal results and meta-

analysed them with an additional ENIGMA cohort and results from the CHARGE 

consortium. In an additional replication we took these results and meta-analysed them with 

the ENIGMA non-European cohorts. Cohort information is provided in Table S2. All meta-

analyses were conducted using METAL(54). The results of the meta-analysis are summarized 

in Table S5. For the intial and principal meta-analyses we used standard error weighted meta-

analyses. In the replication steps we used sample size weighted meta-analyses, in order to 

include results from the CHARGE consortium for which only sample size weighted results 

were available. For each meta-analysis, the results were quality controlled, removing strand 

ambiguous SNPs and INDELs where the effect allele frequency crossed .5, and (for the initial 

meta-analysis) variants where the total sample size was < 10,000. Independent loci were 

identified by clumping significant loci in PLINK(55), with thresholds of 1 Mb and r
2
 < .2. 

For the chromosome 17 inversion region this was increased to 10 Mb. For clumping, a 

random sample of 5,000 unrelated individuals from the UK BioBank were used as an LD 

reference. 

 

Following Rietveld et al(56), we estimated the variance explained R
2
 by each variant j as:  

𝑅𝑗
2 ≈

2𝑝𝑗𝑞𝑗. �̂�𝑗
2

�̂�𝑦
2

 

where pj and qj are the minor and major allele frequencies, �̂�𝑗 is the estimated effect of the 

variant within the meta-analysis and �̂�𝑦
2 is the estimated variance of the trait (for which we 

used the pooled variance of the trait across all ENIGMA cohorts and UK Biobank; see Table 

S1). To obtain beta and standard error estimates from the results from the sample size 

weighted meta-analyses reported in Table S5 we used the following equations from Rietveld 

et al(56): 

�̂�𝑗 ≈ 𝑧𝑗 ∙
�̂�𝑦

√𝑁𝑗 ∙ 2𝑝𝑗𝑞𝑗

 and 𝑆𝐸(�̂�𝑗) ≡
𝑧𝑗

�̂�𝑗

  

Where zj is the Z-score and SE (�̂�𝑗) is the estimated standard effect of the variant within the 

meta-analysis and N is the number of contributing alleles. 

 

Analyses of UK Biobank data 

Analyses of the UK Biobank cohort were conducted on the 2018 (version 3) imputed 

genotypes, imputed to the Haplotype Reference Consortium and merged UK10K and 1000 

Genomes (phase 3) panels. UK Biobank bulk imaging data were made available for 12,962 

individuals under application #11559 in July 2017. We processed the raw MRI data using the 

ENIGMA protocols. Following processing, all images were visually inspected. Analyses of 

UK Biobank participants within .02 on the first and second MDS components of the 

European centroid were included in the meta-analyses of the European ancestry cohorts. 

Analyses of participants beyond this threshold were included in the meta-analysis of non-

European ancestry cohorts.  
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Gene-based association analyses 

We conducted genome-wide gene-based association analysis using the principal meta-

analytic results. We used the 19,427 protein-coding genes from the NCBI 37.3 gene 

definitions as the basis for the gene-based association analysis using MAGMA(57). For each 

gene we selected all SNPs within exonic, intronic and untranslated regions as well as SNPs 

within 50 kb upstream and downstream of the gene. After SNP annotation, there were 18,048 

genes that were covered by at least one SNP. Gene-based association tests were performed 

taking LD between SNPs into account. We applied a Bonferroni correction to account for 

multiple testing, adjusting for the number of genes tested as well as the number of traits 

tested (60 independent traits), setting the genome-wide threshold for significance at 4.5 x 

10
−8

. These results are shown in Table S6. 

 

Heritability due to common variants, genetic correlations and partitioned heritability 

We used LD score regression(58, 59) to estimate the proportion of variance accounted for by 

common SNPs or SNP heritability (h
2

SNP) of the global measures (total SA and average TH) 

and the SA and TH of each of the 34 cortical regions.  These results are shown in Table S7. 

LD score regression(59) was also used to estimate genetic correlations between regions and 

with global measures. These results are shown in Table S1213. We used a threshold of P ≤ 

8.3 x 10
-4

 (.05/60) to correct for multiple testing in the genetic and phenotypic correlations 

shown in Fig. 3. To identify patterns of genetic correlations of SA and TH (both with and 

without correction for global measures), we used Mclust(60) for hierarchical cluster analysis, 

which uses expectation-maximisation to fit parameterized Gaussian mixture models to the 

data. The best-fitting model for number and shape of clusters was selected as the one with the 

largest Bayesian Information Criterion. These results are shown in Supplementary Fig. 3. 

 

Partitioned heritability analysis was used to estimate the percentage of heritability explained 

by annotated regions of the genome(61). Annotations were derived from either Epigenomics 

Roadmap(17) or a study of chromatin accessibility in mid-fetal brains(16). For analyses using 

Epigenomics Roadmap data, chromatin states (15 state model) were downloaded for available 

tissue types (http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). For each 

tissue, genomic regions comprising all active regulatory elements (TssA, TssAflnk, Enh, 

EnhG) within each tissue type were added as an additional annotation to the baseline model 

provided with the LDSC package (https://github.com/bulik/ldsc). For analyses using 

chromatin accessibility in mid-fetal brains, the genomic coordinates of peaks more accessible 

in the germinal zone than the cortical plate (GZ > CP) and peaks more accessible in the 

cortical plate than the germinal zone (CP > GZ) were added separately to the baseline 

annotations. Partitioned heritability and the enrichment of heritability explained in these 

annotations was run using LD score regression(61). The significance of enrichment was 

corrected across all annotations used (including those not displayed) using false discovery 

rate (FDR) and the enrichment scores were plotted as a heatmap for those that survived 

significance (Fig. 2b). 

 

Genetic correlations were calculated to determine if shared genetic influences contributed to 

both cortical structure and neuropsychiatric disorders or psychological traits. Summary 

statistics were downloaded from the following published genome-wide association studies: 

general cognitive function(45), insomnia(47), antisocial behavior(62), educational 

attainment(21), subjective well-being(49), depressive symptoms(49), neuroticism(51), 

attention deficit hyperactivity disorder (ADHD)(48), autism(63), bipolar disorder(64), 

anorexia nervosa(65), major depressive disorder(50), obsessive compulsive disorder(66), 

post-traumatic stress disorder (PTSD)(67), schizophrenia(68), anxiety disorders(69), 
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aggression(70), Alzheimer's disease(71), loneliness(72), cigarettes smoked per day(73), 

epilepsy(74), Parkinson's disease(46), and frontotemporal dementia(75). LD score regression 

was used to calculate genetic correlations(58). Significance was corrected for multiple 

comparisons using FDR across all genetic correlations with average TH and total SA, and 

significant associations were highlighted in Fig. 5A. To explore regional variability in those 

significant genetic correlations, genetic correlations were conducted between the trait and the 

cortical regions (without correcting for global measures) are depicted in Fig. 5B. 

