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Abstract

Mathematical models have been used successfully at
diverse scales of biological organization, ranging from
ecology and population dynamics to stochastic reaction
events occurring between individual molecules in single
cells. Generally, many biological processes unfold across
multiple scales, with mutations being the best studied
example of how stochasticity at the molecular scale can
in�uence outcomes at the population scale. In many other
contexts, however, an analogous link between micro- and
macro-scale remains elusive, primarily due to the chal-
lenges involved in setting up and analyzing multi-scale
models. Here, we employ such a model to investigate
how stochasticity propagates from individual biochemical
reaction events in the bacterial innate immune system to
the ecology of bacteria and bacterial viruses. We show an-
alytically how the dynamics of bacterial populations are
shaped by the activities of immunity-conferring enzymes
in single cells and how the ecological consequences imply
optimal bacterial defense strategies against viruses. Our
results suggest that bacterial populations in the presence
of viruses can either optimize their initial growth rate or
their steady state population size, with the �rst strategy
favoring simple and the second strategy favoring complex
bacterial innate immunity.

Introduction

One of the major challenges in biology is to understand
how interactions between individual molecules shape liv-
ing organisms and ultimately give rise to emergent be-
haviors at the level of populations or even ecosystems.
At the very bottom of this hierarchy, inside single cells,
interacting biomolecules such as DNA or proteins are
often present in small numbers, giving rise to intrinsic
stochasticity of individual reaction events [1, 2]. As a
result, genetically identical organisms occupying identi-
cal environments can express di�erent phenotypes [3, 4]
and make di�erent decisions when presented with iden-
tical environmental cues [5, 6]. This molecular noise is
known to be the cause of biologically and medically im-
portant traits of bacteria such as persistence in response
to antibiotics [7, 8] and competence during acquisition
of heterologous DNA [9]. However, while its causes and
consequences are relatively well-studied at the organis-
mal level [10, 11, 12], how molecular noise propagates
to higher scales of biological organization to a�ect the
ecology and evolution of organisms remains mostly un-
known [4]. Many ecosystems have been shown to follow

surprisingly deterministic trajectories despite the preva-
lence of stochastic events [13, 14], yet these trajecto-
ries could themselves be strongly in�uenced by molecular
noise. Thus, the extent to which ecological interactions
are a�ected by molecular noise, and the extent to which
these ecological consequences feed back to reshape indi-
vidual traits, remain to be explored.

Perhaps the most prevalent biological systems in which
molecular noise plays an important role are restriction-
modi�cation (RM) systems [15]. Present in nearly all
prokaryotic genomes [16], RM systems are a highly diverse
class of genetic elements. They have been shown to play
multiple roles in bacteria as well as archaea, including
regulation of genetic �ux [17] and stabilization of mobile
genetic elements [18], but have most frequently been de-
scribed as primitive innate immune systems due to their
ability to protect their hosts from bacterial viruses [19].
When a virus (bacteriophage or phage) infects a bac-
terium carrying an RM system, the DNA of the phage
gets cleaved with a very high probability, thus aborting
the infection. With a very small probability, however, the
phage can escape and become immune to restriction by
that speci�c RM system through epigenetic modi�cation,
leading to its spread and potentially death of the whole
bacterial population in absence of alternative mechanisms
of phage resistance [20]. Thus, in the context of RM sys-
tems, molecular noise occurring at the level of individual
bacteria can have profound ecological and evolutionary
consequences. Because RM systems are ultimately based
on only two very well characterized enzymatic activities
(restriction and modi�cation) [21], they represent a sim-
ple and tractable biological system in which we can in-
vestigate propagation of e�ects of molecular noise across
di�erent scales of biological organization.

