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Abstract 

Genetic studies promise to provide insight into the molecular mechanisms 

underlying type 2 diabetes (T2D). Variants associated with T2D are often 

located in tissue-specific enhancer regions (enhancer clusters, stretch 

enhancers or super-enhancers). So far, such domains have been defined 

through clustering of enhancers in linear genome maps rather than in 3D-

space. Furthermore, their target genes are generally unknown. We have now 

created promoter capture Hi-C maps in human pancreatic islets. This linked 

diabetes-associated enhancers with their target genes, often located 

hundreds of kilobases away. It further revealed sets of islet enhancers, super-

enhancers and active promoters that form 3D higher-order hubs, some of 

which show coordinated glucose-dependent activity. Hub genetic variants 

impact the heritability of insulin secretion, and help identify individuals in 

whom genetic variation of islet function is important for T2D. Human islet 3D 

chromatin architecture thus provides a framework for interpretation of T2D 

GWAS signals. 
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Introduction 

Protein-coding mutations account for most known causes of Mendelian disease, yet 

fail to explain the inherited basis of most polygenic disorders. Recently, hundreds of 

thousands of transcriptional enhancers have been mapped to the human genome, 

holding promise to decipher disease-causing noncoding genetic variants 1-3. A 

standing challenge is to connect distal enhancers with the target genes that mediate 

disease-relevant cellular phenotypes. 

 Type 2 diabetes (T2D) affects more than 400 million people worldwide 4, and 

is a classic example of a polygenic disease in which noncoding sequence variation 

plays a central predisposing role 5. Several lines of evidence implicate noncoding 

sequence variation in the pathogenesis of T2D, such as the lack of plausible protein-

coding causal variants at most associated loci 6, and the enrichment of associated 

variants in pancreatic islet enhancers or eQTLs 7-11. T2D susceptibility variants are 

particularly enriched in active islet enhancer clusters –variably defined as super-

enhancers, COREs, enhancer clusters, or stretch enhancers 7,8,12,13. Enhancer 

clusters in other cell types are also enriched in risk variants for common diseases, 

and have been shown to harbor somatic oncogenic mutations 7,8,14-19. Despite the 

importance of enhancer clusters, several pivotal questions remain unaddressed. 

First, enhancers can loop over long distances to gain proximity with their target 

genes. This warrants a need to link enhancer clusters to their target genes based on 

their spatial proximity in disease-relevant cells. Second, enhancer clusters have so 

far been defined with unidimensional epigenome maps, which do not necessarily 

reflect the capacity of enhancers to cluster in three-dimensional (3D) nuclear space. 

A definition of enhancer clusters based on 3D proximity could thus provide more 

relevant definitions of genomic spaces that underlie human disease.   

 Here, we describe a chromatin interactome map of human pancreatic islets. 

Because most enhancer-based long-range chromatin interactions are not captured 

by untargeted Hi-C methods, we used promoter capture Hi-C (pcHi-C) 20, an 

approach that enables high-resolution mapping of interactions between promoters 

and their regulatory elements. Using genome and epigenome editing we validated 

predicted gene targets of T2D-associated islet enhancers. We further describe 

hundreds of tissue-specific enhancer hubs formed by groups of enhancers that 

cluster with key islet gene promoters in a restricted 3D space. Finally, we 

demonstrate that islet hub enhancers have the potential to stratify individuals in 
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whom T2D susceptibility is predominantly driven by pancreatic islet regulatory 

variants. 

 

Results 

The promoter interactome of human islets.  

To create a genome-wide map of long-range interactions between gene promoters 

and distant regulatory elements in human pancreatic islets, we prepared Hi-C 

libraries from four human islet samples. We performed hybridization capture of 

31,253 promoter-containing HindIII fragment baits and their ligated DNA fragments, 

which were then sequenced and processed with the CHiCAGO algorithm to define 

promoter-interacting DNA fragments 20,21 (Figure 1a,b, Supplementary 1a-c). This 

resulted in 175,784 high-confidence interactions (CHiCAGO score > 5) between 

annotated promoters and distal genomic regions. We independently validated pcHi-C 

landscapes at two loci by 4C-seq analysis in the EndoC-βH1 human β cell line 22 

(Supplementary Figure 1j,k).  

In parallel, we created new human islet ChIP-seq and ATAC-seq datasets, 

and refined human islet epigenome annotations to subclassify active enhancers 

according to Mediator, cohesin, and H3K27ac occupancy patterns (Figure 1b-d, and 

Extended Data 1.1), which were then integrated them with 3D chromatin maps. This 

showed that, expectedly, promoter-interacting genomic regions were markedly 

enriched in active enhancers, promoters, and CTCF-bound regions (Figure 1b,e, 

Supplementary Figure 1d-f). Islet interacting regions that were also observed in 

distant cell types were enriched in CTCF-binding sites and active promoters, 

whereas islet-selective interacting regions were enriched in active enhancers 

(particularly enhancers with strong Mediator occupancy, which we term class I 

enhancers) and islet-specific promoters (Supplementary Figure 1g-i). This 

genome-scale map of the human pancreatic islet promoter interactome is accessible 

for visualization along with pcHi-C maps of other human tissues (www.chicp.org) 23, 

or as virtual 4C representations for all genes along with other islet regulatory 

annotations (http://isletregulome.org/regulomebeta/) 24. 
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Identification of target genes for pancreatic islet enhancers.  

Long-range chromatin interactions are largely constrained within topologically 

associating domains (TADs), which typically span hundreds of kilobases and are 

often invariant across tissues 25,26 (Supplementary Figure 2a-e). TADs, however, 

define broad genomic spaces that do not inform on the specific interactions that take 

place in each tissue between individual cis-regulatory elements and their target 

genes. Human islet pcHi-C maps identified high-confidence pcHi-C interactions 

(CHiCAGO score > 5) between gene promoters and 18,031 different islet enhancers, 

comprising ~40% of all annotated islet enhancers (Figure 2a). 

 High-confidence interactions between enhancers and their target genes can 

be missed due the high stringency of detection thresholds, the strong bias of Hi-C 

methods against detection of proximal interactions, or the likely dependence of some 

interactions on specific physiological conditions. We thus used pcHi-C data to impute 

additional enhancer-promoter assignments. To this end, we considered promoter-

associated three-dimensional spaces (PATs). A PAT is defined as the space that 

contains all pcHi-C interactions that stem from a promoter bait (Supplementary 

Figure 2f-i). We observed that PATs that have a high-confidence interaction with an 

enhancer exhibit features that distinguish them from other PATs. For example, they 

tend to show other enhancer-promoter interactions.  We thus used PAT features to 

impute plausible target promoter(s) of an additional 18,633 islet enhancers that did 

not show high-confidence interactions (Figure 2a; see also Supplementary Figure 

2k and Methods for a detailed description of the imputation pipeline). The 

distribution of CHiCAGO scores of imputed promoter-enhancer pairs showed a 

significant shift toward higher values compared with the same promoters paired with 

unassigned enhancers from the same PATs or TADs (Kruskall-Wallis P < 10-323 ; 

Supplementary Figure 2l). In total, we assigned 36,664 human islet active 

enhancers (80% of all enhancers) to at least one candidate gene (Figure 2a, 

Extended Data 1.2).  

To validate assignments, we calculated normalized H3K27ac signals in 

assigned enhancer-promoter pairs across human tissues and human islet samples, 

and found distinctly higher correlation values than for pairs of enhancers and 

distance-matched promoters from the same TAD or PAT (Figure 2b). Importantly, 

this was true for both high-confidence interacting and imputed assignments (Figure 

2b). Furthermore, islet-selective expression was enriched in enhancer-assigned 
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genes but not in unassigned genes from the same TAD, as expected 

(Supplementary Figure 2m).  

To further test enhancer-promoter assignments, we used a dynamic 

perturbation model. We exposed human islets from 7 donors to moderately low (4 

mM) or high (11 mM) glucose for 72 hours, which correspond to quasi-physiological 

glucose concentrations. This led to significant glucose-dependent changes in 

H3K27ac levels (at adjusted P < 0.05) in 3,850 enhancers, most of which showed 

increased activity at high glucose concentrations (Supplementary Figure 2n). This 

indicates that changes in glucose concentrations elicit global quantitative changes in 

enhancer activity in pancreatic islets. We predicted that if glucose-regulated 

enhancers cause glucose-regulated expression of their target genes, this should be 

reflected in our enhancer-promoter assignments. Indeed, glucose-induced 

enhancers were preferentially assigned to genes that showed glucose-induced 

mRNA levels, compared with distance-matched actively transcribed control genes 

from the same TAD (odds ratio 2.7 and 2.6, Fisher’s P = 4.9 x 10-16 and 6.4 x 10-12, 

for high-confidence or imputed assignments, respectively) (Figure 2c). By contrast, 

glucose-induced enhancers were not preferentially assigned to glucose-inhibited 

genes (Figure 2c). Likewise, genes assigned to glucose-induced enhancers showed 

significantly greater glucose-induction of promoter H3K27ac than distance-matched 

promoters in the same TAD (Figure 2d). Taken together, these findings indicate that 

pcHi-C identifies functional target genes of transcriptional enhancers in human 

pancreatic islets. 

  

Identification of transcriptional targets of T2D-relevant enhancers. A 

fundamental challenge to translate GWAS data into biological knowledge is that the 

target genes of disease-associated regulatory variants are often unknown. To link 

noncoding variants to their target genes, we compiled T2D and/or fasting glycemia 

(FG) associated variants from 109 loci, most of which had been fine-mapped to a 

credible variant set (Supplementary Figure 3a, Extended Data 1.3 and Methods). 

We identified 62 loci that contain candidate causal T2D and/or FG-associated 

variants that overlap islet enhancers. For 54 (87%) of these loci we assigned one or 

more candidate target genes (Figure 3a, Supplementary Table 1 and Methods). 

Some of these target genes were expected based on their linear proximity to the 

associated variants (e.g. ADCY5, TCF7L2, PROX1, FOXA2), but for 72% of loci we 
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identified more distant candidate genes. Examples of unexpected distal target 

genes, sometimes in addition to previously nominated proximal genes, include SOX4 

(in the CDKAL1 locus), OPTN (CDC123/CAMK1D), TRPM5 (MIR4686), PDE8B 

(ZBED3), SLC36A4 (MTNR1B), POLR3A and RPS24 (ZMIZ1), and PHF21A (CRY2) 

(Figure 3a,b, Supplementary Table 1, see http://isletregulome.org/regulomebeta/ 

or www.chicp.org). 	  

 We used genome editing to validate target genes of diabetes-relevant 

enhancers. We performed these experiments in EndoC-βH3 cells, a glucose-

responsive human β cell line27 that recapitulates an enhancer profile that closely 

resembles that of human islets (unpublished).  

We first examined variants located between CDC123 and CAMK1D. Amongst 

the credible set of T2D-associated variants from fine-mapping studies, only one SNP 

is located in an islet enhancer, and it was found to show allele-specific enhancer 

activity in EndoC-βH3 cells (Figure 3c, Supplementary Figure 3b,c). This 

enhancer showed high-confidence pcHi-C interactions with an unexpected distant 

gene, OPTN, and moderately confident interactions (CHiCAGO = 4.42) with 

CAMK1D (Figure 3c, Supplementary Figure 3b). Accordingly, deletion or 

epigenetic silencing of this enhancer (but not of an adjacent region) led to selectively 

decreased β cell expression of both OPTN and CAMK1D (Figure 3d, 

Supplementary Figure 3d,e), whereas targeted activation of the enhancer 

stimulated their expression (Supplementary Figure 3f). These results confirm 

functional relationships predicted by pcHi-C maps, and point to OPTN and CAMK1D 

as candidate mediators of this T2D-associated genetic signal.  

We then focused on rs7903146, a plausible causal SNP in the TCF7L2 locus. 

This is the strongest known genetic signal for T2D, that is also known to influence 

islet-cell traits in non-diabetic individuals5,28-30. rs7903146 lies in a class I enhancer 

with unusually high Mediator occupancy (Supplementary Figure 3g). The SNP 

causes allele-specific accessibility and episomal enhancer activity in islet cells13, 

although it is unknown if this enhancer regulates TCF7L2 because deletion of the 

enhancer in human colon cancer cells affects ACSL5 rather than TCF7L231. We 

found that the rs7903146-bearing enhancer has imputed and moderate confidence 

interactions with TCF7L2, but not with other genes (Supplementary Figure 3g). 

Consistently, deletion and targeted activation of the enhancer caused selective 

changes in TCF7L2 mRNA (Supplementary Figure 3h,i). Therefore, the enhancer 
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that harbors rs7903146 regulates TCF7L2 in human β cells. Regardless of the 

possible metabolic role of this locus in other cell types32, this finding indicates that 

TCF7L2 is a likely mediator of the genetic association between rs7903146 and islet-

related traits.  

Taken together, these examples illustrate the utility of human pcHi-C maps to 

connect regulatory elements that harbor T2D-associated variants with functional 

target genes that can mediate disease susceptibility mechanisms. 

 

Islet-specific transcription is linked to enhancer hubs.  

Earlier studies demonstrated that risk variants for common diseases such as T2D 

are highly enriched in enhancer clusters that regulate key cell identity genes 

(enhancer clusters, stretch enhancers, or super-enhancers) 7,8,12,13. We hypothesized 

that such domains could be more accurately defined by considering how enhancers 

cluster in 3D space. To identify 3D domains that regulate islet-cell identity genes, we 

considered multiple features of PATs (e.g. number and tissue-specificity of pcHi-C 

interactions, number of enhancer-based interactions, distance to TAD borders), and 

used multiple logistic regression analysis to assess which of these are most 

informative to predict islet-specific gene expression (see Supplementary Figure 4a 

and Methods for further details). This showed that the presence of ≥3 class I 

enhancers (enhancers with highest H3K27ac and Mediator occupancy, Figure 1c) in 

a PAT was a strong predictor (Supplementary Figure 4a). We thus identified all 

2,633 PATs with ≥3 class I enhancers (enhancer-rich PATs) (Supplementary 

Figure 4b). Many active enhancers (~40%) had high-confidence interactions with ≥1 

promoter (Supplementary Figure 4c), and we thus merged enhancer-rich PATs 

with other PATs that were connected through common enhancer-mediated high-

confidence interactions, yielding 1,318 islet enhancer hubs (Figure 4a, 

Supplementary Figure 4d and Extended Data 1.4). Enhancer hubs, therefore, are 

3D chromatin domains that contain one or more interconnected enhancer-rich PATs. 

They contain a median of 18 enhancers and two active promoters connected through 

two shared enhancer interactions (Supplementary Figure 4e). They are often 

tissue-specific interaction domains, because hub promoters had 2.8-fold more islet-

selective interactions than non-hub promoters (Wilcoxon’s P = 2.8 x 10-36) 

(Supplementary Figure 4f, examples in Figure 1b, 5a, Supplementary Figures 
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1j,k and 5a). Importantly, the genes that form part of enhancer hubs are enriched in 

islet-selective transcripts (Figure 4b) and in functional annotations that are central to 

islet cell identity, differentiation, and diabetes (Figure 4c, Supplementary Table 2). 

Consistent with the high internal connectivity of hubs, gene pairs from the 

same hub showed increased RNA expression correlation values across tissues and 

islet samples, as compared to control gene pairs from the same TAD (P = 6.3 x 10-8) 

(Figure 4d). Moreover, hub enhancers and their target promoters showed higher 

H3K27ac correlations than when they were paired with non-hub promoters (P = 2.2 x 

10-16) (Figure 4e). These findings are consistent with enhancer hubs as functional 

regulatory domains.  

We next tested the functional connectivity between hub enhancers and 

promoters in a hub that contains GLIS3, a gene that is mutated in neonatal diabetes 

but also harbors T1D and T2D susceptibility variants 33-35. We identified an intronic 

class I enhancer containing four T1D-T2D risk variants that alter episomal enhancer 

activity (Supplementary Figure 4g,h). This enhancer showed indirect interactions 

with a nearby islet-specific GLIS3 promoter through common hub enhancers, and 

direct interactions with RFX3, another islet transcription factor gene 36 

(Supplementary Figure 4g). In line with such interconnectivity, deletions of the 

enhancer led to decreased mRNA levels of both hub genes, GLIS3 and RFX3 

(Supplementary Figure 4i). These studies, therefore, identify functional target 

genes of an enhancer that harbors diabetes-associated variants, and points to 

functional connectivity of two enhancer hub promoters.  

To further explore the behavior of hubs as functional domains, we again 

examined islets exposed to moderately low vs. high glucose concentrations, using 

above-mentioned datasets. Glucose-induced enhancers and mRNAs were highly 

enriched in hubs, compared with non-hub genomic regions (Fisher’s P = 1.1 X 10-7 

and 2.2 X 10-16, respectively). Of 297 promoters that showed increased H3K27ac at 

high glucose, 94 were contained in hubs, and 65% of these also showed a significant 

glucose-dependent mRNA increase (Supplementary Table 3). If hubs are indeed 

regulatory domains, we expect that hub enhancers connected to glucose-induced 

genes should show concordant glucose-dependent changes. We found that hubs of 

glucose-induced promoters showed a widespread parallel increase in H3K27ac 

levels of their enhancers (Figure 4f-h). Thus, varying glucose concentrations can 

elicit chromatin changes in human islets at the level of broad regulatory domains. 
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Taken together, our findings indicate that enhancer hubs are often regulated by 

varying glucose concentrations, and they have properties of functional regulatory 

units.   

 

Enhancer hubs contain super-enhancers and enhancer clusters.  

We compared islet enhancer hubs with previously defined islet enhancer domains, 

such as linear enhancer clusters and super-enhancers (Supplementary Figure 4j). 

We found that hubs overlapped 70% of enhancer clusters 8, and 87% of super-

enhancers defined with a standard algorithm 12 (Supplementary Figure 4k-m). 

Hubs, however, differ in that they are connected with their target genes (Extended 

Data 1.4). Furthermore, hubs capture spatial clusters of Mediator-bound enhancers 

that do not cluster in the linear genome and do not fulfill definitions of super-

enhancers and enhancer clusters (Supplementary Figure 4n-p) 8,12. In fact, many 

hubs contained several inter-connected enhancer clusters or super-enhancers 

(Supplementary Figure 4q-s). This is illustrated by the ISL1 locus, which has 

several enhancer clusters and super-enhancers distributed across an entire TAD, 

whereas pcHi-C points to a single hub that connects dozens of enhancers with ISL1 

and lncRNA HI-LNC57 (Figure 5a). Thus, enhancer hubs are 3D domains that often 

include one or more enhancer clusters or super-enhancers and their target gene(s).  

  

Tissue-specific architecture of the ISL1 enhancer hub. 

 To gain further insight into the topology of enhancer hubs and their relationship with 

TADs, we simulated 3D models of the ISL1 locus. We considered islet pcHi-C 

interaction frequencies as a proxy for spatial proximities between loci, built 

interaction matrices at a resolution of 5 kb, and converted the frequency of 

interactions between genomic segments into spatial restraints 37,38. We then used 

molecular dynamic optimization to generate an ensemble of 500 models that best 

satisfied the imposed restraints. This revealed a topology in which islet enhancers 

and target genes co-localize in a constrained space (Figure 5b,c, Supplementary 

Figure 5b-g, Supplementary Videos 1-2). By contrast, models built from B 

lymphocyte pcHi-C libraries showed decreased aggregation of these regions (Figure 

5b-d, Supplementary Figure 5b-g). Accordingly, active chromatin features and 

architectural proteins aggregated near ISL1 in islets but not in total B lymphocytes 

(Figure 5d, Supplementary Figure 5d). These models, which capture the average 
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topology in a population of cells, serve to highlight that whereas TADs are defined as 

genomic intervals in unidimensional maps, hubs represent a 3D subspace of TADs 

that harbors interactions between active genomic regions distributed across the 

linear TAD space. Taken together, these results leverage knowledge of 3D 

chromatin structure to define islet-specific enhancer domains, many of which can be 

directly linked to key genes underlying cell identity and diabetes.   