 

Multivariate GWAS analysis 

We used TATES(34) to conduct two multivariate analyses: one for the 34 regional SA 

measures, and one for the 34 regional TH measures. These analyses were run on the meta-

analytic results from the second phase of meta-analysis. Briefly, TATES combines the p-

values from univariate GWAS while correcting for the phenotypic correlations between traits 

and does not require access to raw genotypic data(34). The power of TATES has been shown 

to be similar or greater than that of multivariate tests using raw data across a range of 

scenarios for analyses of 20 or more traits(76). For these analyses, we used phenotypic 

correlations calculated from the UK Biobank cohort (residuals correcting for sex, age, 

ancestry, and global brain measures). 

 

Gene-set enrichment analyses 

Gene-set enrichment analyses were performed on total SA and average TH as well as the 

multivariate GWAS results for SA and TH using DEPICT(77). Within DEPICT, groups of 

SNPs were assessed for enrichment in 14,462 gene-sets. These analyses were run using 

variants with P ≤ 1.0 x 10
-5

. Gene-set enrichment analyses were considered significant if they 

survived FDR correction (q ≤ 0.05)(77). These results are shown in Table S9. 

 

Functional annotation 

Potential functional impact was investigated for lead variants and their proxies (defined here 

as r
2
 > 0.6 to the lead SNP) at each of the 306 loci nominally associated with global and 

regional SA and TH using a number of publicly available data sources. The majority of the 

SNP annotations were as provided by FUMA(23) which annotates:  

 SNP location (e.g., genic/intergenic)  

 the potential for functional effects through predicted effects as determined by 

CADD(78) and Regulome(79)  

 expression quantitative trait (eQTL) effects. We considered eQTLs within cortical 

structures from GTEx v7, the UK Brain Expression Consortium 

(http://www.braineac.org/), and the CommonMind Consortium(80), and 

PsychENCODE(81) (http://resource.psychencode.org)  

 chromatin state  

 the presence of enhancers and promoters in SNP regions (RoadMap tissues E053, 

E073, E081, E082, E125)  

 chromatin state (see below) and interactions in numerous brain tissues (GEO 

GSE87112). We included data for dorsolateral prefrontal cortex and neural progenitor 

cells, PsychENCODE, and adult and fetal cortex(82).  

In the main text we provide P-values for adult cortical eQTLs as calculated by FUMA across 

tissues in which significant eQTLs were observed (Table S11). These data were used by 

FUMA to map coding and non-coding (e.g. lncRNA) genes to each lead SNP based on an 

eQTL effect with an FDR correction P ≤ .05 in cortical tissue, and/or chromatin interactions 

between the region harbouring the lead SNP and a gene promoter in a second chromosomal 

region (including interactions with an FDR correction P ≤ 1 x 10
-6

)(23). HaploReg(83) was 
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used to annotate transcription factor binding across multiple tissues, and whether SNPs 

modified transcription factor binding motifs. The potential for a detrimental effect on protein 

function due to lead or proxy SNPs located within gene exons was investigated using SIFT 

and PolyPhen as reported by SNPNexus(80). Fetal eQTL data were taken from O’Brien et 

al(26): we have noted only those eQTLs passing our FDR correction (P ≤  .05) of the 

nomimal P-values provided in the original publication. In the main text we provide the 

nominal P-values as reported by O’Brien et al.  

 

In Fig. 4 we annotate the genomic context of rs1080066 and high LD proxies associated with 

additional traits, chromatin state in relevant tissues, and gene expression in pre- and post-

natal brains. Chromatin state represents the degree to which 200 bp genomic regions are 

accessible for transcription. Around each of our associated loci chromatin state was annotated 

by FUMA(23) utilising the core 15-state model (Table S10). In Fig. 4, genomic regions in 

three tissues/cells most relevant to our study (RoadMap E073 dorsolateral prefrontal cortex 

[Adult cortex], E081 female fetal brain [Fetal brain], and E125 NH-A Astrocytes Primary 

Cells [Astrocytes]) are indicated as one of the 15 possible chromatin states as predicted by 

Roadmap Epignomics using ChromHMM, based on data for 5 chromatin marks (H3K4me3, 

H3K4me1, H3K36me3, H3K27me3, H3K9me3) in 127 epigenomes(17). Chromatin states 

are as follows: TssA:Active Transcription Start Site (TSS); TssAFlnk:Flanking Active TSS; 

TxFlnk:Transcription at gene 5' and 3'; Tx:Strong transcription; TxWk:Weak transcription; 

EnhG:Genic enhancers; Enh:Enhancers; ZNF/Rpts:ZNF genes & repeats; 

Het:Heterochromatin; TssBiv:Bivalent/Poised TSS; BivFlnk:Flanking Bivalent 

TSS/Enhancer; EnhBiv:Bivalent Enhancer; ReprPC:Repressed; PolyComb; 

ReprPCWk:Weak Repressed PolyComb; Quies:Quiescent/Low. Pre- and post-natal gene 

expression data across multiple brain regions was obtained from the BrainSpan Atlas of the 

Developing Human Brain (http://www.brainspan.org/). These data include gene expression 

information for cortical tissues indicated on a scale from low (dark blue) to high (dark red) 

expression on a log2 RPKM scale (RPKM = Reads Per Kilobase [of transcript per] Million 

[mapped reads], which normalises expression levels to account for sequencing depth and 

gene length). The BRAINSPAN cortical tissues, organised in ontological order, are as 

follows: DFC:dorsolateral prefrontal cortex; VFC:ventrolateral prefrontal cortex; 

MFC:anterior (rostral) cingulate (medial prefrontal) cortex; OFC:orbital frontal cortex; 

M1C:primary motor cortex (area M1, area 4); M1C-S1C:primary motor-sensory cortex 

(samples); PCx:parietal neocortex; S1C:primary somatosensory cortex (area S1, areas 3,1,2); 

IPC:posteroventral (inferior) parietal cortex; A1C:primary auditory cortex (core); 

TCx:temporal neocortex; STC:posterior (caudal) superior temporal cortex (area 22c); 

ITC:inferolateral temporal cortex (area TEv, area 20); Ocx:occipital neocortex; V1C:primary 

visual cortex (striate cortex, area V1/17). 