Here, we mathematically model the action of RM sys-
tems from individual molecular events occurring inside
a single cell, through individual bacteria competing in a
population, to interactions between populations of bacte-
ria and phages in a simple ecological setting, as shown in
Fig 1. We demonstrate that, by imposing a tradeo� be-
tween the e�ciency and cost of immunity, molecular noise
in RM systems occurring at the level of individual bac-
teria has consequences that propagate all the way up to
the ecological scale, and that the ecological consequences
in turn imply the existence of optimal bacterial defense
strategies against phages.
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Figure 1: E�ects of molecular noise at di�erent scales of bi-
ological organization. In single cells (green shade), stochastic
activity of restriction-modi�cation enzymes (R � red, M � blue)
may inadvertently lead to full methylation of invading phage DNA
in a process known as �phage escape� from the bacterial immu-
nity, resulting in immediate consequences at the ecological scale
(blue shade). Also, stochastic activity of the same enzymes may
lead to accidental cutting of bacterial own DNA in a process
known as �self-restriction,� resulting in lowered bacterial growth
rate at the population level (red shade). Trade-o�s between self-
restriction and phage escape at the ecology scale in turn in�uence
R and M enzyme activities in surviving cells, thereby optimally
balancing the e�ciency and cost of immunity.

Results

Self-restriction in single cells and in grow-

ing populations

RM -systems consist of two enzymes, a restriction-
endonuclease R, that recognizes and cuts speci�c DNA
sequences (restriction sites), and a methyl-transferaseM ,
that recognizes the same DNA sequences and ensures that
only invading phage DNA can be cut by the endonucle-
ase while the bacterial DNA remains methylated and pro-
tected. However, since chemical reactions occur stochas-
tically, RM -systems can produce errors and fully methy-
late invading phage DNA before it is cut and degraded
(phage escape) [22]. Similarly, it is possible that newly
replicated restriction sites on the bacterial DNA, which
are originally unmethylated, are accidentally cleaved in-
stead of methylated (self-restriction) [23].

Inside a single cell, the probability of such self-
restriction events depends on the total activity, r, of all
restriction enzyme molecules R, the total activity, m, of
all methylation enzyme molecules M , as well as the bac-
terial replication rate λ, since λ determines the rate at
which new unmethylated restriction sites are generated.
To investigate how self-restriction depends on these pa-
rameters, we model the corresponding biochemical reac-
tions at each individual restriction site on the bacterial
DNA with the stochastic reaction network displayed in
Fig 2a (see SI Appendix Section S.1). The time τS un-
til the �rst self-restriction event in a given cell�i.e., until
that cell's death or substantial reduction in growth rate�
can be obtained as the time when the �rst restriction site

is cut, that is as τS = mini∈{1,...,NS} τi, for bacterial DNA
with NS restriction sites, where τi, i = 1, . . . , NS are the
waiting times for cutting events at individual sites. It can
be shown that all τi follow a phase-type distribution (see
[24] and Fig 2b,c):

f(τi) = pQ exp (Bτi)c1, where (1)

B =

 −(r +m) m 0
λ/2 −(m+ λ/2) m
0 λ −λ

 and c1 =

 r
0
0

 ,
with pQ = [p0 p1 p2] being the initial methylation con-
�guration, i.e., the proportion of restriction sites that
are unmethylated (p0), hemi-methylated (p1) and doubly-
methylated (p2); see SI Appendix Section S.1.

Equation [1] allows us to derive the expected time until
self-restriction of a single site as

E [τi] = −pQB−11, where 1 = [1 1 1]
>
; (2)

more generally, Fig 2b shows how the distribution of wait-
ing times depends on the restriction rate r (increasing the
probability of the site getting cut when it is unmethy-
lated) and the magnitude of m relative to λ (which de-
creases the probability that the site is unmethylated in
the �rst place).

Fig 2c shows that time to self-restriction at a single site
depends essentially on an unknown quantity, the methy-
lation con�guration pQ. Here we argue that by shift-
ing the focus from the single-cell scale to the population
scale, the con�guration pQ can no longer be freely chosen,
and has to be determined self-consistently instead. Intu-
itively, this is because when the bacterial population is
in steady-state growth, new unmethylated sites are con-
stantly replenished by replication, while cells with more
unmethylated sites are simultaneously and preferentially
being removed, as illustrated in Fig 3a and required by
Eq [2]. These two forces, generation of new unmethylated
sites and their preferential removal, will push any initial
pQ towards a unique steady state equilibrium.

