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Abstract

Mathematical models have been used successfully at
diverse scales of biological organization, ranging from
ecology and population dynamics to stochastic reaction
events occurring between individual molecules in single
cells. Generally, many biological processes unfold across
multiple scales, with mutations being the best studied
example of how stochasticity at the molecular scale can
in�uence outcomes at the population scale. In many other
contexts, however, an analogous link between micro- and
macro-scale remains elusive, primarily due to the chal-
lenges involved in setting up and analyzing multi-scale
models. Here, we employ such a model to investigate
how stochasticity propagates from individual biochemical
reaction events in the bacterial innate immune system to
the ecology of bacteria and bacterial viruses. We show an-
alytically how the dynamics of bacterial populations are
shaped by the activities of immunity-conferring enzymes
in single cells and how the ecological consequences imply
optimal bacterial defense strategies against viruses. Our
results suggest that bacterial populations in the presence
of viruses can either optimize their initial growth rate or
their steady state population size, with the �rst strategy
favoring simple and the second strategy favoring complex
bacterial innate immunity.

Introduction

One of the major challenges in biology is to understand
how interactions between individual molecules shape liv-
ing organisms and ultimately give rise to emergent be-
haviors at the level of populations or even ecosystems.
At the very bottom of this hierarchy, inside single cells,
interacting biomolecules such as DNA or proteins are
often present in small numbers, giving rise to intrinsic
stochasticity of individual reaction events [1, 2]. As a
result, genetically identical organisms occupying identi-
cal environments can express di�erent phenotypes [3, 4]
and make di�erent decisions when presented with iden-
tical environmental cues [5, 6]. This molecular noise is
known to be the cause of biologically and medically im-
portant traits of bacteria such as persistence in response
to antibiotics [7, 8] and competence during acquisition
of heterologous DNA [9]. However, while its causes and
consequences are relatively well-studied at the organis-
mal level [10, 11, 12, 13], how molecular noise propa-
gates to higher scales of biological organization to a�ect
the ecology and evolution of organisms remains mostly

unknown [4]. Recently it has been shown that ecosys-
tems can follow surprisingly deterministic trajectories de-
spite the prevalence of stochastic events [14, 15], yet these
trajectories could themselves be strongly in�uenced by
molecular noise. Thus, the extent to which ecological in-
teractions are a�ected by molecular noise, and the extent
to which these ecological consequences feed back to re-
shape individual traits, remain to be explored.

Perhaps the most prevalent biological systems in which
molecular noise is thought to play an important role are
restriction-modi�cation (RM) systems [16]. Present in
nearly all prokaryotic genomes [17], RM systems are a
highly diverse class of genetic elements. They have been
shown to play multiple roles in bacteria as well as ar-
chaea, including regulation of genetic �ux [18] and sta-
bilization of mobile genetic elements [19], but have most
frequently been described as primitive innate immune sys-
tems due to their ability to protect their hosts from bacte-
rial viruses [20]. When a virus (bacteriophage or phage)
infects a bacterium carrying an RM system, the DNA
of the phage gets cleaved with a very high probability,
thus aborting the infection. With a very small probabil-
ity, however, the phage can escape and become immune
to restriction by that speci�c RM system through epige-
netic modi�cation, leading to its spread and potentially
death of the whole bacterial population in absence of al-
ternative mechanisms of phage resistance [21]. Thus, in
the context of RM systems, molecular noise occurring at
the level of individual bacteria can have profound ecolog-
ical and evolutionary consequences. Because RM systems
are ultimately based on only two very well characterized
enzymatic activities (restriction and modi�cation) [22],
they represent a simple and tractable biological system in
which we can investigate propagation of e�ects of molecu-
lar noise across di�erent scales of biological organization.

Here, we mathematically model the action of RM sys-
tems from individual molecular events occurring inside
a single cell, through individual bacteria competing in a
population, to interactions between populations of bacte-
ria and phages in a simple ecological setting, as shown in
Fig 1. We demonstrate that, by imposing a tradeo� be-
tween the e�ciency and cost of immunity, molecular noise
in RM systems occurring at the level of individual bac-
teria has consequences that propagate all the way up to
the ecological scale, and that the ecological consequences
in turn imply the existence of optimal bacterial defense
strategies against phages.
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Figure 1: E�ects of molecular noise at di�erent scales of bi-
ological organization. In single cells (green shade), stochastic
activity of restriction-modi�cation enzymes (R � red, M � blue)
may inadvertently lead to full methylation of invading phage DNA
in a process known as �phage escape� from the bacterial immu-
nity, resulting in direct consequences at the ecological scale (blue
shade). Also, stochastic activity of the same enzymes may lead
to accidental cutting of bacterial own DNA in a process known as
�self-restriction,� resulting in lowered bacterial growth rate at the
population level (red shade). Trade-o�s between self-restriction
and phage escape at the ecology scale in turn in�uence R and M
enzyme activities in surviving cells, thereby optimally balancing
the e�ciency and cost of immunity.