 

For each locus, we evaluated functional annotations for the lead SNP and for additional SNPs 

considered to be credible causal variants (CCVs) if they were either i) in reasonable LD (r
2
 ≥ 

0.6 in individuals of European ancestry) with the lead SNP and/or ii) had P-values within 2 

orders of magnitude of the lead SNP. As lincRNAs show considerable cell/tissue specificity, 

in the main text we detail SNP location based on neighbouring coding genes, but detail 

lincRNAs when our lead SNPs show eQTL effects and/or chromatin interactions to these 

non-coding transcripts. Genes at each associated locus were determined to be potential 

candidates by considering whether the lead SNP (or a proxy) was an eQTL for a particular 

gene in adult cortical tissue (e.g. BRAINEAC, CMC or GTEx cortical tissues) and/or when 

chromatin interactions were observed to occur between the region harbouring the lead/proxy 
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SNPs and a gene promoter in relevant brain tissues (dorsolateral prefrontal cortex and/or 

neural progenitor cells).  

 

Analysis of the central sulcus 

To follow-up the precentral surface area association with rs1080066, 10,557 UK Biobank 

MRI scans were further analyzed using BrainVISA-4.5 Morphologist pipeline for the 

extraction and parameterization of the central sulcus. Quality controlled FreeSurfer outputs 

(orig.mgz, ribbon.mgz and talairach.auto) were directly imported into the pipeline to use the 

same gray and white matter segmentations. Sulci were automatically labeled according to a 

predefined anatomical nomenclature of 60 sulcal labels per hemisphere(84, 85). Extracted 

meshes for the left and right central sulcus were visually quality checked; subjects with 

mislabelled central sulcus were discarded from further analysis; 6,045 individuals had good 

quality extractions for both the left and right hemispheres. The central sulcus depth profile 

was measured by extending the method introduced in(38, 86). The ridges at the fundus of the 

sulcus and at the convex hull, along with the two extremities, were automatically extracted. 

Using these landmarks, two coordinate fields (x and y) were extrapolated over the entire 

mesh surface(87). Sulcal depth was defined as the distance between paired points at the sulcal 

fundus and brain envelope that shared the same y coordinate(88). For each individual, the 

parametrized surface was divided into 100 equally spaced points along the length of the 

sulcus, and the depth at each point was recorded for comparison. We averaged the 

corresponding depth measurements across the left and right sulcus and calculated the effect 

of the rs1080066 G allele on the bilaterally averaged depth at each point. These results are 

shown in Fig. 4C. 

 

Estimating linkage disequilibrium with the 5-HTTLPR variable number tandem repeat. 

Using PLINK(55), we estimated the LD between rs4291964 and the 5-HTTLPR variable 

number tandem repeat using data from 807 unrelated founders from the QTIM sample who 

are genotyped for 5-HTTLPR and have rs4291964 imputed (imputation accuracy r
2 

= 0.96). 

These analyses showed the two genotypes to be unlinked, r
2
 = 0.03, D' = 0.267. 

 

Supplementary Text 

Sulcal development 

Positive genetic correlations between the SA of neighbouring regions may also be driven by 

the development of the sulcus, separating the regions. The pre- and post- central regions (also 

known as the primary motor and sensorimotor cortices, respectively) are consistently labelled 

across many cortical atlases as the regions directly anterior and posterior to the central sulcus 

(which appears early in development(89)). The SA of all four regions surrounding the 

calcarine sulcus (the pericalcarine, lingual, cuneus, and lateral occipital region) show positive 

genetic correlations. The same is also true for the SA of the insula and superior temporal gyri 

surrounding the lateral sulcus (or Sylvian fissure). These major, early-forming sulci show 

positive genetic correlations between the regions that directly surround them for SA, but not 

TH. These observations may imply that part of the genetic influences we observe to be 

underlying regional SA, may actually be driving the formation of the separating folds, or 

sulci, during fetal development.  

 

The Desikan-Killiany atlas 

The Desikan-Killiany atlas(9) used here to define the 34 regions of interest is one of many 

possible atlases. It is one of the coarser atlases, yielding larger, more consistent regions, 

defined by the common folding patterns visible on standard MRI. More recent efforts 

partitioning the cortex into 180 regions have used high-resolution multimodal assessments 
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(MMPC)(90). It is possible that positive correlations between adjacent structures may reflect 

suboptimal partitioning of the cortex by the Desikan-Killiany atlas into distinct functional 

brain regions; for example, we see a positive genetic correlation between the inferior parietal 

and the superior parietal gyri, whereas in the MMPC atlas, a portion of each of these two 

regions is included under the intraparietal labels. Portions of these genetically correlated 

regions may in future be re-assigned based on other advanced imaging data, such as 

multimodal myelin mapping, which may better define cortical cellular architecture. 
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Supplementary Figures 

 
Figure S1. Flow chart summarising the phases of meta-analysis. 

 

 
Figure S2. Regional association plot for the 3p24.1 locus (rs12630663). 
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Figure S3. Clustering of genetic correlations among A) surface area and B) thickness regions 

after correcting for global measures. Clustering of genetic correlations among C) surface area 

and D) thickness regions without correcting for global measures. The best-fitting model for 

surface area with global correction was 4 diagonal components with varying volume and 

shape, and for thickness was 3 spherical components with equal volume. The best-fitting 

model for surface area without global correction was 5 spherical components with varying 

volume, and for thickness was 7 diagonal components with equal volume and shape. 
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Figure S4. P-value of genome-wide significant regional SNPs with global control compared 

to their P-value in the global measure for A) surface area and B) thickness. Effect size of 

genome-wide significant regional SNPs with global control compared to their effect size in 

global measures for C) surface area and D) thickness. Effect size of genome-wide significant 

regional SNPs with global control compared to regional SNPs without global control in E) 

surface area and F) thickness. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/399402doi: bioRxiv preprint 

https://doi.org/10.1101/399402


 

37 

 

Consortium Authors 

Alzheimer’s Disease Neuroimaging Initiative (ADNI). Data used in preparing this article 

were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). As such, many investigators within the ADNI contributed to the design 

and implementation of ADNI and/or provided data but did not participate in analysis or 

writing of this report. A complete listing of ADNI investigators may be found at: 

http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

ADNI Infrastructure Investigators: Michael Weiner (UC San Francisco), Paul Aisen 

(University of Southern California), Ronald Petersen (Mayo Clinic, Rochester), Clifford R. 

