Title: Local membrane charge regulates β₂ adrenergic receptor coupling to G_i

Authors: Strohman M.J.¹, Maeda S.¹, Hilger, D.¹, Masureel, M.¹, Du Y.¹, Kobilka B.K.^{1*} ¹Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA

*Corresponding author

Abstract

G protein coupled receptors (GPCRs) are transmembrane receptors that signal through heterotrimeric G proteins. Lipid modifications anchor G proteins to the plasma membrane; however, little is known about the effect of phospholipid composition on GPCR-G protein coupling. The β_2 adrenergic receptor (β_2 AR) signals through both G_s and G_i in cardiac myocytes where studies suggest that G_i signaling may be cardioprotective. However, G_i coupling is much less efficient than G_s coupling in most cell-based and biochemical assays, making it difficult to study $\beta_2 AR-G_1$ interactions. To investigate the role of phospholipid composition on G_s and G_i coupling, we reconstituted β_2 AR in detergent/lipid mixed micelles and found that negatively charged phospholipids (PS and PG) inhibit β_2 AR-G_{i3} coupling. Replacing negatively charged lipids with neutral lipids (PC or PE) facilitated the formation of a functional β_2 AR-G_{i3} interaction that activated G_{i3} . Ca²⁺, known to interact with negatively charged PS, facilitated β_2 AR- G_{i3} interaction in PS. Mutational analysis suggested that Ca²⁺ interacts with the negatively charged EDGE motif on the carboxyl-terminal end of the αN helix of G_{i3} and coordinates an EDGE-PS interaction. These results were confirmed in β_2 AR reconstituted into nanodisc phospholipid bilayers. β_2 AR-G_B interaction was favored in neutral lipids (PE and PC) over negatively charged lipids (PG and PS). In contrast, basal β_2 AR-G_s interaction was favored in negatively charged lipids over neutral lipids. In negatively-

charged lipids, Ca^{2+} and Mg^{2+} facilitated β_2AR-G_{i3} interaction. Taken together, our observations suggest that local membrane charge modulates the interaction between β_2AR and competing G protein subtypes.

Introduction

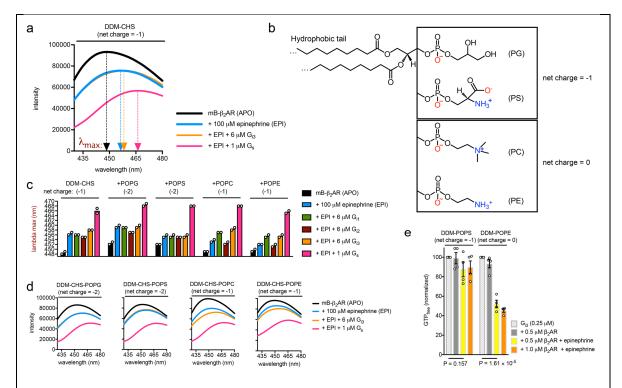
A third of all FDA approved pharmaceutical drugs function by modulating the activity of G protein coupled receptors (GPCRs)¹, a large receptor superfamily. GPCRs catalyze the activation of heterotrimeric G proteins, which in turn initiate a multitude of signaling cascades that alter cellular function.

G proteins are also a large superfamily, grouped into 4 subfamilies (G_s , $G_{i/o}$, $G_{q/11}$, $G_{12/13}$) encoded by 16 different genes². Each subfamily activates distinct signaling pathways, and functional effects are cell-type specific. Most GPCRs can signal through more than one G protein subfamily, and ongoing research attempts to identify mechanisms that regulate G protein selectivity within a cell².

Here we investigate the dual G protein selectivity of the β_2 adrenergic receptor (β_2 AR), a prototypical GPCR that mediates the fight-or-flight response. The dual G protein selectivity of β_2 AR is best characterized in heart muscle (cardiac myocytes) where activation of G_s increases contraction rate and activation of G_i decreases it. β_2 AR activity is stimulated by the hormone epinephrine. In healthy neonatal cardiac myocytes, epinephrine stimulated β_2 AR immediately activates G_s, but after 10-15 minutes β_2 AR signals predominantly through G_i³. Of interest, G_i activation is impaired if β_2 AR internalization is blocked⁴. Also, G_i does not interact with a modified β_2 AR that internalizes but does not recycle to the plasma membrane⁵, and WT β_2 AR that internalizes but is pharmacologically blocked from recycling⁶. Taken together, these

observations demonstrate that β_2 AR-G_i interaction is regulated spatially and temporally, and interaction occurs after epinephrine stimulated trafficking of β_2 AR.

 β_2 AR-G_i signaling plays a complex role in heart disease. While its anti-apoptotic effects^{7.8} may prevent ischemic-reperfusion injury⁹, G_i activation comes at the price of decreased contractility, which is problematic in diseases where the heart is already sufficiently weakened, such as in heart failure¹⁰, Takotsubo syndrome^{11.12}, and ischemia¹³. Notably, in heart failure G_{i2} is upregulated¹⁴⁻¹⁶, β_1 AR (strictly G_s coupled) is downregulated¹⁷⁻²⁰, while G_s¹⁶, G_{i3}¹⁶, and β_2 AR¹⁸ expression levels are unchanged. These changes may increase β_2 AR-G_{i2} coupling relative to the β_2 AR-G_s coupling.