Results

Self-restriction in single cells and in grow-

ing populations

RM systems consist of two enzymes, a restriction-
endonuclease R, that recognizes and cuts speci�c DNA
sequences (restriction sites), and a methyl-transferase M,
that recognizes the same DNA sequences and ensures that
only invading phage DNA can be cut by the endonucle-
ase while the bacterial DNA remains methylated and pro-
tected. However, since chemical reactions occur stochas-
tically, RM systems can produce errors and fully methy-
late invading phage DNA before it is cut and degraded
(phage escape) [23]. Similarly, it is possible that newly
replicated restriction sites on the bacterial DNA, which
are originally unmethylated, are accidentally cleaved in-
stead of methylated (self-restriction) [24].

Inside a single cell, the probability of such self-
restriction events depends on the total activity, r, of all
restriction endonuclease molecules R, the total activity,
m, of all methylaze molecules M, as well as the bacterial
replication rate λ, since λ determines the rate at which
new unmethylated restriction sites are generated. To in-
vestigate how self-restriction depends on these parame-
ters, we model the corresponding biochemical reactions
at each individual restriction site on the bacterial DNA
with the stochastic reaction network displayed in Fig 2a
(see SI Appendix Section S.1). The time τS until the
�rst self-restriction event in a given cell�i.e., until that
cell's death or substantial reduction in growth rate�can
be obtained as the time when the �rst restriction site is

cut, that is as τS = mini∈{1,...,NS} τi, for bacterial DNA
with NS restriction sites, where τi, i = 1, . . . , NS are the
waiting times for cutting events at individual sites. It can
be shown that all τi follow a phase-type distribution (see
[25] and Fig 2b,c):

f(τi) = pQ exp (Bτi)c1, where (1)

B =

 −(r +m) m 0
λ/2 −(m+ λ/2) m
0 λ −λ

 and c1 =

 r
0
0

 ,
with pQ = [p0 p1 p2] being the initial methylation con-
�guration, i.e., the proportion of restriction sites that
are unmethylated (p0), hemi-methylated (p1) and doubly-
methylated (p2); see SI Appendix Section S.1.

Equation [1] allows us to derive the expected time until
self-restriction of a single site as

E [τi] = −pQB−11, where 1 = [1 1 1]
>
; (2)

more generally, Fig 2b shows how the distribution of wait-
ing times depends on the restriction rate r (increasing the
probability of the site getting cut when it is unmethy-
lated) and the magnitude of m relative to λ (which de-
creases the probability that the site is unmethylated in
the �rst place).

Fig 2c shows that time to self-restriction at a single site
depends essentially on an unknown quantity, the methy-
lation con�guration pQ. We will now proceed to show
that when we consider an exponentially growing pop-
ulation of bacterial cells, the con�guration pQ can no
longer be freely chosen, and has to be determined self-
consistently instead. Intuitively, this is because when the
bacterial population is in steady-state growth, new un-
methylated sites are constantly replenished by replication,
while cells with more unmethylated sites are simultane-
ously and preferentially being removed, as illustrated in
Fig 3a and required by Eq [2]. These two forces, gen-
eration of new unmethylated sites and their preferential
removal, will push any initial pQ towards a unique steady
state equilibrium.

Mathematically, assuming that the methylation dy-
namics in all cells are equilibrated and that cells can-
not be distinguished, the internal methylation con�gu-
ration of any randomly chosen cell at any time during
growth of the population can be derived from the quasi-
stationary distribution pQSD(r,m) of the individual-site
methylation process in Fig 2a (see SI Appendix Section
S.1). pQSD(r,m) is the equilibrium distribution of the
stochastic process conditional on it not having reached
the absorbing state where the DNA is cut and the cell
has died (Fig 3a); in short, methylation and growth equi-
librate �in all directions except the one leading towards