Mathematically, assuming that the methylation dy-
namics in all cells are equilibrated and that cells can-
not be distinguished, the internal methylation con�gu-
ration of any randomly chosen cell at any time during
growth of the population can be derived from the quasi-
stationary distribution pQSD(r,m) of the individual-site
methylation process in Fig 2a (see SI Appendix Section
S.1). pQSD(r,m) is the equilibrium distribution of the
stochastic process conditional on it not having reached
the absorbing state where the DNA is cut and the cell
has died (Fig 3a); in short, methylation and growth equi-
librate �in all directions except the one leading towards

self-restriction�. Then, setting pQ = pQSD(r,m) in Eq [1]
reduces the phase-type distribution f(τi) for the time τi
until self-restriction at an individual restriction site to a
single exponential, implying further that the waiting time
τS = mini∈{1,...,NS} τi until self-restriction of any site in
the cell is also exponentially distributed. Consequently,
we are led to the main result of this section: growth with
self-restriction can be rigorously modeled at the popula-
tion level with a Markov birth-death process for which
the expected population size n(t) follows a simple ordi-
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Figure 2: Self-restriction in single cells. (a) Model of the
individual-site methylation dynamics. The restriction site can
either be doubly-methylated (�rst circle), hemi-methylated (sec-
ond circle), or unmethylated (third circle). Methylation events
happen at a rate proportional to the activity m of M . During
growth at rate λ, the DNA and its restriction sites are repli-
cated, with the newly synthesized DNA having no methylation
marks; for our model, growth is thus identical to demethylation
reactions denoted in the �gure. Restriction is assumed to be
lethal (no DNA repair) and can happen when a site is unmethy-
lated at a rate proportional to the activity r of R, leading to
cell death (fourth circle). (b) Distribution of time to self re-
striction, f(τ), depends on enzyme activities, r and m, for a
restriction site that is initially doubly-methylated. Increasing val-
ues of r lead to decreasing expected times to self-restriction for
all m (cf. blue vs red). Given r, as m grows large, the site will
almost never be unmethylated and cut, yielding a very broad dis-
tribution (green). λ = λref = 1.7 · 10−2 min−1; reference (red)
values: mref = 0.05 min−1, rref = 0.1 min−1; �Small� (�large�)
r,m values are 2e-fold lower (e-fold higher) than reference val-
ues. (c) Dependence of self-restriction on the initial methylation
con�guration, pQ (dark blue = doubly-methylated; blue = hemi-
methylated; light blue = unmethylated) at rref,mref.

nary di�erential equation

d

dt
n(t) = (λ− µ(r,m, λ))n(t) = λen(t), (3)

where λe(r,m, λ) = λ− µ(r,m, λ) is the e�ective growth
rate and µ(r,m, λ) is the rate of self-restriction, de�ned
as the inverse of the per-cell expected waiting time until
self-restriction

µ(r,m, λ) = E [τS]
−1

=
NS

−pQSDB−11
= −γ1NS, (4)

with γ1 being the largest eigenvalue of B (an explicit
stochastic simulation validating this analytical result is
provided in the SI Appendix Section S.2).
Equation [4] allows us to straightforwardly evaluate the

reduction in the population growth rate due to random
self-restriction events in single cells for any given pair of
enzyme activities, r and m. To study possible qualitative
e�ects of self-restriction, we explore in Fig 3b a wide range
of enzyme activities for a system with NS = 5 restric-
tion sites (chosen, for illustration purposes, signi�cantly
smaller than the typical number of sites recognized by
real RM systems). We �nd that the main determinant of
self-restriction is the activity m of the methyl-transferase
and that the e�ects of molecular noise can be suppressed