The mechanism that initiates β_2 AR-G_i signaling in the healthy heart is not fully understood. Multiple biochemical mechanisms may play a role. PKA phosphorylation of β_2 AR has been reported to increase G_i coupling *in vitro*²¹ and in HEK cells²², but in cardiac myocytes, β_2 AR-G_i coupling is PKA independent³. In addition, GRK2 phosphorylation of β_2 AR has been suggested to increase G_i coupling²³, but other investigators have reported that dephosphorylation is critical for β_2 AR recycling to the plasma membrane, and β_2 AR-G_i interactions⁶. Therefore, we sought to discover mechanisms that modulate β_2 AR-G_i coupling.

The epinephrine-stimulated trafficking of $\beta_2 AR$ (internalization and plasma membrane recycling) may influence the composition of phospholipids surrounding the $\beta_2 AR$. It has been shown that negatively charged phospholipids stabilize an active conformation of the $\beta_2 AR$ and enhance its affinity for epinephrine²⁴. Here we examine the effect of phospholipid charge on $\beta_2 AR$ interactions with G_s and G_i.

bioRxiv preprint doi: https://doi.org/10.1101/400408; this version posted August 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Results

Epinephrine activates β_2AR by stabilizing a conformation that is recognized by G protein. This conformation is partially stabilized by epinephrine and fully stabilized by the addition of G protein²⁵⁻²⁷. The conformational change can be detected using a modified β_2AR labeled on Cys265 at the cytoplasmic end of TM6 with an environmentally sensitive fluorophore, monobromobimane (mB- β_2AR , see methods)²⁸. Epinephrine and G protein interaction red-shifts the emission maximum (λ_{max} , the wavelength where fluorophore emission intensity is greatest) and decreases the intensity of mB- β_2AR (Fig. 1a). Because λ_{max} is independent of mB- β_2AR concentration, it is a more reliable indicator of β_2AR conformation than fluorescence intensity. We therefore monitored changes in λ_{max} of mB- β_2AR to detect G protein coupling. bioRxiv preprint doi: https://doi.org/10.1101/400408; this version posted August 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 1. Effect of phospholipids on mB-β₂AR-G protein interaction in DDM mixed micelles

a. mB- β_2 AR emission spectra in the presence and absence of epinephrine and G protein (G_s and G_{i3}) in DDM-CHS micelles (4:1 DDM:CHS). Arrows point to the lambda max value, i.e. the wavelength where mB emission intensity is greatest.

b. Structure of phospholipids, categorized by their net charge: Phosphatidylglycerol (PG) and phosphatidylserine (PS) have a net charge of -1. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have a net charge of 0 (i.e. net neutral). Negatively charged groups highlighted in red. Positively charged groups highlighted in blue.

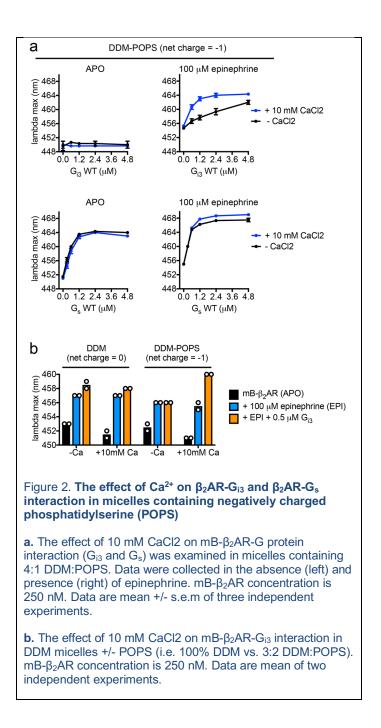
c. mB- β_2 AR interaction with epinephrine and G protein (G_{i1}, G_{i2}, G_{i3}, and G_s) as assessed by changes in mB lambda max. Interaction was assessed in DDM-CHS micelles (4:1 DDM:CHS) and in DDM-CHS micelles containing POPG, POPS, POPC, or POPE lipids (3:1:1 DDM:CHS:Lipid).

d. Selected mB- β_2 AR emission spectra from panel C, showing spectra shifts induced by epinephrine, G_{i3}, and G_s.

a-d. The indicated net charges are net molecular charge, not net micelle charge. CHS, POPG, and POPS each have a net charge of -1. DDM, POPC, and POPE are net neutral. mB- β_2 AR concentration is 300 nM. Data are mean of two independent experiments.

e. GTP turnover in the presence and absence of $\beta_2 AR$ (0.5 μ M vs. 1 μ M) and saturating epinephrine, in 4:1 DDM:POPS vs. 4:1 DDM:POPE. Data were normalized relative to turnover by G_{i3} (0.25 μ M) in the absence of $\beta_2 AR$ (shown in Supplementary figure 3). Data are mean +/- s.e.m of four independent experiments. Statistical significance was determined by using a two-sided Student's *t*-test.

Negatively charged phospholipids decrease β₂AR coupling to G_i


In the presence of epinephrine, we observe a change in intensity and λ_{max} of mB- β_2 AR following the addition of G_s in a detergent mixture containing n-dodecyl- β -D-maltopyranoside (DDM) and cholesteryl hemisuccinate (CHS) that is commonly used for biochemical study of GPCR/G protein complexes (Fig. 1a). In contrast, the coupling efficiency of mB- β_2 AR-G₁₃ was relatively weak (Fig. 1a). Next, we compared the coupling efficiency of mB- β_2 AR-G₁ in DDM-CHS mixtures with different phospholipids incorporated (Fig. 1b,c). While we were unable to detect interactions of mB- β_2 AR with G₁₁, G₁₂ or G₁₃ in the presence of negatively charged lipids (POPS and POPG), we observed a weak interaction with G₁₁ and G₁₃ in neutral lipids (POPE and POPC) (Fig. 1c,d). This result suggested that negatively charged lipids may repel G₁₁ and G₁₃ interaction with β_2 AR, despite the fact that negatively charged lipids enhance epinephrine binding affinity, as previously reported²⁴. Given that mB- β_2 AR-G₁₁ and mB- β_2 AR-G₁₃ interaction appeared comparable, we narrowed our focus on mB- β_2 AR-G₁₃ interaction because G₁₃ (not G₁₁) is expressed in the heart¹⁶.

