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Abstract 

Cnidarians such as reef-building corals depend upon nutrient transfer from intracellular symbionts, but the 

mechanisms and evolution of this process remain unknown. Homologues of the conserved cholesterol binder 

Niemann-Pick Type C2 (NPC2) in cnidarians are implicated in the transfer of sterol from symbionts. Here, we 

show that symbionts transfer bulk sterols to the host, host sterol utilization is plastic, and pharmacological 

inhibition of sterol trafficking disrupts symbiosis. Having undergone an anthozoan-specific expansion, “non-

canonical” NPC2s respond to symbiosis and accumulate over time at the lysosomal-like organelle in which the 

symbiont resides (“symbiosome”). We demonstrate that both a non- and canonical Aiptasia NPC2 bind symbiont-

produced sterols, yet only the non-canonical homologue exhibits increased stability at low pH. We propose that 

symbiotic cnidarians adapted pre-existing cholesterol-trafficking machinery to function in the highly acidic 

symbiosome environment, allowing corals to dominate nutrient-poor shallow tropical seas worldwide. 
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Many plants and animals cultivate symbioses with microorganisms for nutrient exchange. Cnidarians, such as reef-

building corals and anemones, establish an ecologically critical endosymbiosis with photosynthetic dinoflagellate 

algae (Symbiodinium spp.) [Douglas]. Their symbionts reside within endo/lysosomal-like organelles termed 

symbiosomes and transfer photosynthetic products to their hosts [Muscatine, Yellowlees]. In addition to sugars, 

lipids are among the key products transferred [Crossland, Battey, Revel]. Cnidarians are sterol auxotrophs 

[Baumgarten, Gold] that must acquire these essential compounds from diet and/or symbionts [Goad]. 

Dinoflagellates synthesize various sterols, many of which are found in symbiotic cnidarians [Withers, Bohlin, 

Ciereszko], yet how sterol transfer occurs is undetermined.  

 

The highly conserved Niemann-Pick Type C2 protein (NPC2) is a small, soluble lysosomal protein that facilitates 

cholesterol egress to the cytoplasm [Vance]. Symbiotic cnidarians contain an additional subset of NPC2 

homologues that form a separate group based on sequence, designated “non-canonical” NPC2s [Dani14, Lehnert]. 

Non-canonical NPC2s are consistently up-regulated in symbiosis in Aiptasia and Anemonia anemones [Kuo, Ganot, 

Dani14, Lehnert, Wolfowicz] and these symbiosis-responding NPC2s localize around the symbiosome [Dani14, 
Dani17]. Therefore, the current hypothesis in the field is that non-canonical NPC2s specifically facilitate transfer 

of symbiont-produced sterols in cnidarian-algal symbiosis [Baumgarten, Dani17, Revel, Wolfowicz]. However, 

NPC2s may serve other purposes, e.g. signalling [Baumgarten, Dani17], and mechanistic analyses of NPC2 

function are lacking. We therefore sought to determine the physiological roles of cnidarian NPC2s, which might 

explain their persistence throughout evolution.  

 

We first determined the full genomic complement of NPC2 homologues in symbiotic cnidarians and specific 

metazoans, uncovering several previously unidentified homologues in the reef-building corals and other taxa 

(asterisks, Fig. 1A). We conducted a Bayesian reconstruction of phylogeny, recovering the division between 

canonical and non-canonical NPC2s and corresponding stereotypic intron/exon structures (Fig. 1A). We found that 

non-canonical NPC2 homologues are thus far confined to cnidarians within the anthozoan class, as they did not 

appear in the earlier-branching sponge Amphimedon nor in the hydrozoans Hydra magnipapillata and Hydractinia 
echinata. Notably, the degree of NPC2 gene expansion appeared to correlate with symbiotic state: the symbiotic 

anthozoans (Aiptasia, Acropora, Montastrea) have several non-canonical NPC2 homologues (3, 3, and 2, 

respectively). In contrast, the non-symbiotic anemone Nematostella displays evolutionary traces of a single non-

canonical NPC2, which either failed to expand or underwent higher loss (Fig. 1A). 

 

To investigate the function of NPC2s in symbiosis, we analysed their expression in the tropical sea anemone 

Aiptasia, a powerful emerging model of cnidarian-algal symbiosis [Neubauer, Tolleter]. Aiptasia contains three 

non-canonical NPC2 homologues. Two of these non-canonical NPC2 homologues displayed substantially high 

expression at the transcript and protein levels in symbiotic animals but not aposymbiotic animals (closed blue 

symbols, Fig. 1B and 1C). The third non-canonical NPC2 homologue was highly expressed in both symbiotic and 

aposymbiotic animals (Fig. 1B and 1C). Conversely, canonical NPC2s were highly expressed in both symbiotic 

and aposymbiotic animals (closed red symbols, Fig. 1B). Likewise, the non-symbiotic anemone Nematostella 

exhibited ubiquitously high expression of canonical NPC2 genes (open red symbols, Fig. 1B), whereas the non-

canonical NPC2 gene was highly expressed only upon feeding (open blue symbols, Fig. 1B). Aposymbiotic 

embryos of the symbiotic coral Acropora, as well as Nematostella embryos, contained maternally provided 

canonical NPC2 transcripts, suggesting that these are required for development (Fig. S1). The non-canonical 

NPC2s decorated intracellular symbionts in vivo in Aiptasia (Fig. 1D), consistent with previous data in Anemonia 
viridis [Dani14, Dani17]. Together, these data suggest evolutionary conserved roles for canonical and non-

canonical NPC2, with a continuous requirement for high levels of canonical NPC2s, but a nutrient-dependent 

requirement for non-canonical NPC2s in the lysosomal-like symbiosome.  

 

Notably, several canonical NPC2s in Aiptasia (XM_021046710, XM_021041174) and Nematostella 

(XM_0016335452) may be ‘in transition’ to becoming non-canonical: they were expressed at intermediate 

abundances between the two groups, and they responded to symbiosis (Aiptasia) or feeding (Nematostella) (red 

square and triangles, Fig. 1B and Fig. S1). Further, some of their intron/exon structures reflected those of the non-

canonical group (red triangles, Fig. 1A). This suggests that a continuous diversification of NPC2 variants may be 

advantageous for these species.  

 

Sterol compositions of the Symbiodinium symbionts are complex and vary by strain [Withers, Bohlin, Ciereszko]. 

To test whether changes in symbiont-provided nutrients affect NPC2 gene expression, we used gas 

chromatography/mass spectrometry (GC/MS) to semi-quantitatively profile relative sterol abundances in 

compatible symbiont strains [Xiang, Hambleton] and related this to NPC2 gene expression in various host lines. 

We found that the sterol profile is a direct consequence of the symbiont in a defined host genotype (Fig. 2A). For 
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example, Aiptasia CC7 hosting Symbiodinium strain SSA01 contained a large proportion of stigmasterol-like sterol. 

In contrast, the same animal line hosting strain SSB01 contained minimal stigmasterol-like derivatives yet a sizable 

proportion of the unique sterol gorgosterol (Fig. 2A), characterized by an unusual cyclopropyl group [Ciereszko] 

(Fig. S2). Further, the genetically distinct Aiptasia lines H2 and CC7 [Grawunder] showed almost identical sterol 

profiles when hosting the same symbiont strain (Fig. 2A). Importantly, Aiptasia lines showed similar patterns of 

NPC2 gene expression in each of these combinations relative to their aposymbiotic counterparts (Fig. 2B). These 

data suggest that host sterol uptake is independent of the particular sterol suite provided, and that non-canonical 

NPC2 genes respond robustly and consistently to different symbionts.  