 

Prominent contribution of islet hubs to the heritability of T2D and islet traits. 

Previous evidence that T2D and FG susceptibility variants are enriched in islet 

enhancer clusters 7,8,13,30,39 prompted us to examine the relationship between 

diabetes-associated variants and our newly defined enhancer hubs. We found that 

SNPs from the 109 T2D-FG associated loci (Supplementary Table 4) were 

enriched in islet pcHi-C high-confidence interaction regions (Figure 6a). 

Furthermore, they were selectively enriched in class I enhancers that form part of 

islet enhancer hubs, rather than in those located outside hubs, or in other active 

enhancer subtypes (Figure 6b, Supplementary Figure 6a-f). These observations 

indicated that enhancer hub class I enhancers, rather than other enhancers, define a 

critically important genomic space for T2D genetic susceptibility. 

This finding led us to estimate the contribution of sequence variation across 

enhancer hubs to the heritability of T2D. Several GWA studies suggest that a major 

portion of the heritability of common diseases is driven by a large number of variants 

that individually have not achieved genome-wide significance, yet exert a large 

aggregate effect 34,40-42. Consistent with this notion, common variants that have so 

far not shown genome-wide significance for T2D association, but are located in pcHi-

C interacting regions or hub class I enhancers, showed lower association p-values 

than expected distributions (Figure 6c,d).  

These observations prompted us to quantify the overall contribution of 

common variants in islet hubs to the heritability of T2D. We used stratified LD score 

regression 43, and found that hub enhancers (as well as other islet enhancer 

definitions) had a significantly enriched per-SNP T2D heritability coefficient (q = 1.64 

X 10-2) (Figure 6e, Supplementary Figure 7, Supplementary Table 5). Although 

islet dysfunction is central to the pathophysiology of T2D, other tissues (liver, 

adipose, muscle, gut, CNS, among others) are also critically important. We predicted 

that common genetic variation in islet hub enhancers should have an even stronger 
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impact on the heritability of pancreatic islet function. Indeed, common variation in 

hub class I enhancers, which represent 0.26% of genomic SNPs, explained 9.9% of 

observed genetic heritability for T2D, 21.9% for acute insulin secretory response in 

intravenous glucose tolerance tests (AIR-IVGTT)29, 17.2% for HOMA-B models of β-

cell function, and 31.2% for an insulinogenic index based on oral glucose tolerance 

tests (OGTT) 44 (Supplementary Table 5). Accordingly, islet hub variants showed 

even greater heritability enrichment estimates for islet-cell traits than for T2D (Figure 

6e, Supplementary Figure 7a-f, Supplementary Table 5). In sharp contrast, islet 

hub variants showed no enrichment for HOMA-IR, an estimate of insulin resistance 

(Supplementary Figure 7e). Importantly, although enhancer clusters, stretch 

enhancers, or super-enhancers also showed significant enrichments of heritability 

estimates for islet-cell traits and T2D, these estimates were consistently larger for 

hub enhancers (Figure 6e, Supplementary Figure 7a-d). These results indicate 

that enhancer hubs are genomic spaces that play a prominent role in the heritability 

of islet function and T2D.  

 

Common variants in islet hubs provide tissue-specific risk scores.  

The improved definitions of genomic regions relevant to islet function prompted us to 

examine if islet hub variants could be harnessed to identify individuals in whom 

variation in islet function, rather than other T2D-relevant cellular functions, plays a 

preponderant role in T2D susceptibility. Recent studies suggest that polygenic risk 

scores (PRS) that integrate the combined effects of very large number of variants, 

including many that lack genome-wide significant association, can be used to identify 

individuals at risk for polygenic diseases 34,40-42,45. The predictive power of PRS for 

T2D is likely to increase as larger GWAS datasets become available, although it is 

already possible to explore the potential of hub variants to define tissue-specific 

specific risk profiles.  

We first calculated a PRS using all common variants from a recent BMI-

adjusted T2D GWAS meta-analysis 46, and examined the ability of this genome-wide 

PRS to predict T2D in the UK Biobank population cohort 47,48. The UK Biobank 

cohort was divided into a testing dataset used to train the PRS model, and a 

validation dataset of 236,236 individuals. This showed that individuals of the 

validation dataset with the 2.5% highest PRS had a 7.1-fold higher frequency of T2D 
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than those in the lowest 2.5%, and an incident T2D hazard ratio of 2.5 relative to the 

entire population (Figure 6f, Supplementary Figure 7h). Next, we built PRS models 

with islet hub enhancer and promoter variants. Although hub regulatory regions 

represent < 2% of genomic space, 2.5% of individuals with highest hub PRS scores 

had 4-fold higher frequency of T2D than those in the lowest bin and an incident T2D 

hazard ratio of 2.1 relative to the entire population (Figure 6f, Supplementary 

Figure 7h). For comparison, we also built PRS from pseudo-enhancer hubs of 

similar size that were redistributed across all TADs 100 times. PRS from pseudo-

hubs only average 2.2-fold T2D difference between extreme PRS bins, and the 

highest PRS bin showed an average incident T2D hazard ratio of 1.4 (Figure 6f).  

We then tested whether enhancer hub variants define risk profiles that are 

qualitatively different from other genomic regions. Monogenic defects in islet 

transcription factors typically cause early-onset diabetes in the absence of obesity, 

suggesting that islet cis-regulatory variants could also have a more prominent impact 

on T2D risk at an earlier age and at lower BMI. Individuals with extreme hub PRS 

showed greatest deviations in risk ratios from pseudo-hubs, and tended to show 

more extreme T2D incident HR values, in individuals with BMI <30, and earlier age 

of onset of T2D (Supplementary Figure 7i-j). We thus examined the risk of T2D 

stratified by both variables (BMI and age of onset), and calculated the odds ratios for 

T2D in individuals with the highest PRS values (Figure 6g). This showed an odds 

ratio of 2.7 for T2D with BMI < 35 and onset < 60 years in individuals with the highest 

hub PRS (2.5% of individuals) vs. all others (97.5% of individuals). This odds ratio 

was a major deviation from that observed with pseudo-hub PRS (Z = 8.5). At the 

other extreme of the phenotypic spectrum (T2D with BMI ≥ 35 and age of onset ≥ 

60), individuals with the highest islet hub PRS showed a lower odds ratio (OR = 1.5), 

which did not differ from that of pseudo-hub genomic regions. Thus, polygenic 

scores built with islet hub variants provide qualitative risk profile differences relative 

to other genomic regions. They indicate that risk scores built from a small fraction of 

the genome that regulates islet cell transcription and impacts the heritability of islet 

function retain a substantial ability to predict T2D diabetes, and have the potential to 

assist the stratification of individuals in whom islet regulatory variation plays a role in 

pathogenesis.  

 

Discussion 
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We have created 3D genome annotations that link human pancreatic islet enhancers 

to gene promoters. This revealed enhancer hubs that exhibit features of regulatory 

units, and carry a significant burden of genetic variants that influence islet-cell 

function and T2D risk. The data provides a resource for the prioritization of putative 

causal genes in T2D pathophysiology, and for the development of tissue-specific 

genetic risk scores for patient stratification.   

Individual genes are often regulated by the concerted action of multiple long-

range enhancers. Enhancer domains have accordingly been defined based on how 

enhancers cluster in the linear genome 7,8,12,13, through in-depth functional 

characterization of specific loci 49-52, or based on evolutionary conserved noncoding 

sequence blocks 53,54. We have now grouped enhancers and promoters based on 

their spatial proximity within islet-cell nuclei. Our study provides unbiased maps of 

hundreds of pancreatic islet enhancer hubs, many of which contain one or more 

previously reported linear enhancer clusters that are now seen to form part of larger 

3D domains. Hub enhancers can sometimes be distributed across the entire linear 

space of TADs, yet differ significantly in that they only occupy a restricted portion of 

the 3D TAD space, and thereby only target a subset of annotated TAD genes. Hub 

enhancers exhibit concerted histone acetylation changes across tissues and 

dynamic settings, consistent with coherent regulatory units. Importantly, islet hubs 

interact with genes that encode for key islet-cell functions, and are thus critically 

relevant to human diabetes.  

The spatial enhancer clusters described here are compatible with earlier 

observations derived from lower resolution Hi-C maps, which showed broad genomic 

regions that exhibit unusually high interaction frequencies 55. Our findings also align 

with numerous individual examples of well-characterized enhancer hubs 50,52. We 

have now systematically annotated hundreds of analogous domains in human islets, 

and define their candidate target genes. 

The 3D enhancer domains described here have implications for our 

understanding of the genetic basis of T2D. Recent studies suggest that the 

heritability of common diseases is best explained by the aggregate effect of a large 

number of SNPs that impact on disease-relevant cellular networks, including many 

that do not reach conventional significance thresholds for association 34,40,41. Our 3D 

chromatin-based annotations define genomic spaces that play a hierarchically 

prominent role in the heritability of insulin secretory function and T2D. We propose 
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that enhancer hubs provide a useful gene-centric framework to dissect the 

contribution regulatory variants to T2D, but also for efforts to define causal non-

coding mutations in monogenic diabetes.  

Moreover, regulatory spaces defined here can contribute to characterize the 

heterogeneous, multiorganic nature of T2D pathophysiology 56,57. Polygenic risk 

scores hold promise to exploit GWAS findings for the prediction of common diseases 

58, perhaps combined with non-genetic risk factors. Theoretically, they can also 

qualify the genetic risk based on specific underlying mechanisms that are likely to 

vary in different patients with T2D. Our findings illustrate how regulatory domains can 

be exploited to define polygenic risk estimates that affect diabetes susceptibility 

through their influence on tissue-specific gene regulation. Further developments of 

this approach could assist future patient-specific preventive and therapeutic 

recommendations. Beyond this prospect, pancreatic islet 3D genome annotations 

reported here provide a resource for functional interpretation of noncoding variants 

that underlie the molecular mechanisms of T2D susceptibility. 
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Figure 1. The promoter interactome of human pancreatic islets. 
(a) Overview of promoter-capture Hi-C (pcHi-C) in human islets.  
(b) Integrative map of the KCNJ11-ABCC8 locus, which encode two subunits of the islet K

ATP
 channel, showing human islet ATAC-seq and ChIP-seq profiles, 

HindIII fragments used as baits, and arcs representing high-confidence pcHi-C interactions in human islets and erythroblasts. *Color code for islet regulome is 

as shown in panel c.
(c) High-resolution annotations of islet open chromatin regions. ATAC-seq data from 13 islet samples was used to define consistent open chromatin regions, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 27, 2018. ; https://doi.org/10.1101/400291doi: bioRxiv preprint 

https://doi.org/10.1101/400291
http://creativecommons.org/licenses/by-nc-nd/4.0/


which were then classified with k-medians clustering based on additional epigenomic features. Mediator and H3K27ac binding patterns allowed 

sub-classification of active enhancer classes. Post-hoc analysis of islet CAGE tags confirms that transcription start sites are highly enriched in promoters

 and weakly in class I enhancers. These annotations are hereafter referred to as the islet regulome, and represented with indicated color codes. The

 genomic locations are provided in Data S1.1. 

(d) Average H3K27ac and Mediator signal distribution centered on open chromatin regions for each active enhancer subtype in three human islet (HI) 

samples and input DNA. 

(e) Overlap of promoter-interacting regions with epigenomic features, expressed as a ratio over the median of a null distribution calculated with overlaps 

obtained with 100 sets of fragments matched for distance relative to bait fragments. Bars represent mean log2 ratios and error bars represent 95%

 confidence intervals.

(f) Ratio of tissue-invariant to islet-selective interactions overlapping with major open chromatin classes, normalized by the total number of tissue-invariant 

and islet-selective interactions. All categories showed significant differences with interactions in the remaining genome (Fisher’s P < 0.01).

Figure 1 legend (continued)
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Figure 2. Identification of target genes of pancreatic islet enhancers. 

(a) pcHi-C maps allowed the assignment of target genes to 39.5% of all 45,683 active enhancers through

 high-confidence interactions. PAT features allowed imputing the assignment of promoters to another 40% of 

 all active enhancers (see also Supplementary Figure 2k, and evidence that imputations are enriched in lower 

 confidence interactions in Supplementary Figure 2l). 

(b) Functional correlation of assigned enhancer-gene pairs. Spearman’s Rho values for normalized H3K27ac 
 signal in enhancer-promoter pairs across 14 human islet samples and 51 Roadmap Epigenomics tissues. Rho

 values are shown for enhancer-gene pairs assigned through high-confidence interactions or imputations, and

 control enhancer-gene pairs in which the enhancer overlapped a PAT in linear maps but was not assigned to

 the PAT promoter, or other unassigned gene-enhancer pairs from the same TAD. 

(c) Genes assigned to glucose-induced enhancers show concordant glucose-induced expression. Top: 

 glucose-induced enhancers showed enriched high-confidence or imputed assignments to glucose-induced

 genes, compared with distance-matched genes from the same TAD. Bottom: glucose-induced enhancers 

 showed no enrichment for assignments to genes that were inhibited by high glucose concentrations. 

 OR = odds ratio. P values were calculated with Chi-square tests.

(d) Genes assigned to glucose-induced enhancers through high-confidence interactions or imputations

 showed increased glucose-induced changes in promoter H3K27ac, compared with other genes from the 

 same TAD as the enhancer. Box plots represent IQRs, and notches are 95% confidence intervals of median. 

 P values were calculated with Wilcoxon’s signed ranked test. See also Data S1.2. 
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Figure 3. Identification of gene targets of T2D-relevant enhancers 

(a) Identification of candidate target genes for 87% of 62 T2D-FG associated loci that contained genetic

 variants in islet enhancers (related to Supplementary Table 1). Targets were assigned through

 high-confidence interactions or imputations. 

(b) Examples of assignments of T2D-FG SNPs to candidate genes based on pcHi-C interactions. Vertical 

yellow stripes highlight associated variants located in enhancers and assigned to VEGFA (top) or C2CD4A

 (bottom) through high-confidence interactions (pink arcs). 

(c) Islet pcHi-C analysis defines gene targets of T2D-associated variants at CDC123/CAMK1D. Virtual 4C 

representations of islet pcHi-C interactions are shown for the three indicated viewpoints. Only one variant in 

the T2D risk haplotype (rs11257655) maps to an islet enhancer (zoomed inset). Dashed pink lines depict

 links between this enhancer and assigned target genes. Deleted regions are highlighted in yellow.

(d) CAMK1D and OPTN are functionally dependent on the rs11257655-containing enhancer. RNA analysis of

 EndoC-βH3 cells was carried out after deletion of the rs11257655-containing enhancer, an adjacent control 
region with a T2D-associated variant but apparent regulatory function (rs33932777), or a control region in an
 unrelated locus (see Supplementary Table 9). Data from all control deletions was merged. Deletions were 

tested with two guide RNA pairs. Delivery of the empty vector (Cas9 only) was used as an additional 

reference. Data are presented as mean ± s.d. Two independent experiments were performed in triplicates.

 Data shown has been normalized by RPLP0 and is shown relative to the mean levels of the Cas9 controls. 

** P <0.01, *** P <0.001, two-tailed Student's t-test.
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Figure 4. Tissue-specific enhancer hubs regulate key islet genes. 

(a) Schematic of enhancer hubs. Hubs are composed of one or more enhancer-rich PATs (≥ 3 class I enhancers) interconnected in cis through at least 1
 common interacting enhancer. Turquoise and dashed green lines depict high-confidence and imputed assignments, respectively. Descriptive features of 

hubs are summarized in Supplementary Figure 4e.

(b) Islet hubs are enriched in islet-selective expressed genes. Ratios were calculated relative to all annotated genes.
(c) Genes connected with enhancer hubs are enriched in annotations important for islet differentiation, function and diabetes. See complete lists in
 Supplementary Table 2. 

(d) Gene pairs from the same hub show higher RNA correlations across human islet samples and 15 tissues than pairs from the same TAD in which only 
one gene or neither gene is in a hub. P values were derived with a Kruskall-Wallis analysis of variance. 
(e) Enhancer-promoter pairs from the same hub show high H3K27ac correlations across 14 human islet samples and 51 Epigenome RoadMap tissues, 
compared with pairs from the same TAD in which only one element or neither are in a hub. P values were derived with a Kruskall-Wallis test.
(f-g) Culture of islets at 4 vs. 11 mM glucose shows concerted changes in H3K27ac in hub enhancers connected with glucose-dependent genes. Hub
 promoters were ranked by their median fold-change in H3K27ac at high glucose, so that glucose-induced promoters are on the left of the X axis. (g) shows
 the median glucose-dependent fold-change of H3K27ac in enhancers from hubs connecting with each promoter, and the hub IQR is shown in blue. (f) shows
 the median mRNA values for genes associated with each promoter. In both graphs median fold changes are shown as a running average (window = 50). 
(h) Coordinated glucose-induced H3K27ac in enhancers of a hub connected to the KIRREL3 gene. The top tracks show RNA and H2K27ac binding in a
 representative sample. The track named regulome is color coded as in Figure 1b, where class I enhancers are bright red and promoters are green. The 
bottom inset shows representative regions across the hub showing coordinated glucose-induced changes in most enhancers in four human islet samples.
 Black arrows are used to highlight some enhancers in which the normalized H2K27ac signal is higher at 11 mM glucose (red) vs. 4 mM (blue). See also
 Supplementary Figure 1, Supplementary Table 1, Data S1.4   
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Figure 5. Tissue-specific topology of the ISL1 enhancer hub.  

(a) The ISL1 locus forms a tissue-specific enhancer hub. Human islet epigenome maps and high-confidence 

pcHi-C interactions in islets and total B lymphocytes are shown to illustrate that multiple active enhancers, 

super-enhancers and enhancer clusters distributed across a TAD share islet-selective 3D interactions with 

common genomic regions including ISL1 and HI-LNC57. 

(b-c) 3D chromatin conformation models of the ISL1 enhancer hub created with all interaction fragments 

from this locus in pcHi-C libraries of human islets (b) and total B lymphocytes (c). Images represent the top

 scoring model from the ensemble of structures that best satisfies the spatial restraints, topological 

constraints, confinement, and supercoiling of the chromatin fibre. Islet enhancers and promoters are 

represented as white spheres. Class I, II and III enhancers within 200nm of ISL1 promoter (in blue) are

 colored in dark to light red. Note that the intergenic lncRNA HI-LNC57 (represented in blue) is in close 

proximity with ISL1 promoter. These models show that active islet regulatory elements interact in a common

 restricted space in islet nuclei. Additional views of models are shown in Supplementary Figure 5b,c and 

Supplementary Videos 1 and 2.

(d) Density wheel depicting histone modification mark and transcription factor ChIP-seq signal in human islets 

mapped on the 3D model of ISL1 enhancer hub in human islets. This radial representation is centered on 

ISL1 promoter.
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Figure 6 - Islet enhancer hubs carry an increased burden of T2D-associated variants

(a) Variant Set Enrichment (VSE) of T2D and FG-associated variants (dot in left graph, see Supplementary Table 3) and breast cancer-associated variants

 (dot in right graph) in islet high-confidence pcHi-C interacting fragments. Box plots show null distributions based on 500 permutations of matched

 random haplotype blocks. Red dots indicate significant enrichment relative to the null distribution (Bonferroni–corrected P < 0.01).