Jack, Jr. (Mayo Clinic, Rochester), William Jagust (UC Berkeley), John Q. Trojanowki (U 

Pennsylvania), Arthur W. Toga (USC), Laurel Beckett (UC), Davis Robert C. Green 

(Brigham and Women’s Hospital/Harvard Medical School), Andrew J. Saykin (Indiana 

University), John Morris (Washington University St. Louis), Leslie M. Shaw (University of 

Pennsylvania). ADNI External Advisory Board (ESAB): Zaven Khachaturian (Prevent 

Alzheimer’s Disease 2020 (Chair)), Greg Sorensen (Siemens), Maria Carrillo (Alzheimer’s 

Association), Lew Kuller (University of Pittsburgh), Marc Raichle (Washington University 

St. Louis), Steven Paul (Cornell University), Peter Davies (Albert Einstein College of 

Medicine of Yeshiva University), Howard Fillit (AD Drug Discovery Foundation), Franz 

Hefti (Acumen Pharmaceuticals), David Holtzman (Washington University St. Louis), M. 

Marcel Mesulam (Northwestern University), William Potter (National Institute of Mental 

Health), Peter Snyder (Brown University). ADNI 3 Private Partner Scientific Board (PPSB): 

Veronika Logovinsky, (Eli Lilly (Chair)). Data and Publications Committee: Robert C. 

Green (BWH/HMS (Chair)). Resource Allocation Review Committee: Tom Montine 

(University of Washington (Chair)). Clinical Core Leaders: Ronald Petersen (Mayo Clinic, 

Rochester (Core PI)), Paul Aisen (University of Southern California). Clinical Informatics 

and Operations: Gustavo Jimenez (USC), Michael Donohue (USC), Devon Gessert (USC), 

Kelly Harless (USC), Jennifer Salazar (USC), Yuliana Cabrera (USC), Sarah Walter (USC), 

Lindsey Hergesheimer (USC). Biostatistics Core Leaders and Key Personnel: Laurel Beckett 

(UC Davis (Core PI)), Danielle Harvey (UC Davis), Michael Donohue (UC San Diego). MRI 

Core Leaders and Key Personnel: Clifford R. Jack, Jr. (Mayo Clinic, Rochester (Core PI)), 

Matthew Bernstein (Mayo Clinic, Rochester), Nick Fox (University of London), Paul 

Thompson (UCLA School of Medicine), Norbert Schuff (UCSF MRI), Charles DeCArli (UC 

Davis), Bret Borowski (RT Mayo Clinic), Jeff Gunter (Mayo Clinic), Matt Senjem (Mayo 

Clinic), Prashanthi Vemuri (Mayo Clinic), David Jones (Mayo Clinic), Kejal Kantarci (Mayo 

Clinic), Chad Ward (Mayo Clinic). PET Core Leaders and Key Personnel: William Jagust 

(UC Berkeley (Core PI)), Robert A. Koeppe (University of Michigan), Norm Foster 

(University of Utah), Eric M. Reiman (Banner Alzheimer’s Institute), Kewei Chen (Banner 

Alzheimer’s Institute), Chet Mathis (University of Pittsburgh), Susan Landau (UC Berkeley). 

Neuropathology Core Leaders: John C. Morris (Washington University St. Louis), Nigel J. 

Cairns (Washington University St. Louis), Erin Franklin (Washington University St. Louis), 

Lisa Taylor-Reinwald (Washington University St. Louis – Past Investigator). Biomarkers 

Core Leaders and Key Personnel: Leslie M. Shaw (UPenn School of Medicine), John Q. 

Trojanowki (UPenn School of Medicine), Virginia Lee (UPenn School of Medicine), 

Magdalena Korecka (UPenn School of Medicine), Michal Figurski (UPenn School of 

Medicine). Informatics Core Leaders and Key Personnel: Arthur W. Toga (USC (Core PI)), 

Karen Crawford (USC), Scott Neu (USC). Genetics Core Leaders and Key Personnel: 

Andrew J. Saykin (Indiana University), Tatiana M. Foroud (Indiana University), Steven 

Potkin (UC Irvine), Li Shen (Indiana University), Kelley Faber (Indiana University), 

Sungeun Kim (Indiana University), Kwangsik Nho (Indiana University). Initial Concept 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/399402doi: bioRxiv preprint 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1101/399402


 

38 

 

Planning & Development: Michael W. Weiner (UC San Francisco), Lean Thal (UC San 

Diego), Zaven Khachaturian (Prevent Alzheimer’s Disease 2020). Early Project Proposal 

Development: Leon Thal (UC San Diego), Neil Buckholtz (National Institute on Aging), 

Michael W. Weiner (UC San Francisco), Peter J. Snyder (Brown University), William Potter 

(National Institute of Mental Health), Steven Paul (Cornell University), Marilyn Albert 

(Johns Hopkins University), Richard Frank (Richard Frank Consulting), Zaven Khachaturian 

(Prevent Alzheimer’s Disease 2020). NIA: John Hsiao (National Institute on Aging). ADNI 

Investigators by Site: Oregon Health & Science University: Joseph Quinn, Lisa C. Silbert, 

Betty Lind, Jeffrey A. Kaye – Past Investigator, Raina Carter – Past Investigator, Sara Dolen 

– Past Investigator. University of Southern California: Lon S. Schneider, Sonia Pawluczyk, 

Mauricio Becerra, Liberty Teodoro, Bryan M. Spann – Past Investigator. University of 

California – San Diego: James Brewer, Helen Vanderswag, Adam Fleisher – Past 

Investigator. University of Michigan: Jaimie Ziolkowski, Judith L. Heidebrink, Joanne L. 

Lord – Past Investigator. Mayo Clinic, Rochester: Ronald Petersen, Sara S. Mason, Colleen 

S. Albers, David Knopman, Kris Johnson – Past Investigator. Baylor College of Medicine: 

Javier Villanueva-Meyer, Valory Pavlik, Nathaniel Pacini, Ashley Lamb, Joseph S. Kass, 

Rachelle S. Doody – Past Investigator, Victoria Shibley – Past Investigator, Munir 

Chowdhury – Past Investigator, Susan Rountree – Past Investigator, Mimi Dang – Past 

Investigator. Columbia University Medical Center: Yaakov Stern, Lawrence S. Honig, Karen 

L. Bell, Randy Yeh. Washington University, St. Louis: Beau Ances, John C. Morris, David 

Winkfield, Maria Carroll, Angela Oliver, Mary L. Creech – Past Investigator, Mark A. 

Mintun – Past Investigator, Stacy Schneider – Past Investigator. University of Alabama - 

Birmingham: Daniel Marson, David Geldmacher, Marissa Natelson Love, Randall Griffith – 

Past Investigator, David Clark – Past Investigator, John Brockington – Past Investigator. 