We also observed that negatively charged CHS decreased mB- β_2 AR-G_{i3} coupling (Supplementary Fig. 1). This effect was minimized in acidic buffers known to protonate (and neutralize) CHS²⁹, supporting our hypothesis that negatively charged lipids decrease β_2 AR-G_i coupling. Given reports that PKA phosphorylation of β_2 AR increases β_2 AR-G_i interaction *in vitro*²¹, we also tested the effect of PKA phosphorylation, but no mB- β_2 AR-G_{i3} enhancement was observed (Supplementary Fig. 2), suggesting that phosphorylation does not potentiate β_2 AR-G_{i3} interaction under our experimental conditions, and that other mechanisms may enhance β_2 AR-G_{i3} interaction.

In subsequent experiments, we omitted negatively charged CHS in order to assess the effect of phospholipid charge on mB- β_2 AR- G_{i3} interactions. We tested whether the increased mB- β_2 AR- G_{i3} interaction we observed in neutral lipid represented functional interaction. Indeed, β_2 AR stimulated GTP turnover was detected in DDM micelles containing POPE (net neutral lipid) but not in DDM micelles containing POPS (net negative) (Fig. 1e). This effect on β_2 AR mediated turnover was significant, even though the lipid:DDM molar ratio was only 1:4. The lipid environment (POPS vs. POPE) did not affect basal GTP turnover by G_{i3} (Supplementary Fig. 3). Taken together, these results indicate that the charge property of phospholipids regulates G_i activation by β_2 AR.

Ca²⁺ promotes β₂AR-G_{i3} coupling in negatively charged phospholipids

 Ca^{2+} , a ubiquitous second messenger, plays an important role in cardiac myocytes; Ca^{2+} waves, magnified by G_s activation, drive the cardiac myocyte contraction machinery. Recently Ca^{2+} was reported to regulate T cell receptor activation by modulating the charge property of lipids³⁰. Given that Ca^{2+} interaction with negatively charged phospholipids screens the negative charge, we tested whether Ca^{2+} improves mB- β_2 AR- G_{i3} coupling efficiency in negatively charged DDM-POPS. Indeed, Ca^{2+} improved coupling efficiency in DDM-POPS micelles (Fig. 2a), and this effect required POPS (Fig. 2b). Moreover, Ca^{2+} had little effect on mB- β_2 AR- G_s interaction, implicating differences in G_s and G_{i3} surface charge.

Ca²⁺ interacts with the amino terminal helix of G_{i3}

Next, we sought to determine the mechanism by which Ca²⁺-POPS interactions increase

mB- β_2 AR coupling to G_{i3} but not to G_s. Given that the amino terminal helix (α N) of G

protein is adjacent to the membrane when coupled to the $\beta_2 AR^{27}$, and polybasic residues

on $G_s \alpha N$ are known to facilitate membrane interaction³¹, we looked for a possible selectivity determinant within αN . Given αN of G_s and G_i are differentially charged (Fig. 3a), we first replaced αN of G_s with αN of G_{i3} , creating a G_{i3} - G_s chimera (Fig. 3b).

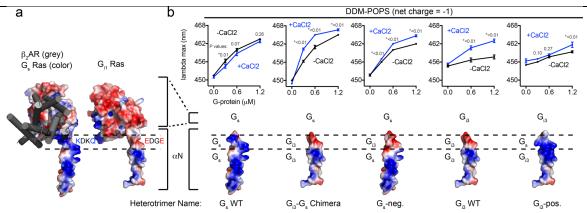


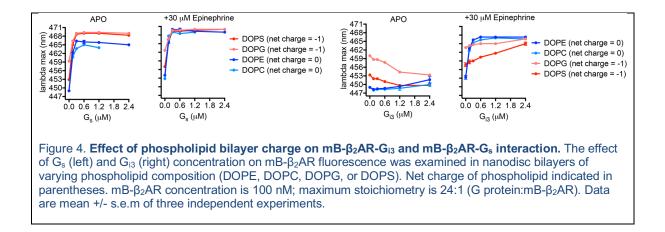
Figure 3. The effect of Ca²⁺ on mB-β₂AR interaction with G protein charge mutants

a. Models of the membrane-facing surfaces of the Ras domains of G_s (PDB: 3SN6) and G_{i1} (1GP2). The membrane-facing surface of G_{i1} was modeled by superimposing the Ras domain of Gi1 onto the structure of G_s in complex with β_2AR (PDB: 3SN6). Red and blue signify negative and positive charge, respectively. β_2AR is shown in grey. Dashed lines highlight the region in αN where charge differs: The sequence is KDKQ in WT G_s vs. EDGE in WT G_{i1} (and in G_{i2}, G_{i3}).

b. mB- β_2 AR-G protein dose-response curves +/- 10 mM CaCl2. Data were generated with the G protein mutant depicted below the curves: mutations were made in α N and corresponding electrostatic models are shown. Epinephrine was not included in experiments titrating G_s WT, G_{i3}-G_s Chimera, or with G_s-neg. to enhance the effect of CaCl2. Epinephrine (100 μ M) was included in experiments titrating G_{i3} WT and G_{i3}-pos. mB- β_2 AR concentration is 250 nM. Data are mean +/- s.e.m of three independent experiments. Statistical significance was determined by using a two-sided Student's *t*-test. Test assesses the effect of CaCl2 at each G protein concentration.