(b) T2D and FG GWAS-significant variants are specifically enriched in class I islet enhancers within enhancer hubs, but not in other islet enhancer

 subtypes (see also Supplementary Figure 6c). 

(c) Genomic inflation of T2D association P-values for non-GWAS significant (p > 5x10-8) variants located in islet interacting regions. Quantile-

quantile (Q-Q) plots are shown for variants in pcHi-C interacting regions, as described in panel A (magenta), non-interacting open chromatin 

regions (light beige), and all other variants reported in the summary statistics (brown). The λ coefficients correspond to the median χ2 test statistic

 divided by the median expected χ2 test statistic under the null hypothesis. 

(d) Genomic inflation of T2D association P-values for non-GWAS significant variants in class I islet enhancers from enhancer hubs (blue), compared to 

variants in open chromatin regions outside hubs (light beige) and to all other variants (brown).  

(e) Heritability estimates of variants in five islet enhancer domain subtypes for T2D, insulinogenic index (OGTT), homeostasis model assessment of ß-cell 

function (HOMA-B) and insulin resistance (HOMA-IR). Bars show category specific per-SNP heritability coefficients (τc), which estimate the expected 
increase in phenotypic variance accounted by a single SNP from a given functional category, divided by the LD score heritability (h2) values observed for 

each trait.  We estimated τc coefficients by performing independent stratified LD score regression, controlling for 53 functional annotation categories
 included in the baseline model. All normalized τc coefficients were multiplied by 107 and shown with a SEM.
(f) Impact of islet hub polygenic risk scores (PRS) on T2D frequency. T2D frequency (y-axis) was calculated in 40 bins, each one representing 2.5% of 

individuals in the UK Biobank validation dataset. PRS values were calculated with the entire set of common genetic variants (light blue dots), the fraction of 

islet non-hub variants (dark blue dots) and islet hub variants (orange dots), or variants from 100 sets of pseudo-hubs (boxplots with IQR). 

(g) Polygenic risk stratified by BMI. The T2D risk ratio was calculated as the frequency of T2D cases in the highest 2.5% PRS bin divided by the frequency 

of T2D cases in the lowest 2.5% risk bin. Boxplots show the risk ratio for PRS from 100 sets of pseudo-hubs, the dark blue dot corresponds to the islet 

non-hub PRS and the orange dot shows that of islet hub PRS. A Z-score of the risk ratio with islet hub and non-hub PRS, respectively, was computed to 

define the number of standard deviations above the average risk ratio of the pseudo-hub distribution.

(h) Polygenic risk stratified by age of onset of T2D. Boxplots show the T2D risk ratio in highest vs. lowest risk bins for PRS from 100 sets of pseudo-hubs 

and the dark blue and orange dot shows that of islet non-hub and hub PRS, respectively. T2D cases were stratified using age of onset information and age

at recruitment was used in control samples.

(i) Polygenic risk stratified by BMI and age of onset of T2D. Odds ratio (OR) for T2D were calculated by comparing 2.5% individuals with the highest PRS

 vs. all the other individuals via adjusted logistic regression. Boxplots show OR for 100 sets of pseudo-hubs, orange dots are OR from islet hub PRS, and

 the dark and light blue stars shows the OR for the islet non-hub and the genome-wide PRS models. Controls were stratified by age at recruitment. 

Statistical significance for islet hub OR was calculated using a Z-score defined as the number of standards deviations above the average OR of the 

pseudo-hub distribution. See also Supplementary Figure 6, Supplementary Table 4 and Data S1.
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Supplementary Figure 1. pcHi-C and chromatin landscape of human islets. Related to Figure 1

(a) Schematic representation of the pcHi-C analysis workflow. 

(b) Relative frequency of high-confidence interactions between baits and promoter-interacting regions.  

(c) Distribution of distances from bait to promoter-interacting region for high-confidence interactions. The 

dashed line represents the median distance. 

(d) Observed occupancy profiles for CTCF, cohesin, Mediator, H3K4me3, H3K27ac, H3K27me3, H3K9me3 

(black line) in ± 25 Kb regions centered on interacting pcHi-C baits (top), and promoter-interacting regions

 (bottom). Expected occupancy profiles after randomizing 10 times the positions of indicated signals are

 represented with a red line, and interquartile ranges are shown as a shade.

(e) Relative frequency of CTCF binding sites in baits and non-bait interacting regions. Nearly 50% of 

interactions are associated with CTCF binding sites in at least one of the interacting regions. Percentages

 are calculated relative to all intra-chromosomal bait-non-bait interactions. 

(f) CTCF-binding motif orientation at CTCF-bound interacting regions. Of all four possible CTCF motif

 orientation configurations, 56.62% of 9,657 interactions are in a convergent orientation, consistent with 

expectations.

(g) Tissue-selectivity of islet pcHi-C interactions. pcHi-C datasets from four primary hematopoietic cell types 

(erythroblasts, macrophages, naïve CD4+ T cells and total B lymphocytes) were used to classify islet

 interactions as tissue-invariant, if they were also observed in at least four datasets, or islet-selective, 

if they were observed in islets and no other datasets. Intermediate selectivity was classified as others.

(h) Islet-selectivity of interactions is concordant with islet-selective gene expression. Genes located in

 baits that form islet-selective interactions show increased gene expression islet-specificity scores than those

 from tissue-invariant interactions. The islet-specificity Z score was calculated with a gene expression

 distribution from 18 human tissues. P value was calculated with Wilcoxon’s signed ranked test.
(i) Ratio of tissue-invariant to islet-selective interactions overlapping with major open chromatin classes, 

normalized by the total number of tissue-invariant and islet-selective interactions. All categories showed 

significant differences with interactions in the remaining genome (Fisher’s P < 0.01).
(j,k) pcHi-C recapitulates interactions identified by 4C-seq in human islets and the human β cell line
 EndoC-βH1 at (j) ISL1 and (k) MAFB. The top track depicts a virtual 4C representation of human islet 
pcHi-C data in these two promoters. High-confidence interactions from human islets and naïve CD4+ T cells

 are shown below. The inverted triangle depicts the viewpoint used in the 4C-seq experiments and in the 

virtual 4C representation.
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Supplementary Figure 2. Definition of TAD-like domains, PATs, and enhancer-gene assignments. 

Related to Figure 2.

(a) Descriptive features of islet TAD-like domains defined with directionality scores. 

(b) Representative example of human islet TAD-like compartments in chromosome 11:1132582-4719948. 

Negative and positive directionality index (DI) scores are represented in blue and red, respectively. ESC and 

IMR90 TADs generated with Hi-C are shown for reference.

(c) Relative size of TAD-like domains in human islets and Hi-C TADs defined in ESC and IMR90 cells.

(d) TAD-like domains display known features of TADs defined in other tissues, such as enrichment of CTCF 

binding sites in TAD borders and convergent CTCF motif orientation.

(e) Tissue-selectivity of islet TAD-like boundary regions was calculated by comparison with TADs defined by 

Hi-C in 21 tissues. 

(f) Schematic of promoter-associated territories (PATs), defined as the genomic space that spans 

high-confidence interactions originating from one bait.

(g) Fraction of islet TAD-like linear genomic space occupied by each PAT.

(h) ChromHMM state enrichments in PATs were consistent with the expression level of their associated 

genes. The heatmap shows ChromHMM state median log2 fold-enrichments in PATs over their genomic 

distributions, in 5 bins based on bait gene expression levels in human islets. See also Supplementary 

Figure 2j.

(i) Active enhancer or H3K9me3-enriched ChromHMM states in PATs are enriched over the remaining TAD-like

 space in accordance with the expression of PAT genes in islets. Only PATs that were at least 25% smaller

 than their TAD were used (n=7,085). Median enrichments (circles) and IQR (shade) are shown. 

(j) Heatmap showing the emission probabilities of the 15 ChromHMM states for all islet chromatin features 

used to create the model. 

(k) Diagram illustrating the sequential steps used to impute the assignment of islet enhancers to candidate 

target genes. Further details of this procedure are described in Methods.

(l) Density of interactions at different CHiCAGO scores for imputed enhancer-promoter pairs vs. unimputed 

enhancer-promoter pairings from the same PATs or TADs (Kruskal-Wallis P<10-323).

(m) Genes assigned through high-confidence interactions or imputation were enriched in islet-specific genes, 

as compared with unassigned control genes from the same islet TAD-like structure (Chi-square P = 6 x 10-08). 

(n) Glucose causes induced H3K27 acetylation in a large number of islet enhancers. The dots represent mean 

log2 fold change of H3K27 acetylation in H3K27ac-enriched regions in islets exposed to 4 mM vs. 11 mM

 glucose. Red dots are values showing Benjamini-Hochberg adjusted P ≤ 0.05. 
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Supplementary Figure 3. CRISPR-Cas9 mediated perturbations in β-cells. Related to Figure 3

(a) Schematic diagram of the selection of T2D and FG-associated variants used in the assignments of 3D 

targets analysis (see also Methods, Extended Data 1 and Supplementary Table 1).

(b) Map of the CDC123/CAMK1D locus (an alternative representation of the same region depicted in 

Figure 3C,D) showing pcHi-C high-confidence interactions (pink) and imputed assignments (grey).

(c) Luciferase assay in the human β cell line EndoC-βH3 shows allele-dependent activity for the
 rs11257655-enhancer. Data are presented as mean ± s.d. Two independent experiments were performed in

 quadruplicates. ** P <0.01, two-tailed Student's t-test

(d,e) Analysis of OPTN and CAMK1D mRNA after CRISPR inhibition (CRISPRi) of the rs11257655-enhancer

 in EndoC-βH3 cells (d) and (e) HepG2 cells.  Bars show average values of three guide RNAs targeting either
 the rs11257655 enhancer, or the OPTN transcriptional start site as control. Data are presented as mean

 ± s.d. Two independent experiments were performed in triplicates. Data shown was normalized by RPLP0 

and is shown relative to the mean levels of the negative controls. ** P <0.01, *** P <0.001, two-tailed 

Student's t-test.

(f) Analysis of OPTN and CAMK1D mRNA after CRISPR activation (CRISPRa) in EndoC-βH3 cells. Analysis
 as in panel D.

(g) Analysis of the T2D-associated locus TCF7L2. Virtual 4C maps centered on all genes in this locus show

 that the T2D-associated regulatory variant rs7903146 connects with TCF7L2 through moderate-confidence

 interactions and an imputed assignment, but shows no evidence for interactions with other genes. The

 HindIII fragment that contains the enhancer is highlighted in yellow. The bottom panel shows that this 

enhancer shows an unusually strong occupancy by Mediator, in addition to islet-enriched transcription factors. 

(h) Analysis of active islet genes in this locus, TCF7L2, VT11A, HABP2, ACSL5 in EndoC-βH3 cells after
 deletion of either the rs7903146-enhancer or a control region in the same locus (see Supplementary Figure 

3g). Deletions were tested with 2 different guide RNA pairs. Data are presented as mean ± s.d. Two

 independent experiments were performed in triplicates. Data was normalized by RPLP0 and is shown relative 

to the mean levels of the negative control deletions. *** P <0.001, two-tailed Student's t-test.

(i) Analysis of TCF7L2, VT11A, HABP2 mRNA in EndoC-βH3 cells after CRISPR activation (CRISPRa) of 
this enhancer. The analysis was carried out as in panel H. *** P <0.001, two-tailed Student's t-test. 
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Supplementary Figure 4. Islet-specific transcription is driven by tissue-specific enhancer hubs. 

Related to Figure 4. 

(a) Multiple logistic regression analysis was used to identify PAT features that differentiate islet-expressed 

genes that show islet-selective vs. non islet-selective expression across tissues. Islet-selective expression 

was examined as a surrogate endpoint because it is a property of many (though not all) genes that are

 important for islet cell identity. The PAT feature with the highest logistic regression coefficient was the number

 of non-islet tissues with promoter H3K27me3-enrichment. This feature was included as a control as it was

 regarded as nearly synonymous with cell-specific islet expression. The next highest coefficient was the

 number assigned class I enhancers in the PAT. Further analysis showed that ≥3 assigned class I enhancers
 in a PAT optimized the prediction of islet-selective expression.  

(b) Classification of PATs based on assigned enhancers revealed 2,623 enhancer-rich PATs (≥3 assigned
 class I enhancers). Enhancers are represented as red boxes (E). Turquoise and dashed green lines

 represent high-confidence interactions and imputed assignments, respectively. 

(c) Enhancers frequently interact with more than one gene. The graph shows the fraction of enhancers that 

show high-confidence (CHiCAGO > 5) interactions with 1-5 promoter ”baits” in the same TAD. The inset

 illustrates that 58% of interacting enhancers interact with two or more promoters. 

(d) Enhancer hubs were defined as enhancer-rich PATs that were merged with other PATs connected through

 at least one common enhancer-associated high-confidence interaction.

(e) Descriptive characteristics of enhancer hubs in human islets.

(f) The fraction of all islet high-confidence interactions that are islet-selective was greater in enhancer hubs 

than in other interacting PATs. Boxes are IQR and P values are from Wilcoxon’s signed rank test. 
(g) pcHi-C map of an enhancer hub containing the diabetes-associated locus GLIS3. The zoomed inset 

contains the regulatory landscape surrounding the risk haplotype in pancreatic islets, with active chromatin
 features and binding of pancreatic transcription factors to the enhancer that contains rs4237150 and 3 

additional T2D-associated SNPs (rs10116772, rs10814915 and rs6476839). The HindIII fragment that 

contains the T2D-associated enhancer is highlighted in yellow. This enhancer interacts directly with RFX3 

an indirectly with GLIS3; despite that the islet GLIS3 promoter did not contain a bait in the pcHi-C library, is 

was connected through high-confidence interactions with other enhancers that in turn interact with the 

SNP-containing enhancer. Only the GLIS3 gene model containing the active islet promoter is shown for 

simplicity.

(h) Luciferase assay in the human β cell line EndoC-βH3 shows haplotype-dependent activity for the 
rs4237150-enhancer. Data are presented as mean ± s.d. Two independent experiments were performed in 

quadruplicates. *** P <0.001, two-tailed Student's t-test.

(i) Analysis of hub genes in EndoC-βH3 cells after deletion of the T2D-associated enhancer, a control region
 that contains T2D-associated variants with no apparent regulatory function (rs3892354 and rs1574285), or a

 control region in a locus in a different TAD. Deletions were tested with 2 different guide RNA pairs. Empty 

vector (Cas9 only) was used as reference in all experiments. Data are presented as mean ± s.d. Two

 independent experiments were performed in triplicates. Data shown has been normalized by RPLP0 and is 

shown relative to the mean levels of the negative control (Cas9 only). *** P <0.001, two-tailed Student's t-test.

(j) Linear genomic space occupied by class I enhancers in three-dimensional enhancer hubs compared with 

the space occupied by super-enhancers, highly-bound enhancers from linear enhancer clusters, and stretch

 enhancers. 

(k-m) Venn diagrams depicting how often enhancers from islet enhancer hubs overlap with other human islet
 enhancer domains: (k) super-enhancers (SEs) calculated with the ROSE algorithm, (l) highly-bound 
(top two occupancy quartiles) enhancer clusters (ECs), and (m) stretch enhancers. 

(n-p) Islet enhancer hubs often contain enhancers that do not form part of SEs or ECs. Charts show the

 fraction of hub class I enhancers that overlapped SEs, ECs or stretch-enhancers. Note that the genomic 

space occupied by stretch enhancers is an order of magnitude greater than hubs (panel I). 

(q-s) Islet enhancer hubs very frequently contain multiple (q) SEs, (r) ECs or (s) stretch enhancers.
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Supplementary Figure 5. 3D models of enhancer hubs depict tissue-specific regulatory units. Related to Figure 5.

(a) The FOXA2 locus forms a tissue-specific enhancer hub. Human islet epigenome maps and high-confidence pcHi-C interactions in islets and total B

 lymphocytes are shown to illustrate that active enhancers, super-enhancers and enhancer clusters interact to form a single tissue-specific 

three-dimensional structure. 

(b-c) 360 degree views of top-scoring 3D models of ISL1 enhancer hub in human islets (b) and total B lymphocytes (c). See also Supplementary videos

 1 and 2.

(d) Density wheel depicting histone modification marks and transcription factor ChIP-seq signal in human islets mapped on the 3D model of ISL1 enhancer

 hub in total B lymphocytes (centered on ISL1 promoter).

(e) Network of the first community in the ISL1 locus revealed through MCODE clustering of the promoter-enhancer mean ensemble distance interaction 

network in human islets (top) and total B lymphocytes (bottom). Nodes represent promoters (blue) and enhancers (dark to light red corresponding to

enhancer classes I to III). Edges between nodes are weighted by the mean distances values in 3D structure ensembles of the ISL1 enhancer hub in the

 two tissues.

(f) 3D distance distribution between particles in ISL1 enhancer hub. Distances between enhancers and promoters in the hub are significantly smaller in 

islets than in total B lymphocytes (see also Figure 5B,C). Statistical significance was computed using two-sample Kolmogorov-Smirnov test

 (*: p < 5 x 10-2, **: p < 10-2, ***: p < 10-3, ****: p < 10-4, and ns: non-significant).

(g) Distance measurements between active enhancers and ISL1 promoter in ISL1 community in islets expressed as the differential distance between total

B lymphocites and islets 3D models. Positive values indicate closer distances in lymphocytes and negative values indicate closer distances in islets. Filled 

circles represent statistically significant differences (P < 0.01 two-sample Kolmogorov-Smirnov test). The majority of the enhancers (86%) in ISL1 enhancer

hub are significantly change distances in 3D in islets compared to total B lymphocytes.

(h) Chromosome view tracks of structure ensemble consistency, local accessibility for a virtual object with radius of 50 nm and local contact density 

number within spherical volumes with radii 100nm of ISL1 locus in human islets (turquoise) and total B lymphocytes (grey). Promoter and enhancer 

locations are highlighted in blue and red, respectively. 
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Supplementary Figure 6. T2D-associated variants are enriched in interacting regions and class I enhancers 

in enhancer hubs. Related to Figure 6.

(a,b) VSE enrichment analysis of T2D and FG (A) and breast cancer (B) in active regulatory elements 

defined in islets (see also Extended Data 1.1). Box plots show enrichment over null distributions based on 

500 permutations of matched random haplotype blocks. Each dot denotes VSE enrichment in each genomic

 feature evaluated. The red dot indicates significant enrichment relative to the null distribution 

(Bonferroni–corrected p < 0.01).

(c) Breast cancer-associated genetic variants show no enrichment in islet enhancer sub-classes 

(related to Figure 6c).

(d,e) VSE enrichment analysis of T2D and FG (d) and breast cancer (e) SNPs in chromatin regions with

 high-confident pcHi-C interactions in islets.

(f) VSE enrichment analysis of T2D and FG-associated variants in several enhancer categories: class I 

enhancers inside hubs, stretch enhancers, islet super-enhancers and enhancer clusters.
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Supplementary Figure 7. Class I enhancers in hubs contribute to beta-cell related traits heritability. 

Related to Figure 6

(a-e) Per-SNP heritability estimates of variants in eight islet enhancer domain subtypes for T2D (a), acute

 insulin release (AIR)-in vivo glucose tolerance test (IVGTT) (b), insulinogenic index (OGTT) (c), HOMA-B (d)

 and HOMA-IR (e). Bars show category specific per-SNP heritability coefficients (τ
c 
) divided by the LD score

 heritability (h2) score observed for each trait.  All normalized τ
c 
 coefficients were multiplied by 107 and

 shown with a SEM. τ
c 
 coefficients were estimated by performing independent stratified LD score regression, 

controlling for 53 functional annotation categories included in the baseline model.  