Mount Sinai School of Medicine: Hillel Grossman, Effie Mitsis – Past Investigator. Rush 

University Medical Center: Raj C. Shah, Melissa Lamar, Patricia Samuels. Wien Center: 

Ranjan Duara, Maria T. Greig-Custo, Rosemarie Rodriguez. Johns Hopkins University: 

Marilyn Albert, Chiadi Onyike, Daniel D’Agostino II, Stephanie Kielb – Past Investigator. 

New York University: Martin Sadowski, Mohammed O. Sheikh, Jamika Singleton-Garvin, 

Anaztasia Ulysse, Mrunalini Gaikwad. Duke University Medical Center: P. Murali 

Doraiswamy, Jeffrey R. Petrella, Olga James, Salvador Borges-Neto, Terence Z. Wong – Past 

Investigator, Edward Coleman – Past Investigator. University of Pennsylvania: Jason H. 

Karlawish, David A. Wolk, Sanjeev Vaishnavi, Christopher M. Clark – Past Investigator, 

Steven E. Arnold – Past Investigator. University of Kentucky: Charles D. Smith, Greg Jicha, 

Peter Hardy, Riham El Khouli, Elizabeth Oates, Gary Conrad. University of Pittsburgh: 

Oscar L. Lopez, MaryAnn Oakley, Donna M. Simpson. University of Rochester Medical 

Center: Anton P. Porsteinsson, Kim Martin, Nancy Kowalksi, Melanie Keltz, Bonnie S. 

Goldstein – Past Investigator, Kelly M. Makino – Past Investigator, M. Saleem Ismail – Past 

Investigator, Connie Brand – Past Investigator. University of California Irvine IMIND: Gaby 

Thai, Aimee Pierce, Beatriz Yanez, Elizabeth Sosa, Megan Witbracht. University of Texas 

Southwestern Medical School: Kyle Womack, Dana Mathews, Mary Quiceno. Emory 

University: Allan I. Levey, James J. Lah, Janet S. Cellar. University of Kansas, Medical 

Center: Jeffrey M. Burns, Russell H. Swerdlow, William M. Brooks. University of 

California, Los Angeles: Ellen Woo, Daniel H.S. Silverman, Edmond Teng, Sarah Kremen, 

Liana Apostolova – Past Investigator, Kathleen Tingus – Past Investigator, Po H. Lu – Past 

Investigator, George Bartzokis – Past Investigator. Mayo Clinic, Jacksonville: Neill R Graff-

Radford (London), Francine Parfitt, Kim Poki-Walker. Indiana University: Martin R. Farlow, 

Ann Marie Hake, Brandy R. Matthews – Past Investigator, Jared R. Brosch, Scott Herring. 

Yale University School of Medicine: Christopher H. van Dyck, Richard E. Carson, Pradeep 

Varma. McGill Univ., Montreal-Jewish General Hospital: Howard Chertkow, Howard 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/399402doi: bioRxiv preprint 

https://doi.org/10.1101/399402


 

39 

 

Bergman, Chris Hosein. Sunnybrook Health Sciences, Ontario: Sandra Black, Bojana 

Stefanovic, Chris (Chinthaka) Heyn. U.B.C. Clinic for AD & Related Disorders: Ging-Yuek 

Robin Hsiung, Benita Mudge, Vesna Sossi, Howard Feldman – Past Investigator, Michele 

Assaly – Past Investigator. Cognitive Neurology - St. Joseph's, Ontario: Elizabeth Finger, 

Stephen Pasternack, William Pavlosky, Irina Rachinsky – Past Investigator, Dick Drost – 

Past Investigator, Andrew Kertesz – Past Investigator. Cleveland Clinic Lou Ruvo Center for 

Brain Health: Charles Bernick, Donna Muni. Northwestern University: Marek-Marsel 

Mesulam, Emily Rogalski, Kristine Lipowski, Sandra Weintraub, Borna Bonakdarpour, 

Diana Kerwin – Past Investigator, Chuang-Kuo Wu,– Past Investigator, Nancy Johnson – 

Past Investigator. Premiere Research Inst (Palm Beach Neurology): Carl Sadowsky, Teresa 

Villena. Georgetown University Medical Center: Raymond Scott Turner, Kathleen Johnson, 

Brigid Reynolds. Brigham and Women's Hospital: Reisa A. Sperling, Keith A. Johnson, Gad 

A. Marshall. Stanford University: Jerome Yesavage, Joy L. Taylor, Steven Chao, Barton 

Lane – Past Investigator, Allyson Rosen – Past Investigator, Jared Tinklenberg – Past 

Investigator. Banner Sun Health Research Institute: Edward Zamrini, Christine M. Belden, 

Sherye A. Sirrel. Boston University: Neil Kowall, Ronald Killiany, Andrew E. Budson, 

Alexander Norbash – Past Investigator, Patricia Lynn Johnson – Past Investigator. Howard 

University: Thomas O. Obisesan, Ntekim E. Oyonumo, Joanne Allard, Olu Ogunlana. Case 

Western Reserve University: Alan Lerner, Paula Ogrocki, Curtis Tatsuoka, Parianne Fatica. 

University of California, Davis – Sacramento: Evan Fletcher, Pauline Maillard, John 

Olichney, Charles DeCarli, Owen Carmichael – Past Investigator. Neurological Care of CNY: 

Smita Kittur – Past Investigator. Parkwood Institute: Michael Borrie, T-Y Lee, Dr Rob 

Bartha. University of Wisconsin: Sterling Johnson, Sanjay Asthana, Cynthia M. Carlsson. 

Banner Alzheimer's Institute: Pierre Tariot, Anna Burke, Joel Hetelle, Kathryn DeMarco, 

Nadira Trncic – Past Investigator, Adam Fleisher – Past Investigator, Stephanie Reeder – Past 

Investigator. Dent Neurologic Institute: Vernice Bates, Horacio Capote, Michelle Rainka. 

Ohio State University: Douglas W. Scharre, Maria Kataki, Rawan Tarawneh. Albany Medical 

College: Earl A. Zimmerman, Dzintra Celmins, David Hart. Hartford Hospital, Olin 

Neuropsychiatry Research Center: Godfrey D. Pearlson, Karen Blank, Karen Anderson. 

Dartmouth-Hitchcock Medical Center: Laura A. Flashman, Marc Seltzer, Mary L. Hynes, 

Robert B. Santulli – Past Investigator. Wake Forest University Health Sciences: Kaycee M. 

Sink, Mia Yang, Akiva Mintz. Rhode Island Hospital: Brian R. Ott, Geoffrey Tremont, Lori 

A. Daiello. Butler Hospital: Courtney Bodge, Stephen Salloway, Paul Malloy, Stephen 

Correia, Athena Lee. UC San Francisco: Howard J. Rosen, Bruce L. Miller, David Perry. 