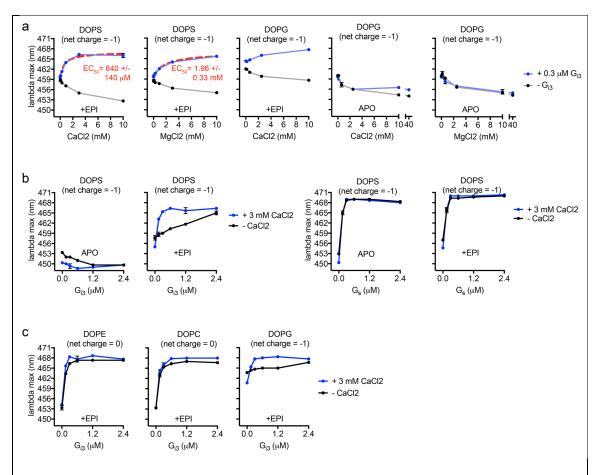
While Ca²⁺ does not promote mB- β_2 AR coupling to WT Gs (Fig. 3b), it did promote mB- β_2 AR coupling to the G_{i3}-G_s chimera (Fig. 3b). Next, we compared the membrane-facing charge of G_s WT α N and G_{i3} WT α N. Structural analysis revealed that charge differed at the C terminal end of α N: G_i harbors a negatively charged motif (EDGE) at the position where G_s harbors a positively charged motif (KDKQ) (Fig 3a). To examine whether this motif dictates a differential response to Ca²⁺, we constructed a G_s mutant ("G_s-neg.") containing the negatively charged motif of G_{i3} (KDKQ \rightarrow EDGE). Ca²⁺ increased mB- β_2 AR interaction with this mutant (Fig 3b), suggesting the EDGE motif is responsible for the

effect of Ca²⁺ on G_{i3} α N. Taken together, our results imply that Ca²⁺ coordinates an interaction between the negatively charged EDGE motif on α N of G_{i3} and the headgroup of POPS. In the absence of Ca²⁺, like-charge repulsion decreases mB- β_2 AR coupling to G_{i3}.


We also constructed a G_{i3} mutant (" G_{i3} -pos.") containing the positively charged motif of G_s (EDGE \rightarrow KDKQ). The mutations only partially removed the effect of Ca²⁺ (Fig. 3b), indicating the effect of Ca²⁺ on G_{i3} extends beyond an effect on αN (see discussion).

Bilayer charge is a tunable modulator of the G protein subtype selectivity

To examine the effects of phospholipids in a more native environment, we reconstituted mB- β_2 AR into nanodisc bilayers and purified the nanodiscs to homogeneity using size-exclusion chromatography (Supplementary Fig. 4).


First, we compared the influence of lipid composition in the absence of Ca²⁺. Negatively charged bilayers (DOPG and DOPS bilayers) red-shifted the emission spectra of mB- β_2 AR alone, suggesting negatively charged bilayers stabilize mB- β_2 AR in an active conformation, as has been previously reported²⁴. While negatively charged bilayers increased mB- β_2 AR coupling to G_s (Fig. 4), negatively charged bilayers (especially DOPS bilayers) decreased mB- β_2 AR coupling to G_{i3} (Fig. 4).

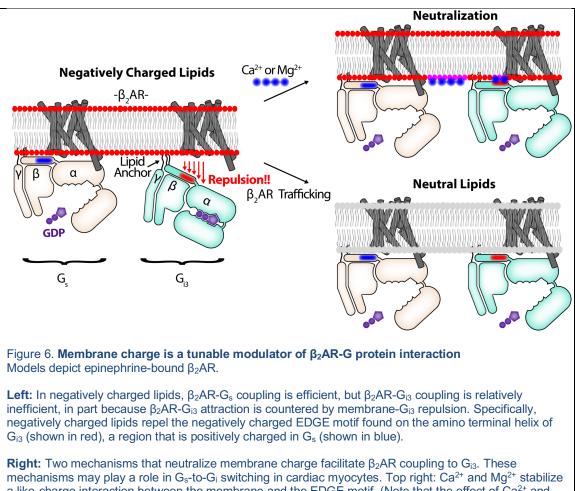
bioRxiv preprint doi: https://doi.org/10.1101/400408; this version posted August 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

In fact, in negatively charged bilayers without epinephrine, G_{i3} unexpectedly *blue-shifted* the emission spectra of mB- β_2 AR. While this may indicate that G_{i3} stabilizes the β_2 AR in an inactive conformation in negatively charged lipids, it may represent a non-specific interaction of inactive G_{i3} with the β_2 AR or the lipid bilayer.