self-restriction�. Then, setting pQ = pQSD(r,m) in Eq [1]
reduces the phase-type distribution f(τi) for the time τi
until self-restriction at an individual restriction site to a
single exponential, implying further that the waiting time
τS = mini∈{1,...,NS} τi until self-restriction of any site in
the cell is also exponentially distributed. Consequently,
we are led to the main result of this section: growth with
self-restriction can be rigorously modeled at the popula-
tion level with a Markov birth-death process for which
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Figure 2: Self-restriction in single cells. (a) Model of the
individual-site methylation dynamics. The restriction site can
either be doubly-methylated (�rst circle), hemi-methylated (sec-
ond circle), or unmethylated (third circle). Methylation events
happen at a rate proportional to the activity m of M. During
growth at rate λ, the DNA and its restriction sites are repli-
cated, with the newly synthesized DNA having no methylation
marks; for our model, growth is thus identical to demethylation
reactions denoted in the �gure. Restriction is assumed to be
lethal (no DNA repair) and can happen when a site is unmethy-
lated at a rate proportional to the activity r of R, leading to
cell death (fourth circle). (b) Distribution of time to self re-
striction, f(τ), depends on enzyme activities, r and m, for a
restriction site that is initially doubly-methylated. Increasing val-
ues of r lead to decreasing expected times to self-restriction for
all m (cf. blue vs red). Given r, as m grows large, the site will
almost never be unmethylated and cut, yielding a very broad dis-
tribution (green). λ = λref = 1.7 · 10−2 min−1; reference (red)
values: mref = 0.05 min−1, rref = 0.1 min−1; �Small� (�large�)
r,m values are 2e-fold lower (e-fold higher) than reference val-
ues. (c) Dependence of self-restriction on the initial methylation
con�guration, pQ (dark blue = doubly-methylated; blue = hemi-
methylated; light blue = unmethylated) at rref,mref.

the expected population size n(t) follows a simple ordi-
nary di�erential equation

d

dt
n(t) = (λ− µ(r,m, λ))n(t) = λen(t), (3)

where λe(r,m, λ) = λ− µ(r,m, λ) is the e�ective growth
rate and µ(r,m, λ) is the rate of self-restriction, de�ned
as the inverse of the per-cell expected waiting time until
self-restriction

µ(r,m, λ) = E [τS]
−1

=
NS

−pQSDB−11
= −γ1NS, (4)

with γ1 being the largest eigenvalue of B (an explicit
stochastic simulation validating this analytical result is
provided in the SI Appendix Section S.2).
Equation [4] allows us to straightforwardly evaluate the

reduction in the population growth rate due to random
self-restriction events in single cells for any given pair of
enzyme activities, r and m. To study possible qualitative
e�ects of self-restriction, we explore in Fig 3b a wide range
of enzyme activities for a system with NS = 5 restric-
tion sites (chosen, for illustration purposes, signi�cantly
smaller than the typical number of sites recognized by
real RM systems). We �nd that the main determinant of
self-restriction is the activity m of the methyl-transferase

and that the e�ects of molecular noise can be suppressed
by su�ciently increasing m. Furthermore, so long as m
is large enough such that unmethylated restriction sites
are only rarely available, µ(r,m, λ) lies on a large plateau
of low self-restriction and changes only little with r and
m, suggesting that stochastic �uctuations in enzyme ac-
tivities would only have minor consequences for the pop-
ulation, especially when they are positively correlated, as
would be the case if R and M enzymes were expressed
from the same operon (SI Appendix Section S.3).

The (r,m) plane in Fig 3b contains a transition region
that separates the large plateau with low self-restriction
from the plateau where self-restriction is severe enough to
stop the population growth altogether. We have chosen
our reference (red) parameter values (rref,mref) to lie in
this transition region, and explored the regime with an
e-fold higher rates (�large r & m�, indicated by green),
and with 2e-fold lower rates (�small r & m�, indicated by
blue) in Fig 3b, c. The comparison of these three regimes
in Fig 3c is most clear when the e�ective growth rate is
shown as a function of λ, the rate at which the cells, and
thus the restriction sites, are replicated. In the �small r
& m� regime, self-restriction is so infrequent that it can
easily be outgrown by replication (except at very low λ).
In the �large r & m� regime, m is su�ciently high to keep
the restriction sites protected and thus self-restriction is
rare, except at extremely large λ, where the green curve
falls below the blue curve. In the reference regime, r is too
large and m not high enough to protect, so self-restriction
can not be �outgrown�; e�ective growth thus falls signif-
icantly below λ. Our numerical analyses further show
that the self-restriction rate µ(r,m, λ) grows faster-than-
linearly with λ (SI Appendix Section S.1), causing the
e�ective population growth to slow down and ultimately
drop to zero at high enough λ.

We end this section by highlighting a non-trivial inter-
action between the single-cell and population-scale pro-
cesses. While increasing the activity r of the endonucle-
ase always decreases the e�ective growth rate of the pop-
ulation due to self-restriction, the e�ect can be smaller
than expected from the single-cell analysis (dashed lines
in Fig 3c). This is because high values of r feed back
through the population scale to bias the steady-state dis-
tribution of methylation con�gurations away from cells
with lots of unmethylated sites, as shown in Fig 3a, mak-
ing self-restriction less likely. Implicit feedback e�ects
of this type frequently give rise to complex dynamics in
multi-scale models.