 

Indeed, we found that cnidarians display remarkable flexibility in sterol composition depending on nutrient input: 

aposymbiotic Aiptasia and their non-symbiotic relatives Nematostella contained almost exclusively cholesterol, 

reflecting their Artemia-based diet (Fig. 2C). However, aposymbiotic animals more recently cured of their 

symbionts (“intermediate”) contain traces of the former symbiont input together with dietary cholesterol (Fig. 2C). 

Crucially, naturally aposymbiotic eggs of Aiptasia exhibited sterol patterns very similar to their symbiotic parents, 

confirming that these symbiont-produced sterols are indeed transferred to host tissues (Fig. 2C). Likewise, the 

sterol profiles of the coral Acropora and their non-symbiotic eggs reflected their symbionts. Strikingly, field-

collected corals were nearly devoid of cholesterol (Fig. 2C), suggesting that when food is scarce, symbiotic 

cnidarians are capable of functionally substituting cholesterol with symbiont-produced sterols. Thus, the sterol 

composition of symbiotic cnidarians is highly plastic and adaptable to environmental conditions, including food 

availability. 

 

In accordance with the functionally important role of symbiont-produced sterols in the host, we found that 

disruption of sterol trafficking in symbiosis has profound effects. To evaluate the role of sterol trafficking in 

symbiosis, we utilized the drug U18666A, which blocks sterol egress from the lysosome [Liscum, Cenedella]. 

U18666A is a competitive inhibitor of NPC1, a binding partner of NPC2 that is required for efficient cholesterol 

egress [Lu]. Symbiotic adult Aiptasia showed a dose- and duration-dependent disruption of host physiology and 

symbiosis in response to U18666A (Fig. 2D), including loss of anemone tissue and shortening of tentacles, as well 

as loss of symbionts in the tissue (inset, Fig. 2D). Additionally, we exposed A. digitifera juvenile primary polyps 

stably hosting the same symbionts (Symbiodinium strain SSB01) to increasing concentrations of U18666A (Fig. 

2E), which to our knowledge represents the first reported functional disruption of sterol transport in coral 

symbiosis. We quantified symbiont loads, and again observed a U18666A dose-dependent loss of symbionts in the 

polyps (Fig. 2E), mirroring the effects in Aiptasia. Thus, inhibition of sterol transport affects symbiosis stability, 

leading to loss of symbionts (“bleaching”). Further, the disruption of sterol transport compromises host tissues, 

emphasizing the importance of sterols in tissue homeostasis. 

 

Mammalian NPC2s function in lysosomal sterol binding, and our evidence so far suggests that non-canonical 

NPC2s play a specific role in the symbiosome. However, whether non-canonical and canonical NPC2s functionally 

differ – and indeed, whether cnidarian NPC2s bind any sterols – are not known. To elucidate NPC2 functions, we 

first turned to the structure-function characterizations of mammalian NPC2s. Canonical NPC2 has a single 

hydrophobic pocket that binds the side-chain of cholesterol [Friedland], and important residues for binding and 

transfer have been identified [Ko, Xu, Wang, McCauliff] (Fig. 3A). Using protein-wide adaptive evolution analysis 

of cnidarian NPC2s, we calculated per-residue evolutionary rates (Fig. S3) and we identified residues apparently 

under positive (diversifying) or negative (purifying) selection (Fig. 3A). We found that, overall, the hydrophobic 

pocket is more highly conserved in canonical NPC2 proteins (17 of 35 residues under negative selection) than in 

non-canonical NPC2 proteins (3 of 35 residues) in Aiptasia. Moreover, 5 of 12 residues under positive selection in 

the non-canonical NPC2s fall in this region. We therefore hypothesized that the ligand-binding pocket has diverged 

for a symbiosis-specific function, and therefore that non-canonical NPC2 may have evolved to bind symbiont-

derived sterols more effectively than their non-canonical counterparts. 

 

To test this hypothesis of differential NPC2-sterol binding in Aiptasia, we directly compared the most conserved 

canonical NPC2 to the non-canonical NPC2 that is most up-regulated upon symbiosis (XM_021041171 to 

XM_021052404, respectively). We used lipidomics to quantify lipids bound by immunoprecipitated native or 

recombinant NPC2s (Fig. S4) [after Li]. Recombinant proteins were expressed in HEK 293T cells, after which cell 

lysates were mixed with Symbiodinium SSB01 homogenates at either neutral conditions (pH 7) or acidic conditions 

reflecting the lysosome (pH 5). Under both conditions, canonical and non-canonical NPC2:mCherry fusion 

proteins bound symbiont-produced sterols significantly above the background levels of the control, mCherry alone 

(Fig. 3B). The relative proportions of bound sterols generally exhibited equilibrium levels with the corresponding 

symbiont homogenate. Thus, this assay did not detect any differential sterol binding between canonical vs. non-

canonical NPC2s (Fig. 3C). To validate sterol binding by non-canonical NPC2 in vivo, we also immunoprecipitated 
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the native non-canonical NPC2 and bound sterols directly from homogenates of symbiotic Aiptasia. Again, we 

detected symbiont-produced sterols above background levels, validating our heterologous system and indicating 

that these proteins bind sterols in vivo during symbiosis (Fig. 3D). These data indicate that, despite their 

evolutionary divergence, both types of Aiptasia NPC2s have the conserved function of binding sterols in 

lysosomal-like environments. Although we cannot rule out subtle differences in sterol binding dynamics between 

the two proteins, our results suggest that differential binding does not appear to be a distinguishing feature of non-

canonical NPC2s. These findings are consistent with the observations that the sterol ligand and the residues lining 

the binding cavity tolerate variations [Xu, Liou].  

 

With data suggesting both NPC2 types can bind symbiont-produced sterols, we were therefore left with the 

question: what is the functional advantage of localizing non-canonical NPC2s specifically in the symbiosome? We 

noted that non-canonical NPC2s decorate some but not all symbionts (Fig. 1D, Dani14, Dani17), suggesting that at 

any given time, symbiosomes are a dynamic group of specialized organelles. To gain further insight into the NPC2-

decorated symbiosome dynamics, we measured the spatio-temporal regulation of non-canonical NPC2 by 

immunofluorescence in Aiptasia larvae establishing symbiosis (“infection”) with Symbiodinium strain SSB01 

[Hambleton, Bucher]. Indeed, non-canonical NPC2 slowly decorated intracellular symbionts over time (Fig. 4A, 

Fig. S5). This localization ranged from weak ‘grainy’ patterns to stronger ‘halos’ around symbionts (arrows, Fig. 

4B). We quantified infection rates, symbiont load of individual larvae, and non-canonical NPC2 signal intensity 

(Fig. 4C-D). We found that infection rates remained steady after removal of symbionts from the environment, 

whereas the proportion of larvae showing non-canonical NPC2 signal continued to increase to eventually include 

the majority of infected larvae (Fig. 4C). Concordantly, the proportion of symbionts within each larva surrounded 

by NPC2 signal also increased over time, as did the signal strength (Fig. 4C). Finally, infected larvae displaying 

any NPC2 signal generally contained a higher symbiont load than their infected, unlabeled counterparts (Fig. 4D). 

Thus, non-canonical NPC2 is increasingly expressed and recruited to symbionts over time, suggesting that non-

canonical NPC2 function becomes important primarily once symbiosomes are “mature”.  

 

The maturing symbiosome, where non-canonical NPC2s function, remains poorly understood; however, extreme 

acidity is a unique characteristic of these specialized cellular compartments. Whereas lumenal pH of classic 

lysosomes can range from 4.7 to 6 [Johnson], recent work indicates that mature symbiosomes in steady-state 

symbiosis are even more acidic (pH 4) to promote efficient photosynthesis [Barott]. Protein activity, stability, and 

solubility are dependent on pH, and proteins have tailored their amino acid composition for structural and 

functional purposes under specific pH conditions [Talley]. It remains difficult to correlate pH-dependent protein 

properties with aspects of their sequence or structure, largely because proteins evolved under myriad physical and 

biological constraints [Garcia-Moreno]. However, we noted two features among highly conserved Aiptasia non-

canonical NPC2 proteins: glycosylation sites (Fig. 3A) and a glycine followed by a histidine residue (Fig. 3A). 