by su�ciently increasing m. Furthermore, so long as m
is large enough such that unmethylated restriction sites
are only rarely available, µ(r,m, λ) lies on a large plateau
of low self-restriction and changes only little with r and
m, suggesting that stochastic �uctuations in enzyme ac-
tivities would only have minor consequences for the pop-
ulation, especially when they are positively correlated, as
would be the case if R and M enzymes were expressed
from the same operon (SI Appendix Section S.3).
The (r,m) plane in Fig 3b contains a transition region

that separates the large plateau with low self-restriction
from the plateau where self-restriction is severe enough to
stop the population growth altogether. We have chosen
our reference (red) parameter values (rref,mref) to lie in
this transition region, and explored the regime with an
e-fold higher rates (�large r & m�, indicated by green),
and with 2e-fold lower rates (�small r & m�, indicated by
blue) in Fig 3b, c. The comparison of these three regimes
in Fig 3c is most clear when the e�ective growth rate is
shown as a function of λ, the rate at which the cells, and
thus the restriction sites, are replicated. In the �small r
& m� regime, self-restriction is so infrequent that it can
easily be outgrown by replication (except at very low λ).
In the �large r & m� regime, m is su�ciently high to keep
the restriction sites protected and thus self-restriction is
rare, except at extremely large λ, where the green curve
falls below the blue curve. In the reference regime, r is too
large and m not high enough to protect, so self-restriction
can not be �outgrown�; e�ective growth thus falls signif-
icantly below λ. Our numerical analyses further show
that the self-restriction rate µ(r,m, λ) grows faster-than-
linearly with λ (SI Appendix Section S.1), causing the
e�ective population growth to slow down and ultimately
drop to zero at high enough λ.
We end this section by highlighting a non-trivial inter-

action between the single-cell and population-scale pro-
cesses. While increasing the activity r of the endonucle-
ase always decreases the e�ective growth rate of the pop-
ulation due to self-restriction, the e�ect can be smaller
than expected from the single-cell analysis (dashed lines
in Fig 3c). This is because high values of r feed back
through the population scale to bias the steady-state dis-
tribution of methylation con�gurations away from cells
with lots of unmethylated sites, as shown in Fig 3a, mak-
ing self-restriction less likely. Implicit feedback e�ects
of this type frequently give rise to complex dynamics in
multi-scale models.

Phage escape

RM -systems lower the growth rate of the population due
to self restriction, especially when the activity m of the
methyl-transferase is small. Upon infection by a phage,
however, small values of m are advantageous, making it
less likely that the unmethylated phage DNA will get
methylated and escape the immune system before it can
be cut by the restriction enzyme.
Assuming that all restriction sites are identical and in-

dependent, the probability of phage escape can be calcu-
lated [25] as

pV(r,m) =

(
m

r +m

)NV

, (5)
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Figure 3: Growth of self-restricting populations. (a) Top: Se-
lective cutting of cells (red `X') with unmethylated restriction
sites biases growing populations towards methylation con�gura-
tions with larger numbers of methylated sites. Bottom: The
long-term population distribution of methylation con�gurations,
pQSD (p0 � unmethylated, p1 � hemi-methylated, p2 � doubly-
methylated; see SI Appendix Section S.1). Increasing either r
or m reduces the probability of �nding unmethylated restriction
sites in the population. Three example choices for r,m (blue, red,
green) and λref are same as in Fig 2 and are denoted with crosses
in panel b and corresponding colors in panel c; NS = 5 is chosen
for illustration purposes. (b) Dependence of the self-restriction
rate, µ(r,m, λref), on the enzyme activities. (c) E�ective pop-
ulation growth rate λe = λ − µ(r,m, λ) as a function of the
replication rate λ for di�erent enzyme activities r and m. For
the reference parameters (red), the self-restriction rate computed
using the quasi-steady state distribution pQSD (solid) is signif-
icantly di�erent when compared to an estimate based on fully
equilibrated pQ in which restriction does not lead to an absorbing
state (dashed).