Medical University South Carolina: Jacobo Mintzer, Kenneth Spicer, David Bachman. St. 

Joseph’s Health Care: Elizabeth Finger, Stephen Pasternak, Irina Rachinsky, John Rogers, 

Andrew Kertesz – Past Investigator, Dick Drost – Past Investigator. Nathan Kline Institute: 

Nunzio Pomara, Raymundo Hernando, Antero Sarrael. University of Iowa College of 

Medicine: Delwyn D. Miller, Karen Ekstam Smith, Hristina Koleva, Ki Won Nam, 

Hyungsub Shim, Susan K. Schultz – Past Investigator. Cornell University: Norman Relkin, 

Gloria Chiang, Michael Lin, Lisa Ravdin. University of South Florida: USF Health Byrd 

Alzheimer’s Institute: Amanda Smith, Christi Leach, Balebail Ashok Raj – Past Investigator, 

Kristin Fargher – Past Investigator. 

 

CHARGE Consortium: Edith Hofer (Clinical Division of Neurogeriatrics, Department of 

Neurology, Medical University of Graz, Graz, Austria), Gennady V. Roshchupkin 

(Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The 

Netherlands), Hieab H. H. Adams (Department of Radiology and Nuclear Medicine, Erasmus 

MC, Rotterdam, The Netherlands), Maria J. Knol (Department of Epidemiology, Erasmus 

MC, Rotterdam, The Netherlands), Honghuang Lin (Section of Computational Biomedicine, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/399402doi: bioRxiv preprint 

https://doi.org/10.1101/399402


 

40 

 

Department of Medicine, Boston University School of Medicine, Boston, MA, USA), Shuo 

Li (Department of Biostatistics, Boston University School of Public Health, Boston, MA, 

USA), Habil Zare (Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, 

UT Health San Antonio, San Antonio, USA), Shahzad Ahmad (Department of Epidemiology, 

Erasmus MC, Rotterdam, The Netherlands), Nicola  J. Armstrong (Mathematics and 

Statistics, Murdoch University, Perth, Australia), Claudia L. Satizabal (Department of 

Epidemiology and Biostatistics, Glenn Biggs Institute for Alzheimer’s and 

Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA), Manon Bernard 

(Hospital for Sick Children, Toronto, Canada), Joshua C. Bis (Cardiovascular Health 

Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA), 

Nathan A. Gillespie (Virginia Institute for Psychiatric and Behavior Genetics, Virginia 

Commonwealth University, VA, USA), Michelle Luciano (Centre for Cognitive 

Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK), Aniket 

Mishra (University of Bordeaux, Bordeaux Population Health Research Center, INSERM 

UMR 1219, Bordeaux, France), Markus Scholz (Institute for Medical Informatics, Statistics 

and Epidemiology, University of Leipzig, Leipzig, Germany), Alexander Teumer (Institute 

for Community Medicine, University Medicine Greifswald, Greifswald, Germany), Rui Xia 

(Institute of Molecular Medicine and Human Genetics Center, University of Texas Health 

Science Center at Houston, Houston, TX, USA), Xueqiu Jian (Institute of Molecular 

Medicine and Human Genetics Center, University of Texas Health Science Center at 

Houston, Houston, TX, USA), Thomas H. Mosley (Department of Medicine, University of 

Mississippi Medical Center, Jackson, MS, USA), Yasaman Saba (Gottfried Schatz Research 

Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 

Austria), Lukas Pirpamer (Clinical Division of Neurogeriatrics, Department of Neurology, 

Medical University of Graz, Graz, Austria), Stephan Seiler (Imaging of Dementia and Aging 

(IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA, 

USA), James T. Becker (Departments of Psychiatry, Neurology, and Psychology, University 

of Pittsburgh, Pittsburgh, PA, USA), Owen Carmichael (Pennington Biomedical Research 

Center, Baton Rouge, LA, USA), Jerome I. Rotter (Institute for Translational Genomics and 

Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-

UCLA Medical Center, Torrance, CA, USA), Bruce M. Psaty (Cardiovascular Health 

Research Unit, Departments of Medicine, Epidemiology and Health Services, University of 

Washington, Seattle, WA, USA), Oscar L. Lopez (Departments of Psychiatry, Neurology, 

and Psychology, University of Pittsburgh, Pittsburgh, PA, USA), Najaf Amin (Department of 

Epidemiology, Erasmus MC, Rotterdam, The Netherlands), Sven J. van der Lee (Department 

of Epidemiology, Erasmus MC, Rotterdam, The Netherlands), Qiong Yang (Department of 

Biostatistics, Boston University School of Public Health, Boston, MA, USA), Jayandra J. 

Himali (Department of Biostatistics, Boston University School of Public Health, Boston, 

MA, USA), Pauline Maillard (Imaging of Dementia and Aging (IDeA) Laboratory, 

Department of Neurology, University of California-Davis, Davis, CA, USA), Alexa S. Beiser 

(Department of Neurology, Boston University School of Medicine, Boston, MA, USA), 

Charles DeCarli (Imaging of Dementia and Aging (IDeA) Laboratory, Department of 

Neurology, University of California-Davis, Davis, CA, USA), Sherif Karama (McGill 

University, Montreal Neurological Institute, Montreal, Canada), Lindsay Lewis (McGill 

University, Montreal Neurological Institute, Montreal, Canada), Mark Bastin (Centre for 

Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK), 

Ian J. Deary (Centre for Cognitive Epidemiology and Cognitive Ageing, University of 

Edinburgh, Edinburgh, UK), Veronica Witte (Department of Neurology, Max Planck Institute 

of Cognitive and Brain Sciences, Leipzig, Germany), Frauke Beyer (Department of 

Neurology, Max Planck Institute of Cognitive and Brain Sciences, Leipzig, Germany), 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/399402doi: bioRxiv preprint 

https://doi.org/10.1101/399402


 

41 

 

Markus Loeffler (Institute for Medical Informatics, Statistics and Epidemiology, University 

of Leipzig, Leipzig, Germany), Karen A. Mather (Centre for Healthy Brain Ageing, School 

of Psychiatry, University of New South Wales, Sydney, Australia), Peter R. Schofield 

(Neuroscience Research Australia, Sydney, Australia), Anbupalam Thalamuthu (Centre for 

Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 

Australia), John B. Kwok (Brain and Mind Centre - The University of Sydney, Camperdown, 

NSW, Australia), Margaret J. Wright (Queensland Brain Institute, The University of 

Queensland, St Lucia, QLD, Australia), David Ames (National Ageing Research Institute, 

Royal Melbourne Hospital, Victoria, Australia), Julian Trollor (Centre for Healthy Brain 

Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia), Jiyang 

Jiang (Centre for Healthy Brain Ageing, School of Psychiatry, University of New South 

Wales, Sydney, Australia), Henry Brodaty (Dementia Centre for Research Collaboration, 

University of New South Wales, Sydney, NSW, Australia), Wei Wen (Centre for Healthy 

Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia), 

Meike W Vernooij (Department of Radiology and Nuclear Medicine, Erasmus MC, 

Rotterdam, The Netherlands), Albert Hofman (Department of Epidemiology, Harvard T.H. 