(f) Per-SNP T2D and Attention-Deficit/Hiperactivity Disorder (ADHD) heritability estimates in islet regulatory

 elements and Central Nervous System (CNS) annotations. Category-specific per-SNP heritability coefficients 

(τ
c
) correspond to the expected increase in heritability explained by a single SNP due to the SNP’s being in a 

given functional category. We normalized τ
c 
 estimates by the observed LD Score heritability (h2) in each

 trait respectively, and multiplied by 107. Each τ
c 
 coefficient was calculated by applying independent stratified 

LD Score regression, controlling for 53 functional annotation categories from the baseline model. Error bars 

represent the normalized τ
c 
 coefficients ± standard errors.

(g) Area-under-the curve (AUC) for islet hub PRS and average AUC across 100 sets of pseudo-hubs PRS. 

Maximal AUC was also calculated for two ranges of BMI (< 35 and ≥ 35) and age of onset (<60 and ≥ 60).
(h) Cumulative incidence of T2D in UK Biobank individuals, based on islet-hub and genome-wide genetic risk

 groups. Kaplan-Meier survival curves indicate cumulative incidence of T2D across several levels of PRS risk 

(see legend). We also show hazard ratios per risk group from cox proportional hazard regression analysis on

 T2D risk with age of onset as underlying time factor.

(i) Polygenic risk stratified by BMI (left) and age of onset of T2D (right). The T2D risk ratio was calculated as

 the frequency of T2D cases in the highest 2.5% PRS bin divided by the frequency of T2D cases in the lowest

 2.5% risk bin. T2D cases were stratified using age of onset information and age at recruitment was used in 

control samples. Boxplots show the risk ratio for PRS from 100 sets of pseudo-hubs, and the orange dot shows

 that of islet hub PRS. A Z-score of the risk ratio with islet was computed to define the number of standard 

deviations above the average risk ratio of the pseudo-hub distribution.

(j) Forest plot showing hazard ratios (HR) of risk of incident T2D per tails of PRS groups across distinct BMI 

and age of onset categories. Hazard ratios are denoted by boxes proportional to precision, along with 95% CI 

error bars
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Data availability 
 
Sequence reads: 
Raw sequence reads from pcHi-C, RNA-seq, ChIP-seq, ATAC-seq and 4C-seq 
reported in this paper will be available from EGA (https://www.ebi.ac.uk/ega) upon 
publication. 
 
Processed data files: 
High-confidence islet pcHi-C interactions, islet regulome annotations, enhancer-
promoter assignments, hub coordinates and components and 3D model videos are 
available upon request and will be made public upon publication. 
 
 
Visualization: 
Data from this study van be visualized in the following browsers: 
-‐ Islet regulome browser (http://isletregulome.org/regulomebeta/)87, which allows 

visualization of locus-wide virtual 4C profiles of pcHi-C dataset, alongside with 
islet regulome annotations including enhancer hubs as well as T2D and FG-
associated variants.  

-‐ WashU Epigenome browser (http://epigenomegateway.wustl.edu/browser/) 
allows visualization of ATAC-seq and ChIP-seq signal tracks, regulome 
annotations, pcHi-C high-confidence interactions and variants associated with 
T2D and FG can be visualized using the following link: 

http://epigenomegateway.wustl.edu/browser/?genome=hg19&session=62hGf7nfcS&
statusId=140947077 
-‐ CHiCP browser (https://www.chicp.org)88, which allows visualization of high-

confidence interactions.  
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Supplementary Tables: 
 
Supplementary Table 1. T2D and FG-associated genetic variants and predicted 
target genes. 
Supplementary Table 2. Functional annotations of islet enhancer hub genes.  
Supplementary Table 3. Glucose-induced response of hub promoters.  
Supplementary Table 4. List of T2D and FG associated lead variants used for VSE 
analysis.  
Supplementary Table 5. Partitioned heritability analysis across functional regulatory 
elements and islet enhancer types in T2D and FG.  
Supplementary Table 6. Characteristics of human islet donors and samples.  
Supplementary Table 7. Capture efficiency of Hi-C libraries after HiCUP 
processing.  
Supplementary Table 8. ChIP-Seq, ATAC-Seq and RNA-Seq alignment data. 
Related to Methods. 
Supplementary Table 9. Oligonucleotide and probe sequences used in this study. 
Supplementary Table 10. CRISPR-Cas9 sgRNAs used in this study. 
Supplementary Table 11. Genomic regions used for 3D modeling.  
Supplementary Table 12. Replication of previously described T2D associations in 
15,764 T2D cases and 184,030 control individuals from the UK Biobank population.  
 
Extended Data 1 
Extended Data 1.1. Islet regulome: location of islet regulome regions, including 
enhancers, promoters, and CTCF binding sites.  
Extended Data 1.2. Enhancer-promoter assignments.  
Extended Data 1.3. List of T2D-FG associated genetic variants used for functional 
assessment of chromatin features and gene targets.  
Extended Data 1.4. List of human islet enhancer hubs. 
 
 
Supplementary videos 
Supplementary video 1 – 3D model of ISL1 locus in human pancreatic islets.  
Supplementary video 2 – 3D model of ISL1 locus in total B lymphocytes.  
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Methods 

Human islets. Human pancreatic islets from organ donors without a history of 
glucose intolerance were isolated and purified using established isolation procedures 
described in 1 with local modifications 2-4, shipped in culture medium and then re-
cultured at 37°C in a humidified chamber with 5% CO2 in RPMI 1640 medium 
supplemented with 10% fetal calf serum, 100 U/ml penicillin, and 100 U/ml 
streptomycin for three days before extraction of RNA or fixation for pcHi-C or ChIP-
seq, as described below. RNA was extracted from flash-frozen islet pellets using 
Trizol, following manufacturers’ instructions. For glucose regulation studies, islets 
were cultured in identical time and medium, except that glucose-free RPMI 1640 
medium was supplemented with glucose to achieve final concentrations of either 4 or 
11 mM glucose. Donor variables and characteristics of the samples used in this 
study are provided in Supplementary Table 6. 
 
Ethics. Islet isolation centers had permission to use islets for scientific research if 
they were insufficient for clinical islet transplantation following national regulations 
and ethical requirements and institutional approvals from Leiden University Medical 
Center, Geneva University Hospitals, University of Lille, and Milano San Raffaele 
Hospital. Ethical approval for processing chromatin samples from de-identified 
samples was granted by the Clinical Research Ethics Committee of Hospital Clinic 
de Barcelona, under registration numbers HCB/2014/0926 and HCB/2014/1151. 
 
Hi-C library preparation and capture Hi-C. 30-60 million human islet 
equivalents/donor from four islet donors were cultured as described above for three 
days prior to fixation in 2% paraformaldehyde (Agar Scientific) at room temperature 
for 10 minutes with mixing. Fixative was quenched in 125 mM glycine for 5 minutes 
at room temperature and 15 minutes in ice, and islets were washed twice in PBS. 
Dry pellets were flash frozen and store at -80C until further usage.  
 Hi-C libraries were prepared with in-nucleus ligation as described previously 
5,6. Briefly, chromatin was de-crosslinked and purified by phenol-chloroform 
extraction and DNA concentration was measured using Quant-iT PicoGreen (Life 
Technologies). DNA was sheared (Covaris), end-repaired, adenine-tailed and double 
size-selected using AMPure XP beads. Ligation fragments marked by biotin were 
immobilized using MyOne Streptavidin C1 DynaBeads (Invitrogen) and ligated to 
paired-end adaptors (Illumina). The immobilized Hi-C libraries were amplified using 
PE PCR 1.0 and PE PCR 2.0 primers (Illumina) with 7–8 PCR amplification cycles.  
 Hi-C libraries were then processed to capture fragments containing annotated 
promoters, using a previously described design 6. Briefly, biotinylated 120-mer RNA 
baits were designed to the ends of all HindIII restriction fragments that overlap 
Ensembl-annotated promoters of protein-coding, noncoding, antisense, snRNA, 
miRNA and snoRNA transcripts, if GC content was 25-65% and <2 consecutive Ns 
in the sequence within 330 bp of the HindIII restriction fragment terminus. A total of 
22,076 HindIII fragments were captured, containing a total of 31,253 annotated 
promoters for 18,202 protein-coding and 10,929 non-protein genes according to 
Ensembl v.75 (http://grch37. ensembl.org). Capture was performed with SureSelect 
target enrichment, using the custom-designed biotinylated RNA bait library and 
custom paired-end blockers according to the manufacturer’s instructions (Agilent 
Technologies). After library enrich- ment, a post-capture PCR amplification step was 
carried out using PE PCR 1.0 and PE PCR 2.0 primers with 4 PCR amplification 
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cycles. Between 38 and 77 million paired end di-tags were captured from each 
library (Supplementary Table 7).  
 
pcHi-C sequence alignment and interaction calling. Raw sequencing reads from 
the 12 technical sequencing replicates from 4 human islet libraries were processed 
independently using the pipeline described in7, which maps the positions of di-tags 
against the human genome (GRCh37), filters out experimental artefacts such as 
circularized reads and re-ligations, and removes duplicate reads. Reads from 
replicate libraries from each donor were then pooled, and PCR duplicate reads were 
further removed. Alignment statistics are shown in Supplementary Table 7.  

Interaction confidence scores were computed with CHiCAGO (Capture Hi-C 
Analysis of Genomic Organisation)8. Briefly, CHiCAGO calls interactions based on a 
convolution background model reflecting both ‘Brownian’ (real, but expected 
interactions) and ‘technical’ (assay and sequencing artifacts) components. 
Interactions with CHiCAGO score >5 were considered high-confidence interactions. 
 
ChIP in human pancreatic islets. Related to Figure 1, Supplementary Figure 1. 
The ChIP protocol was adapted from 9 with slight modifications as described in 10. 
Between 1,000 and 2,000 human islet equivalents were fixed with 1% 
paraformaldehyde for 10 minutes at RT. Paraformaldehyde was quenched with 
10mM glycine for 5 minutes at RT and cells pelleted at 4°C for 10 minutes at 500g. 
After washing the sample twice with PBS supplemented with protease inhibitors 
(Roche), the samples were snap frozen and stored at -80°C until further usage.  

Fixed human islets were thawed on ice and subsequently lysed using ice-cold 
Lysis Buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-HCl pH 8, 1 mM 
EDTA pH 8.0, 1x protease inhibitor cocktail) for 15 to 20 minutes on ice. Lysed cells 
were pelleted for 5 minutes at 500 x g at 4C and re-suspended in 130 µL of 
Sonication Buffer (for Mediator and cohesin ChIPs, 1% Triton X-100, 0.1% SDS, 150 
mM NaCl, 20 Mm Tris-HCl pH 8, 2 mM EDTA pH 8.0) or Lysis Buffer (for H3K27ac 
ChIPs). Chromatin was sonicated using a S220 Focused-ultrasonicator (Covaris) 
and the following settings: Duty Factor: 2%, Peak Incident Power: 105W, Cycles per 
Bust: 200, treatment time: 16 minutes. Sheared chromatin was centrifuged at full 
speed for 15 minutes at 4°C to remove debris and insoluble chromatin. Supernatant 
was transferred to a fresh low-binding tube to proceed with the ChIP assay and 5% 
of the lysate was stored to be used as the input sample. 

 Chromatin was diluted 4 times with ChIP Dilution Buffer (for H3K27ac ChIP 
0.75% Triton X-100, 0.1% Na-deoxycholate, 140 mM NaCl, 50 mM HEPES pH8.0,1 
mM EDTA, 1x protease inhibitor cocktail) or Sonication Buffer (for Mediator and 
cohesin ChIPs). Then, 30 µl of pre-blocked magnetic Dynabeads (Thermo Fisher 
Scientific) were added to pre-clear chromatin by rotation for 1h at 4°C. We added 1 
µg of H3K27ac antibody (Abcam ab4729) and 3 µg of rabbit polyclonal antibodies 
against Mediator (CRSP1/TRAP220 Antibody, A300-793A, Bethyl Laboratories) and 
cohesin (SMC1 Antibody, A300-055A, Bethyl Laboratories) to the sample and 
incubated overnight at 4°C while rotating. The next day, 50 µl of magnetic beads 
were added to the sample and rotated at 4°C for 2h. Beads were subsequently 
washed at 4C using Low Salt Wash Buffer (1% Triton X-100, 0.1% SDS, 150 mM 
NaCl, 20mM Tris-HCl, pH 8.0, 2mM EDTA pH 8.0), High Salt Wash Buffer (1% Triton 
X-100, 0.1 % SDS, 500 mM NaCl,20 mM Tris-HCl pH 8.0, 2 mM EDTA pH 8.0 ), LiCl 
Wash Buffer (0.25 M LiCl, 1% NP40, 1% deoxycholate sodium, 10 mM Tris-HCl pH 
8.0, 1 mM EDTA pH 8.0), and TE. Beads were eluted in 300 µl of DNA elution buffer 
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at 65°C for 40 minutes with agitation. Beads were placed on a magnet and 
supernatant was transferred to a fresh tube and de-crosslinked together with input 
sample following a phenol-chloroform DNA isolation protocol. RT-qPCR was used to 
evaluate specific enrichment in at least two positive and two negative genomic 
regions before sequencing.  
 
ATAC of human pancreatic islets. Related to Figure 1. ATAC-seq library 
preparations were carried out as described in 11 with the following modifications. Fifty 
human islets were individually selected and washed in ice-cold PBS. Nuclei were 
isolated by incubating the islets in 300 µl of cold lysis buffer (10 mM Tris-HCl, pH 
7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL CA-630) for 20 minutes on ice 
with gentle shaking. Nuclei were washed once with 100 µl of ATAC Lysis Buffer and 
transposition was carried out immediately afterwards using 25 µl 2xTD buffer, 2.5 µl 
transposase and 22.5 µl nuclease-free water and kept at 37°C for 30 minutes. The 
reaction was purified using Qiagen’s MinElute Reaction Cleanup Kit.  
 ATAC libraries were initially amplified for 5 cycles using the following PCR 
conditions: 72°C 5 min; 98°C 30 s; then cycling at 98°C 10 s, 63°C 30 s and 72°C 1 
minute using the following PCR master mix: 25 µl NEBNext High-Fidelity 2X PCR 
Master Mix, 2.5 µl of 25 µM Forward/Reverse ATAC-seq index primers from Nextera 
kit (FC-121-1030) and 20 µl of the purified transposed DNA. We used the qPCR plot 
on ABI7900 (Applied Biosystems) to determine the number of additional cycles of 
PCR amplification that were required, by using the cycle number that corresponds to 
1/3 of the maximum fluorescent intensity. ATAC libraries were purified using Qiagen 
MinElute PCR Purification Kit and qPCR of open chromatin sites and negative 
controls were used before sequencing (data not shown). 
 
ChIP-seq and ATAC-seq analysis. Related to Figure 1.Illumina TruSeq adapters 
were removed from ChIP-seq reads using cutadapt 1.9.1 (options: -m 20) 12 In 
ATAC-seq reads, low quality bases were trimmed using Trimgalore 0.4.1 (options --
quality 15 --nextera), which also removes Nextera transposase adapters 
(https://github.com/FelixKrueger/TrimGalore). Trimmed reads were aligned to hg19 
genome build using bowtie2 2.1.0 (options: --no-unal) allowing no mismatches 13. 
Aligned reads were filtered to retain only uniquely mapped reads (MAPQ>=30) using 
samtools 1.2 14 and duplicate reads were removed using picard 2.6.0 15. Reads 
mapping to blacklisted regions 16 were also removed using BEDTools 2.13.3 17. For 
ATAC-seq, reads mapping to mitochondrial genome were also removed. Mapped 
reads obtained at this stage are referred to as usable reads. The quality of ChIP data 
was assessed with SPP.R script from phantompeaktools 18.  

The list of ChIP-seq and ATAC-seq experiments from human islet samples, 
alignment statistics and accession numbers are shown in Supplementary Table 8. 
 MACS2 was used to determine regions of statistically significant enrichment 
over corresponding input samples. For ChIP-seq reads from histone modification 
marks, broad regions of enrichment were called using the options --g hs --
extsize=300 --keep-dup all --nomodel --broad and narrow regions of enrichment 
were called without using --broad flag. For TF and co-factor ChIP-seq reads, narrow 
regions of enrichment were called using –g hs –extsize=300 --keep-dup all. For 
ATAC-seq reads, we used the following options --shift 100 --extsize=200 --keep-dup 
all --nomodel. 

To obtain a robust set of consistent peaks occupied by each TF, co-factor or 
histone modification mark, we first used MACS2 to call peaks in individual human 
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islet samples with a relaxed stringency threshold (p < 0.01). Then, we pooled all the 
biological replicates for each mark and identified pooled peaks using a stringent 
threshold (FDR q < 0.05 for Mediator and cohesin and q < 0.01 for histone 
modification marks). Finally, we identified a set of consistent peaks when they were 
present in at least 2 individual human islet samples (out of 3) or at least 3 human 
islet samples (if we had more than 3 replicates) as well as in the pooled set.  

To obtain a robust set of open chromatin sites in human islets, we pooled 
ATAC consistent peaks from 13 human islet samples. Pooled ATAC peaks that 
showed multiple sub-peaks in more than 3 human islet samples were manually split, 
leading to n=241,481 ATAC peaks. 

To visualize the data, bigwig files were generated using bamCoverage from 
deeptools (options: -e=300 --normalizeTo1x 2451960000), related to 
Supplementary Figure 1d. 
To assess the tissue-selectivity of islet interactions, we compared high-confidence 
pcHi-C interactions in human islets with those of 4 human primary blood cell types 
(erythroblasts, macrophages, naïve CD4+ T lymphocytes and total B lymphocytes, 
from 6. We defined “islet-selective interactions” as those that are only present in 
human islets, “tissue-invariant interactions” as those that are present in islets, as well 
as in at least 3 out of the 4 human primary blood cell types and “Others” as the rest. 

To assess the enrichment of tissue-invariant over islet-selective interactions in 
specific epigenomic features, we calculated the overlap between extended promoter 
interacting regions of both categories and epigenomic features of interest, and then 
normalized by the number of tissue-invariant and islet-selective interactions, 
respectively. 
 
Gene classification based on expression selectivity in human tissues. Related 
to Figures S1h, S2m and Figure 4b. RNA-seq datasets generated in 16 human 
tissues was obtained from The Human BodyMap 2 Project (www.illumina.com; 
ArrayExpress ID: E-MTAB-513). RNA-seq datasets from human pancreatic islets 
and acinar tissue have been previously described 19,20  

Paired-end reads were aligned using STAR aligner version 2.3.0 21 and a 
modified version of the hg19 genome in which common SNPs (Global Minor Allele 
Frequency> 1%) from the dbSNP database 142 were masked 22. A maximum 
mismatch of 10 nucleotides was used, and non-uniquely aligned reads were 
removed. Quantification of the raw read count was done using HTseq-Count version 
0.6.1 with python 2.6.6 and Pysam version 0.8.3 23. Counts were then converted into 
TPMs 24. RNA-Seq alignment statistics and accession numbers are shown in 
Supplementary Table 8. 
 Islet-selective genes were defined as those showing (a) highest expression 
selectivity across tissues and (b) highest expression in islets relative to other tissues. 
To measure the overall tissue selectivity of the expression of genes we calculated a 
coefficient of variation (C.V.) value among the 16 BodyMap samples, the acinar 
sample and the average value for human islet samples. To measure gene 
expression enrichment in pancreatic islets relative to other tissues we computed a Z-
score of the average gene expression level in human pancreatic islet samples using 
the distribution of expression across the 18 samples. We also defined 
expressed/non-expressed status among all 21,177 baited genes. 12,559 (59.3%) 
were defined as expressed, and 8,618 (40.7%) as non-expressed if their expression 
in human pancreatic islets was greater or lower than 1.5 transcripts per million 
(TPMs). Genes with an expression level 3 times higher in acinar tissue than islets 
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(79, 0.4% of all genes) were considered as likely acinar contaminants and therefore 
removed. Among the remaining expressed genes, those that fulfilled top quartile 
values for both the inter-tissue CV and islet-enrichment Z-score were defined as 
“islet–selective” expressed genes (983, 4.6% of all genes). The remaining expressed 
genes were classified as expressed, non-islet-specific (11,497, 54.3% of all genes).   