where NV is the number of restriction sites on the phage
DNA. From Eq [5] it is straightforward to see that
pV(r,m) is monotonically increasing in m and decreas-
ing in r. One might therefore expect that the bal-
ance between avoiding self-restriction that favors high
m, Eq [4], and minimizing phage escape that favors low
m, Eq [5], would impose a tradeo� and thus lead to an
optimal value of m. However, this is not the case, be-
cause phage escape probability pV(r,m) and the popula-
tion self-restriction rate µ(r,m, λ) can both approach zero
so long as r and m both increase to in�nity but r does so
faster. While mathematically possible, this limit is, how-
ever, not biologically relevant: large enzyme expression
levels should incur a cost (metabolic or due to toxicity) for
the cells [26, 27], which we sought to incorporate into our
model by including a growth rate penalty proportional
to the activity of restriction and methylation enzymes,
i.e., λe(r,m, λ) = λ − µ(r,m, λ) − crr − cmm. Interest-
ingly, it can be veri�ed that our reasoning is valid only
because two subsequent demethylation events need to oc-
cur to create a restriction-susceptible site on the bacte-
rial DNA (SI Appendix Section S.1). If hemi-methylated
sites could be recognized by the restriction endonuclease,
or if both methyl groups could be lost in a single event,
our initial expectation about the existence of the tradeo�
would be correct, and a particular choice of r and m val-
ues would simultaneously minimize the phage escape and

self-restriction, even in the absence of the expression cost
for R and M.
Our model can be generalized to multiple coexisting

RM -systems that recognize di�erent restriction sites and
operate in parallel, as is often observed for bacteria in
the wild [16]. This provides increased protection from
phages since the phage has to escape all RM -systems to
infect successfully. However, multiple RM -systems also
imply that the bacteria either have to pay higher expres-
sion and self-restriction costs or that they have to re-
balance the expression levels of the enzymes such that
lower self-restriction rates per RM -system are obtained
with the same overall enzyme activity. Allowing bacte-
ria to have multiple RM -systems, but assuming for the
sake of simplicity that these systems are all equivalent
in terms of enzyme activities and number of recognition
sites, we obtain the phage escape probability for k RM -

systems as pV(r,m, k) =
(

m
r+m

)k ·NV

, with the corre-

sponding growth rate being

λe(r,m, k, λ) = λ− k · (µ(r,m, λ)− crr − cmm) . (6)

Population dynamics in the presence of

phages

What is the combined e�ect of phage escape and self-
restriction in simple bacteria-phage ecologies? To answer
this question quantitatively, we model the dynamics of
the bacterial population in the presence of obligatorily
lytic phage, n(t), as follows:

ṅ(t) = λe(r,m, k, λ) ·n(t)−
ρv

l
pV(r,m, k) ·n(t)2. (7)

The �rst term on the right-hand side describes
the growth of the population at an e�ective rate of
λe(r,m, k, λ) and already accounts for self-restriction.
The second term accounts for phage escape events. Here,
v is the phage density which we take to be a constant pa-
rameter of the environment; phages enter bacterial cells
at a rate proportional to vn(t), as prescribed by mass-
action kinetics, with a proportionality constant given by
the phage adsorption rate, ρ. The rate of successful in-
fections is then given by ρvpV(r,m, k)n(t). We assume
that each successful infection event wipes out a fraction,
0 < l < 1, of the total population (i.e., on average,
n(t)/l bacteria die following phage escape), yielding the
full Eq [7]. For simplicity, we assume all infections to
be lytic and do not consider the possibility of the phage
lysogenizing the host bacteria.
The unknown parameters ρ, v, and l, enter Eq [7] as

a product, which can be thought of as de�ning a new
unit, n0 = l/(ρv), for the population size. The growth
dynamics has one biologically-relevant �xed point that
represents the steady-state bacterial population size:

ns(r,m, k, λ) =
n(t→∞)

n0
=
λe(r,m, k, λ)

pV(r,m, k)
. (8)