Phage escape

RM systems lower the growth rate of the population due
to self restriction, especially when the activity m of the
methyl-transferase is small. Upon infection by a phage,
however, small values of m are advantageous, making it
less likely that the unmethylated phage DNA will get
methylated and escape the immune system before it can
be cut by the restriction endonuclease.

Assuming that all restriction sites are identical and in-
dependent, the probability of phage escape can be calcu-
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Figure 3: Growth of self-restricting populations. (a) Top: Se-
lective cutting of cells (red `X') with unmethylated restriction
sites biases growing populations towards methylation con�gura-
tions with larger numbers of methylated sites. Bottom: The
long-term population distribution of methylation con�gurations,
pQSD (p0 � unmethylated, p1 � hemi-methylated, p2 � doubly-
methylated; see SI Appendix Section S.1). Increasing either r
or m reduces the probability of �nding unmethylated restriction
sites in the population. Three example choices for r,m (blue, red,
green) and λref are same as in Fig 2 and are denoted with crosses
in panel b and corresponding colors in panel c; NS = 5 is chosen
for illustration purposes. (b) Dependence of the self-restriction
rate, µ(r,m, λref), on the enzyme activities. (c) E�ective pop-
ulation growth rate λe = λ − µ(r,m, λ) as a function of the
replication rate λ for di�erent enzyme activities r and m. For
the reference parameters (red), the self-restriction rate computed
using the quasi-steady state distribution pQSD (solid) is signif-
icantly di�erent when compared to an estimate based on fully
equilibrated pQ in which restriction does not lead to an absorbing
state (dashed).

lated [26] as

pV(r,m) =

(
m

r +m

)NV
, (5)

where NV is the number of restriction sites on the phage
DNA. From Eq [5] it is straightforward to see that
pV(r,m) is monotonically increasing in m and decreasing
in r. One might therefore expect that the balance be-
tween avoiding self-restriction that favors high m, Eq [4],
and minimizing phage escape that favors low m, Eq [5],
would impose a tradeo� and thus lead to an optimal
value of m. However, this is not the case, because the
phage escape probability pV(r,m) and the population
self-restriction rate µ(r,m, λ) can both approach zero so
long as r and m both increase to in�nity but r does so
faster. While mathematically possible, this limit is, how-
ever, not biologically relevant: large enzyme expression
levels should incur a cost (metabolic or due to toxicity) for
the cells [27, 28], which we sought to incorporate into our
model by including a growth rate penalty proportional
to the activity of restriction and methylation enzymes,
i.e., λe(r,m, λ) = λ − µ(r,m, λ) − crr − cmm. Interest-
ingly, it can be veri�ed that our reasoning is valid only
because two subsequent demethylation events need to oc-
cur to create a restriction-susceptible site on the bacte-
rial DNA (SI Appendix Section S.1). If hemi-methylated
sites could be recognized by the restriction endonuclease,

or if both methyl groups could be lost in a single event,
our initial expectation about the existence of the tradeo�
would be correct, and a particular choice of r and m val-
ues would simultaneously minimize the phage escape and
self-restriction, even in the absence of the expression cost
for R and M.
Our model can be generalized to multiple coexisting

RM systems that recognize di�erent restriction sites and
operate in parallel, as is often observed for bacteria in
the wild [17]. This provides increased protection from
phages since the phage has to escape all RM systems to
infect successfully. However, multiple RM systems also
imply that the bacteria either have to pay higher expres-
sion and self-restriction costs or that they have to re-
balance the expression levels of the enzymes such that
lower self-restriction rates per RM system are obtained
with the same overall enzyme activity. Allowing bacte-
ria to have multiple RM systems, but assuming for the
sake of simplicity that these systems are all equivalent
in terms of enzyme activities and number of recognition
sites, we obtain the phage escape probability for k RM

systems as pV(r,m, k) =
(

m
r+m

)k ·NV
, with the corre-

sponding growth rate being

λe(r,m, k, λ) = λ− k · (µ(r,m, λ) + crr + cmm) . (6)

Population dynamics in the presence of

phages

What is the combined e�ect of phage escape and self-
restriction in simple bacteria-phage ecologies? To inves-
tigate this question, we studied several di�erent ecolog-
ical contexts analytically as well as numerically (see SI
Appendix Section S.4) and performed an in-depth explo-
ration of a scenario where bacteria are trying to colonize
environments in which lytic phages are already present in
large numbers.
Bacterial population dynamics with constant

phage load. To set the stage, we �rst considered a min-
imal, mathematically simple but biologically unrealistic
scenario where phage escape is modeled deterministically
and the number of phages in the environment is constant
in time. Typically, this will not be the case, as phages will
not only kill bacteria upon successful infection and phage
escape, but will also increase in their number. Neverthe-
less, we start with this setup that can be mathematically
understood in its entirety, and relax its crucial assump-
tions later.
The dynamics of the bacterial population in the pres-

ence of obligatorily lytic phage, n(t), can be written as
follows:

ṅ(t) = λe(r,m, k, λ) ·n(t)−
ρv

l
pV(r,m, k) ·n(t)2. (7)

The �rst term on the right-hand side describes
the growth of the population at an e�ective rate of
λe(r,m, k, λ) that already accounts for self-restriction.
The second term models phage escape as a deterministic
decrease in bacterial population size. Here, v is the phage
population size which we have taken to be a constant pa-
rameter of the environment; phages enter bacterial cells
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at a rate proportional to vn(t), as prescribed by mass-
action kinetics, with a proportionality constant given by
the phage adsorption rate, ρ. The rate of successful in-
fections is then given by ρvpV(r,m, k)n(t). We assume
that each successful infection event wipes out a fraction,
0 < 1/l < 1, of the total population (i.e., on average,
n(t)/l bacteria die following phage escape), yielding the
full Eq [7].

The growth dynamics has one biologically-relevant
�xed point that represents the steady-state bacterial pop-
ulation size:

ns(r,m, k, λ) = n(t→∞) =
l

ρv
· λe(r,m, k, λ)
pV(r,m, k)

. (8)

In this minimal-model scenario, which is denoted as
(o) in Table 1, ns quanti�es the bacterial performance
in terms of long-term population size (see SI Appendix
Figure S.6). The unknown parameters ρ, v, and l, enter
Eq [8] as multiplicative constants that are independent
of single cell parameters. Optimal performance, which
we will explore after we introduce alternative ecological
scenarios below, would therefore imply �nding single-
cell parameters r, m, and k, that maximize the ratio
λe(r,m, k, λ)/pV(r,m, k).

Bacterial population dynamics in ecologically

more realistic scenarios. While the minimal model
is mathematically convenient, the fact that it doesn't in-
clude phage population size as a dynamical variable and
that it abstracts the appearance of methylated phage with
a single deterministic term in Eq [7] is clearly an oversim-
pli�ed representation of phage ecology. To obtain bio-
logically more meaningful insights, we therefore have two
options: we can either consider a more realistic model
that explicitly tracks phage dynamics or we can repre-
sent phage escape events stochastically and avoid having
to explicitly model methylated phage by studying bacte-
rial growth only until the (random) time at which phage
escape happens for the �rst time.

To explore the the �rst option, we extended an estab-
lished deterministic model of bacteria-phage ecology [29]
to track the population dynamics of bacteria with and
without RM systems and both susceptible and methy-
lated phages (see SI Appendix Section S.4.2). By numer-
ically integrating this population model for more than
a million parameter combinations for the activity of re-
striction (r) and methylation (m) enzymes, we �nd that
whether or not phages will ultimately take over the pop-
ulation depends on the ecological parameters (e.g. phage
adsorption rate, rate of spontaneous phage inactivation,
etc.) but is completely independent of RM system e�-
ciency. While this result clearly depends on the fact that
phages cannot go extinct in ecology models based on or-
dinary di�erential equations, it nevertheless suggests that
long term bacterial population sizes, such as the steady
state, ns, of the minimal model, (o), cannot be a biolog-
ically realistic measure for the e�ciency of RM systems
and that the task of RM systems cannot be to prevent
phage escape but only to delay it as much as possible to
give bacteria enough time to develop alternative mecha-
nisms of phage resistance through genetic mutations [21].
We conclude that the relevant option to study is therefore

the second one: how RM systems impact bacterial growth
until the �rst phage escape event.
To explore the second option, we formulated several

e�ciency measures that quantify how RM systems can
help bacterial populations before the �rst phage escape
event:

(i) How much can a bacterial population grow before the
�rst phage escape event happens?

(ii) What is the probability that an immunity conferring
mutation happens in any bacterium before the �rst
phage escapes?

(iii) What is the total number of mutations accumulated
in the population when methylated phages start to
spread?