For the analysis shown in Supplementary Figure 1h, the Z-score was used 
as a quantitative measure of islet-specificity of gene expression.   
 
Classification of human islet accessible chromatin regions and chromatin 
states.  Related to Figure 1c. A set of open chromatin regions (n=249,582) was 
defined by combining consistent ATAC-seq peaks from 13 human islet samples 
(n=241,481) and regions that did not show ATAC-seq peaks but showed either 
Mediator or CTCF binding sites in pooled samples (n=1,319, n= 9,596 respectively) 
or were bound by at least two of islet transcription factors (n=1,514 9).  

We then classified the 249,582 islet open chromatin regions using k-medians 
clustering of ChIP-seq signal distribution of H3K27ac, H3K4me1, H3K4me3, 
Mediator, cohesin and CTCF, using human islet samples that were selected based 
on the greatest signal to noise for these marks. Briefly, -log10 (p-value) signal was 
calculated for each epigenetic mark using 100 bp bins across a 6 kb window 
centered on consistent open chromatin regions. K-median clustering was used to 
classify open chromatin regions into 14 clusters using flexClust 25. These 14 clusters 
were manually merged into 8 major categories based on the enrichment patterns of 
different chromatin marks as follows: active promoters, active enhancers (class I, II 
and III), inactive enhancers, regions with strong CTCF binding (I and II), and 
“inactive” open chromatin regions (open chromatin regions that lacked distinctive 
enrichments for any of the features that were used for the cluster analysis). Each 
open chromatin class was ranked by CTCF binding to highlight a small subset of 
enhancers that are bound by CTCF. Figure 1d shows that enhancer classes I-III 
show expected H3K27ac and Mediator occupancy profiles in three different human 
islet samples. Post-hoc analysis showed that human islet transcription start sites 
were markedly enriched in open chromatin regions classified as active promoters, 
and to a lesser extent in class I enhancers (Figure 1c). Islet regulome annotations 
and genomic locations can be found in Extended Data 1.1. 
 
Aggregation plots for pcHi-C baits and interacting regions. Related to Figure 1d 
and Supplementary Figure 1d.  A window of 25 kb around the center point of 
HindIII fragments containing pcHi-C baits and promoter-interacting regions was 
selected for histone marks and transcription factor density calculations. The distance 
density was estimated using Gaussian kernels (python 2.7 function 
scipy.stats.gaussian_kde) 26. The expected distribution was computed using 10 
randomizations of the epigenomic feature coordinates across the mappable non-
blacklisted genome using shuffleBed from BEDTools 17, retaining only non-
overlapping random regions. Density plots were computed using computeMatrix and 
plotProfile tools from Deeptools 2 27.  

Aggregation plots of Mediator and H3K27ac ChIP-seq signals from three 
human islet donor samples were plotted using computeMatrix and plotProfile tools 
from Deeptools 2 27. Input DNA was used as a reference.  
 
Overlap of interacting regions with epigenomic annotations. Related to Figure 
1e. The assessment of overlaps between promoter interacting regions and 
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epigenomic annotations was carried out with the CHiCAGO package 8 version 1.0.4. 
To create control interactions, we used the method implemented in the CHiCAGO 
package to create 100 sets of distance-matched interactions 8. Briefly, promoter 
interacting regions were randomly re-organized across all 22,076 baits such that the 
distance distribution of the interactions was maintained. The overlaps were also 
defined through the CHiCAGO package as the number of promoter interacting 
HindIII fragments that overlap with the genomic regions of interest, using either the 
set of high-confidence interactions (CHiCAGO score>5), giving us the observed 
overlap, or the sets of distance-matched control interactions, giving us the expected 
overlap. For the expected overlaps, a 95% confidence interval of the mean was also 
obtained.  
 
Extension of landing sites. Related to Figures 1f, 2b and Supplementary Figure 
2k-l. Epigenomic features that showed enrichment in high-confidence interacting 
regions (e.g. CTCF-, cohesin-, Mediator-bound regions, active promoters and 
enhancers) also showed increased presence of high-confidence interactions in the 
immediately adjacent HindIII fragment. To assess this, we considered each 
epigenomic feature described above, and quantified high-confidence interacting 
regions in the HindIII fragment that contained the epigenomic feature and adjacent 
fragments. In parallel, we performed 10 randomizations of the epigenomic feature 
coordinates across the mappable non-blacklisted genome using shuffleBed from 
BEDTools 17, retaining only non-overlapping random regions. This showed that 
HindIII fragments that were immediately adjacent to the epigenomic features, but do 
not directly contain the features, show a 2.8 fold enrichment in non-baited promoter 
interacting regions compared to the number computed using the randomized data. 
This enrichment was consistent with the expected proximity of adjacent fragments in 
nuclear proximity ligation assay.  We therefore extended the non-baited promoter 
interacting regions to the immediately adjacent HindIII fragments. Baited promoter 
interacting regions were not extended, as we did not observe enrichment in adjacent 
fragments. The interacting sites evaluated in Figures 1f, 2b and Supplementary 
Figure 2k-l were therefore composed of three adjacent HindIII fragments, whilst the 
primary analysis of overlapping features shown in Figure 1e was carried out with 
single fragments.  
 
Enrichment of tissue-invariant over islet-selective interactions. Related to 
Figure 1f. The enrichment of tissue-invariant over islet-selective interactions in a 

specific epigenomic feature 𝑓 (  𝐸
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) was computed as follows: 
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Expression selectivity analysis of islet-selective and tissue-invariant pcHi-C 
interactions. Related to Supplementary Figure 1h. To assess whether islet-
selective pcHi-C interactions were preferentially connected with genes showing islet-
selective expression, we selected baits that exclusively contained islet-selective or 
tissue-invariant interactions and computed the gene expression islet specificity Z-
score of the genes contained in the baits. Statistical analysis was performed using 
Wilcoxon’s signed ranked test. 
 
4C-seq Library Preparation. Related to Supplementary Figure 1j,k. 

4C-seq library preparation of human EndoC-βH1 β cells was performed 
following the protocol described in 9. 4C-seq datasets from native human pancreatic 
islets in MAFB and ISL1 loci shown in Supplementary Figure 1j,k are taken from 9. 

Briefly, around 10 million EndoC-βH1 human β cells were crosslinked in 
paraformaldehyde 2% (Agar Scientific) for 10 minutes at room temperature. 
Paraformaldehyde was quenched with 10mM Glycine for 5 minutes at RT and cells 
pelleted at 4C for 10 minutes at 1,000g. After washing the sample twice with PBS 
supplemented with protease inhibitors (Roche), the samples were snap frozen and 
stored at -80C until further usage. Cells were lysed in 50 mM Tris pH=8, 150 mM 
NaCl, 5 mM EDTA, 0.5% NP-40, 1% TX-100, 1x protease inhibitor cocktail on ice 
until nuclei were released. Nuclei were then pelleted and digested with 400 units of 
DpnII (New England Biolabs) overnight. After assessing digestion efficiency, DpnII 
was inactivated at 65C for 20 minutes and ligation was carried out in 60 units of T4 
DNA ligase, 700 µl of ligase buffer (Promega) and 5,7 ml of nuclease-free water 
overnight at 16°C. Crosslinks were reversed overnight at 65°C using 30 µl of 
Proteinase K (10 mg/ml) and the next day, after a 30 minutes treatment with RNase 
A (10mg/ml), DNA was purified using phenol chloroform. Csp6I endonuclease 
(Fermentas) was used in the second round of digestion using 50 units of the enzyme 
in a total volume of 500 µl overnight at 37°C. The second ligation was done 
overnight at 16°C using 100 units of T4 DNA ligase in 15 ml of volume and purified 
using Amicon Ultra-15 columns (Millipore). 

Libraries were prepared by amplifying the concentrated sample with MAFB 
and ISL1 human promoter-specific primers containing Illumina adaptors described in 
9. At least 8 independent optimized PCR reactions per viewpoint were pooled for 
sequencing. 

4C-seq libraries were analyzed as described in 9. Briefly, 4C-seq reads were 
sorted, aligned and translated to restriction fragments. A moving average of 30 
fragments per window was used to smoothen reads. Next, we calculated for each 
fragment the Poisson probability of it containing a given number of smoothened 
reads. To this end, all aligned fragments were randomized 1,000 times in a 2-Mb 
window centered on the viewpoint and smoothened in the same way. We then 
defined significant interactions in the 4C-seq experiment as those with a Poisson 
probability of <1 × 10−10. 
 Virtual interaction profiles (virtual 4C-seq) plots shown depict merged read 
counts, as computed by CHiCAGO, from islet pcHi-C HindIII fragments that interact 
with selected bait fragments. 
 
Identification of islet TAD-like domains. Related to Supplementary Figure 2a-c. 
We defined TAD-like domains by computing genome-wide the Directionality Index 
(DI) score using the formula proposed by 28: 
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A and B variables from the DI score formula were adapted to pcHi-C as follows: 
 
Variable Hi-C (Dixon et al. 2012) 

 
pcHi-C 

A The number of reads that map 
from a given 40 kb bin to the 
upstream 2 Mb. 

 The number of intra-chromosome 
interactions going upstream from a 
sliding window of 5 HindIII fragments. 
 

B The number of reads that map 
from the same 40kb bin to the 
downstream 2Mb. 

 The number of intra-chromosome 
interactions going downstream from a 
sliding window of 5 HindIII fragments. 

 
DI domains were defined as genomic territories flanked by regions with a negative DI 
score on the 5’ edge and a positive DI score on the 3’ edge. 

Interconnectivity between DI domains was computed as a log2 ratio between 
the number of inter-domain and intra-domain interactions, so that ratios lower than 0 
correspond to domains with more intra-domain interaction than inter-domain 
interactions. Adjacent DI domains with interconnectivity ratios greater than 0 were 
merged. These merged DI domains defined 3,598 islet TAD-like compartments (see 
also Supplementary Figure 2a) 
 
CTCF occupancy in TAD-like compartments. Related to Supplementary Figure 
2d. A de novo motif analysis was conducted using HOMER 29 on a list of consistent 
CTCF binding sites (see also ChIP-seq analysis Methods section), which provided 
a PWM that matched the known CTCF binding motif. Using annotatePeaks.pl from 
HOMER, instances of this PWM with a Log score>5 were mapped to islet CTCF 
binding sites. When multiple motifs were mapped to the same CTCF peak, only the 
motif with the highest score was kept. We thus determined the position and the 
orientation of CTCF motifs in consistent CTCF binding sites in human islets. 
Aggregation plots of CTCF in TAD-like compartments were computed using 
computeMatrix scale-regions and plotProfile from DeepTools 2 27. 

 
Tissue-specificity of TAD boundary regions. Related to Supplementary Figure 
2e. TAD boundary tissue-specificity was determined as in 30. Islet TAD-like 
boundaries were defined as 40 kb binned genomic regions overlapping an islet TAD-
like edge, similarly to those previously defined by others with Hi-C 30. To assess 
islet-specific TAD boundaries, we examined TAD boundaries from 21 additional 
tissues. Reference TAD boundaries within 200 kb window were merged into a single 
TAD boundary “region” using mergeBed from BEDTools 17. This step was added 
because TAD boundaries defined in different tissues may be slightly shifted (by a 
few bins) and borders may be within the same boundary region even if they do not 
directly overlap (Schmitt et al., 2016). Finally, the number of islet TAD boundary 
regions overlapping TAD boundaries from the remaining 21 human samples was 
computed using intersectBed (BEDTools).  
 

𝐷𝐼 =    ! 𝐵 − 𝐴
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Identification of Promoter-Associated Territories (PATs). Related to 
Supplementary Figure 2f,g.  PATs were created for imputing enhancer-promoter 
interactions. They were defined as the linear space covered by all the interactions 
originating from a pcHi-C bait, within the same islet TAD-like compartment. A total 
number of 16,030 PATs were defined in this manner (see also Supplementary 
Figure 3e). 

 
ChromHMM segmentation of regulatory elements. Related to Supplementary 
Figure 2h-j. To segment the genome into chromatin states based on combinations 
of chromatin marks in pancreatic islets, we used ChromHMM v1.11 31. Previously 
published human islet in-house datasets (H3K27me3, H3K36me3, H3K4me1, 
H3K4me3, H2AZ)9, externally generated H3K9ac and H3k9me3 datasets 32, and 
newly generated datasets described in the current study (cohesin, Mediator, CTCF 
and ATAC) were used. The specific parameters used were as follows: reads were 

shifted in the 5′to 3′direction by 100 bp. For each of the aligned ATAC-seq and 

ChIP-seq datasets, read counts were computed in non-overlapping 200-bp bins 
across the entire genome, which were binarized into 1 (enrichment) or 0 (no 
enrichment) by comparing the read counts within each bin against a background 
signal using a Poisson p value threshold of 1 × 10−4. Models from 10, 15, 20 and 25 
states were trained in parallel. We chose to focus on the 15-state model as it best 
summarized the pancreatic islet epigenome.  
 
ChromHMM enrichment in PATs. Related to Supplementary Figure 2h,i. For 
each PAT we considered the entire linear genomic space, and computed the fraction 
of genomic space occupied by every ChromHMM state segment. The enrichment of 
ChromHMM states in PATs was calculated as the fraction of PAT space occupied by 
a given ChromHMM state divided by the fraction of genomic space occupied by the 
same state. For 7,085 PATs that were at least 25% smaller than their corresponding 
TAD-like space, we computed the enrichment of ChromHMM states in the PAT 
versus the remaining islet TAD-like space. 
 The analysis of baits was performed separately for bins of baits that differed in 
their gene expression level. All baits corresponding to an Ensembl promoter in our 
capture setup were allocated an expression level using the human islet gene 
expression quantification described above. For baits that contained multiple 
promoters the average expression level was considered. Baits were then grouped 
based on their expression levels in 5 bins of equal sizes. 
 
Enhancer-promoter assignments. Related to Supplementary Figure 2k. We used 
pcHi-C interactions and PAT features to assign enhancers to promoters contained in 
interacting baits. We followed a stepwise approach in which each step was only 
performed on unassigned enhancers from previous steps. For steps 2-4, in which 
assignments were imputed, we only considered baits that contained at least one 
active islet promoter, as defined by the islet regulome classification (Extended Data 
1.1) or ChromHMM analysis. For all assignments, we report candidate target genes 
with average human islet RNA > 1.5 TPM (Extended Data 1.2). Post-hoc analysis, 
described in greater detail below, supported imputed assignments based on an 
increased frequency of moderate-confidence physical interactions (Supplementary 
Figure 2l) and functional correlations (Figure 2b-d).  

The enhancer-promoter assignment steps were as follows: 
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1. Enhancers were associated to promoters based on the presence of human islet 
high- confidence (CHiCAGO score>5) interactions. In cases where the enhancer 
showed interactions with multiple baits, all genes expressed at > 1.5 TPM were 
considered. High-confidence interactions that cross TAD boundaries were included 
for the purpose of enhancer-promoter assignments in this step.   
2. If an enhancer did not show high-confidence (CHiCAGO score>5) interactions, we 
defined the PAT(s) in which it was contained. However, we did not assign the 
enhancer to all overlapping PATs, because only some active genes are regulated by 
enhancers; for example, some TADs contain multiple active genes and few or no 
enhancers. We therefore imputed the assignment of orphan enhancers to 
overlapping PAT(s) anchored by an active promoter that did show high confidence 
interactions with other islet enhancers, rather than to other PATs that also contained 
the enhancer but had no evidence of interacting with any enhancer. Once an 
enhancer was assigned to a PAT, we selected genes expressed in islets at > 1.5 
TPM as candidate gene targets of the enhancer.  
3. For remaining enhancers that showed no high-confidence (CHiCAGO score>5) 
interactions but were contained within 10 kb linear window of a bait containing active 
promoter(s), we assumed that (a) this linear distance is more likely to provide 
functional enhancer– promoter communication than promoters located more distally 
that do not show high-confidence interactions, and (b) random collisions are too 
frequent to enable the identification of high confidence interactions above 
background noise with CHiCAGO. We thus imputed these enhancer-promoter 
assignments, and selected genes expressed in islets at > 1.5 TPM as candidate 
gene targets of the enhancer 
4. In remaining enhancers that showed no high-confidence (CHiCAGO score>5) 
interactions, but were only contained within the linear genomic space of a single PAT 
with an active promoter, we imputed the assignment to expressed genes in that PAT 
bait.  
A list of enhancer-promoter assignments can be found in Extended Data 1.2.  
 
Validation of enhancer assignments Related to Figure 2b-d and Supplementary 
Figure 2l. Imputed enhancer-promoter assignments were validated by showing (a) 
increased enhancer-promoter correlations across tissues and human islet samples, 
(b) increased islet-specificity of assigned genes, and (c) coordinated changes after 
exposure to varying glucose concentrations, as described below and (d) higher 
CHiCAGO scores in the imputed interactions.  
 
(a) Enhancer-promoter correlations. Related to Figure 2b. We assessed H3K27 
acetylation correlation of enhancer and promoter pairs across tissues and human 
islet samples, based on the assumption that H3K27 acetylation in flanking 
nucleosomes of genuine enhancer-promoter target pairs should tend to show higher 
correlation values than unrelated pairs. We found that using only unrelated tissues 
for this analysis is sometimes not informative because, for example, poor correlation 
values are expected when an enhancer is exclusively active in one tissue, and the 
true target gene of that enhancer is expressed in multiple tissues but regulated by 
different enhancers. This can be complemented by studying correlations across 
different individual samples from the same tissue, although this is also uninformative 
in some enhancer-promoter pairs that show limited variation across islet samples. 
We thus empirically combined tissues and human islet samples to generate a single 
Spearman’s Rho value for every possible enhancer-promoter pair in each islet TAD, 
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and found that this combined score provided improved discrimination in two 
functionally characterized loci. 

Comparisons of correlation values were made with two enhancer-gene control 
sets: (i) for every enhancer with an assigned gene promoter, we randomly selected 
another gene promoter in the same TAD, and (ii) for every enhancer with an 
assigned gene promoter, we sought a gene promoter from a PAT that also contained 
that enhancer but was not assigned. 