The same quantity, ns, also emerges as relevant in an
alternative ecological model where bacteria grow expo-
nentially until the occurrence of the �rst phage escape
event, which then wipes out the complete population.
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This alternative ecology may be representative for bacte-
ria that rarely encounter long-term stable environments
(e.g. marine bacteria feeding on small organic particles in
the ocean [28]) such that maximizing the number of o�-
spring colonizing new environments may be more impor-
tant than maintaining high steady-state population size
(see SI Appendix S.4.1). In both ecological scenarios, two
key quantities summarize the fate of bacterial populations
coexisting with bacteriophages: λe quanti�es the short-
term growth rate before rare but potentially catastrophic
phage escape events are likely to occur, and ns, which
quanti�es the long-term cost of phage escape. Impor-
tantly, both λe and ns depend solely on three single-cell
parameters: the restriction rate r, the methylation rate
m, and the number of concurrently active RM-systems,
k.

Tradeo�s and optimality in bacterial im-

munity

Can bacteria tune the single-cell parameters over evolu-
tionary timescales in order to maximize the short-term
growth rate, λe, and the steady-state population size, ns?
Equations [6,8] assert that these two quantities are neces-
sarily in a tradeo� and cannot be maximized simultane-
ously, which is illustrated in Fig 4a. This tradeo� is the
�rst key result of the section.

With no single optimum possible, we look instead for
Pareto-optimal parameter combinations, (r,m, k), i.e., so-
lutions for which λe cannot be further increased without
reducing ns and vice versa [29, 30]. Di�erent Pareto-
optimal solutions trace out a �front� in the plot of λe
vs ns in Fig 4b that jointly maximizes growth rates and
population sizes to the extent possible. Points in the in-
terior of the front are sub-optimal and could be improved
by adjusting parameter values, while points beyond the
front are inaccessible to any bacterial population. Which
Pareto-optimal solution ultimately emerges as an evolu-
tionary stable strategy depends on the actual bacterial
and phage species considered as well as their biological
context. Rather than focusing on speci�c examples, we
next establish several general results of our analysis, con-
trasting in particular �fast growth� bacterial strategies
that maximize λe with �large size� strategies that max-
imize ns.

We start by examining in Fig 4c the optimal enzyme
activities, mopt and ropt, along the Pareto fronts. For
the �large size� regime at low λe, the bacterial population
primarily needs to defend against phage escape, favoring
low m and high r, even at the cost of self-restriction. As
we move towards the �fast growth� regime, r can drop to
decrease the cost, but m must increase to protect against
self-restriction, until maximal mopt is reached. For even
higher λe, it is optimal to �shut down� the RM-systems
altogether to save on the cost, by tuning r andm simulta-
neously to zero. Numerical analysis (SI Appendix S.4.2)
reveals that along the Pareto front of Fig 4b, the total cost
of running the RM systems varies in precise inverse linear
relationship with λe. Pareto-optimal solutions are further
characterized by the fact that the reduction in growth
rate, λ − λe, is split equally between the cost of running
RM systems, c(r +m), and self-restriction. If this were

not the case and the cost were larger (or smaller) than
self-restriction cost to growth, cells could always down-
(or up-)regulate the RM-system activity to trade cost for
self-restriction and obtain an overall smaller total growth
reduction. This universal equality of cost of running RM
systems and self-restriction at optimality is the second
key result of the section.

A detailed examination of the Pareto front in Fig 4b re-
veals a striking shift in the structure of optimal solutions
as we move from �fast growth� to �large size� regime. In
situations where fast growth is favored, we observe that
a single RM-system (k = 1) is optimal. In contrast, large
steady-state bacterial population sizes favor kopt > 1 RM-
systems, with the optimal number, kopt, set by the costs,
cm and cr, of operating the RM-systems. Figure 4d makes
this point explicit by comparing the growth curves of bac-
terial populations with the same λe = 0.5λref but di�erent
numbers of RM-systems; here, populations with kopt = 2
reach the largest size. These results are quantitatively ro-
bust to changes in replication rate, λ, as shown in Fig 4e,
where Pareto fronts for di�erent λ are nearly rescaled ver-
sions of each other. These results are also qualitatively
robust to changes in the cost c = cr = cm so long as the
cost is nonzero, as shown in Fig 4f.