Here we will show that questions (i)-(iii) can be an-
swered rigorously if we assume that the size of the phage
population remains approximately constant until the �rst
phage escape event. An example of an ecological scenario
where this assumption is realistic is that of bacteria colo-
nizing a phage-dominated environment in which the num-
ber of phages is much larger than the number of bacteria
such that the reduction in the phage population size due
to unsuccessful infections is negligible. More generally,
any ecological scenario in which the phage population size
is for some reason in equilibrium at least until the �rst
phage escapes on a bacterium carrying a RM system, will
ful�ll this assumption. Surprisingly, the results that we
will �nd will connect back to the simple model summa-
rized by Eq [7].
Mathematically, we consider a bacterial population of

initial size n0 trying to colonize an environment contain-
ing a phage population of size v. As we have shown before,
the bacterial population will initially grow exponentially
at rate λe until the time τp at which the �rst phage es-
cape event occurs. Interpreting these events as random,
the crucial unknown is therefore τp, the random time to
�rst phage escape, characterized by its probability dis-
tribution, f(τp), which we �nd to be given by (see SI
Appendix Section S.4.3):

f(τp) = ρvn0pV exp

(
ρvn0

(
1− eλeτp

) pV
λe

+ λeτp

)
. (9)

The waiting time distribution until �rst phage escape,
f(τp), allows us to analytically answer questions (i)-(iii),
as summarized in Table 1 (see SI Appendix Section S.4.3).
Each e�ciency criterion corresponds to a maximization
of the corresponding �bacterial performance� metric. By
examining these metrics, we make three important obser-
vations:
First, expressions for bacterial performance in Table 1

are functions of λe and pV , which depend solely on
the restriction rate r, the methylation rate m, and the
number of concurrently active RM systems, k. This
means that optimal bacterial strategies at the ecological
level can be found mathematically�and possibly tuned
evolutionarily�by adjusting the three parameters, r, m,
and k, de�ned at the single-cell level.
Second, the performance of the bacterial population is

independent of the initial population size, n0. As a conse-
quence, there exists a unique best defense strategy against
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e�ciency criterion mathematical bacterial summary

expression performance �gure

(o) long-term population size in constant phage load scenario n(t→∞) λe/pV Fig 4a

(i) expected growth until phage escape E[n(τp)]− n0 λe/pV Fig 4a

(ii) prob. that mutation happens before phage escape P (τmut < τp) c̃mut/(c̃mut + pV ) Fig S9a

(iii) expected integrated population mutation rate E
[∫ τp

0
cmutn(t)dt

]
c̃mut/pV Fig S9b

Table 1: E�ciency criteria for bacterial populations in di�erent ecological scenarios. Minimal, constant phage load scenario, (o),
and bacteria colonizing new phage-dominated environments, (i), (ii), or (iii). Optimality criterion in the �rst column is captured by
the corresponding mathematical expression for the bacteria-phage ecology in the second column, which implies the maximization of
the �bacterial performance� quantity in the third column. cmut is the mutation rate per unit time per bacterial cell to gain resistance
against phage (and c̃mut = cmut/(ρv) is the normalized mutation rate); τmut denotes the (random) time at which the �rst mutation
happens.

phages that is constant in time: if phage escape has not
happened until a certain time during which the bacte-
rial population has grown to a new size, the same defense
strategy continues to be optimal with the initial size taken
to be the new size, with no need to re-balance the activity
levels r and m of the RM enzymes, or the number of RM
systems, k. For cases (ii) and (iii), we further observe
that the results are independent of the e�ective growth
rate λe. Faster growth leads to quicker increases in the
probability that immunity conferring mutations happen
but this is exactly compensated by the increase in prob-
ability of a phage escape event.
Third, while maximizing the growth of the bacte-

rial population until the �rst phage escape event, Ta-
ble 1(i), is biologically very di�erent from maximizing
the steady-state population size under constant viral load,
Table 1(o), both questions lead to mathematically equiva-
lent problems of maximizing the ratio λe/pV with respect
to single cell parameters r, m, and k. In the following,
we focus an in-depth study of the consequences and im-
plications of case (i). Questions (ii) and (iii) are treated
in the SI Appendix (Section S.4.4).

Tradeo�s and optimality in bacterial im-

munity

Can bacteria tune the single-cell parameters over evolu-
tionary timescales in order to minimize the cost of RM
systems, i.e., maximize the growth rate λe, while also
maximizing their e�ciency, i.e., maximize λe/pV ? Equa-
tion [6] and Table 1 assert that cost and e�ciency are
necessarily in a tradeo� and cannot be optimized simul-
taneously. This tradeo� is the �rst key result of the sec-
tion. With no single optimum possible, we look instead
for Pareto-optimal parameter combinations, (r,m, k), i.e.,
solutions for which λe cannot be further increased without
reducing λe/pV and vice versa [30, 31]. Di�erent Pareto-
optimal solutions trace out a �front� in the plot of λe vs
λe/pV in Fig 4a that jointly maximizes growth rates and
population sizes to the extent possible. Points in the in-
terior of the front are sub-optimal and could be improved
by adjusting parameter values, while points beyond the
front are inaccessible to any bacterial population. Which
Pareto-optimal solution ultimately emerges as an evolu-
tionary stable strategy depends on the actual bacterial
and phage species considered as well as their biological

context. Rather than focusing on speci�c examples, we
next establish several general results of our analysis, con-
trasting in particular �fast growth� bacterial strategies
that maximize λe with �large size� strategies that max-
imize λe/pV .