For this analysis, we used 14 human pancreatic islet samples, including 7 
samples exposed to 11mM glucose and 4mM glucose, and 51 tissues from 
Epigenome Roadmap Consortium consolidated epigenomes. Epigenome RoadMap 
aligned reads from H3K27ac ChIP-seq samples and corresponding inputs were 
downloaded from egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/ 
and converted to BAM format using bamToBed from BEDTools 17. To avoid artificial 
bias in H3K27ac signal strength due to differences in sequencing depth, all datasets 
selected contained at least 15 million usable reads and were uniformly subsampled 
to a maximum depth of 30 million usable reads. Active islet enhancers were 
uniformly extended to +/-750 bp from the center of the peak. Active islet promoters 
were used without further modification. Promoters were defined as regions that were 
annotated as such in the islet regulome (Extended Data 1.1). The number of reads 
mapping to active enhancers and promoters from human islets were quantified in all 
tissues and inputs using featureCounts 33 and were sequence-depth normalized. 
Then, sequence-depth normalized input signal was subtracted from the sequence-
depth normalized ChIP signal. Spearman’s Rho value is calculated between all pairs 
of active enhancers and active promoters within TAD-like domains of human 
pancreatic islets using python’s scipy.stats.spearmanr function. 
 
(b) Islet-selectivity of enhancer target genes. Related to Supplementary Figure 
2m. Islet-selective and expressed non islet-selective genes were defined as 
described above. We computed the number of islet-selective, non islet-selective but 
expressed genes, and non-expressed genes among genes that were assigned to an 
enhancer, and among control genes from PATs that also contain the same 
enhancer, but were not assigned to the enhancer.  The statistical significance was 
assessed performing a chi-square test (python 2.7 function 
scipy.stats.chi2_contingency) comparing the frequency of each gene expression 
class among the two “assigned genes” and “control genes” lists. 
 
(c) Concordant glucose regulation of assigned enhancer-promoter pairs. 
Related to Figure 2c,d. H3K27ac ChIP-seq and RNA-seq datasets were analyzed in 
islets from 7 human donors that were cultured for three days in either 11 or 4 mM 
glucose, as described above.  

To assess glucose-regulation of enhancers, we defined H3K27ac-enriched 
regions, rather than using annotated enhancers, which typically contain nucleosome-
depleted subregions that do not show H3K27ac enrichment. We thus defined 
consistent H3K27ac-enriched regions for each human donor and each glucose 
condition treatment using MACS2 with the parameters described above. A total 
number of 90,814 narrow H3K27ac-enriched regions were interrogated for this 
analysis. The number of H3K27ac reads mapping to each peak was calculated using 
FeatureCounts v1.5.0 program (--ignoreDup -O --minOverlap 10). Then, paired 
DESeq2 (v1.10.1) analysis was used to assess differential signal strength. Peaks 
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showing differential H3K27ac ChIP-seq signal at adjusted P ≤ 0.05 were then 
mapped to annotated enhancers.  

For RNA-seq of islets exposed to different glucose concentrations, 100 bp 
paired-end sequencing reads were aligned to masked hg19 genome using STAR 
aligner v2.3.0 21 (options: --outFilterMultimapNmax 1 --outFilterMismatchNmax 10). 
Gene level counts were obtained using FeatureCounts v1.5.0. (-s 2 -p). After 
removing the genes that did not have at least 5 raw reads mapped in at least 3 
replicates, a paired DESeq2 (v1.10.1) analysis was carried out to identify 
differentially regulated genes. In both cases we calculated the FDR, and chose a 
value ≤ 0.05 as the significance threshold. This showed that islets exposed to higher 
glucose concentrations showed a significant increase in RNA levels in 8.4% of all 
genes, and in in H3K27ac for 7.2% of all annotated enhancers at this significance 
threshold. Consistent with the notion that some glucose-dependent increase in RNA 
levels were driven by transcriptional regulatory changes, enhancers and promoters 
located within 25 kb of glucose-regulated transcripts showed enrichment for 
significant glucose-induced H3K27ac (q < 10-3). A more detailed analysis of glucose-
regulated responses across different human islet samples will be presented 
elsewhere (GA, DR). 
 To calculate the enrichment of interactions between glucose-induced 
enhancers and glucose-induced genes (related to Figure 2C), we considered all 
possible pairs of glucose-induced enhancers (interacting or imputed) and genes with 
glucose-induced mRNA within an islet TAD-like domain. For each enhancer-
promoter pair we created a control pair with a distance-matched baited gene. We 
excluded experimental pairs when we could not find a distance-matched control. 
Then, we calculated a Fisher’s exact test p-value to assess if glucose-induced 
enhancer and genes were enriched in high-confidence or imputed assignments. As 
an additional control, we assessed if glucose-induced enhancers preferentially 
contact glucose-repressed genes. 
 We further examined whether the gene promoters assigned to glucose-
induced enhancers also show a significant glucose-dependent increase in H3K27ac 
levels. As a control, for every glucose-induced enhancer we chose a gene promoter 
that had the closest distance to the enhancer as the assigned gene promoter. When 
no control genes were found, only the assigned gene promoter changes without 
control gene promoters were considered. The median distance for interacting gene 
promoters and control promoters was 200 kb (IQR 102-356 kb) and 167 kb (IQR 99-
351 kb), respectively. The median distance for imputed gene promoters and control 
promoters was 114 kb (IQR 58-301 kb) and 134 kb (IQR 71-324 kb), respectively. 
 
(d) Assessment of CHiCAGO scores in imputed assignments. Related to 
Supplementary Figure 2l.  We considered all imputed promoter-enhancer pairs, as 
well as the two control sets of promoter-enhancer pairs in the same PAT or TAD 
described in (a). For each pair, we considered the maximum CHiCAGO score of the 
interaction between the bait and interacting HindIII fragments.  
 
Compilation of T2D-FG associated variants to define putative targets. Related 
to Figure 3 and Supplementary Figure 3. To define the most likely target genes of 
enhancers that contain putative causal islet regulatory variants we first compiled a 
comprehensive list of variants associated with T2D and glycemic traits using variants 
contained in 99% credible sets from (a) the DIAGRAM Metabochip meta-analysis of 
T2D susceptibility from the DIAGRAM website (diagram-
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consortium.org/downloads.html)34 and (b) the re-analysis of T2D publicly available 
GWAS datasets and imputation with 1000 Genomes Project (1000G) and UK10K35. 
For loci that were examined in both studies, we considered the union of all variants. 
Additionally, a list of T2D and Fasting Glycemia-associated lead SNPs was 
downloaded from the NHGRI-EBI GWAS Catalog on 31/05/2016, from which we 
selected SNPs if they complied with the following criteria: (a) genome wide 
significance (p ≤ 5 x 10-8) in a study that could be verified in a peer-reviewed 
publication; (b) the phenotype in the study was reported as Type 2 diabetes, or Type 
2 diabetes (and other traits), for T2D-associated SNPs,  “Fasting glucose-related 
traits” or “Fasting plasma glucose”, and (c) they were not identified in or were in high 
linkage disequilibrium (LD) with SNP in the credible sets from 34 and/or 35. For this 
set of lead SNPs, we identified variants in high LD (r2 > 0.8) using PLINK 36 and 
1000 Genomes Project phase3 data for CEU samples (European loci), CHB and JPT 
samples (Asian loci) or YRI samples (African loci; Yoruba from Ibadan, Nigeria), in 
the original populations were the original or replications GWAS studies were carried 
out. A schematic of the compilation process can be found in Supplementary Figure 
3A and the full list of genetic variants can be found in Extended Data 1.3. Summary 
statistics from 35 and 34 can be found at: http://cg.bsc.es/70kfort2d/ and 
http://diagram-consortium.org/downloads.html respectively. 
 
Identification of potential target genes of T2D-FG associated variants. Related 
to Figure 3. We integrated the list of T2D/FG-associated variants with enhancer-
promoter assignments to identify putative candidate target genes of T2D-FG-
associated variants. In total, we were able to associate 530 enhancer variants from 
54 loci to islet-expressed genes using high-confidence interactions and imputations 
(Figure 3a). Supplementary Table 1 provides a more extensive list of 830 T2D 
and/or FG-associated variants that overlap an active enhancer or  a promoter, which 
includes information on connections to candidate genes through (a) high-confidence 
interactions (CHiCAGO score >5), (b) moderate-confidence CHiCAGO interaction 
scores (2.5-5), (c) imputation, (d) indirect connections through a common hub, and 
(e) location of actively expressed gene within 10 Kb of disease-associated enhancer 
variants, regardless of whether they were imputed, given the limited power to discern 
random collisions from regulatory interactions in this range. This category also 
included actively transcribed genes from associated variant-containing promoters 
that overlap pcHi-C baits.  

Supplementary Table 1 additionally lists T2D-FG genetic variants that 
overlap a promoter interacting region (CHiCAGO score >5) even if it does not 
overlap a regulatory element, and reports actively transcribed putative target genes. 
 
Experimental validation of T2D GWAS variant assignments to target genes. 
Related to Figure 3c,d, Supplementary Figures 3 and 4g.i. 
 
Cell lines. Related to Figure 3c,d and Supplementary Figures 3 and 4g.i. EndoC 
βH3 cells 37 were maintained in DMEM low glucose (1 g/L) supplemented with 
GlutaMAX and sodium pyruvate (Thermo Fisher), 2% albumin from bovine serum 
fraction V (Roche), 50 µM β-mercaptoethanol, 10mM nicotinamide, 5.5  µg/mL 
human transferrin, 6.7 ng/mL sodium selenite, 100 U/mL penicillin and 100  µg/mL 
streptomycin. Culture dishes were pre-coated with DMEM (4.5 g/L glucose) 
2  µg/ml fibronectin (Sigma) and 1% ECM (Sigma) overnight at 4ºC. 
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 HepG2 were obtained from ATCC and maintained in DMEM supplemented 
with 10% FBS, 2mM L-glutamine, 1mM sodium pyruvate 100  U/mL penicillin and 
100  µg/mL streptomycin. 

293FT cells were obtained from Thermo Fisher and maintained in DMEM 
supplemented with 10% FBS, 0.1mM MEM non-essential amino acids, 2mM L-
glutamine and 1mM sodium pyruvate, 500 µg/ml geneticin, 100  U/mL penicillin and 
100  µg/mL streptomycin. 
 
Luciferase reporter assays. For the allele-specific reporter assays presented in 
Supplementary Figure 3c and Supplementary Figure 4h, the genomic regions 
containing T2D variants were amplified from human genomic DNA and cloned into 
the pGL4.23 vector (Promega) at KpnI and HindIII, upstream of a minimal promoter 
and the Firefly luciferase coding sequence (CDS), using Gibson Assembly (New 
England Biolabs) 38. In the cases where both haplotypes could not be amplified from 
genomic DNA, site directed mutagenesis was performed using Q5 Site-Directed 
Mutagenesis Kit (New England Biolabs). Regions of similar size lacking evident 
regulatory marks in human islets were used as negative controls in addition to the 
empty pGL4.23 vector. Oligonucleotide sequences used for enhancer cloning and 
mutagenesis are listed in Supplementary Table 9. 
 Enhancer reporter construct transfections were carried out on 120,000 EndoC 
βH3 cells in 48-well plates with 0.1pmol of tested construct and 10ng of Renilla-
expressing pRL vector, by reverse transfection using Lipofectamine 2000 (Thermo 
Fisher). Luciferase activity was measured 48 hours post transfection with Dual-
Luciferase Reporter Assay kit (Promega) on a GloMax-Multi Microplate Multimode 
Reader. Firefly luciferase measurements were normalized to Renilla luciferase. Two 
experiments with three to four independent transfections were performed per tested 
enhancer and data are represented as the fold change in relative luciferase signal 
over the average activity of the negative controls with S.D. Two-sided Student's t test 
was used to calculate significance. 
 
Generation of CRISPR-Cas9 delivery vectors. Related to Figure 3c,d and 
Supplementary Figures 3 and 4g.i. For deletion of genomic regions in the EndoC 
βH3 cell line, which is resistant to puromycin 37 and responds poorly to cell sorting, 
we replaced the EGFP CDS from pSpCas9(BB)-2A-GFP (pX458 plasmid #48138, 
Addgene, 39

) with a hygromycin resistance CDS, generating the pSpCas(BB)-2A-
HygR backbone which allows positive selection of EndoC βH3 cells after transfection 
(plasmid to be deposited, Addgene). The pSpCas(BB)-2A-HygR vector was 
generated by Gibson assembly using primers listed in Supplementary Table 9, and 
PCR amplification of the hygromycin resistance CDS from lentiMPH v2 (plasmid 
#89308, Addgene40). 
 
Guide RNA design and cloning for CRISPR-Cas9-mediated deletions. Related to 
Figure 3c,d and Supplementary Figures 3 and 4g.i Figure 3c,d and 
Supplementary Figures 3 and 4g.i. We used Cas-Designer 
(http://www.rgenome.net/cas-designer/) to design 17nt-long guide RNAs 
(gRNAs).Truncated gRNAs have been shown to be more specific without a 
significant compromise of the targeting efficiency 41. Deletions were achieved by 
delivery of pairs of gRNAs, with one guide on each side of the target region (Left and 
Right guides). For each target region, we designed up to 4 different deletions, each 
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with a different “Left+Right” combination of guides. A list of all guide RNAs used in 
this study can be found in Supplementary Table 10.  

To increase the efficiency of CRISPR-Cas9-mediated deletions, we used a 
dual gRNA cloning strategy, which allowed combination of different Left+Right pairs 
with the same set of oligonucleotides. To this end, a plasmid containing a sgRNA 
scaffold, a H1 promoter, and a kanamycin resistance CDS (pScaffold-H1) (plasmid 
to be deposited, Addgene), was generated by TOPO cloning (Thermo Fisher)42. The 
sgRNA scaffold and H1 promoter sequences were amplified from pDECKO-mCherry 
GFP (plasmid #78535, Addgene, gift from Roderic Guigo & Rory Johnson43)(primers 
listed in Supplementary Table 9). PCR primers for gRNA cloning were as follows:  
 
Primer Sequence 
Forward CGAGAAGACCTcaccgNNNNNNNNNNNNNNNNNGTTTTAGAGCTAG

AAATAGCAA (BbsI/sgRNA1/sgRNA scaffold) 
Reverse GGTGAAGACCCaaacNNNNNNNNNNNNNNNNNGGGAAAGAGTGGT

CTCA (BbsI/sgRNA2 reverse complement/H1 promoter) 
 
Oligonucleotides corresponding to deletion-yielding pairs of gRNAs were assembled 
in a reaction mix containing 1X Q5 reaction buffer, 200µM dNTPs, 0.5 µM primer, 
0.02U/µl Q5 high-fidelity DNA polymerase and 0.25ng/µl of pScaffold-H1 vector, with 
Ta=58ºC, 15 sec extension, for 30 amplification cycles. PCR products were digested 
and ligated to pSpCas(BB)-2A-HygR in a one-step digestion ligation reaction with 1X 
tango buffer, 1µl FastDigest BbsI (Fermentas), 1µl 0.1M DTT, 1µl 10mM ATP, 0.5µl 
T7 ligase, 100ng of vector and 1µl of PCR product (diluted 1:20). Digestion-ligation 
reactions underwent 6 cycles of 5 min at 37ºC and 5 min at 23ºC, and final 5 min 
incubation at 37ºC, after which 2µl of the final ligation were used to transform 25µl of 
Stbl3 chemically competent E. coli. On the following day, single colonies were picked 
and analyzed by Sanger sequencing. Plasmids were isolated using a midiprep kit 
(Promega) and concentrated to 1-2 µg/µl by ethanol precipitation. 
 
Enhancer deletions with CRISPR-Cas9. Related to Figure 3c,d and 
Supplementary Figures 3 and 4g.i. EndoC βH3 cells were nucleofected in a 
Nucleofector B2 (Lonza) following the manufacturer’s protocol, using 2 million cells 
and 10 µg plasmid DNA per nucleofection with Amaxa cell line nucleofection kit V 
(Lonza) and program G-017. After nucleofection, 500 µl RPMI media was added to 
each cuvette. After a 20 min incubation, cells were transferred to a pre-coated 12-
well plate containing pre-equilibrated antibiotic-free EndoC βH3 media. Media was 
changed 18 hours post nucleofection and hygromycin selection was started 6 hours 
later (200µg/ml). Hygromycin was replenished 72 hours post nucleofection. After a 
period of 5 days of selection, media was changed daily using 50% conditioned 
EndoC βH3 media. Cells carrying deletions were passaged every 5-6 days into fresh 
pre-coated plates similarly to wild type cells. CRISPR-Cas9-mediated deletion 
efficiency was assessed by PCR, using primers outside the deleted regions (primers 
listed in Supplementary Table 9). Genomic DNA was extracted 5-6 days post-
nucleofection. 
 
CRISPR inhibition vectors. Related to Supplementary Figure 3d,e. To minimize 
prolonged selection of EndoC βH3 cells with multiple antibiotics, we devised an all-
in-one CRISPRi system containing the gRNA expression cassette (U6 promoter, 
gRNA protospacer and sgRNA scaffold) and the CRISPRi cassette (KRAB domain 
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fused to dCas9, 2A peptide and blasticidin resistance CDS). Two versions of the 
system were generated: Lenti-(BB)-EF1a-KRAB-dCas9-2A-BlastR (plasmid to be 
deposited, Addgene) and Lenti-(BB)-hPGK-KRAB-dCas9-2A-BlastR (plasmid to be 
deposited, Addgene), containing core EF1a or hPGK promoters, respectively. The 
Lenti-(BB)-EF1a-KRAB-dCas9-2A-BlastR vector was generated by Gibson assembly 
(NEB, PMID 19363495), using the backbone of lentiCRISPR v2 (plasmid #52961, 
Addgene, 44), and amplifying the KRAB-dCas9 cassette from pHR-SFFV-KRAB-
dCas9-P2A-mCherry (plasmid #60954, Addgene, 45), and the blasticidin resistance 
CDS from lentiSAM v2 (plasmid #75112, Addgene, 40) using primers listed in 
Supplementary Table 9. The Lenti-(BB)-hPGK-KRAB-dCas9-2A-BlastR was 
generated by swapping the promoter of Lenti-(BB)-EF1a-KRAB-dCas9-2A-BlastR by 
hPGK, which was amplified from human genomic DNA with primers listed in 
Supplementary Table 9. hPGK-containing backbone yielded stronger KRAB-dCas9 
expression in EndoC βH3 cells and was thus selected for our CRISPRi experiments. 
 
CRISPR-mediated inhibition (CRISPRi)  and activation (CRISPRa) vectors. 
Related to Supplementary Figure 3d,e. gRNAs targeting transcriptional start site 
regions were retrieved from the Human Genome-wide CRISPRi-v2 and CRISPRa-v2 
top5 libraries, respectively 46, and previously validated negative control gRNAs 
targeting sequences not present in the human genome were retrieved from Addgene 
(https://www.addgene.org/crispr/reference/grna-sequence/). To induce formation of 
heterochromatin (CRISPRi) or further activate (CRISPRa) enhancer regions, 20nt-
long gRNAs against the core of the enhancer (summit of ATAC-seq/Mediator ChIP-
seq signal) were designed using Cas-Designer (http://www.rgenome.net/cas-
designer/). guide RNAs used in this study and associated references can be found in 
Supplementary Table 10. gRNA oligonucleotides were cloned into the Lenti-(BB)-
hPGK-KRAB-dCas9-2A-BlastR and SAMv2 40 vectors, respectively, following a 
previously described protocol 44. Briefly, oligonucelotides (Thermo Fisher) containing 
gRNA sequences flanked by BsmBI-compatible overhangs were phosphorylated with 
T7 polynucleotide kinase (NEB) and annealed. Fragments were ligated into BsmBI-
digested destination vector. Ligated constructs were transformed into Stbl3 
chemically competent E. coli and clones were checked by Sanger sequencing.  
 