Chan School of Public Health, Boston, MA, USA), André G. Uitterlinden (Department of 

Epidemiology, Erasmus MC, Rotterdam, The Netherlands), Wiro J. Niessen (Imaging 

Physics, Faculty of Applied Sciences, Delft University of Technology, The Netherlands), 

Katharina Wittfeld (German Center for Neurodegenerative Diseases (DZNE), Site Rostock/ 

Greifswald, Germany), Robin Bülow (Institute for Diagnostic Radiology and 

Neuroradiology, University Medicine Greifswald, Greifswald, Germany), Uwe Völker 

(Interfaculty Institute for Genetics and Functional Genomics, University Medicine 

Greifswald, Greifswald, Germany), Zdenka Pausova (Hospital for Sick Children, Toronto, 

Canada), G. Bruce Pike (Departments of Radiology and Clinial Neurosciences, University of 

Calgary, Calgary, Canada), Sophie Maingault (University of Bordeaux, Institut des Maladies 

NeurodégénrativesUMR5293, CEA, CNRS, Ubordeaux, Bordeaux, France), Fabrice Crivello 

(University of Bordeaux, Institut des Maladies NeurodégénrativesUMR5293, CEA, CNRS, 

Ubordeaux, Bordeaux, France), Bernard Mazoyer (Neurodegeneratives Diseases Institute 

UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France), Michael C. Neale 

(Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth 

University, VA, USA), Carol E.  Franz (Department of Psychiatry, University of California 

San Diego, CA, USA), Michael J. Lyons (Department of Psychological and Brain Sciences, 

Boston University, Boston, MA, USA), Matthew S. Panizzon (Department of Psychiatry, 

University of California San Diego, CA, USA), Ole A. Andreassen (ORMENT, KG Jebsen 

Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and 

Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway), Anders 

M. Dale (Departments of Radiology and Neurosciences, University of California, San Diego, 

La Jolla, CA, USA), Mark Logue (National Center for PTSD at Boston VA Healthcare 

System, Boston, MA, USA), Perminder S. Sachdev (Centre for Healthy Brain Ageing, School 

of Psychiatry, University of New South Wales, Sydney, Australia), William S. Kremen 

(Department of Psychiatry, University of California San Diego, CA, USA), Joanna A. 

Wardlaw (Centre for Cognitive Epidemiology and Cognitive Ageing, University of 

Edinburgh, Edinburgh, UK), Arno Villringer (Department of Neurology, Max Planck 

Institute of Cognitive and Brain Sciences, Leipzig, Germany), Cornelia M. van Duijn 

(Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands), Hans Jörgen 

Grabe (Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 

Germany), William T. Longstreth Jr (Departments of Neurology and Epidemiology, 

University of Washington, Seattle, WA, USA), Myriam Fornage (Institute of Molecular 

Medicine and Human Genetics Center, University of Texas Health Science Center at 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/399402doi: bioRxiv preprint 

https://doi.org/10.1101/399402


 

42 

 

Houston, Houston, TX, USA), Tomas Paus (Bloorview Research Institute, Holland 

Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada), Stephanie Debette 

(University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 

1219, Bordeaux, France), M. Arfan Ikram (Department of Radiology and Nuclear Medicine, 

Erasmus MC, Rotterdam, The Netherlands), Helena Schmidt (Gottfried Schatz Research 

Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 

Austria), Reinhold Schmidt (Clinical Division of Neurogeriatrics, Department of Neurology, 

Medical University of Graz, Graz, Austria), Sudha Seshadri (Department of Epidemiology 

and Biostatistics, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT 

Health San Antonio, San Antonio, USA. 

 

EPIGEN Consortium: David B. Goldstein (The Centre for Genomics and Population 

Genetics, Duke University Institute for Genome Sciences and Policy, Durham, North 

Carolina, USA), Erin L. Heinzen (The Centre for Genomics and Population Genetics, Duke 

University Institute for Genome Sciences and Policy, Durham, North Carolina, USA), Kevin 

Shianna (The Centre for Genomics and Population Genetics, Duke University Institute for 

Genome Sciences and Policy, Durham, North Carolina, USA), Rodney Radtke (Department 

of Medicine, Duke University Medical Center, Durham, North Carolina, USA) and Ruth 

Ottmann (Departments of Epidemiology, Neurology, and the G.H. Sergievsky Center, 

Columbia University, New York, NY). 

 

IMAGEN Consortium: Dr. Eric Artiges (INSERM), Semiha Aydin (Physikalisch-

Technische Bundesanstalt), Prof. Dr. Dr. Tobias Banaschewski (Central Institute of Mental 

Health), Alexis Barbot (Commissariat à l'Energie Atomique), Prof. Dr. Gareth Barker (King's 

College London), Andreas Becker (Georg-August-Universität Göttingen), Pauline Bezivin-

Frere (INSERM), Dr. Francesca Biondo (King's College London), Dr. Arun Bokde (Trinity 

College Dublin), Uli Bromberg (University of Hamburg), Dr. Ruediger Bruehl, Prof. Dr. 

Christian Büchel (University of Hamburg), Dr. Congying Chu (King's College London), Dr. 

Patricia Conrod (King's College London), Laura Daedelow (Charité Universitätsmedizin 

Berlin), Dr. Jeffrey Dalley (Cambridge University), Dr. Sylvane Desrivieres (King's College 

London), Eoin Dooley (Trinity College Dublin), Irina Filippi (INSERM), Dr Ariane Fillmer 

(Physikalisch-Technische Bundesanstalt ), Prof. Dr. Herta Flor (Central Institute of Mental 

Health), Juliane Fröhner (Technische Universität Dresden ), Vincent Frouin (Commissariat à 

l'Energie Atomique), Dr. Hugh Garavan (University of Vermont), Prof. Penny Gowland 

(University of Nottingham), Yvonne Grimmer (Central Institute of Mental Health), Prof. Dr. 