Both glycosylation sites and histidines (differential protonation at low pH) can contribute to protein stability in 

acidic environments [Rudd, Hanson, Culyba].  

 

We therefore sought to compare the stability/solubility of canonical and non-canonical NPC2 at different pH. We 

showed above that both types of Aiptasia NPC2s bound sterols at pH 7 and pH 5 (Fig. 3B-C). However, we found 

that at pH 5, non-canonical NPC2 was consistently more abundant in the soluble fraction than canonical NPC2 (Fig. 

4E). For each type of NPC2, the ratio of soluble protein at pH 7 to that at pH 5 was always >1, indicating that both 

were more soluble at pH 7. However, the ratio was higher for canonical NPC2 than for non-canonical NPC2 and 

the control mCherry, indicating that canonical NPC2 becomes far less soluble at pH 5 (Fig. 4F). Thus, this non-

canonical NPC2 appears to be more soluble/stable than the canonical NPC2 at a lower pH, characteristic of the 

symbiosome. It will be important in the future to experimentally test whether increased pH-stability is a common 

feature of non-canonical NPC2s in symbiotic cnidarians, and whether these proteins have evolved similar or 

different strategies to achieve this goal. The increased sequence diversity among anthozoan non-canonical NPC2 

(Fig. 1A) points towards the latter. 

 

Taken together, our data support a model in which symbiotic anthozoans have evolved symbiosis-specific NPC2 

homologues that have adapted their solubility to the extremely acidic conditions of the symbiosome to exploit 

symbiont-produced sterols (Fig. 4G). We propose that whereas ubiquitously expressed canonical NPC2 

homologues are ‘workhorses’ in sterol trafficking throughout the host, non-canonical NPC2s are spatiotemporally 

regulated to accumulate as the symbiosome matures, developing into a unique compartment optimized to promote 

the interaction and communication of symbiotic partners (Fig. 4G). This advantageous adaptation of existing 

molecular machinery allows symbiotic cnidarians to flexibly use symbiont-derived sterols, supporting survival in 

nutrient-poor environments. More broadly, our findings indicate that carbon acquisition by lipid transfer, similar to 
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other symbioses [Keymer], is a major driver of coral-algal symbiotic relationships as means to adapt to various 

ecological niches by efficient exploitation of limited resources.  
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Figure 1. Symbiotic anthozoans have extensive expansion of NPC2s that respond to symbiosis. 

A. Consensus phylogeny from Bayesian analysis (MrBayes) of NPC2 coding sequences in metazoan genomes with anthozoan 

non-canonical (blue shading) and canonical (red shading) homologues. Also shown are alignments with intron/exon 

boundaries (green bars) and tandem duplication of NPC2 loci (where genome assemblies allow). Node values, posterior 

probabilities. Asterisks, new homologues from this study. Source data, see Methods. B. Gene expression by RT-qPCR of 

canonical (red symbols) and non-canonical (blue symbols) NPC2s and 40S ribosomal subunit (RPS7, grey symbols). Filled 

symbols: Log2 (fold change) in symbiotic versus aposymbiotic (on x-axis) Aiptasia. Average of 6 samples per condition, 6 

animals per sample, each in technical duplicate. Open symbols: Log2 (fold change) in fed versus starved (on x-axis) 

Nematostella. Average of 2 animals per sample, 2 samples per condition, technical duplicates. For all, average value ±SD 

(error bars). Statistical comparisons per gene of symbiotic (/fed) to aposymbiotic (/starved) by Bayesian modeling, *P<0.05, 

**P<0.005 (RPS7 not significant). C. Homogenates of Aiptasia symbiotic and aposymbiotic adults detected with affinity-

purified antibodies to non-canonical Aiptasia NPC2 homologues. Asterisks, NPC2 glycoforms (see Fig. 3A). D. 

Immunofluorescence (IF) of non-canonical NPC2s in Aiptasia larvae containing intracellular symbionts of Symbiodinium 

strain SSB01 [Xiang]. Larvae are 14 d post-fertilization (dpf) and 11 d post-infection (dpi). Merge channels: NPC2, secondary 

antibody Alexa488-anti-rabbit IgG; Nuclei, Hoechst; Symbionts, red autofluorescence of photosynthetic machinery. Control, 

secondary antibody only. Scale bar, 10 m. 
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Figure 2. NPC2s respond consistently to symbionts, and symbiont-produced sterol acceptance is plastic in the host yet 

critical for tissue homeostasis and symbiosis. A. Gas chromatography/mass spectrometry (GC/MS)-generated sterol profiles 

of Symbiodinium strains [Xiang] in culture (upper row) and in symbiosis with adults in different Aiptasia host strains 

[Grawunder] (lower row). Relative composition (%) of each sterol in key, below. Shown is representative of n=3 (Aiptasia, 

Symbiodinium) or n=2 (Acropora, Nematostella) samples. B. NPC2 gene expression by qPCR in the various 

Aiptasia/Symbiodinium host/symbiont combinations in A. Gene symbols as in Fig. 1. C. GC/MS-generated sterol profiles of 

the given organisms, details as in A. Apo- and non-symbiotic animals were fed Artemia brine shrimp comprising nearly only 

cholesterol [Tolosa]. “Intermediate” were symbiotic Aiptasia more recently cured of symbionts. Aiptasia strain F003 hosts 

Symbiodinium strains SSA01 and SSB01 [Xiang]. Acropora digitifera endogenous Symbiodinium are currently uncultured but 

are closely related to the cultured strain CCMP2466 (see Methods). D. Fluorescence micrographs of adult polyps of Aiptasia 

strain F003 exposed to U18666A or DMSO negative control (vol. equiv. to 10µM addition). Autofluorescence is symbiont 

photosynthetic machinery. Representative images shown of n=6 polyps per condition, from one of two replicate experiments. 

Arrows: grey, symbiont loss in tentacles; white, early indications of tissue disruption (shortened tentacles); yellow, polyp with 

reduced tentacles and body mass. E. Fluorescence micrographs of Acropora digitifera juvenile primary polyps hosting 

Symbiodinium strain SSB01 exposed to U18666A or negative control, as in D. Representative images shown of n=5 polyps 

across duplicate wells (n=4 for 10µM). Quantification of total fluorescence per polyp minus adjacent background. Average 

values ±SEM (error bars). Statistical comparisons to DMSO negative control (Student’s t-test: *P<0.05, **P<0.005). 
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Figure 3. Adaptive evolution analysis of NPC2s and their binding to symbiont-produced sterols via 

immunoprecipitation-lipidomics. 

A. Alignment of anemone and human NPC2 proteins, with black-white shading by conservation. Highlighted are residues 

under positive (orange) or negative (purple) selection per NPC2 group as found in multiple tests of non-

synonymous/synonymous substitution rates (dN/dS) in HyPhy [Kosakovsky Pond_1] (see Methods); asterisks, significant in all 

tests. Indicated are also several functional regions in human NPC2 [Ko, Xu, Wang, McCauliff]. B. Quantification of bound 

lipids in the eluates following IP of recombinant canonical and non-canonical NPC2:crmCherry:HA and negative control 

crmCherry:HA at pH 7 (Fig. S4). Sterols comprising <1.5% were omitted for clarity. crmCherry, lysosome-stable cleavage-

resistant mCherry [Huang]. Average values  ±SD (error bars) of duplicates, representative experiment of three replicate 

experiments shown. Statistical comparisons of each NPC2 to crmCherry negative control, all differences significant with 

Student’s t-test at P<0.01 except ß-sitosterol values. C. Relative proportions of NPC2-bound sterols and the corresponding 

symbiont extract at pH 5 and 7. Average values  ±SD (error bars) of duplicates, representative of three replicate experiments 

shown. D. Immunoprecipitation (IP) of native non-canonical NPC2 from Aiptasia and quantification of eluted bound sterols. 