Establishing that �fast growth� regime favors simple
innate immunity with a single RM-system while �large
size� regime favors complex innate immunity with mul-
tiple RM-systems is the third key result of this section.
This result can be understood intuitively by considering
under what conditions, if any, multiple RM systems could
be optimal at �fast growth�. If costs for R andM enzymes
are vanishingly small, a single RM-system can provide
arbitrarily good protection, as we showed previously. If
the costs are not vanishingly small, multiple RM systems
must be more costly than a single system at compara-
ble phage escape and self-restriction rates: to keep self-
restriction constant with k RM systems, not only does
the cell require k times more M molecules than at k = 1,
but their individual activities need to be higher as well,
leading to a higher cost for M and thus a lower e�ective
growth rate. This argument does not apply over longer
timescales, where multiple RM-systems can better protect
against phage escape and enable higher bacterial popula-
tion sizes.

Lastly, we sought to put our results into perspective by
relating them to a typical E. coli strain. Recent measure-
ments [23] quanti�ed the self-restriction rate in a bac-
terial population with the EcoRI system replicating at
λ = 0.017 min−1 to be µ ≈ 10−3 min−1. The cost of RM-
systems was not detectable in WT strain but could be de-
tected in strains overexpressingM enzymes (unpublished
data). Treating the cost c as unknown and assuming that
E. coli is Pareto-optimal (black dots in Fig 4e,f), we pre-
dict the following parameter values for the RM systems:
cost c ≈ 3.7 · 10−7, enzyme activities r ≈ 1.2 · 103 min−1,
m ≈ 1.5 · 102 min−1, with the optimal number of RM-
systems being at the boundary between k = 1 and k = 2.
Clearly, this prediction depends not only on the optimal-
ity assumption but also on at least two strong simpli�ca-
tions: (i) we do not know the ecology and the distribution
of typical growth rates for di�erent bacterial species or
isolates; (ii) we do not know the corresponding number
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Figure 4: Optimal tradeo�s in the presence of phages. For all panels, we set NS = 599, NV = 5, and λ = 0.017 min−1 in line
with the strain used in [23] carrying the EcoRI system, and �x n0 = l/ρv = 1. (a) Two possible growth curves, Eq [7], for bacteria
with a single RM -system and di�erent enzyme activities (in min−1). (b) Pareto front (thick line) for steady-state population size,
ns(r,m, k), and initial growth rate, λe(r,m, k), traced out by varying m, r, and the number of RM systems, k (di�erent colors;
dotted lines show individual Pareto fronts at �xed k); c = cr = cm = 10−5 . Examples from panel (a) are marked on k = 1 front
with crosses. (c) Optimal enzyme activities, ropt and mopt (in min−1), on Pareto fronts for di�erent k (color as in b), as a function
of e�ective growth rate, λe. (d) Growth curves at �xed e�ective growth rate, λe = 0.5λ = 8.5 · 10−3 min−1, for systems from
Pareto-fronts at di�erent k show that intermediate values of k (here, kopt = 2) optimize the steady-state population size. (e) Pareto
fronts for di�erent replication rates, λ, and cost c = cr = cm ≈ 3.7 · 10−7 chosen to make E. coli in [23] lie on the front (black dot,
also in panel f); only k ≤ 6 are considered. (f) Pareto fronts for di�erent cost c = cr = cm at �xed λ = 0.017 min−1.

of RM-systems and their individual properties; here we
simply assumed that all RM systems are the same.

