
34 
 

0.0167 (Bonferroni correction, n = 3). Gray bars indicate chance interval (10000 shuffling, 95% 

confidence interval). 

C. Performance of classifiers predicting mouse choice correct trials only (left) and error trials only 

(right). Blue and yellow circles indicate mean values for Δκ95 - touch type classifier, and previous 

choice classifier respectively. Small dots are single mice values. Red indicates that the classifier 

performance value for the mouse was above chance. Error bar are SD across mice. *: t-test, p ≤ 

0.05. See Fig. 6-1 B. 

D. Probability of perseveration during error trials depending on whether the previous trial was a 

correct trial or an error trial. *: t-test, p = 3.4∙10-4. Black error bars indicate chance intervals of each 

mouse (10000 shufflings, 95% confidence interval). 

DISCUSSION 

When making perceptual decisions under natural conditions, animals move their sense 

organs (‘active sensation’). We developed a new active sensation task which challenges 

mice to use multiple mechanosensory cues, whilst allowing the sensory input that drives 

decisions to be measured at millisecond resolution. In this three-choice task, mice use a 

single whisker to localise a pole.  We found that competing sensory and internal processes 

influenced decision making, and identified both mechanosensory and choice-memory 

signals that accurately predicted mouse choice. 

A new task for investigation of active perceptual decision making 

Our study builds on previous work which developed whisker-based object localisation in 

head-fixed mice, along with a mechanics framework and experimental methods for 

estimating the mechanical forces associated with whisker-pole interaction (Birdwell et al., 

2007; O’Connor et al., 2010a; Clack et al., 2012; Pammer et al., 2013; Campagner et al., 
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2016, 2017).  Our task is novel compared to previous rodent object localisation tasks in that 

it is a three-choice task.  The task maintains the ability to estimate whisker mechanical 

forces, but requires animals to use multiple mechanosensory cues, including the direction of 

bending moment.  

Mechanosensory basis of active touch 

We found that correct choices could be predicted with high accuracy from the direction and 

magnitude of whisker bending. Neurons throughout the whisker system are sensitive to the 

direction of passive whisker deflection (Gibson and Welker, 1983a; Simons and Carvell, 

1989; Lichtenstein et al., 1990; Bale and Petersen, 2009; Maravall et al., 2013).  During 

active whisker-object contact, the activity of PWNs primarily reflects bending moment: 

torque generated as contraction of the whisking muscles cause the whiskers to bend against 

the object (Campagner et al., 2016; Severson et al., 2017; Bush et al., 2016; reviewed by 

Campagner et al., 2017).  PWNs robustly encode both the direction and magnitude of 

bending and transmit this information along the ascending thalamo-cortical pathway (Yu et 

al., 2006, 2016; O’Connor et al., 2010b; Huber et al., 2012; Petreanu et al., 2012; Xu et al., 

2012; Hires et al., 2015; Moore et al., 2015; Peron et al., 2015b; Gutnisky et al., 2017).  A 

wide range of PWN properties (Zucker and Welker, 1969; Gibson and Welker, 1983b; 

Lichtenstein et al., 1990; Szwed et al., 2003; Jones et al., 2004; Arabzadeh et al., 2005; 

Leiser and Moxon, 2007; Bale and Petersen, 2009; Lottem and Azouz, 2011; Bale et al., 

2013; Maravall et al., 2013) can be concisely explained by this framework (Campagner et 

al., 2017). Thus, the cues we found to predict choices are consistent with physiological 

properties of somatosensory neurons. They are also consistent with biomechanical 

modelling studies (Yang and Hartmann, 2016; Huet et al., 2017). 
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Sensing of bending moment provides a simple account for how rodents solve a number of 

whisker-dependent tasks.  Mice solve two-choice, anterior-posterior pole localisation tasks 

by a selective whisking strategy. The strength and number of touches is sufficient to guide 

to pole location (Introduction; O’Connor et al., 2010a).  In our three-choice task, mice 

whisked in such a way that they contacted the pole at all three locations.  Mice solved the 

task by focussing their whisking at a location intermediate between the anterior and 

posterior pole locations.  In this way, on trials where the pole was located anterior/middle, 

touch typically occurred during the forward (protraction) phase of whisking whereas, on 

trials where the pole was posterior, touch typically occurred during the backward 

(retraction) phase. Thus, direction of bending was informative about pole location.  In 

addition, touches at the anterior location, when they occurred at all, were weaker (bending 

magnitude was lower) than those at the posterior/middle locations, so that bending 

magnitude was also informative about pole location. In addition to object localisation, 

sensing of bending moment also accounts for wall-following behaviours (Sofroniew et al., 