We start by examining in Fig 4b the optimal enzyme
activities, mopt and ropt, along the Pareto fronts. For
the �large size� regime at low λe, the bacterial population
primarily needs to defend against phage escape, favoring
low m and high r, even at the cost of self-restriction. As
we move towards the �fast growth� regime, r can drop to
decrease the cost, but m must increase to protect against
self-restriction, until maximal mopt is reached. For even
higher λe, it is optimal to �shut down� the RM systems
altogether to save on the cost, by tuning r andm simulta-
neously to zero. Numerical analysis (SI Appendix S.4.5)
reveals that along the Pareto front of Fig 4a, the total cost
of running the RM systems varies in precise inverse linear
relationship with λe. Pareto-optimal solutions are further
characterized by the fact that the reduction in growth
rate, λ − λe, is split equally between the cost of running
RM systems, c(r +m), and self-restriction. If this were
not the case and the cost were larger (or smaller) than
self-restriction cost to growth, cells could always down-
(or up-)regulate the RM system activity to trade cost for
self-restriction and obtain an overall smaller total growth
reduction. This universal equality of cost of running RM
systems and self-restriction at optimality is the second
key result of the section.

A detailed examination of the Pareto front in Fig 4a re-
veals a striking shift in the structure of optimal solutions
as we move from �fast growth� to �large size� regime. In
situations where fast growth is favored, we observe that
a single RM system (k = 1) is optimal. In contrast, large
steady-state bacterial population sizes favor kopt > 1 RM
systems, with the optimal number, kopt, set by the costs,
cm and cr, of operating the RM systems. These results
are quantitatively robust to changes in replication rate,
λ, as shown in Fig 4c, where Pareto fronts for di�erent
λ are nearly rescaled versions of each other. These re-
sults are also qualitatively robust to changes in the cost
c = cr = cm so long as the cost is nonzero, as shown in
Fig 4d.

Establishing that �fast growth� regime favors simple in-
nate immunity with a single RM system while �large size�
regime favors complex innate immunity with multiple RM
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Figure 4: Optimal tradeo�s in the presence of phages. For
all panels, we set NS = 599, NV = 5, and λ = 0.017 min−1

in line with the strain used in [24] carrying the EcoRI system,
and without loss of generality we �x l/ρv = 1min such that ns
and λe/pV are the same up to units. (a) Pareto front (thick
line) for expected growth until phage escape, ns(r,m, k), and
e�ective growth rate, λe(r,m, k), traced out by varying m, r,
and the number of RM systems, k (di�erent colors; dotted lines
show individual Pareto fronts at �xed k); c = cr = cm = 10−5

. Examples with speci�c parameter values are marked on k = 1
front with crosses. (b) Optimal enzyme activities, ropt and mopt

(in min−1), on Pareto fronts for di�erent k (color as in a), as
a function of e�ective growth rate, λe. (c) Pareto fronts for
di�erent replication rates, λ, and cost c = cr = cm ≈ 3.7 · 10−7

chosen to make E. coli in [24] lie on the front (black dot, also
in panel d); only k ≤ 6 are considered. (d) Pareto fronts for
di�erent cost c = cr = cm at �xed λ = 0.017 min−1.

systems is the third key result of this section. This result
can be understood intuitively by considering under what
conditions, if any, multiple RM systems could be optimal
at �fast growth�. If costs for R and M enzymes are van-
ishingly small, a single RM system can provide arbitrarily
good protection, as we showed previously. If the costs are
not vanishingly small, multiple RM systems must be more
costly than a single system at comparable phage escape
and self-restriction rates: to keep self-restriction constant
with k RM systems, not only does the cell require k times
more M molecules than at k = 1, but their individual ac-
tivities need to be higher as well, leading to a higher cost
for M and thus a lower e�ective growth rate; thus, k > 1
cannot be optimal for �fast growth� and that can only be
tolerated in the �large size� regime where protection from
phages is more important than fast growth.

Lastly, we sought to put our results into perspective by
relating them to a typical E. coli strain. Recent measure-
ments [24] quanti�ed the self-restriction rate in a bac-
terial population with the EcoRI system replicating at
λ = 0.017 min−1 to be around µ ≈ 10−3 min−1. The
cost of RM systems was not detectable in WT strain
but could be detected in strains overexpressing M en-
zymes. Treating the cost c as unknown and assuming
that E. coli is Pareto-optimal in light of criterion (i) in
Table 1 (black dots in Fig 4c,d), would lead us to pre-
dict the following parameter values for the RM systems:

cost c ≈ 3.7 · 10−7, enzyme activities r ≈ 1.2 · 103 min−1,
m ≈ 1.5 · 102 min−1, with the optimal number of RM sys-
tems being at the boundary between k = 1 and k = 2.
Clearly, this prediction depends on the chosen measure
of the e�ciency of RM systems, which is determined by
the considered ecological scenario and the particular ob-
jective that bacteria have in this scenario. Consequently,
the concrete numbers presented here should not be un-
derstood as general results, but rather as a demonstration
of how our framework can be used to calculate optimal
bacterial strategies given di�erent modeling assumptions
about the phage-bacteria ecology.