Control, identical reaction omitting antibody. Average values ±SEM (error bars) of duplicate samples, representative of two 

duplicate experiments shown. Statistical comparisons to control (Student’s t-test: *P<0.05, •P<0.09). 
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Figure 4. Non-canonical NPC2 is spatiotemporally regulated to mature symbiosomes and is more stable in acidic 

environments. A. Time-course of immunofluorescence of non-canonical NPC2 in Aiptasia larvae infected with Symbiodinium 

SSB01 from 2-5dpf. Larvae oral opening facing up. Merge channels: NPC2, secondary antibody Alexa488-anti-rabbit IgG; 

Nuclei, Hoechst; Symbionts, red autofluorescence of photosynthetic machinery. Control, secondary antibody only. Scale bar, 

25 m. B. Patterns of NPC2 labeling observed. Scale bar, 10 m. C-D. Quantification of NPC2 IF time-course in B. 

n=triplicate samples of >50 larvae per time-point. Representative of two independent experiments. Average value ±SEM (error 

bars). E. Recombinant NPC2s in the soluble fractions of HEK cell lysates. Lysate preparations were identical except for buffer 

pH; equivalent volumes loaded per lane. One pair of treatments in a representative experiment shown, of two duplicate 

experiments. F. Quantification of protein abundances from E. Measurements taken within a Western blot, with n=2 (NPC2s) 

or n=1 (mCherry) measurements from different blot scans. Average values ±SEM (error bars), representative of two duplicate 

experiments shown. G. We propose a model in which symbiotic anthozoans have evolved non-canonical NPC2 homologues 

(blue) that are spatiotemporally regulated to specifically respond to symbiosis, including through adaptation to the extremely 

acidic environment of the symbiosome, the lysosomal-like organelle in which symbionts reside. In contrast, ubiquitously 

expressed canonical NPC2s (red) are found throughout the tissue as ‘workhorses’ in sterol trafficking. Within their respective 

environments, both NPC2 types bind and transport symbiont-produced sterols (purple, yellow, pink), and such trafficking is 

essential for membrane homeostasis of the sterol-auxotrophic hosts. 
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Materials and Methods 

Computational Methods 

NPC2 Bayesian consensus phylogeny construction. Genomes and, if available, proteomes and transcriptomes were 

downloaded from the sources in Supp. Table S1 and loaded into Geneious v.9 [Kearse]. If available, proteomes and 

transcriptomes were searched with BLASTp and BLASTx (both v.2.8.0), respectively, using as queries NPC2 

homologues from Aiptasia, human, and relevant related and/or basal taxa. Each gene was located in its respective 

genome via discontinous Megablast, and the locus was manually annotated for complete gene (start and stop 

codon) and intron/exon structure. No NPC2 homologues were found in the single-celled eukaryotic filasterian 

Capsaspora owczarzaki ; top BLASTp hits to NPC2 included two homologues of phospholipid transfer protein. 

With similar sizes to NPC2 and a predicted conserved ML superfamily domain, these were included in analyses 

and one (XP_004344261.1) used as an outgroup during phylogenetic tree construction as described below. In all 

sequences, signal peptide sequences were predicted using the SignalP4.0 server [Petersen] and, together with stop 

codons, removed from further analyses. 

 

The genomes of 24 metazoans were included in the analysis, and phyla were represented by at least one species 

where available (when possible, marine taxa were chosen). Accession numbers and source information is given in 

Table S1. The resulting 77 NPC2 homologue sequences were imported into MEGA7 (v7.10.8) [Kumar] and 

aligned by codon using MUSCLE with default parameters and manually trimmed. The best model was calculated 

to be General Time Reversible with gamma distributed rate variation among sites (GTR+G). Bayesian phylogenies 

were inferred using MrBayes v.3.2.6 [Huelsenbeck] plugin in Geneious, with the GTR model, gamma rate variation, 

and five gamma categories. The consensus tree was estimated from four chains (temperature 0.2) for 1,000,000 

generations, sampling every 200th tree after 25% burn-in. The default prior was used: unconstrained branch lengths 

of GammaDir at 1, 0.1, 1, and 1.  

 

Supplementary Table S1. 
Species Genome 

Version 

Genome Accession Number 

(Source, if not NCBI) 

Proteome (P), Transcriptome (T), Gene 

Models (GM), if different from genome 

(Source, if not NCBI) 

Acropora digitifera 1.1 GCA_000222465.2_Adig_1.1_ T: GCF_000222465.1_Adig_1.1_rna.fna 

Adineta vaga 1 GCA_000513175.1AMS_PRJEB1171_v1 P: Adineta_vaga.v2.pep.fa 

Aiptasia (Exaiptasia) 

pallida 

1.1 GCF_001417965.1_Aiptasia_genome_1.1  

Amphimedon queenslandica 1.0 GCF_000090795.1_v1.0  

Aplysia californica 3.0 GCF_000002075.1_ AplCal3.0  

Branchiostoma floridae 2 GCF_000003815.1_Version_2  

Capitella teleta Capca1 GCA_000328365.1_Capca1  
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Capsaspora owczarzaki 2 GCA_000151315.2_C_owczarzaki_V2  

Ciona intenstinalis KH GCF_000224145.2_ KH  

Crassostrea gigas 9 GCF_000297895.1_oyster_v9  

Daphnia magna 2.4 GCA_001632505.1_daphmag2.4  

Homo sapiens GRCh38

.p12 

GCA_000001405.27  Genome Data Viewer 

(https://www.ncbi.nlm.nih.gov/genome/gdv/) 

Hydra vulgaris 2.0 

 

Hm105_Dovetail_Assembly_1.0.fa  

(https://research.nhgri.nih.gov/hydra/) 

GM: hydra2.0_genemodels 

T: Juliano_transcript; Petersen_transcript 

(https://research.nhgri.nih.gov/hydra/) 

Hydractinia echinata draft Run03Super.fa.gz 

(https://research.nhgri.nih.gov/hydractinia/) 

described in Török et al. 2016 

Limulus polyphemus 2.1.2 GCF_000517525.1_Limulus_polyphemus-2.1.2  

Lingula anatine 1.0 GCF_001039355.1_ LinAna1.0  

Macrostomum lignano 2 GCA_001188465.1_ML2  MLRNA150904.fa (www.macgenome.org) 

Montastrea cavernosa version 

March  

2018 

Mcavernosa_03012018.fasta 

(Yi Liao & Mikhail Matz, Univ. Texas-Austin, 

Zachary Fuller & Molly Przeworski, Columbia 

Univ. https://matzlab.weebly.com/data--

code.html) 

T: Mcavernosa.maker.transcripts.fasta 

P: Mcavernosa.maker.proteins.fasta 

(https://matzlab.weebly.com/data--code.html) 

 

Mnemiopsis leidyi MneLei_

Aug2011 

GCA_000226015.1_MneLei_Aug2011 P: unfiltered MLRB2.2.aa  

GM: ML2.2.nt; T: Ml_Cufflinks_transcripts.fa, 

Ml_Trinity_transcripts.fa  

(http://research.nhgri.nih.gov/mnemiopsis/) 

Nematostella vectensis 1 GCA_000209225.1_ASM20922v1  

Priapulus caudatus 5.0.1 GCF_000485595.1_Priapulus_caudatus-5.0.1  

Saccoglossus kowalevskii 1.1 GCA_000003605.2_Skow_1.1  

Strongylocentrotus 

purpuratus 

4.2 GCF_000002235.4_ Spur_4.2  

Trichoplax adhaerens 1.0 GCF_000150275.1_v1.0  

 

Adaptive evolution. Evidence of diversifying and episodic selection on different sites among the NPC2 proteins 

were calculated using the DataMonkey server (http://classic.datamonkey.org) for the HyPhy program suite 

[Kosakovsky Pond_1,2]. Briefly, Aiptasia and Nematostella canonical and non-canonical NPC2 sequences were 

aligned by codon using MUSCLE in MEGA7 as above, and the best substitution model was calculated to be 

GTR+G+I for each. Bayesian phylogenies were inferred with MrBayes as above except for the following 

parameters: GTR+G+I, 4 gamma categories, 50,000 generations and sampling every 100th tree after 20% burn-in. 