Andreas Heinz (Charité Universitätsmedizin Berlin), Dr. Sarah Hohmann (Central Institute of 

Mental Health), Albrecht Ihlenfeld (Physikalisch-Technische Bundesanstalt ), Alex Ing 

(King's College London), Corinna Isensee (University Medical Center Göttingen ), Dr. Bernd 

Ittermann (Physikalisch-Technische Bundesanstalt ), Dr. Tianye Jia (King's College London), 

Dr. Hervé Lemaitre (INSERM), Emma Lethbridge (University of Nottingham), Prof. Dr. 

Jean-Luc Martinot (INSERM), Sabina Millenet (Central Institute of Mental Health), Sarah 

Miller (Charité Universitätsmedizin Berlin), Ruben Miranda (INSERM), PD Dr. Frauke Nees 

(Central Institute of Mental Health), Dr. Marie-Laure Paillere (INSERM), Dimitri 

Papadopoulos (INSERM), Prof. Dr. Tomáš Paus (Bloorview Research Institute, Holland 

Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychatry, 

University of Toronto), Dr. Zdenka Pausova (University of Toronto), Dr. Dr. Jani Pentilla 

(INSERM), Dr. Jean-Baptiste Poline (Commissariat à l'Energie Atomique), Prof. Dr. Luise 

Poustka (University Medical Center Göttingen ), Dr. Erin Burke Quinlan (King's College 

London), Dr. Michael Rapp (Charité Universitätsmedizin Berlin), Prof. Dr. Trevor Robbins 

(Cambridge University), Dr. Gabriel Robert (King's College London), John Rogers (Delosis), 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/399402doi: bioRxiv preprint 

https://doi.org/10.1101/399402


 

43 

 

Dr. Barbara Ruggeri (King's College London), Prof. Dr. Gunter Schumann (King's College 

London), Prof. Dr. Michael Smolka (Technische Universität Dresden), Argyris Stringaris 

(National Institute of Mental Health), Betteke van Noort (Charité Universitätsmedizin 

Berlin), Dr. Henrik Walter (Charité Universitätsmedizin Berlin), Dr. Robert Whelan (Trinity 

College Dublin), Prof. Dr. Steve Williams (King's College London). 

 

Parkinson’s Progression Markers Initiative (PPMI): Data used in preparing this article 

were obtained from the PPMI database (http://www.ppmi-info.org/). As such, many 

investigators within the PPMI contributed to the design and implementation of PPMI and/or 

provided data but did not participate in analysis or writing of this report. A complete listing 

of PPMI investigators may be found at: http://www.ppmi-info.org/authorslist/. Kenneth 

Marek (Institute for Neurodegenerative Disorders, New Haven), Danna Jennings (Institute for 

Neurodegenerative Disorders, New Haven), Shirley Lasch (Institute for Neurodegenerative 

Disorders, New Haven), Caroline Tanner (University of California, San Francisco), Tanya 

Simuni (Northwestern University, Chicago), Christopher Coffey (University of Iowa, Iowa 
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Research, New York), Vanessa Arnedo (The Michael J. Fox Foundation for Parkinson's 

Research, New York), Alice Rudolph (Clinical Trials Coordination Center, University of 

Rochester), Cynthia Casaceli (Clinical Trials Coordination Center, University of Rochester), 
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University, Portland), David Standaert (University of Alabama at Birmingham, Birmingham), 

Robert Hauser (University of South Florida, Tampa), Joseph Jankovic (Baylor College of 
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University, Innsbruck), Diana Willeke (Paracelsus-Elena Klinik, Kassel), Sanja Obradov 

(Banner Research Institute, Sun City), Jennifer Mule (Cleveland Clinic, Cleveland), Nancy 
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Additional cohort information 

ADNI 

Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative database. The ADNI was launched in 2003 as a 5-year public–

private partnership to assess and optimize biomarkers for clinical trials in Alzheimer’s 

disease. The initial sample included older adults who were cognitive normal (CN) as well as 

meeting criteria for MCI and clinical AD. In 2011, ADNI-2 began to recruit an additional CN 

group as well as individuals with significant memory concerns (SMC), early MCI and late 

MCI,and AD. . These subjects, and others carried forward from ADNI-1, were scanned with 

an updated neuroimaging protocol. Participants were recruited from over 60 sites across the 

U.S. and Canada. For up-to-date information, please see www.adni-info.org. 

 

ALSPAC 

Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st 

December 1992 were invited to take part in the study. The initial number of pregnancies 

enrolled is 14,541 (for these at least one questionnaire has been returned or a “Children in 

Focus” clinic had been attended by 19/07/99). Of these initial pregnancies, there was a total 

of 14,676 fetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year 

of age. When the oldest children were approximately 7 years of age, an attempt was made to 

bolster the initial sample with eligible cases who had failed to join the study originally. As a 

result, when considering variables collected from the age of seven onwards (and potentially 

abstracted from obstetric notes) there are data available for more than the 14,541 pregnancies 

mentioned above. The number of new pregnancies not in the initial sample (known as Phase I 

enrolment) that are currently represented on the built files and reflecting enrolment status at 

the age of 18 is 706 (452 and 254 recruited during Phases II and III respectively), resulting in 

an additional 713 children being enrolled. The phases of enrolment are described in more 

detail in the cohort profile paper (see footnote 4 below). The total sample size for analyses 

using any data collected after the age of seven is therefore 15,247 pregnancies, resulting in 

15,458 fetuses. Of this total sample of 15,458 fetuses, 14,775 were live births and 14,701 

were alive at 1 year of age. A 10% sample of the ALSPAC cohort, known as the Children in 

Focus (CiF) group, attended clinics at the University of Bristol at various time intervals 

between 4 to 61 months of age. The CiF group were chosen at random from the last 6 months 

of ALSPAC births (1432 families attended at least one clinic). Excluded were those mothers 

who had moved out of the area or were lost to follow-up, and those partaking in another study 

of infant development in Avon. The data used in the present study were collected from 391 

males and further description of this subset and the variables used in this study are provided 

in Supplementary Tables 2–4. 

The study website contains details of all the data that is available through a fully searchable 

data dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). 

Further information can be found in the following papers: 

Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, Molloy L, Ness A, Ring 

S, Davey Smith G. Cohort Profile: The ‘Children of the 90s’; the index offspring of The 

Avon Longitudinal Study of Parents and Children (ALSPAC). International Journal of 

Epidemiology 2013; 42: 111-127; 

Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, Henderson J, 

Macleod J, Molloy L, Ness A, Ring S, Nelson SM, Lawlor DA. Cohort Profile: The Avon 

Longitudinal Study of Parents and Children: ALSPAC mothers cohort. International Journal 

of Epidemiology 2013; 42:97-110. 
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