Next we examined the effect of Ca²⁺ and Mg²⁺. In the absence of G_{i3}, both Ca²⁺ and Mg²⁺ reversed the active-state stabilizing effect of negatively charged DOPS and DOPG bilayers (Fig. 5a). In contrast, Ca²⁺ and Mg²⁺ increased mB- β_2 AR coupling to G_{i3} in negatively charged DOPS bilayers, but only Ca²⁺ was efficacious at concentrations below 1 mM (Fig. 5a). Ca²⁺ similarly affected mB- β_2 AR-G_{i3} interaction in negatively charged DOPG bilayers (Fig. 5a), but the magnitude of the effect in DOPG bilayers was less than observed in DOPS bilayers due to the higher baseline effect of DOPG on β_2 AR conformation.

Figure 5. Effect of Ca²⁺ and Mg²⁺ on mB-β₂AR-G_{i3} and mB-β₂AR-G_s interaction in nanodisc bilayers of varying charge

a. The effect of CaCl2 and MgCl2 concentration on mB- β_2 AR fluorescence in DOPS and DOPG nanodisc bilayers was examined in the presence and absence of G_{i3}. Epinephrine was included (30 μ M) or omitted (APO). EC₅₀ is mean +/- s.e.m.


b. The effect of G protein concentration (G_{i3} and G_s) on mB- β_2AR fluorescence +/- 3 mM CaCl2 was examined in DOPS nanodiscs in the presence of epinephrine (30 μ M) or in its absence (APO).

c. The effect of G_{i3} on mB- β_2 AR fluorescence +/- 3 mM CaCl2 was examined in DOPE, DOPC, and DOPG nanodisc bilayers in the presence of 30 μ M epinephrine (EPI).

a-c. mB- β_2 AR concentration is 100 nM. Net charge of phospholipid molecule indicated in parentheses. Data are mean +/- s.e.m of three independent experiments.

We compared the effect of Ca^{2+} on mB- β_2AR interactions with G_s and G_{i3} in DOPS bilayers. As observed in micelles, Ca^{2+} increased mB- β_2AR coupling to G_{i3} but not to Gs (Fig. 5b). Ca^{2+} also improved mB- β_2AR - G_{i3} coupling efficiency in negatively charged DOPG bilayers (Fig. 5c). Only a minor effect of Ca^{2+} was observed in neutral DOPE and

DOPC bilayers (Fig. 5c & Supplementary Fig. 5), which could be attributable to weaker $Ca^{2+}/DOPE$ and $Ca^{2+}/DOPC$ interactions that have been reported³². Taken together, our results strongly suggest that Ca^{2+} facilitates mB- β_2AR - G_{i3} interaction but not mB- β_2AR - G_s interaction. Moreover, these observations provide biochemical proof-of-concept that divalent cation/membrane interactions can increase G_i coupling to the β_2AR .

mechanisms may play a role in G_s -to- G_i switching in cardiac myocytes. Top right: Ca^{2+} and Mg^{2+} stabilize a like-charge interaction between the membrane and the EDGE motif. (Note that the effect of Ca^{2+} and Mg^{2+} may extend beyond an effect on αN positioning). Bottom right: Epinephrine stimulated $\beta_2 AR$ traffics to membrane without negatively charged lipids.

Discussion

We observed that local membrane charge regulates β_2AR -G protein interaction. Negatively charged membrane promotes β_2AR -G_s coupling and suppresses β_2AR -G_{i3} coupling. However, G_s bias is reduced in neutral membrane and in negatively charged membrane in the presence of divalent cations (see model in Fig. 6).

We have begun to explore the mechanism by which Ca^{2+} increases mB- β_2AR coupling to G_{i3} in PS phospholipids. Although G proteins are membrane tethered via lipidation, the lipid anchor of G_{i3} is not sufficient for optimal interaction with $\beta_2 AR$ in negatively charged bilayers, possibly due to repulsion of the carboxyl terminal end of the αN helix. We propose that Ca^{2+} helps orient the carboxyl terminal end of the αN helix of G_{i3} near the membrane, thereby facilitating β_2 AR-G_{i3} interactions. More specifically, we propose that Ca²⁺ facilitates the interaction of PS with the negatively charged EDGE motif on the α N helix of G_{i3}. Ca²⁺ may stabilize the PS-EDGE interaction by coordinating a likecharge interaction between the carboxylate groups on G_{i3} and the carboxylate group on PS (not present on PG) (refer to structures in Fig 1b). Alternatively, Ca²⁺ might coordinate a like-charge interaction between the carboxylate groups on G₃ and the phosphate group present on PS and PG, or Ca²⁺ might coordinate an intramolecular interaction between the phosphate group and the carboxylate group on PS, "freeing" the amino group (NH3+) on PS to interact with the carboxylate groups on G_{13} . Notably, the amino terminal helix (αN) of G₁₁, G₁₂, and G₁₃ are similarly charged, and all three sequences contain the EDGE motif.

We have previously shown that negatively charged lipids, particularly PG, stabilize the β_2AR in an active-like conformation as revealed by changes in mB- β_2AR fluorescence and an increased affinity for agonists²⁴. These effects are likely due to interactions between the lipids and positively charged amino acids on the β_2AR . Here we observed that the effect of DOPG and DOPS on mB- β_2AR can be reversed by both Ca²⁺ and Mg²⁺ (Fig. 5a). Yet, these divalent cations do not appear to reduce coupling to G_s.

 β_2 AR signals from caveolin-rich rafts^{33,34} within T-tubules³⁵. While β_2 AR preferentially interacts with PG in insect cell membrane²⁴, the phospholipid composition immediately adjacent to β_2 AR in T-tubules, and how it changes during β_2 AR trafficking, is currently unknown. Net-neutral PC and PE are the major phospholipids in T-Tubules³⁶⁻³⁸. However, negatively charged PS is enriched in T-tubules relative to other membrane fractions (7.5-12.3% of total phospholipid)³⁶⁻⁴⁰. While cytosolic Ca²⁺ concentrations are typically less than 1 mM⁴¹, concentrations of Ca²⁺ in the mM range may be observed in cardiac myocytes (discussed below).