Trees were uploaded on the DataMonkey server and analysed with: i) fixed effects likelihood (FEL); ii) random 

effects likelihood (REL); iii) single-likelihood ancestor counting (SLAC) [Kosakovsky_Pond 3]; and iv) mixed 

effects model of evolution (MEME) [Murrell], and results of the tests were concatenated with the “Integrative 

Selection Analysis” tool. The program Rate4Site [Mayrose] was used to calculate per-site relative evolutionary 

rates. Briefly, protein sequences of Aiptasia and Nematostella canonical NPC2s or non-canonical NPC2s were 

aligned in MEGA7 using MUSCLE with default parameters, the termini trimmed, and the best substitution models 

calculated as WAG. With the alignments and user-generated trees as input, Rate4Site was run with the rates 

inferred using the empirical Bayesian method, a gamma prior distribution of 16 discrete categories, evolutionary 

model WAG, and branch lengths optimization with ML using a gamma model. The command was: “rate4site -s 

Alignment.fasta –t MrBayesTree.newick -o normalized_rates.txt -a Aiptasia1 (#or 6) –ib –mw -y original_rates.txt.”  

 

Live organism culture and collection 

Aiptasia adults. Symbiotic and aposymbiotic Aiptasia adults were cultured as describes [Grawunder]; symbiotic 

animals rendered aposymbiotic [Matthews] were kept so for over one year before experimentation, with the 

exception of the “intermediate” aposymbiotic animal (Fig. 2). Animals were fed three times weekly with Artemia 
brine shrimp nauplii, shown to contain only cholesteroa [Tolosa]. Animals were then starved for at least four weeks 

prior to sampling. For sampling, animals were removed from their tanks simultaneously around mid-day, blotted 

briefly on lab tissue to remove excess seawater, and then prepared for either qPCR or GC/MS. For qPCR, animals 

were added to 1 ml Trizol (15596026, Life Technologies), after which they were quickly homogenized with a 

homogenizer (Miccra D-1, Miccra GmbH) at setting 3 for 10-15 seconds. Each tube was subsequently frozen at -

80C until RNA extraction. For GC/MS, animals were added to 400 µl ultrapure water, homogenized, and 

immediately processed. 

 
Aiptasia eggs and larvae. Adults of strains F003 and CC7 were cultured and induced to spawn as described 

[Grawunder]. For GC/MS, approx. 1000-3000 unfertilized eggs from female-only tanks were collected gently with 

transfer pipette within 2 h of spawning, washed once quickly in water and once quickly in methanol, and 

resuspended in 750µl methanol. For NPC2 immunofluorescence (IF) during symbiosis establishment, Aiptasia 
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larvae 2 days post-fertilization (dpf) at a density of 300-500/ml FASW were exposed to Symbiodinium strain 

SSB01 as described [Bucher] at 10,000 cells/ml. Larvae and algae were co-cultivated for 3 d, until at 5 dpf the 

larvae were filtered, washed, and resuspended in fresh FASW at a density of 300-500/ml. Larvae were fixed at the 

indicated time-points with 4% formaldehyde in filtered artificial seawater (FASW) rotating for 45 min RT, washed 

twice with PBT (1x PBS pH 7.4 + 0.2% Triton-X), and stored in PBS at 4C in the dark. 

 

Nematostella adults. For qPCR, stock cultures of mixed-sex Nematostella were kept in 12:12 L:D at 26C and fed 

weekly with Artemia nauplii. Animals were then separated and either starved or fed Artemia nauplii daily for 14 d 

with subsequent daily water changes; animals were then starved for a further 2 d and then sampled as for Aiptasia 

qPCR. For GC/MS, mixed-sex Nematostella were kept in constant dark at 16C, fed once weekly with Artemia 

nauplii, and water changed the following day; animals were starved for 10 d and then sampled as for Aiptasia 
GC/MS. 

 

Acropora digitifera adults, larvae, and primary polyps. Colonies of the coral Acropora digitifera were collected off 

Sesoko Island (26°37’41”N, 127°51’38”E, Okinawa, Japan) according to Okinawa Prefecture permits and CITES 

export and import permits (T-WA-17-000765). Corals were kept as described [Wolfowicz] in tanks with running 
natural seawater and under partially shaded natural light at Sesoko Tropical Biosphere Research Center (University 

of Ryukyus, Okinawa, Japan). Colonies were isolated prior to spawning, and subsequently-spawned bundles of 
symbiont-free gametes were mixed for fertilization of defined crosses. The resulting planula larvae were 

maintained at approximately 1000 larvae/L in 10μm-filtered natural seawater (FNSW) exchanged daily. For 

GC/MS, samples from spawning on the evening of 27 May 2016 were collected from adult parental colonies and 

their embryo offspring 19 and 24 hpf, respectively, and immediately transferred to methanol. For qPCR, adults and 

their embryos from spawning on the evening of 6 June 2017 were simultaneously collected at the indicated hpf and 

immediately transferred into RNAlater (AM7020, Thermo Fisher Scientific). All samples were transferred to 4C 

within several hours and then to -20C within 2 d, where they were kept until processing. To generate juvenile 

primary polyps, larvae were induced to settle at 6 dpf and infected with Symbiodinium strain SSB01 as described 

[Wolfowicz] for 4 d. Resident Symbiodinium in adult parental colonies were typed as previously described 

[Grawunder]: 10 bacterial clones were sequenced per coral colony and all were identical, identified by BLASTn to 

the nr NCBI database as Symbiodinium Clade C1. 

 

Symbiodinium cultures. Clonal and axenic Symbiodinium of the strains SSB01 (clade B), SSA01 (clade A), SSA02 

(clade A), and SSE01 (clade E) [Xiang] as well as the non-clonal, non-axenic strains CCMP2466 (clade C) and 

CCMP2556 (clade D) purchased from the National Center for Marine Algae and Microbiota (NCMA, Bigelow 

Laboratory for Ocean Sciences, Maine, USA) were cultured as described [Wolfowicz]. For GC/MS, 2.6x107 cells 

were collected at mid-day by centrifugation of cultures at 1000xg at RT, washed twice in FASW, and the cell pellet 

resuspended in ultrapure water and processed as described. Because of its use in GC/MS-based sterol profile 

comparisons to the endogenous A. digitifera symbiont, strain CCMP2466 (clade C) was re-typed as previously 

described [Grawunder]; from a single amplification reaction, 2 bacterial clones were sequenced and had best 

BLAST hit in NCBI nr database to Symbiodinium in Clade C. 

 

Cell culture. HEK 293T cells were cultured in 1X DMEM medium (41966029, Gibco/Thermo Scientific) with 

10% FBS and 1% pen/strep (100µg/ml final concentrations). Cells were grown at 37C with 5% carbon dioxide 

and passaged regularly. 