Lentiviral production. Related to Supplementary Figure 3d,e. CRISPRi and 
CRISPRa lentiviral particles were produced following a previously described 
lentivirus production protocol 47. 293FT cells were seeded at 75,000 cells/cm2 in T75 
flasks. 24 hr later when cells reached a confluence of 80%, cells were transfected 
with gRNA-containing CRISPRi or CRISPRa vectors together with third generation 
packaging plasmids pMDLg/pRRE, pRSV-Rev and pMD2.G (plasmids #12251, 
#12253 and #12259, Addgene), using PEI-Pro (Polyplus-transfection) according to 
manufacturer’s instructions, in antibiotic-free media using a 1:1 ratio of total DNA µg 
to µl of PEI-Pro. Transfection efficiency was estimated 24 hours later by microscopic 
inspection of a control EGFP-expressing vector (pLJM1-EGFP) (plasmid #19319, 
Addgene), which was transfected in parallel. Media was replaced by 9ml of fresh 
293FT antibiotic-free media 18 hours post transfection and lentiviral particles were 
collected 72 hours post transfection. Immediately after collection, supernatants were 
spun down for 5 min at 1500 rpm, filtered using Steriflip-HV, 0.45µm, PVDF filters 
(Millipore), supplemented with 1mM MgCl2, and treated with 1µg/ml DNaseI (Roche) 
for 20 minutes at 37ºC. Virus particles were then concentrated by overnight 
incubation with 3ml of Lenti-X Concentrator (Clontech) at 4ºC. On the following day, 
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virus particles were collected by cold centrifugation for 45 min at 2500 rpm, 
resuspension in 90 µl of PBS, aliquoting and storage at -80ºC until use. 
 
Enhancer modulation with CRISPRi or CRISPRa. Related to Supplementary 
Figure 3d,e. EndoC βH3 and HepG2 cells were transduced during passage with 
addition of 10µl and 1µl of concentrated lentiviral supernatant, respectively. 24 hr 
post-transduction media was changed and 48 hr later selection was started with 
blasticidin (EndoC βH3 8µg/ml, HepG2 cells 3µg/ml). Medium was replenished every 
48 hr thereafter, until all negative control cells were dead (usually 8-9 days). After 
selection, cells were passaged and used for RNA extraction. 
 
Quantitative gene expression analysis. Related to Figure 3c,d and 
Supplementary Figures 3 and 4g.i. EndoC βH3 cells carrying deletions were 
seeded at 0.5 million cells/well in 12-well plates and treated with 1 mM 4-
Hydroxytamoxifen for 3 weeks, replenishing 4-Hydroxytamoxifen treatment twice per 
week, to induce oncogene excision37, and passaged every 5-6 days. EndoC βH3 
cells transduced with CRISPRi or CRISPRa lentiviral particles were seeded at 0.5 
million cells/well in 12-well plates and cultured for 48 hours prior to RNA harvesting. 
Total RNA was extracted with RNeasy Mini Kit (Qiagen) using in-column RNase-
Free DNase Set (Qiagen). 500 ng of total RNA were used for reverse transcription 
with SuperScript III First-Strand Synthesis SuperMix, using 1 mM dNTPs, 10 µM 
random primers and 1 unit/µl SUPERase In RNase Inhibitor (Thermo Fisher).  

Quantitative PCR was performed with Universal Probe Library assays (UPL, 
Roche), designed with the Universal ProbeLibrary Assay Design Center. 5 µl 
reactions were carried out in duplicates, in a QuantStudio 12K Flex (Applied 
Biosystems), with 1x TaqMan Fast Advanced Master Mix (Thermo Fisher), 1 µM 
forward and reverse primers, and 250 nM of UPL probe. Quantification was 
performed using the standard curve method with 5 points of 5-fold serial dilutions. 
Relative gene expression was calculated by normalizing to the housekeeping gene 
RPLP0. Primers and probes are listed in Supplementary Table 9. 
 
Logistic regression analysis of PAT features associated with islet-selective 
RNA expression. Related to Supplementary Figure 4a. We used logistic 
regression to identify PAT features that were the best predictors of islet-selective vs. 
non-selective expression amongst islet-expressed genes. After removal of highly 
correlating features (pairwise Pearson’s correlation >0.65) we analyzed the features 
shown below as independent variables for multiple logistic regression analysis:  
 
Epigenomic features interrogated in logistic regression analysis: 

-‐ H3K4me3 signal at TSS in human pancreatic islets   
-‐ H3K27me3 signal at TSS in human pancreatic islets 
-‐ H3K9me3 signal at TSS in human pancreatic islets  
-‐ Number of H3K4me3 peaks at TSS across 139 tissues 
-‐ Number of H3K27me3 peaks at TSS across 139 tissues  
-‐ TSS length determined by CAGE in human islets (bp) 
-‐ CpG island (CGI) length (kb) in promoter  
-‐ Number of islet pcHi-C interactions in PAT 
-‐ Fraction of PAT interactions that are islet-selective 
-‐ Fraction of all PAT interactions that are promoter-enhancer 

interactions 
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-‐ Distance of promoter to the closest TAD border (kb) 
-‐ Number of islet-assigned class I enhancers 

Logistic regression (LR) was implemented using python 2.7 and scikit-learn48 with 
class_weight mode set as “balanced” to automatically adjust weights in an inversely 
proportional manner to the class frequencies in the input data. The machine learning 
classifier was trained using 70% of the full dataset with 250 iterations and random 
sampling. The remaining 30% of the dataset was used for validations. In each 
iteration, the machine learning classifier computed the logistic regression 

coefficients, 𝛽! !∈ !;! , for a list of 𝑛 epigenomic features listed above, 𝜒! !∈ !;! , that 

fit a logit function.  
The logistic regression model can be written as follows: 

𝑙𝑜𝑔𝑖𝑡  𝑝! = (𝛽! ∗ 𝜒!)

!

!!!

 

where p is the probability that a given gene belongs to a certain gene expression 

class (𝑘). 
 
Classification of PATs based on enhancer content. Related to Supplementary 
Figure 4B. Logistic regression analysis showed that the number of class I enhancers 
assigned to a PAT was independently predictive of islet-selective expression of the 
PAT genes. Further analyses showed that this effect was apparent with PATs with 
≥3 assigned class I enhancers. The only more enriched feature among PATs 
showing islet-selective expression was the number of non-islet tissues enriched in 
H3K27me3, however we regarded this as not informative inasmuch as it is a proxy 
for islet-selective gene activity. We therefore used the number of assigned class I 
enhancers to classify PATs as follows: 
- Enhancer-less PATs, without any assigned enhancer (n= 8,303). 
- Enhancer-poor PATs, with ≥1 assigned class I-III enhancers, but ≤2 assigned 
class I enhancers (n= 5,104). 
- Enhancer-rich PATs, with ≥3 assigned class I enhancers (n= 2,623). 
 

Definition and analysis of enhancer hubs. Related to Figure 4. Enhancer-rich 
PATs were frequently interconnected through one or more enhancers that interacted 
with more than one baited promoter (42.4% of all active enhancers had high-
confidence interactions with >1 bait). We thus merged enhancer-rich PATs with other 
PATs that were connected by one or more common enhancers through high-
confidence interactions (CHiCAGO score>5) with multiple baits. This resulted in 
1,318 enhancer hubs (Extended Data 1.4). For 99.5% of hubs all of hub 
components were restricted to one chromosome.    

For the purposes of annotating promoters that form part of hubs, we 
considered all annotated promoters that were associated with median RNA 
expression >1.5 TPM in human islets (Extended Data 1.4). In few cases (n=426), 
pcHi-C bait HindIII fragments contained active enhancers, which were shown to 
establish high-confidence pcHi-C interactions with non-baited fragments that 
contained active islet promoters. These enhancer-promoter interactions and the 
active promoters were also considered valid constituents of islet hubs. A list of 
human islet enhancer hubs is presented in Extended Data 1.4. 
  
Enrichment in islet-specific expression in hubs. Related to Figure 4b. We 
computed islet-selective, non-islet-selective but expressed genes, and non-
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expressed genes in hubs as in Figure 2, and calculated ratios relative to all genes. 
Statistical significance was assessed with hypergeometric tests.  

 
Enrichment in functional annotations in hub genes. Related to Figure 4c. 
Functional enrichments of hub genes were performed with Enrichr 49. Complete 
results for relevant categories are in Supplementary Table 2. As input, we used 
Ensembl genes from hub baits with average expression in human islets > 1.5 TPM.  

 
Promoter-promoter correlations of hub genes. Related to Figure 4d. We 
selected gene pairs whose promoters were in different baits from the same hub. For 
each hub gene pair, we selected control pairs such that one gene is one of the hub 
genes and the other is outside the hub but in the same TAD, and another in which 
both genes outside the hub but in the same TAD. Only genes with islet RNA 
expression above 1.5 TPMs were considered for this analysis. To avoid potential 
bias caused by gene pair proximity, gene pairs were binned in 50 Kb windows, and 
we ensured that there were a similar number of genes present in each bin for each 
of the three categories. Spearman correlations were computed by combining RNA-
seq data from Epigenome RoadMap 32 and human islet samples. Significance for 
comparisons between the three sets of Rho values was computed using kruskal 
function from the scipy.stats python library.  

 
Enhancer-promoter correlations. Related to Figure 4e. All enhancer-promoter 
pairs in islets within a TAD-like domain were classified in three categories: both 
elements inside the hub, both elements outside the hub, or one element inside and 
one outside the hub. In all cases we examined sequence-depth normalized H3K27ac 
in annotated enhancers and promoters across tissues and islet samples as 
described for Figure 2b, and calculated Spearman’s Rho correlation values.  
Statistical significance of Spearman’s Rho distributions was assessed using the 
Kruskal function from scipy.stats. 
 
Coordinated glucose response in enhancer hubs. Related to Figure 4f,g. To test 
if different enhancers from the same hubs behave coordinately in response to 
changes in glucose concentrations, we ranked all enhancer hub gene promoters by 
the p-value (as estimated by DESeq2) with the sign of the fold-change. For each 
ranked hub promoter, plotted the distribution of H3K27ac fold change values from 
individual enhancers in that hub, and calculated median and IQR values. Median and 
IQR values were then represented as a running average with a window size of 50. 
 
Quantification of islet-selective interactions in hubs. Related to Supplementary 
Figure 4f. Baits associated to enhancer-hubs show a higher fraction of islet-selective 
interactions than baits that have ≥5 islet high-confidence interactions but were not 
classified as hubs. For each hub or control PAT the fraction of islet-selective 
interactions was computed as the ratio between the number of islet-selective 
interactions versus the total number of interactions in the same baits. Statistical 
analysis was performed using Wilcoxon’s signed ranked test. 
 
Super-enhancers, stretch enhancers and enhancer clusters. Related to 
Supplementary Figures 4j-s, Figure 6 and Supplementary Figure 6. 
We defined super-enhancers in human islets using ROSE 
(https://bitbucket.org/young_computation/rose) 50 with a transcription start site 
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exclusion zone size of 5 kb (“-t 2500”) and the default stitching size of 12.5 kb. All 
active islet enhancers from Figure 1c were used as input constituent enhancers and 
input-subtracted Mediator ChIP-seq signal from a single donor that showed the 
highest signal to noise was used for ranking the stitched regions. We used the 
stretch enhancer annotations from 51 and enhancer cluster annotations defined by 9. 
We analysed all enhancer clusters or the 1,862 enhancer clusters with high islet TF 
occupancy (top 50 percentile of islet TF occupancy) as defined in 9. 
 
 
3D modeling of enhancer hubs and analysis. Related to Figures 5 and 
Supplementary Figure 5. 
 
Matrix filtering, normalization and 3D modeling. Related to Figure 5b,c and 
Supplementary Figure 5b,c. Aligned HiCUP pcHi-C files from the 4 human islet 
samples and total B lymphocytes 6 were binned at 5 kb resolution taking into account 
the size limit of fragments length distribution in the analyzed regions 
(Supplementary Table 11). Next, two filters were applied to the binned matrices that 
aimed at removing columns of poor coverage. First, all cells in the interaction matrix 
not covered by pcHi-C baits were removed. Second, bins with poor coverage (with 
less than 11 counts chromosome-wide) were treated as non-captured.   

The filtered interaction matrices were then normalized by distinguishing 
between bait-bait and bait-non-bait interactions. In brief, an intersection between 
sites was normalized by the least interacting captured site of the two intersecting 
bins: 

𝑣𝑎𝑙𝑢𝑒!" =
!"##!"

∑!"# !"#!,!"#! ×  ! !   ∑!"#!×  (!!  !)
   

where k is set to 1 for bait-bait interactions and to 0 in bait-non-bait interactions.  
  
Generation of 3D ensemble structures of enhancer hubs. Related to Figure 5b,c 
and Supplementary Figure 5b,c. Normalized interaction matrices were modelled 
using TADdyn, a molecular dynamic-based protocol implemented in the TADbit 
software 52. Similarly to TADbit, TADdyn generates models using a restraint-based 
approach, in which experimental frequencies of interaction were transformed into a 
set of spatial restraints, as previously described 53, but suited for sparse datasets 
such as pcHi-C. The underlying chromatin fiber was represented by a bead-spring 
polymer model 54-58, where the size (𝝈) of each bead was defined by the relationship 
0.01 nm/bp assuming the canonical 30 nm fiber 59,60, as implemented in TADbit. The 
system scoring function (H) was defined as: 

𝐻 = 𝐻!"# + 𝐻!"#$!! 

where Hpol is the contribution of the polymer and HpcHi-C is defined by a set of 
distance restrains proportional to the experimental frequencies of interaction. Hpol 
comprises two potentials that prevent polymer crossings when the beads interact:  

𝐻!"# = 𝑈!" + 𝑈!"#" 

ULJ potential is a purely repulsive Lennard-Jones potential used for the excluded 
volume interaction defined as: 

𝑈!" 𝑖, 𝑗 =
4𝜀𝜀!"
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where 𝜀 = 𝑘!𝑇 is energy unit of the system, 𝑘! is the Boltzmann constant, 𝑇 = 1.0 (in 

rescaled internal units) is the temperature, 𝜖!" is a parameter equal to 10 for 

connected particles ( 𝑖 − 𝑗 = 1), and 1 otherwise, and 𝑑!" is the distance between 

particles i and j. The UFENE (Finitely Extensible Nonlinear Elastic) potential used to 
define the fibre connectivity defined as:   

𝑈!"#" 𝑖, 𝑖 + 1 = −150𝜀
𝑅!

𝜎

!

1−
𝑑!,!!!  

𝑅!

!

 

This ensure that consecutive particles on the chain are connected by an elastic 
energy which allows a maximum bond extension of 𝑅! = 1.5𝜎 = 75𝑛𝑚. 
HpcHi-C is defined by a set of distance restrains (imposed using harmonics) 
proportional to the experimental frequencies of interaction:  

𝐻!"#$!! = 𝐻𝑅 + 𝑙𝑏𝐻 

The harmonic restraint (HR) between two particles i and j of the system at spatial 

distance 𝒅𝒊𝒋, is defined as: 

𝐻𝑅 𝑑!" = 0.5  𝑘!"    𝑑!" − 𝑑!"
!"

!

 

where 𝑘𝒊𝒋 is the strength of the restraint, and 𝑑!"
!"

 is the equilibrium distance as 

calculated from the normalized pcHi-C interaction matrix. Here, this type of 
harmonics are used for (i) imposed proper Harmonic restraint (HR), where particles i 
and j are forced to stay at a distance close to equilibrium; and (ii) impose 
LowerBoundHarmonic restraint (lbH), where particles i and j are forced to stay at a 
mutual distance larger than equilibrium. The former HR is defined by large strength 
and short equilibrium distance to bring together in space each pair of particles with 
high normalized pcHi-C interaction value; conversely, the latter is defined by large 
strength and large equilibrium distance to keep far apart each pair of particles with 
low normalized pcHi-C interaction value.  

Similarly to TADbit, a grid search approach was used to identify empirically 
the three optimal parameters to be used: (i) maximal distance between two non-
interacting particles (maxdist) defining the scale of the obtained models;  (ii) a lower-
bound cutoff to define particles that do not interact frequently (lowfreq); and (iii) an 
upper-bound cutoff to define particles that do interact frequently (upfreq) 52,53,61.  

Finally, during the molecular dynamic simulation optimization step the initial 
polymeric (random walk) configurations were placed in a cubic simulation box of size 
101𝜎. The dynamics of the system were described using the underdumped Langevin 
equation, as implemented in LAMMPs 62 with standard parameters 54. The HR and 
lbH restraints based on the normalized pcHi-C interaction matrix were applied using 
a modified version of the collective variables Colvar plug-in 63. 

A total of 500 models were generated for each genomic region and cell type 
(islets and total B lymphocytes). The contact map generated from the ensemble of 
models was highly correlated with the input pcHi-C normalized interaction matrices 
(see Supplementary Table 11).Each enhancer hub ensemble was clustered based 
on structural similarity as implemented in TADbit 52, and only the models from the 
most populated cluster were selected for further analysis.  
 
Structural analysis of 3D models. Related to Supplementary Figure 5. A set of 
descriptive measures were calculated to analyze the structural properties of each 
particle in the most populated cluster of the model ensemble using TADbit 52: (i) 
consistency, which indicates for each particle the percentage of models that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 27, 2018. ; https://doi.org/10.1101/400291doi: bioRxiv preprint 

https://doi.org/10.1101/400291
http://creativecommons.org/licenses/by-nc-nd/4.0/


superimpose a given particle within a cut-off of 200 nm; (ii) accessibility, which is a 
measure of how accessible a particle is to an object of radius of 50 nm; and (iii) 
interactions, which counts the number of particles within a given spatial distance (2 
times particle size) from a specified particle.  Furthermore, TADbit tools was used to 
calculate the mean distances particles containing genomic regions of interest in the 
model. Using the mean distances, a promoter-enhancer interaction network was built 
as a weighted undirected graph, in which each node represents either a promoter or 
an enhancer in a specific locus and each edge is weighted by its mean distances 
values. The promoter-enhancer interaction network was decomposed into 
communities using MCODE clustering algorithm as implemented in clusterMaker2 64 
and visualized with Cytoscape 3.5 65. 
 
Spatial distribution of chromatin marks in 3D models. Related to Figure 5d and 
Supplementary Figure 5d. The 3D spatial distribution of ChIP-seq data from human 
islets was analyzed as follows: for a given central viewpoint, an initial sphere with a 
radius of 200 nm was constructed from the viewpoint. Then, a set of spherical shells, 
that occupied a volume equal the initial sphere, were added. Each particle 
neighboring the viewpoint was assigned to a spherical shell based on their relative 
distance to the viewpoint. ChIP-Seq data from MACS2 66 was then binned at 5 kb 
resolution and the mean score value of their coverage score was calculated. The 
odd ratio was calculated for each shell using a Fisher's exact test for 2 × 2 
contingency tables comparing bins with and without ChIP-Seq signal. A total of 13 
different ChIP-seq datasets of human pancreatic islets (CTCF, FOXA2, H3K27me3, 
H3K27ac, H3K36me3, H3K4me1, H3K4me3, MAFB, NKX2.2, NKX6.1, PDX1, 
Mediator and cohesin) were analysed and the corresponding circular 2D plot was 
generated. 
 