Discussion

Despite the ubiquity of RM systems in prokaryotic
genomes [17], basic ecological and evolutionary aspects of
these otherwise simple genetic elements are poorly under-
stood [20]. Although RM systems have been discovered
more than six decades ago due to their ability to protect
bacteria from phage [32] and this is often assumed to be
their main function [33], only a few experimental studies
focused on the ecological and evolutionary dynamics of in-
teractions between RM systems and phage [34, 35]. Simi-
larly, e�ects of RM systems on their host bacteria, such as
their cost in individual bacteria due to self-restriction, be-
gan to be addressed quantitatively only recently [24, 36].
In this work, we bridged these two scales using math-
ematical modeling. Our model captures the stochastic
nature of RM systems originating at the level of inter-
acting molecules in individual bacteria and extends it all
the way to the dynamics of interactions between bacterial
and phage populations.
Using this approach, we analytically described trade-

o�s between the cost and the e�ciency in di�erent eco-
logical contexts of immunity conferred by RM systems.
The existence of such tradeo�s was previously indicated
by quantitative single-cell experiments with two RM sys-
tems isolated from Escherichia coli [24]. We used our
mathematical framework to quantify these tradeo�s and
to study their ecological consequences, as well as the im-
plications that these consequences have for optimally tun-
ing the R and M enzymatic activities at the level of single
cells. Our results for di�erent ecological scenarios suggest
that we should expect observed expression levels and en-
zymatic activities of naturally occurring RM systems to
represent adaptations to speci�c environmental pressures.
Such �tuning� of expression levels towards optimality has
previously been directly experimentally shown in di�er-
ent molecular systems [27]. The expression levels of both
R and M should be readily tunable by mutations in the
often complex gene-regulatory regions [37].
With optimal bacterial defense strategies depending on

the ecological scenario and the particular objective of
the bacteria (see SI Appendix Section S.4 and Table 1),
making general predictions on R and M expression levels
or numbers of concurrently active RM systems that we
should expect to �nd in bacteria in the wild is di�cult.
However, we want to highlight that, in a given context, as-
suming optimality of the bacterial defense strategy allows
one to make clear and quantitative predictions about the
reaction rates and the number of RM systems, and im-
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proving these predictions to take into account more rele-
vant biological detail (if needed and known) remains only
a technical, rather than conceptual challenge. Second, for
the scenario of bacteria colonizing phage dominated en-
vironments that we investigated in this paper, parameter
values measured for an E. coli RM system put optimal
solutions into a regime that permits a large variation in
the optimal number of RM systems, between one to six,
with relatively small changes in the e�ective growth rate.
This observation allows us to advance the following hy-
pothesis: the number of RMsystems in di�erent bacterial
strains and species is not a historical contingency, but an
evolutionary adaptation to di�erent ecological niches. In
other words, the tradeo� between the cost and the e�-
ciency of immunity can be partially alleviated in bacteria
employing multiple RM systems. It is therefore inter-
esting to note that many bacterial species carry multi-
ple RM systems and the number of RM systems varies
signi�cantly among bacteria with di�erent genome sizes
and lifestyles [17, 16]. Our results indicate that di�er-
ent numbers of RM systems would be optimal in popu-
lations under di�erent selection pressures (phage preda-
tion/resource limitation).

The analytical model presented here makes several sim-
plifying assumptions. First, we consider only interac-
tions between a single species of bacteria and a single
species of phage. In natural environments, many bac-
terial and phage species interact and this diversity will
certainly impact the resulting ecological end evolution-
ary dynamics [38, 39, 34, 40]. Second, we assumed the
key parameters such as the numbers of restriction sites
in bacterial and phage genomes to be constant in time
and thus disregarded the long-term evolutionary dynam-
ics. Bioinformatic studies have shown that many bacteria
and phage avoid using restriction sites in their genomes
[41, 42, 43]. Restriction site avoidance can represent an
adaptive mechanism for increasing the likelihood of es-
cape in phages [42, 44] and decreasing the likelihood of
self-restriction in bacteria [45, 24]. The stochastic nature
of RM systems observed at the level of individual cells
is thus likely to critically shape the ecological and evo-
lutionary dynamics of interactions between bacteria, RM
systems and phage.
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