 

Gene expression 
RNA extraction and qPCR. RNA was extracted according to a hybrid protocol [Polato] with phenol-chloroform 

and the RNeasy kit (74104, Qiagen). RNA was qualitatively and quantitatively assessed via gel electrophoresis and 

NanoDrop spectrophotometry (Nanodrop1000), respectively, aliquoted and flash frozen in liquid nitrogen and 

stored at -80C. First strand cDNA synthesis was performed with the ReadyScript cDNA synthesis kit (RDRT, 

Sigma Aldrich) according to the manufacturer’s instructions. qPCR was performed in 96 well plate format, with 

each reaction containing 0.4 µm each primer, 50 ng cDNA, and 1X SensiFast SYBR Hi-ROX qPCR master mix 

(BIO-92005, Bioline) in 20 µl total; reactions were measured on a StepOnePlus (Applied Biosystems). The gene 

encoding 40S Ribosomal Protein S7 (RPS7) was chosen as a comparison/baseline gene due to its demonstrated 

stability in a previous study [Lehnert]. Primers are in Supp. Table S2; all primer pairs were validated by amplicon 

sequencing through either TOPO-TA cloning (450071, Thermo Fisher Scientific) according to the standard 
protocol or, for Acropora and Nematostella, direct sequencing of qPCR products, with at least three sequences per 

product. Additionally, melt curves performed after each qPCR run confirmed the existence of single products per 

reaction. Amplification efficiencies of each primer pair were determined by a 3- or 4-point dilution series. Output 
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was analyzed with the Bayesian analysis pipeline MCMC.qPCR [Matz] run according to standard protocol 

(https://matzlab.weebly.com/data--code.html). For Acropora adults and embryos, the model was run with ‘naïve’ 

parameters. For comparative expression within symbiotic Aiptasia and fed Nematostella, the analysis was run with 

‘informed’ parameters setting RPS7 as a reference gene. Log2 (fold change) and Log2 (transcript abundance) were 

determined from command ‘HPDsummary’ with and without ‘relative=TRUE’, respectively; p-values of 

differential expression were calculated with command ‘geneWise’ on the former. 

 

Table S2. Primers for qPCR in Aiptasia, Nematostella, and Acropora digitifera 
Species Gene Accession # Sequence 5’ – 3’ 

Aiptasia 

NPC2 

XM_021041171.1 TGTCCACGGGAAAGTGATGG 

AACGACTGAAATCGCTGGGT 

XM_021041174.1 GGGACGGATGTGAGCATGAA 

CATGGCATGCTTCTGGGTTG 

XM_021046710.1 TACCGATGCATGCCAAGGTT 

GGGGATCCATCACCTCTCCT 

XM_021052412.1corrected CTTCACGGACTGTGGCTCAT 

GCTGCACTGACTTGTTCGTG 

XM_021052404.1 CAAGTGACGACCCATGCTCT 

GTGGCCACTGCATGCATTAG 

XM_021052381.1 AACGAGGAGGAACAAACGCT 

GTCAAGCCGTGACCAGTACA 

RPS7 
KXJ15968.1 ACTGCAGTCCACGATGCTATCCTT 

GTCTGTTGTGCTTTGTCGAGATGC 

Nematostella 

NPC2 

XM_001622824.1 ACATTTGTTCCGCATGTCACTC 

GACATACTTGGTTCCAGGCTCA 

XM_001627305.1 GTGTGTGATCAAGAGAGGAGCA 

TAACCCTTACATCCGTCCGAGT 

XM_001635452.1 ACCTCTCCCTATTCCCTCAGAC 

GAATCTGTTACTGCCGCCTTCA 

RPS7 
jgi|Nemve1|54581|gw.133.186.1 AAGTCCAGGAACCAGAAGCAAA 

AGTGAACTTTGATGACTCGGGA 

Acropora 

NPC2 

XR_001561549.1 TGTGTCCTCCATAATCATCGCA 

GCGTTTGAACACACACGGATTA 

XM_015898926.1 AGTCATTATCACTCCTTGCCCG 

ATGGGAAACGCACACCTTCTAT 

XM_015898919.1 CTGTCCCATTCCCCATTTCTCA 

GCAATTGCCATTTGACGACAAG 

XM_015910954.1 GCTCTACGGTCAGTGTAACAGT 

TTTCGAGAGGACATGTCACACC 

XM_015898921.1 TGATTTTCAAGCCAAGGGAAGC 

GTTGGGCTTTAATGGGCATTCA 

New_### TGTTCGCTTCAAAAACTGTGCA 

AGTGTCCCTCTCCTGATGGTTA 

New_### GAACGTGACTCCATGCGACAG 

AAGGGCAACTCTTTCTGTATGC 

RPS7 
XM_015898841.1 ACGTATCAAGTTGGATGGCTCA 

TTACCAGTGAGCTTCTTGTACACA 

 

Nematostella embryonic development. Expression data on Nematostella embryonic development and comparative 

adults were obtained from NvERTx [Warner] (http://ircan.unice.fr/ER/ER_plotter/home). Transcripts were 

identified by BLAST search to the NvERTx database as the NPC2 homologues XM_001622824.1 
(NvERTx.4.51280); XM_001627305.1 (NvERTx.4.192779); XM_001635452.1 (NvERTx.4.142169), and the 

RPS7 homologue jgi|Nemve1|54581|gw.133.186.1 (NvERTx.4.145315). Transcript abundance counts at 0 h post-

fertilization (unfertilized) were taken from the Counts table, comprising duplicate samples of 300 embryos per 

sample [Fischer]. As a baseline for typical gene expression in adults, transcript abundance counts were taken from 

the “uncut controls” (UC) in an adult regeneration experiment, comprising triplicate samples of untreated 6-week-

old adults, 300 animals per sample [Warner]. 

 

Sterol profiling with gas chromatography/mass spectrometry (GC/MS) 

Samples were extracted with a modified Bligh-Dyer method: briefly, either 300 µl aqueous animal homogenate 

(Aiptasia or Nematostella adults) was added to 750 µl HPLC-grade methanol, or 300 µl ulta-pure water was added 

to the sample already in 750 µl methanol or ethanol (Acropora). The mixture was incubated shaking at 70C for 45 

min, combined with 375 µl HPLC-grade chloroform and 300 µl ultra-pure water, thoroughly mixed, and 

centrifuged for 10 min at 4C at 6000xg. The lower organic phase was then dried fully by vacuum centrifugation at 
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≤ 45C and then saponified by adding 500 µl of 5% KOH in a 9:1 methanol:water solution and incubating at 68C 

for 1 h. The mixture was then combined with 250 µl water and 750 µl chloroform, centrifuged 10 min at 6000xg, 

and the organic phase was isolated and dried to completion with a SpeedVac. Lipids were derivatized to 

trimethylsilyl ethers with 25-40 µl MSTFA in Pyridine (#69479, Sigma Aldrich) at 60C for 0.5-1 h and 

immediately analyzed. 1 µl of each mixture was injected into a QP2010-Plus GC/MS (Shimadzu) and with a 

protocol (adapted from [Schouten]) as follows: oven temperature 60C, increase to 130C at 20C/min, then 

increase to 300C at 4C/min and hold for 10 min. Spectra were collected between m/z 40 and 850 and data were 

analyzed in GCMS PostRun Analysis Software (Shimadzu). Spectra were compared to the National Institute of 

Standards and Technology 2011 database for matches; retention time relative to cholesterol and high-confidence 

database matches, were used to assign sterol identities and matching sterols between samples. Relative sterol 

composition as percent of total sterols were calculated from integrated peak intensity on the total ion 

chromatograph for each sample.  