SNP enrichment analyses. Related to Figure 6 and Supplementary Figure 6. 
The Variant Set Enrichment (VSE) R package 67 was used to compute the 
enrichment of T2D and FG-associated variants in regulatory annotations. VSE 
creates associated variant sets using lead SNPs and variants in the same 
haplotype block, and then determines whether overlaps with genomic annotations 
are enriched relative to null distributions from variant sets that are matched for size 
and haplotype structure 68. As input, we used lead SNPs from the 109 loci listed in 
Supplementary Table 4. Breast cancer lead SNPs were also downloaded from 
NHGRI-EBI GWAS Catalogue on 27/09/2016, and used as a control. Variants in 
close linkage disequilibrium (r2>0.8) with the lead SNPs were calculated and 
linkage disequilibrium blocks were built using 1000 Genome Project, Phase III, Oct 
2014, Hg19 data and http://raggr.usc.edu webtool. The sets of lead SNPs and their 
linked SNPs in high linkage disequilibrium constitute the Associated Variant Set 
(AVS). VSE ensures that each SNP is only represented once, even when they are 
in high linkage disequilibrium with more than one lead SNPs. To account for the 
size and structure of the AVS, a null distribution or Matched Random Variant Set 
(MRVS) was built from 1000 Genome Project Phase III, based on 500 random 
permutations of the AVS. The MRVS had an identical total number of loci as the 
AVS and it was matched in size and structure to the original AVS. The enrichment 
of the intersections between AVS and the provided genomic features was 
computed by tallying the number of independent SNPs that overlap with the 
functional annotation, and comparing it to the overlap of the null distribution 
(MRVS). VSE enrichment score was defined as the number of standard deviations 
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that the overlapping tally deviates from the null overlapping tally median. The exact 
p value was calculated by VSE by fitting a density function into the null distribution 
derived from the MRVS. Significant enrichments or depletions were considered 
when the Bonferroni adjusted p-value was < 0.01. Human islet regulatory elements 
used in Supplementary Figure 6 can be obtained from Extended Data 1.1. 
Interacting regions shown in Figure 6 are defined as HindIII fragments in the 
human genome in either end of high-confidence pcHi-C interactions.  
 
QQ plots. Related to Figure 6. For genomic inflation estimates of the human islet 
regulatory annotations we used quantile-quantile (Q-Q) plots, which display the 
expected –log10 p-values under the null hypothesis in the x-axis and observed –log10 
p-values in the y-axis. We estimated the λ coefficients, a measure of genomic 

inflation that corresponds to the observed median χ! test statistic divided by the 

expected median χ! test statistic under the null hypothesis. Uniform null distributions 
were highlighted with a red line. Q-Q plots were generated using summary statistics 
from35, only considering variants with MAF ≥ 5% and p-value ≥ 5x10-8. The total 
number of variants considered was 6,647,137. To assess variants overlapping 
interacting regions we showed p-value distributions in Q-Q representations and λ 
measures for variants located in (i) high-confidence pcHi-C interactions (baits and 
promoter interacting regions), (ii) non-interacting open-chromatin regulatory 
elements and (iii) the rest of variants that did not overlap either of the previous 
categories. To assess class I enhancers inside hubs we generated Q-Q plots and λ 
measures for variants overlapping (i) class I enhancers inside hubs, (ii) open 
chromatin regulatory elements outside hubs and (iii) the rest of variants that did not 
overlap either of the previous categories. 
 
GWAS meta-analysis of Insulinogenic index from oral glucose tolerance test 
(OGTT) measures. Related to Figure 6. 7,807 individuals from four population 
studies were included in these analyses: the Inter99 study (ClinicalTrials.gov ID-no: 
NCT00289237) which is a population-based non-pharmacological intervention study 
for ischemic heart disease (n=5,305) 69, the Health2008 cohort (n=605) 70, the 1936 
Birth Cohort (n=709) 71 and the ADDITION-Pro cohort (n=1,188) 72. All study 
participants gave informed consent and the studies were approved by the 
appropriate Ethical Committees and were performed in accordance with the scientific 
principles of the Helsinki Declaration II. 

In the four cohorts, glucose-stimulated insulin secretion was evaluated by 
measurement of plasma glucose and serum insulin at 0, 30 and 120 minutes during 
a 75 g oral glucose tolerance test (OGTT). Insulinogenic index was calculated based 
on these as Insulinogenic index = (s-insulin at 30 minutes [pmol/l] - fasting s-insulin 
[pmol/l]) / p-glucose at 30 minutes (mmol/l). In these analyses, individuals with 
known diabetes were excluded. 

Two sample sets (Inter99 and Health2008) were then genotyped by Illumina 
OmniExpress array while the two other cohorts were genotyped by Illumina 
CoreExome array. Genotypes were called by Illumina GenCall algorithm. Genotype 
data were filtered for variants with call rate <98% and Hardy-Weinberg equilibrium 
P<10-5. Samples were excluded if they were ethnic outliers, had mismatch between 
genetic and phenotypic sex or had a call rate <95%.  

Genotype data from each cohort was imputed to the Haplotype Reference 
Consortium (HRC) reference panel v1.1 73 at the Michigan Imputation Server 
(https://imputationserver.sph.umich.edu/index.html#!pages/home) using Minimac3 
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after phasing genotypes into haplotypes applying Eagle2 74. Posvt-imputation SNP 
filtering included excluding variants with MAF <0.01 and info score <0.70. In each 
cohort, association analysis was performed by applying a linear regression model 
including age and sex as covariates via SNPTEST 75. The phenotype was rank-
normalized within each cohort before analysis. A fixed-effects meta-analysis 
implemented in the R package meta 76 was finally performed. 

 
GWAS meta-analysis of homeostasis model assessment β cell function 
(HOMA-B) and insulin resistance (HOMA-IR). Related to Figure 6. To perform 
GWAS meta-analysis for HOMA-B and HOMA-IR, GWAS summary statistics were 
approximated using a recently developed approach, GWIS 77. We obtained summary 
statistics from the latest sex-specific and sex-differentiated GWAS meta-analysis of 
fasting glycemia (FG) and fasting insulin (FI) performed by the Meta-Analysis of 
Glucose and Insulin-related traits Consortium (MAGIC) in up to 88,320 and 64,090 
individuals (that are comprised in 40 and 33 studies), respectively. To obtain 
summary statistics data that were appropriate for LD-score regression 78 analysis, 
individuals that were genotyped on the Metabochip array were excluded. FI was 
measured in pmol/l and natural log transformed, and FG was measured in mmol/l 
with a cut-off at 7 mmol/l, which were used to generate sex-specific summary 
statistics for meta-analysis of untransformed FG (up to 67,506 men and 73,089 
women) and ln-transformed FI (up to 47,806 men and 50,404 women), without BMI-
adjustment. The standard HOMA formulas require untransformed FG/FI measures 
and use mU/l units for FI. Therefore, HOMA formulae was adapted to compute a 
GWAS summary statistics for ln-transformed HOMA-B and HOMA-IR given the 
summary statistics for FG and ln(FI).    
 
Heritability estimates. Related to Figure 6 and Supplementary Figure 7. To 
estimate the polygenic contribution of different genomic annotations to GWAS-based 
heritability of T2D and related traits we applied the stratified LD Score regression 
method 78,79. This method partitions heritability from GWAS summary statistics while 
accounting for the linkage disequilibrium (LD) structure between markers. The 
method leverages the relationship between LD structure and association test 

statistics to estimate the average per-SNP contribution to heritability (𝜏! coefficient) 
for a functional category C. Briefly, following the relationship in equation:    

𝐸 𝜒! = 𝑁 𝜏!   ℓ𝓁 𝑗,𝐶 + 𝑁𝒶 + 1

!

 

where 𝑁 is the sample size, 𝐶 indexes categories, ℓ𝓁 𝑗,𝐶  is the stratified LD Score of 

𝑆𝑁𝑃! with respect to functional category 𝐶, and 𝒶 measures the contribution of 

confounding biases. The per-SNP heritability contribution to category 𝐶 (𝜏!)  for either 
a quantitative or case-control trait is estimated with the previous equation via multiple 

regression of association test statistics (𝜒!) for 𝑆𝑁𝑃!   against ℓ𝓁 𝑗,𝐶 . Finally, statistical 

significance is calculated by testing whether per-SNP heritability is greater in the 
category 𝐶 than out of the category. The Z-score of the 𝜏!   coefficient measured the 

statistical significance of the contribution of category 𝐶 to SNP heritability after 
controlling for the effects of a full baseline model of 53 genomic annotations defined 
by 79. Further details are explained in79.  

We obtained GWAS summary statistics for T2D 35, Insulinogenic index (see 
GWAS meta-analysis of Insulinogenic index from oral glucose tolerance test 
(OGTT) measures), HOMA-B and HOMA-IR (see GWAS meta-analysis of 
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homeostasis model assessment β cell function (HOMA-B) and insulin 
resistance (HOMA-IR)), and Acute Insulin Response (AIR) based on intravenous 
glucose tolerance tests (IVGTT) 80. As a control trait, we used summary statistics 
from a well-powered meta-analysis for Attention-Deficit/Hiperactivity Disorder 
(ADHD)81. To partition SNP-heritability based on GWAS summary statistics across 
islet regulatory annotations, we followed precisely the procedure described by 79. We 
used the stratified LD Scores calculated from the European-ancestry samples from 
the 1000 Genome Project, Phase III 82 and in the regression analysis we only 
considered the association statistics of ~1M HapMap3 SNPs (excluding the MHC 
region and including SNPs with MAF ≥ 5%).  
 We tested whether any of the following human islet regulatory annotations 
contributes significantly to the SNP heritability of islet related traits: (a) open 
chromatin regions, (b) regions with strong CTCF binding (I and II), (c) inactive 
enhancers, (d) active promoters, (e) class I enhancers, (f) class II enhancers, (g) 
class III enhancers, (h) class I enhancers in enhancer hubs, (i) highly-occupied C3 
clustered enhancers 9, (j) all C3 clustered enhancers 9(k) enhancer clusters (with 
intervening space) 9, (j) stretch enhancers 51, strong enhancer states83 and (k) super-
enhancers as defined in this study.   

We also included three control annotation sets. Our first control was Central 
Nervous System (CNS) functional category – a collection of cell-type specific 
annotations defined by 79. A second control annotation was generated by creating a 
set of random non-open chromatin regions matching enhancer length (average 
length = ~800 bp). We excluded ENCODE blacklisted regions 
(wgEncodeDacMapabilityConsensusExcludable.bed.gz and 
wgEncodeDukeMapabilityRegionsExcludable.bed.gz) and regions with average 
ENCODE mappability scores (wgEncodeCrgMapabilityAlign100mer.bigWig) below 
the average score across all enhancers (~0.997). Finally, we built control pseudo-
hubs as the third control annotation. Pseudo-hubs were anchored in non-hub baits 
that otherwise showed high-confidence interactions in islet pcHi-C maps. For every 
real hub, we selected non-hub baits and associated genomic regions that were 
intended to match the enhancers assigned to the real hubs (referred to in Figure 6 
as pseudo-enhancer). To associate control genomic regions with non-hub baits we 
selected 800 bp windows within the same islet TAD that had the closest possible 
distance to the anchor as enhancer-bait distance from matching real enhancer hubs. 
Only TAD-like domains that contained at least one active annotation in the islet 
regulome were selected.  We ensured that the 800 bp windows chosen to match 
interacting hub enhancers (i) did not overlap active enhancers, active promoters or 
pc-HIC baits, (ii) did not overlap blacklisted regions and (iii) achieved a regional 
mappability score above the average score for active enhancers. To obtain a control 
annotation for hub class I enhancers, we only considered the fraction of 800 bp-
windows that were selected based on class I enhancer-bait distances from the 
matching real hubs.  

We added these islet and control annotations to the full baseline model of 53 
functional annotations 79, one at a time, and we calculated the magnitude and 
statistical significance of the per-SNP contribution to heritability of each annotation.  
We provided the per-SNP heritability 𝜏!   coefficient for each particular regulatory 
annotation and phenotype. To facilitate comparability across traits and annotations, 
we normalized the 𝜏! estimates by dividing them by the observed scale LD Score 
heritability for each phenotype, and we multiplied by 107. To correct for multiple 

testing, we generated 𝜏! q-values (FDR-adjusted p-values calculated from the Z-
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scores of the 𝜏! coefficients) with the qvalue R package (Alan Dabney and John 
Storey, Department of Biostatistics, University of Washington) over 17 functional 
categories and 6 traits. FDR significance threshold was set at 0.05. 
 
Polygenic risk scores (PRSs). Related to Figure 6. We created Polygenic risk 
scores (PRSs) based on T2D GWAS summary statistics from 35 (base dataset). UK 
Biobank individuals 84 were used as the target datasets, which comprised testing and 
validation datasets. 

To select markers used for PRS we first considered all genetic markers that 
were used as input for phasing and genotype imputation by UK Biobank 
investigators, and filtered for variants with MAF ≥ 5% and imputation quality score > 
0.8. We then reconciled the base and target datasets by looking at the variant 
overlap between summary statistics and the imputed UK Biobank data, discarding 
variants showing allele inconsistency between both datasets. We also removed 
those located in the MHC region, resulting in a final collection of 5,352,387 variants.  

Concerning UK Biobank samples, we first applied the following exclusions to 
the entire cohort: (i) individuals with excess of relatives (> 10 third-degree relatives 
according to the UK Biobank dataset), (ii) individuals without gender information, (iii) 
individuals with ICD10 codes E10 (insulin-dependent diabetes mellitus), E13 (other 
specified diabetes mellitus) and E14 (unspecified diabetes mellitus), (iv) individuals 
without body mass index (BMI) information, and (v) in pairs of individuals with third-
degree relatedness (as provided by UK Biobank investigators) we excluded subjects 
with the highest missing rate for a set of high-quality markers. T2D cases were 
defined as those with E11 ICD10 diagnosis code. The sample size of the final set of 
qualifying UK Biobank individuals was 377,981 controls and 15,764 cases. 

To validate the T2D case-control definition based on ICD10 codes, we 
estimated the association statistics for well-established T2D loci. We used 15,764 
T2D cases (accounting for information about age of diagnosis) and 184,030 controls 
that were filtered to avoid any contamination of pre-diabetic individuals (no family 
history of diabetes mellitus and age at recruitment ≥ 55, consistent with the average 
age at onset of T2D reported in Caucasian populations 85). The association statistics 
under an additive model for 74 known T2D associated variants were estimated by 
applying logistic regression in PLINK v1.9 36, and adjusting for 7 principal 
components (estimated by UK Biobank investigators), BMI, age at recruitment, batch 
information and sex. From these, only five signals, from which four were discovered 
in East Asian populations, do not show consistent direction of effect with the 
reference study (Supplementary Table 12).  

The entire dataset of 377,981 controls and 15,764 cases was divided in test 
and validation datasets. For the test dataset, we included only control subjects with 
age at recruitment ≥ 55 years and no family history of diabetes mellitus. The final 
sample size of the UK Biobank test dataset was 6,305 T2D cases and 73,922 
controls.  The remaining UK Biobank samples were used as a validation dataset, 
comprising 9,459 T2D cases and 226,777 controls. Control individuals in this 
validation dataset were included regardless of their age or family history.   

PRS models were calculated using the PRsice software 86 with default 
settings and the following clumping parameters (--clump-r2 0.6 --clump-p 0.01). We 
included 11 covariates in the analysis: the 7 principal components provided by UK 
Biobank investigators as well as BMI, age at recruitment, batch information, and sex. 
PRS models were built using the T2D GWAS summary statistics from 35 as the base 
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dataset and the abovementioned subset of the UK Biobank as the test dataset 
(6,305 T2D cases and 73,922 controls). 

To examine islet enhancer hubs, we calculated PRS using variants 
overlapping all hub pcHi-C baits and enhancers. This generated a PRS model of 179 
variants. In parallel, we generated a genome-wide PRS model based on the entire 
set of common genetic variants shared by the base and the validation dataset (~5M 
variants) that finally comprised 1,152 variants. As an additional control, we used 
genetic variants overlapping pseudo-enhancer hubs. We generated pseudo-
enhancer hubs by shuffling all hub pcHi-C baits and their assigned enhancer 
fragments across the genome. We excluded pseudo-enhancer hubs that mapped to 
TADs containing real hubs, or that crossed TAD boundaries. Pseudo-interacting 
regions that mapped to blacklisted regions or had low mappability were excluded. 
We then built a PRS using variants overlapping pseudo-baits and pseudo-
enhancers. We generated 100 sets of pseudo-baits and pseudo-enhancers and the 
corresponding PRS models (median of 280 variants).  

We applied the resulting PRS models to the UK Biobank validation dataset  
(9,459 T2D cases and 226,777 controls) following the equation below provided by 
the PRSice authors 86: 

𝑃𝑅𝑆 =

𝑆𝑥𝐺

2

𝑀
 

where 𝑆 corresponds to the summary statistic of the effective allele, 𝐺 is the number 

of the effective allele and 𝑀 is the number of SNPs. 
To assess the predictive power of genome-wide, islet hub and pseudo-hub 

PRS, we examined the T2D frequency in the UK Biobank validation dataset across 
40 bins, each one containing 2.5% of individuals ranked by the PRS score. For 
analyses that considered PRS as a function of BMI and age of onset, we focused on 
all 226,777 control individuals and a subset of 6,127 T2D cases with age of 
diagnosis > 20. For each of the three PRS models (genome-wide, islet hub and 100 
sets of pseudo-hubs), we calculated the ratio of T2D frequency in the highest and 
lowest PRS bins, each one containing 2.5% of the entire population. We also used 
cox proportional hazard models, with age of onset (age at recruitment for controls) 
as the underlying time-scale, to analyse the effect of highest and lowest PRS values 
on the risk of T2D for the genome-wide, the islet-hub and 100 sets of pseudo-hubs 
PRS models. The effect of the top 2.5% PRS bin was calculated using as reference 
all the other PRS bins (1-39), and the same approach was used to analyze the 
protective effect on T2D for the bottom 2.5% PRS bin. In this analysis, the risk was 
presented as hazard ratios (HR) of extreme PRS group with the 95% confidence 
interval (CI). We adjusted the analysis for sex, BMI, 7 principal components provided 
by UK Biobank investigators and batch information. Kaplan-Meier graphs of 
cumulative incidence of T2D are shown for the subset of individuals with highest (bin 
40), intermediate (bin 2-39) and lowest (bin 1) PRS scores for the genome-wide and 
the islet-hub PRS model.   

For the islet hub PRS model, and the PRS of 100 sets of pseudo-hubs, we 
stratified this analysis in three categories of BMI (< 30, 30 - <35 and ≥ 35), and in 
three categories of age of diagnosis for T2D (<50, 50 - < 60 and ≥ 60). The age of 
controls was censored at the time of recruitment. We also used cox proportional 
hazard models to show the HR for the top and bottom PRS bins according to the 
genome-wide and islet hub PRS models across three BMI categories (< 30, 30 - <35 
and ≥ 35) and two categories of age of diagnosis (<60 and ≥ 60). Results are 
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illustrated in forest plots with effect sizes and 95% CI. We further examined the 
predictive power of the PRS models by calculating the area-under-the curve (AUC) 
statistic. We addressed the performance of the PRS models in two ranges of BMI (< 
35 and ≥ 35) and in two ranges of age of diagnosis for T2D (<60 and ≥ 60).  Finally, 
we calculated the odds ratio for T2D in individuals with highest PRS scores (top 
2.5% bin) compared to the remainder UK Biobank individuals of the validation 
dataset in different age and BMI categories. We assessed this with a logistic 
regression model adjusted for the first seven principal components of ancestry, sex, 
age, BMI and batch information. We used z-scores to test for statistically significant 
differences in either the ratio of T2D frequencies or the ORs between the islet hub 
and the genome-wide PRS, and the distribution of 100 PRS sets of pseudo-hubs. 
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