2014).  Sensing of bending moment may also permit whisker-based inference of object 

shape (Solomon and Hartmann, 2006) and of the spatial structure of the environment (Fox 

et al., 2012; Pearson et al., 2013). Some active touch tasks may require multidimensional 

mechanosensory signals – for example, axial force in combination with bending moment 

(Bagdasarian et al., 2013; Pammer et al., 2013).  The role of bending moment in texture 

discrimination tasks, which have mainly been analysed in terms of stick-slip events (Wolfe 

et al., 2008), requires further research: dynamic signals, such as rate of change of bending 

moment, may be important here. Overall, bending moment sensing provides both a 

paradigm for future investigation of neural algorithms of active touch and an inspiration for 

further development of tactile robotics. 
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Competing contributions to perceptual decision-making from sensory input and 

choice-memory 

We found that correct choices were predicted from immediate sensory information with no 

detectable effect of previous choices, whereas incorrect choices were predicted from 

previous choice with no detectable effect of immediate sensory information.  Choice-

history-dependence is consistent with previous studies of other sensory systems, but has not 

previously been reported in the tactile domain (Busse et al., 2011; Fassihi et al., 2014b; 

Marcos and Harvey, 2016; Hwang et al., 2017; Kiyonaga et al., 2017; Akrami et al., 2018).  

This double dissociation suggests two distinct neural systems competing to influence 

decisions: one driven by immediate sensory information; the other driven by memory of 

previous choices.  Although a choice-memory-guided system might improve performance 

in a task where the sequence of trials is predictable, when, as in our task, the sequence is 

random, history-dependence leads to errors, whilst correct choices necessarily depend 

entirely on immediate sensory information (Kiyonaga et al., 2017; Akrami et al., 2018).  

The sensory-guided system is likely to involve the ascending sensory pathway through the 

primary somatosensory cortex (S1).  S1 neurons respond robustly to both magnitude and 

direction of whisker bending (O’Connor et al., 2010b; Hires et al., 2015; Peron et al., 

2015b; Yu et al., 2016; Kwon et al., 2017; Martini et al., 2017) and inactivation of S1 

impedes correct choices on active whisking tasks, including pole localisation (O’Connor et 

al., 2010a; Guo et al., 2014a) and wall following (Sofroniew et al., 2015). The choice-

memory-guided system may involve a widely distributed circuit (Hanks and Summerfield, 

2017), with recent research pointing to a particular role for posterior parietal cortex 

(Raposo et al., 2014; Akrami et al., 2018).  
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In summary, we have developed a new, tactile object localisation task that permits high 

resolution measurement of the mechanosensory input that drives perceptual decisions.  The 

task has shed new light both on the mechanical mechanisms of active touch and on how 

sensory input and choice-memory interact to influence decisions.  In future studies, the task 

can be combined with cellular-resolution measurement of neural activity, and may serve as 

a useful tool for investigating how competing sensory and internal neural mechanisms 

contribute to active perceptual decision making. 
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Figure 2-1. The three-choice object localization task. Data from mice not shown in Fig. 2 A 

and total number of trials for each mouse. 

 A. Learning curves and total number of trials performed each day of those mice not shown in figure 

2 A. Note that in two mice (36 and 38), whiskers were trimmed to C row at the conclusion of lick 

protocol (cyan bar). In one mouse (38) go - no go protocol (red bar) was skipped. After the mouse 

learnt the lick protocol, we immediately introduced the lick left-lick right protocol (green bar). The no 

go location was introduced with ‘the full task’ (gold bar).  

B. Total number of trials per day performed by each mouse (black circles: mean, error bars: SD). 
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Figure 3-1. Mouse performance during the whisker tracked sessions. 

A. Left: number of trials in the sessions where the whisker was tracked. Dashed lines represent the 

bounds of the 95% chance confidence interval for each mouse and session (computed as for figure 

2 B; 10000 shufflings). Right: histogram of number of trials shown in the respective left panel, 

pooling together the data of all mice. In both A and B different colours indicate different mice. 

B. Left: task performance of the sessions shown in  A. Dashed lines represent the bounds of the 

95% chance confidence interval for each mouse and session (10000 shufflings). Right: histogram 

of performances shown in the respective left panel, pooling together the data of all mice. 
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Figure 3-2. Mouse choice at each pole location for whisker tracked trials 

Confusion matrices summarizing the choices made by each mouse, at each pole location, using 

data only from whisker tracked trials. Each matrix shows (white numbers inside the matrix) the 

number of trials on which each of the 9 possible location-choice possibilities occurred and (gray 

shading) the conditional probability of each possible choice given each possible pole location. The 

total number of trials for each choice and each pole location are also shown (left and below matrix 

respectively).  
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