Investigators have long speculated about the functional role of Ca²⁺ in the cleft between T-tubule membrane (where β_2AR is localized) and juxtaposed sarcoplasmic reticulum (SR)⁴²⁻⁴⁴. During each action potential, extracellular Ca²⁺ flows into the cleft through L-type Ca²⁺ channels (LTCCs) on the plasma membrane and through ryanodine receptors (RyRs) on the sarcoplasmic reticulum⁴¹. Cleft Ca²⁺ concentrations spark to > 100 μ M in the absence of epinephrine and >1 mM^{45,46} following epinephrine stimulation, a consequence of G_s activation. Computational models show that negatively charged phospholipids buffer approximately half the Ca²⁺ released into the cleft⁴⁵, and experiments have shown that 80% of inner-leaflet bound Ca²⁺ is bound to negatively-

charged phospholipids⁴⁷. Additionally, biochemical investigations show that Ca^{2+} can cluster negatively charged PS⁴⁸ and PIP2^{49.50} lipids.

 $β_1$ AR and $β_2$ AR signaling through G_s alters calcium handling in the cardiac myocyte, and increases the magnitude of Ca²⁺ currents and Ca²⁺ transients, which stimulate cardiac contraction^{41,51}. However, elevated Ca²⁺ concentrations also activate the Ca²⁺/calmodulin-dependent protein kinase II (CaMKII), which is implicated in structural remodeling that ultimately results in cardiac dysfunction⁵²⁻⁵⁶. Several lines of evidence suggest $β_2$ AR-G_i signaling keeps $β_2$ AR-G_s signaling in check via negative feedback: $β_2$ AR-G_i signaling occurs minutes after $β_2$ AR-G_s signaling³, $β_2$ AR-G_i signaling suppresses changes in calcium handling^{51.57}, and $β_2$ AR-G_i signaling is anti-apoptotic^{7.8}. While the mechanism that triggers $β_2$ AR-G_i signaling is unknown, our biochemical observations suggest Ca²⁺ concentrations could directly regulate $β_2$ AR coupling to G_i. It is notable that overexpression of the Ca²⁺/sodium exchanger facilitates $β_2$ AR-G_i suppression of $β_1$ AR-G_s signaling⁵⁸, and overexpression has been cited to increase the inward LTCC Ca²⁺ current⁵⁹.

It is also notable that intracellular $Ca^{2+\underline{60},\underline{61}}$ and $Mg^{2+\underline{61}}$ concentrations rise during ischemia and rise even higher during reperfusion. Whether the rising concentrations affect the G protein subtype specificity of β_2AR is unknown. However, laboratory-controlled bouts of ischemia and reperfusion have been cited to evoke therapeutic β_2AR -G_i signaling, i.e. reduce necrosis during a heart attack⁹.

Whether negatively charged phospholipids affect G_i interaction with other G_i -coupled GPCRs is not known. The observation that Ca^{2+} sensing receptor (CaSR) switches from Gq to G_i after cytosolic Ca^{2+} increases⁶² is potentially relevant to our findings.

In conclusion, we show that local membrane charge differentially modulates β_2AR interaction with competing G protein subtypes (G_s and G_i). This discovery expands our knowledge of mechanisms that regulate the G protein coupling selectivity of GPCRs.

Online Methods

Heterotrimeric G protein and $\beta_2 AR$ purification. All G proteins were heterotrimeric G proteins. G_s heterotrimer (WT G $\alpha_{s \text{ short}}$, his6-3C- β_1 , WT γ_2) and G_i heterotrimer (WT G α_{i1} -₃, his6-3C- β_1 , WT γ_2) and all G protein mutants were expressed and purified as previously described⁶³. The G_{13} - G_s chimera was constructed by replacing residues 1-38 of WT $G\alpha_s$ with residues 1-31 of WT $G\alpha_{i3}$. The G_s -neg. mutant was constructed by replacing the sequence EDGE (residues 25-28) of WT $G\alpha_s$ with the sequence KDKQ. The G_{i3}-pos, mutant was constructed by replacing the sequence KDKQ (residues 32-35) of WT $G\alpha_{i3}$ to the sequence EDGE. The β_2AR construct was PN1. The construct, expression, purification, and monobromobimane labeling have been described²⁴. Labeling efficiency was ~80-100%, as determined by spectroscopic analysis. Purified β_2 AR and G protein were dephosphorylated using Lambda Protein Phosphatase (Lambda PP, New England BioLabs, NEB). Where indicated, β_2 AR was phosphorylated with Protein Kinase A (PKA, NEB) in purification buffer supplemented with 0.1 mM EDTA and 20 μ M ATP. (Subsequently, EDTA/ATP were removed by dialysis). Phosphorylation was assessed using the Pro-Q Diamond Phosphoprotein Gel Stain (ThermoFisher Scientific), per the manufacturer's instructions.

Micelle Composition. n-dodecyl-β-D-maltopyranoside (DDM), Cholesteryl hemisuccinate (CHS), and 1-palmitoyl-2-oleoyl-(PE,PC,PG,PS) lipids (Avanti Polar Lipids) were mixed in the indicated ratios and solubilized in chloroform. Chloroform was evaporated, and films were re-suspended in 20 mM HEPES (pH 7.4), 100 mM NaCl.