Discussion

Despite the ubiquity of RM systems in prokaryotic
genomes [16], basic ecological and evolutionary aspects of
these otherwise simple genetic elements are poorly under-
stood [19]. Although RM systems have been discovered
more than six decades ago due to their ability to protect
bacteria from phage [31] and this is often assumed to be
their main function [32], only a few experimental studies
focused on the ecological and evolutionary dynamics of in-
teractions between RM systems and phage [33, 34]. Simi-
larly, e�ects of RM systems on their host bacteria, such as
their cost in individual bacteria due to self-restriction, be-
gan to be addressed quantitatively only recently [23, 35].
In this work, we bridged these two scales using math-
ematical modeling. Our model captures the stochastic
nature of RM systems originating at the level of inter-
acting molecules in individual bacteria and extends it all
the way to the dynamics of interactions between growing
bacterial and phage populations.

Using this approach, we analytically described the
tradeo� between the cost and the e�ciency of immunity
conferred by RM systems. The existence of a tradeo�
was previously indicated by quantitative single-cell ex-
periments with two RM systems isolated from Escherichia
coli [23]. We extended the mathematical model of restric-
tion and modi�cation in individual bacteria to a simple
ecological setting, where a bacterial population grows in

the presence of phages and thus showed that the tradeo�
between the cost and the e�ciency of immunity can pro-
foundly a�ect the resulting population dynamics. As an
important consequence of the tradeo� between the cost
and the e�ciency of immunity, there exists no optimal
pair of R and M enzymatic activities suited for all eco-
logical settings. Instead, we can expect the observed ex-
pression levels and enzymatic activities of naturally oc-
curring RM systems to represent adaptations to speci�c
environmental pressures. Such �tuning� of expression lev-
els towards optimality has previously been directly exper-
imentally shown in di�erent molecular systems [26]. The
expression levels of both R and M should be readily tun-
able by mutations in the often complex gene-regulatory
regions [36].
While our predictions should be viewed as approxi-

mate, our analysis highlights two important conclusions.
First, optimality can make clear and quantitative predic-
tions in the parameter regimes relevant for real strains,
and improving the predictions to take into account more
relevant biological detail (if needed and known) remains
only a technical, rather than conceptual challenge. Sec-
ond, parameter values measured for an E. coli RM sys-
tem put optimal solutions into a regime that permits a
large variation in the optimal number of RM systems, be-
tween one to six, with relatively small changes in the ef-
fective growth rate. This observation allows us to advance
the following hypothesis: the number of RM-systems in
di�erent bacterial strains and species is not a historical
contingency, but an evolutionary adaptation to di�erent
ecological niches characterized by di�erent typical growth
rates. In other words, the tradeo� between the cost and
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the e�ciency of immunity can be partially alleviated in
bacteria employing multiple RM systems. It is therefore
interesting to note that many bacterial species carry mul-
tiple RM systems and the number of RM systems varies
signi�cantly among bacteria with di�erent genome sizes
and lifestyles [16, 15]. Our results indicate that di�er-
ent numbers of RM systems would be optimal in popu-
lations under di�erent selection pressures (phage preda-
tion/resource limitation).
The analytical model presented here makes several

simplifying assumptions. First, we consider only inter-
actions between a single species of bacteria and single
species of phage. In natural environments, many bac-
terial and phage species interact and this diversity will
certainly impact the resulting ecological end evolution-
ary dynamics [37, 38, 33, 39]. Second, we assumed the
key parameters such as the numbers of restriction sites
in bacterial and phage genomes to be constant in time
and thus disregarded the long-term evolutionary dynam-
ics. Bioinformatic studies have shown that many bacteria
and phage avoid using restriction sites in their genomes
[40, 41, 42]. Restriction site avoidance can represent an
adaptive mechanism for increasing the likelihood of es-
cape in phages [41, 43] and decreasing the likelihood of
self-restriction in bacteria [44, 23]. The stochastic nature
of RM systems observed at the level of individual cells
is thus likely to critically shape the ecological and evo-
lutionary dynamics of interactions between bacteria, RM
systems and phage.
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