 

Aiptasia-specific anti-NPC2 antibodies 

Antibodies were raised against the peptides K-YGIDVFCDEIRIHLT (XM_021052412), K-AKNDIFCNSIPFNLV 

(XM_021052404), and K-VQNNVLCGEVTLTLM (XM_021052381) coupled to the adjuvant keyhole limpet 

hemocyanin in rabbits (BioScience GmbH). Antibodies were affinity-purified from the antisera with the peptides 
coupled to NHS-Activated Sepharose Fast Flow 4 (17090601, GE Health Care Life Sciences) according to the 

manufacturer’s protocols. 
 

Western blots of Aiptasia and Symbiodinium homogenates 

Two aposymbiotic or symbiotic adult Aiptasia were homogenized in buffer A with 2X Halt Protease Inhibitor 

Cocktail (78430, Thermo Fisher Scientific) and then sonicated on ice (Sonifier 250, Branson Ultrasonics) with two 

rounds of 25 pulses at duty cycle 40%, output control 1.8. From a culture of Symbiodinium strain SSB01, 1.2x107 

cells were collected by centrifugation at 6,000xg at RT. After addition of buffer A and glass beads (425-600 µm), 

cells were disrupted by vortexing six times for 1 min each, with 1 min on ice in between each. Homogenates were 

then transferred to a new tube with syringe (G23 needle) for further disruption. All homogenates were then 

centrifuged at 20,000xg for 10 min at 4C, and three sets of identical volumes of the supernatants were resolved on 

a 12% Tricine-SDS-Page gel and transferred by Western blot onto nitrocellulose membranes. Membranes were 

blocked for 1 h in 5% milk PBS-T and then incubated with antibodies raised against three different non-canonical 

Aiptasia NPC2s (XM_021052404 at 1:4000, XM_021052412 at 1:1000 and XM_021052381 at 1:500) and anti-

tubulin (T90026, Sigma-Aldrich) as loading control at 1:1000 in 5% milk PBS-T at 4C overnight, followed by 

incubation with HRP-coupled anti-rabbit and HRP-coupled anti-mouse (Jackson ImmunoResearch) at 1:10000 in 

5% milk PBS-T at RT for 1 h, and then detection with ECL (GERPN2232, Sigma-Aldrich) and imaging on ECL 

Imager (ChemoCam, Intas). 

 

Immunoprecipitation-lipidomics of NPC2-sterol binding 

Cell culture lysates and symbiont extracts. For recombinant expression, either a canonical (XM_021041171) or a 

non-canonical (XM_021052404) Aiptasia NPC2 protein with the signal peptide and stop codon removed were 

cloned behind the cytomegalovirus promoter in a pCEP-based vector followed by a five-proline linker, cleavage-

resistant mCherry (crmCherry) [Huang], and 3xHA tag (YPYDVPDYA); a control vector contained only 

crmCherry:3xHA. Vectors were transiently transfected with Lipofectamine2000 (11668019, Invitrogen/Thermo 

Fisher Scientific) according to the manufacturer’s protocol into HEK cells in 10 cm diameter dishes. Cells were 

harvested after growth for 48 h at 32C by rinsing with PBS, addition of 1 ml of buffer A, B, C, or D (see Buffers 

below) with Halt Protease Inhibitor Cocktail at 2X (78430, Thermo Fisher Scientific), and scraping with a cell 

scraper. The resulting lysates were then sonicated on ice (Sonifier 250, Branson Ultrasonics) with two rounds of 25 

pulses at duty cycle 40%, output control 1.8, centrifuged at 20,000xg for 20 min at 4C, and supernatants used in 

binding assays. Approximately 2.5x108 cells of Symbiodinium strain SSB01 [Xiang] approx. 7 d after passaging 

were collected by centrifugation at 6000xg at 22°C. Cells were washed in 10 ml of Buffer A, B, C, or D (per the 

corresponding HEK cell lysate), and then 5ml buffer was added to the pellet and cells were sonicated twice for 5 

min at duty cycle 80%, output control 3. We noted that extracts were best when allowed to heat slightly (not 

boiling) during sonication. Extracts were centrifuged at 6000xg for 10 min at RT, and supernatants used in binding 

assays. 

 
Immunoprecipitation. Cell lysates were incubated together with symbiont extracts (450 µl and 500 µl, respectively) 

for 30 min at room temperature (21-23C) rotating, after which 25 µl anti-HA beads (130-091-122, Miltenyi 

Biotech) were added and the mixtures incubated rotating at RT for a further 30 min. Mixtures were then passed 

through magnetic columns on a magnetic plate (130-042-701, Miltenyi Biotech) pre-rinsed with 200 µl of the 
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corresponding Buffer A, B, C, or D. Bound material on the column was rinsed four times with Buffer A, B, C, or D 

with protease inhibitor, and then once with the corresponding buffer half-diluted and without protease inhibitor. 

Lipids were eluted by application of 20 µl HPLC-grade methanol to the column for 5 min incubation, followed by 

100 µl methanol and collected into HPLC glass bottles with glass inserts and Rubber/PTFE caps (Neochrom, 

NeoLab). Eluates were immediately transferred to ice and then -20C until lipidomics processing on the same day. 

Proteins were then eluted by application of 20 µl loading dye (20 mM DTT, 60 mM Tris pH 6.8, 20% glycerol, 1% 

SDS, 0.01% Bromophenol blue) at 100C to the column for 5 min incubation, followed by 50 µl loading dye and 

collection. Samples were then heated to 95C for 3 min and then immediately resolved by SDS PAGE on 10% 

Tris-Glycine gels and transferred by Western blot onto nitrocellulose membranes. Membranes were blocked for 1 h 

in 5% milk TBS-T and then incubated with anti-mCherry (PA5-34974, Thermo Fisher Scientific) at 1:3000 in 5% 

milk TBS-T at 4C overnight, followed by incubation with conformation-specific HRP-coupled anti-rabbit (5127S, 

Cell Signaling Technology) at 1:2000 in 5% milk TBS-T at RT for 2 h, and then detection with ECL (GERPN2232, 

Sigma-Aldrich) and imaging on ECL Imager (ChemoCam, Intas). 

 

Immunoprecipitation from Aiptasia homogenates. Purified polyclonal antibody against XM_021052404 (described 

above) was coupled to epoxy magnetic beads in the Dynabeads Antibody Coupling Kit (14311, Thermo Fisher 

Scientific) per the manufacturer’s instructions. Beads (1 mg per reaction) were then incubated with homogenates of 

Aiptasia CC7 for 16 h rotating at 4C; control reactions contained uncoupled beads. After washing, protein-lipid 

complexes were immunoprecipitated via magnetic separation and eluted from beads with 200 mM glycine, pH 2.3, 

then neutralized with 0.1 M Tris-HCl, pH 8.5. An aliquot was taken for Western blot visualization of proteins; the 

remainder was extracted for lipids with a mixture of chloroform:methanol:water (final ratios 8:4:3). After 5 min 

centrifugation at 3000xg, the organic phase was isolated and dried completely by vacuum centrifugation at 30C 

for 1.5 h, and then reconstituted with 100 µl methanol and collected into HPLC glass bottles with glass inserts and 

Rubber/PTFE caps (Neochrom, NeoLab). Eluates were immediately transferred to ice and then -20C until 

lipidomics processing on the same day. 

 

Buffers: A: 200 mM Ammonium Acetate, pH 7; B: 200 mM Ammonium Acetate, pH 5; C: 50 mM MES, 150 mM 

NaCl, 0.004% Nonidet P-40; D: 50 mM Tris, 150 mM NaCl, 0.004% Nonidet P-40, pH 7.5. 