Fluorescence Spectroscopy. In experiments examining β_2AR in micelles, mB- β_2AR was pre-incubated (30 min room temperature) in micelle stock prior to dilution with other reaction components. Buffer (containing 100 mM NaCl, +/- ligand, +/- CaCl2 or MgCl2), and G protein were sequentially included. Mixtures were incubated 2.5 – 3.0 h at room temperature. Final mB- β_2AR concentration was 100-500 nM. Emission spectra were read at 22 degrees Celsius using Flurolog-3 or Spex FluoroMax-3 spectrofluorometers (Horiba Jobin Yvon Inc.). (Bandpass = 4 nm; Excitation = 370 nm; Emission = 420-500 nm.) Raw S1c/R1c spectra were smoothed using Prism (GraphPad Software) (n=15 neighbors, 2nd order polynomial). Lambda max is defined as the wavelength at which fluorescence emission is maximum. To determine the EC₅₀, curves were fit to the "agonist vs. response" model in Prism 7.0d software.

GTP Turnover. Samples were prepared as they were for fluorescence spectroscopy. Following the incubation with G protein, 1 μ M GTP/5 μ M GDP mixtures were added. Reactions contained: 20 mM HEPES (pH 7.4), 100 mM NaCl, 0.25 μ M G_{i3}, 0.5 or 1.0 μ M β_2 AR (per legend), 200 μ M epinephrine, and 4:1 DDM:Lipid. 12 minutes after GTP was added, free GTP was assessed using the GTPase-Glo assay (Promega), which reports free GTP concentration using a luminescence readout. Luminescence was detected using a SpectraMax Paradigm plate reader equipped with a TUNE SpectraMax detection cartridge (Molecular Devices). Background luminescence was subtracted from experimental reactions.

Statistics. Two-sided parametric paired student's *t*-tests were performed using Graphpad Prism7.0d. When comparing lambda max +/- CaCl2, *t*-test calculation assumed all data within a panel were sampled from populations with the same scatter.

Electrostatic Modeling: Structural views and mutant models were generated using PyMOL (Schrödinger, LLC). We selected rotomer positions that most closely matched those seen in PDB 3SN6 (for "G_{i3}-pos." model) and PDB 1GP2 (for "G_s-neg." model). Continuum electrostatics models were calculated using the APBS⁶⁴ plugin (MG Lerner, University of Michigan, Ann Arbor) for PyMOL. Atomic charge and radii were calculated using the online PDB2PQR server⁶⁵ (pH 7.4, PARSE force field, hydrogen bond optimization, clash avoidance).

Nanodisc Reagents. 1,2-dioleoyl-(PE,PC,PG,PS) lipids (Avanti Polar Lipids) were used because of their low phase transition temperature. MSP1E3D1 (Addgene #20066) was expressed and purified as described⁶⁶.

Nanodisc Reconstitution: Reconstitution was performed as described²⁴ with the following modifications: Nanodiscs were formed with one lipid type (i.e. 100% DOPS, DOPG, DOPE, or DOPC). The Lipid-to-MSP1E3D1 ratio was 35:1. The MSP1E3D1-to-mB- β_2 AR ratio was 1:10. Empty nanodiscs were separated from nanodiscs containing mB- β_2 AR using M1-anti-FLAG immunoaffinity chromatography in the presence of 2 mM CaCl2, which captures the FLAG-tagged PN1 mB- β_2 AR construct. Eluate was incubated with 5 mM EDTA > 1.5 h at 4 degrees Celsius to remove divalent cations. Subsequently,

samples were injected into a Superdex 200 10/300GL size-exclusion column (GE Healthcare) and the main peak was harvested. The concentration of nanodisc β_2 AR was approximated by SDS-PAGE, using detergent purified β_2 AR of known concentration as a reference.

Acknowledgements

We thank Betsy White for assistance with G protein and β₂AR expression. This work was supported by National Institutes of Health grants R01NS028471 and R01GM083118 (B.K.K.). B.K.K. is supported by the Chan Zuckerberg Biohub. D.H. was supported by the German Academic Exchange Service (DAAD). M.M. was supported by the American Heart Association Postdoctoral fellowship (17POST33410958).

Author contributions

M.J.S designed, performed, and interpreted the research, and wrote the manuscript. B.K.K. championed the investigation, advised on the project, and edited the manuscript. M.J.S performed the purification, labeling, nanodisc reconstitution, and all of the experiments, and S.M., D.H., M.M., and Y.D. provided valuable technical assistance as described: S.M. advised on cloning and provided G protein for pilot experiments. D.H. advised on G protein purification and the GTP turnover assay. M.M. advised on nanodisc reconstitution and provided MSP1E3D1 protein. Y.D. collaborated on pilot experiments not included.