 

Lipidomics. 50 µl of each eluate was added to chloroform-rinsed glass tubes, followed by addition of 100 pmol 

cholesterol-D6 as an internal standard. Samples were dried under nitrogen, derivatized with addition of 50 µmol 

acetylchloride in methylene (708496, Sigma Aldrich) for 30 min at RT, and then dried under nitrogen again. 

Samples were then dissolved in 100 mM ammonium acetate in methanol and loaded into 96-well plates for analysis. 

A standard curve in duplicate of pmol cholesterol/stigmasterol at 50/25, 250/125, 500/250 was always processed in 

parallel. Samples were injected by a TriVersa NanoMate autosampler (Advion) held at 10C on nanospray mode 

with positive polarity at 1.2 kV and 0.4 psi gas pressure through a D-Type silicon chip with 4 µm nominal diameter. 

Samples were analysed on a QTRAP 5500 (SCIEX) Hybrid Triple-Quadrupole/Linear Ion Trap at 60C in positive 

ion and neutral loss scan mode (loss of acetate, 77.05 Da), with low Q1 resolution and high Q3 resolution at a scan 

rate of 200 Da/sec and 120 scans total. The DMS (differential mobility spectrometer) to select for ion mobility was 

enabled and ran at 60C, medium pressure (24 psi), and a compensation voltage (COV) of 4.4 kV. In every run a 

pooled mixture of all samples was run with a COV ramp from 0 to 20 kV to confirm the appropriate COV. The 

machine was driven by Analyst software version 1.6.3 (SCIEX), and output was processed in LipidView software 

to detect and quantify sterols by peak intensities. Sterol concentrations were calculated by normalization to the 

cholesterol-D6 internal standard, subtraction of blank samples, and comparison to the standard curve. 

 

Immunofluorescence of NPC2 in Aiptasia larvae 

Fixed larvae in PBS at 4°C were permeabilized in PBT for 2 h at RT. Samples were then incubated in blocking 

buffer (5% normal goat serum and 1% BSA in PBT) overnight at 4°C and then with primary antibody diluted in 

block buffer for 4 h at RT at the following concentrations: 45 μg/ml (XM_021052404), 15 μg/ml (XM_021052412), 

and 20 μg/ml (XM_021052381). Samples were then washed twice for 5 min with PBT at RT, twice for approx. 18 

h at 4°C, then incubated with secondary antibody (goat anti-rabbit IgG-Alexa488; ab150089, Abcam) diluted to 4 

μg/ml in block buffer for approx. 5 h at RT. Samples were then washed with PBT three times for 5 min each at RT, 

then approx. 18 h at 4°C. Sample were then incubated with Hoechst 33342 at 10 μg/ml in PBT for 1 h at RT, 

washed 3x with PBT for 5 min each, and then washed into PBS at 4°C overnight. PBS was replaced with 95% 

glycerol with 2.5 mg/ml DABCO, and the larvae were mounted for microscopy.   

 

U18666A exposure in Aiptasia and A. digitifera 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 25, 2018. ; https://doi.org/10.1101/399766doi: bioRxiv preprint 

https://doi.org/10.1101/399766


 16 

Adult Aiptasia polyps were added to 6-well culture plates and allowed to attach for 2 d before exposure to 

U18666A (U3633, Sigma Aldrich) in DMSO at the indicated concentrations in FASW, where the final percentage 

of DMSO in the FNSW was <0.05%. Polyps were cultured at 26°C at 12:12 L:D and daily photographed followed 

by wash and drug re-addition. Acropora polyps hosting Symbiodinium SSB01 were exposed to U18666A as 

described, except that they were cultured in FNSW. 

 

Microscopy 

Confocal microscopy of NPC2 immunofluorescence was performed using a Leica SP8 system with and HC PL 

Apo CS2 63x/1.30 GLYC objective. Hoechst was excited at 405 nm and detected at 410-501 nm, and algal 

autofluorescence was excited at 633 nm and detected at 645-741 nm. In a second sequential scan, Alexa-488 

(secondary antibody) was excited at 496 nm and detected at 501-541 nm. Z-stacks were collected with a step size 

of 0.5 μm and 3x line averaging. A zoom factor of 5 or, for whole larvae, 1.33, was used, and a pinhole of 1 Airy 

unit. Quantification and imaging NPC2 IF over a time-course was carried out using a Nikon Eclipse Ti 

epifluorescence compound microscope with a Plan Apo λ 40x objective, Sola light source, and GFP filter set. 

Images were captured with a Nikon DS-Qi2 with an exposure time of 1 s. Three replicates at each time-point were 

quantified, with quantification proceeding until 50 infected larvae per replicate were counted. At least three 

replicates per time-point were carried out. Fluorescence microscopy of Aiptasia adults was carried out using a 

Nikon SMZ18 fluorescence stereoscope with a 0.5X objective; endogenous autofluorescence of Symbiodinium 

photosynthetic antennae was visualized with a Texas Red filter set, and images were captured at magnification 15X 

with an Orca-Flash4.0 camera (C11440, Hamamatsu) at 300 ms exposure using Nikon Elements software. 

Acropora polyps were photographed as described [Wolfowicz]. 
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Supplementary Material 

 

 

 

 

 
 

Supp. Fig. S1. Differential maternal loading of canonical and non-canonical NPC2 transcripts in embryos of Acropora 

and Nematostella. Left, Expression in Nematostella vectensis adults and in embryos. From RNAseq 

regeneration/development dataset on NvERTx server [Warner, Fischer, Helm]. Right, Expression in both Acropora digitifera 

parent colonies and their offspring immediately after spawning. qPCR average of two biological replicate samples, each 

sample in technical duplicate. Average value ±SD (error bars). Difference between non-canonical NPC2s in adults and 

embryos significant, Student’s paired t-test, p=0.007 (canonical, p=0.18). 

 

 

 

 

 

 

 

 

 

 
 

Supp. Fig. S2. Some of the symbiont-produced sterols. Symbionts, like their dinoflagellate relatives, produce many sterols, 

including the unique gorgosterol with its unusual cyclopropyl group. Colors correspond to those in Fig. 3 A, C. 
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Supp. Fig. S3. Additional adaptive evolution analysis of Aiptasia canonical and non-canonical NPC2s. Relative 

evolutionary rates per residue for the investigated Aiptasia canonical (XM_021041171) and non-canonical (XM_021052404) 

proteins mapped onto the sequence alignments from Fig. 3A. Relative rates were calculated with Rate4Site [Mayrose] using 

sequence alignments of Aiptasia and Nematostella canonical or non-canonical proteins (see Methods). Conservation scores 

from both outputs were transformed to z-scores, which were smoothened by averaging within a sliding-scale window of 3 

residues. 

 

 

 

 

 

 

 

 
 

 

Supp. Fig. S4. Immunoprecipitation-lipidomics: protein inputs and immunoprecipitation (IP) elutions. HEK cell lysate 

input containing recombinant NPC2s or crmCherry control, and subsequent protein elutions of anti-HA IP reactions, in 

duplicate. After washing, lipids were eluted (Fig. 3C-D) from IP reactions prior to protein elution shown here.  
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Supp. Fig. S5. Dynamic recruitment of other non-canonical NPC2s to intracellular symbionts increases as symbiosis 

matures. Top, Immunofluorescence (IF) of non-canonical NPC2s in Aiptasia larvae containing intracellular symbionts of 

Symbiodinium strain SSB01 at 3 and 14 dpf. Merge channels as in Fig. 4. Control, secondary antibody only. Scale bar, 25 m. 

Bottom, Example images for quantification of NPC2 IF time-course in Fig. 4C-D, with strong and weak NPC2 staining 

indicated by arrows. Control, secondary antibody only. 
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