Competing Interests Statement

None declared

REFERENCES

- 1. Hauser, A.S., Attwood, M.M., Rask-Andersen, M., Schioth, H.B. & Gloriam, D.E. Trends in GPCR drug discovery: new agents, targets and indications. *Nat Rev Drug Discov* **16**, 829-842 (2017).
- 2. Flock, T. et al. Selectivity determinants of GPCR-G-protein binding. *Nature* **545**, 317-322 (2017).
- 3. Devic, E., Xiang, Y., Gould, D. & Kobilka, B. beta-adrenergic receptor subtypespecific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. *Molecular Pharmacology* **60**, 577-583 (2001).
- 4. Xiang, Y., Devic, E. & Kobilka, B. The PDZ binding motif of the beta 1 adrenergic receptor modulates receptor trafficking and signaling in cardiac myocytes. *J Biol Chem* **277**, 33783-90 (2002).
- 5. Xiang, Y. & Kobilka, B. The PDZ-binding motif of the 2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. *Proceedings of the National Academy of Sciences* **100**, 10776-10781 (2003).
- 6. Wang, Y. et al. Norepinephrine- and epinephrine-induced distinct beta2adrenoceptor signaling is dictated by GRK2 phosphorylation in cardiomyocytes. *J Biol Chem* **283**, 1799-807 (2008).
- 7. Zhu, W.Z. et al. Dual modulation of cell survival and cell death by beta(2)adrenergic signaling in adult mouse cardiac myocytes. *Proc Natl Acad Sci U S A* **98**, 1607-12 (2001).
- 8. Chesley, A. et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase. *Circ Res* **87**, 1172-9 (2000).
- 9. Tong, H., Bernstein, D., Murphy, E. & Steenbergen, C. The role of betaadrenergic receptor signaling in cardioprotection. *Faseb j* **19**, 983-5 (2005).
- 10. Fajardo, G. et al. Deletion of the beta2-adrenergic receptor prevents the development of cardiomyopathy in mice. *J Mol Cell Cardiol* **63**, 155-64 (2013).
- 11. Paur, H. et al. High levels of circulating epinephrine trigger apical cardiodepression in a beta2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. *Circulation* **126**, 697-706 (2012).
- 12. Shao, Y. et al. Novel rat model reveals important roles of beta-adrenoreceptors in stress-induced cardiomyopathy. *Int J Cardiol* **168**, 1943-50 (2013).
- 13. Vittone, L., Said, M. & Mattiazzi, A. beta 2-Adrenergic stimulation is involved in the contractile dysfunction of the stunned heart. *Naunyn Schmiedebergs Arch Pharmacol* **373**, 60-70 (2006).
- 14. Bohm, M. et al. Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. *J Mol Cell Cardiol* **26**, 133-49 (1994).
- 15. Feldman, A.M. et al. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. *J Clin Invest* **82**, 189-97 (1988).
- 16. Eschenhagen, T. et al. Increased messenger RNA level of the inhibitory G protein alpha subunit Gi alpha-2 in human end-stage heart failure. *Circ Res* **70**, 688-96 (1992).
- 17. Bristow, M.R. et al. Decreased catecholamine sensitivity and beta-adrenergicreceptor density in failing human hearts. *N Engl J Med* **307**, 205-11 (1982).

- 18. Bristow, M.R. et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. *Circ Res* **59**, 297-309 (1986).
- 19. Bristow, M.R., Hershberger, R.E., Port, J.D., Minobe, W. & Rasmussen, R. Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. *Mol Pharmacol* **35**, 295-303 (1989).
- 20. Bristow, M.R. et al. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. *J Clin Invest* **92**, 2737-45 (1993).
- 21. Zamah, A.M., Delahunty, M., Luttrell, L.M. & Lefkowitz, R.J. Protein Kinase Amediated Phosphorylation of the beta 2-Adrenergic Receptor Regulates Its Coupling to Gs and Gi. DEMONSTRATION IN A RECONSTITUTED SYSTEM. *Journal of Biological Chemistry* **277**, 31249-31256 (2002).
- 22. Lefkowitz, R.J., Daaka, Y. & Luttrell, L.M. Switching of the coupling of the beta2adrenergic receptor to different G proteins by protein kinase A. *Nature* **390**, 88-91 (1997).
- 23. Zhu, W. et al. Gi-Biased 2AR Signaling Links GRK2 Upregulation to Heart Failure. *Circulation Research* **110**, 265-274 (2011).
- 24. Dawaliby, R. et al. Allosteric regulation of G protein-coupled receptor activity by phospholipids. *Nat Chem Biol* **12**, 35-9 (2016).
- 25. Nygaard, R. et al. The dynamic process of beta(2)-adrenergic receptor activation. *Cell* **152**, 532-42 (2013).
- 26. Manglik, A. et al. Structural Insights into the Dynamic Process of beta2-Adrenergic Receptor Signaling. *Cell* **161**, 1101-1111 (2015).
- 27. Rasmussen, S.G. et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. *Nature* **477**, 549-55 (2011).
- 28. Yao, X.J. et al. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. *Proc Natl Acad Sci U S A* **106**, 9501-6 (2009).
- 29. Hafez, I.M. & Cullis, P.R. Cholesteryl hemisuccinate exhibits pH sensitive polymorphic phase behavior. *Biochim Biophys Acta* **1463**, 107-14 (2000).
- 30. Shi, X. et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. *Nature* **493**, 111-5 (2013).
- Crouthamel, M., Thiyagarajan, M.M., Evanko, D.S. & Wedegaertner, P.B. Nterminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q). *Cell Signal* 20, 1900-10 (2008).
- 32. Her, C. et al. The Charge Properties of Phospholipid Nanodiscs. *Biophys J* **111**, 989-98 (2016).
- Rybin, V.O., Xu, X., Lisanti, M.P. & Steinberg, S.F. Differential targeting of beta adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. *J Biol Chem* 275, 41447-57 (2000).
- Xiang, Y. Caveolar Localization Dictates Physiologic Signaling of beta 2-Adrenoceptors in Neonatal Cardiac Myocytes. *Journal of Biological Chemistry* 277, 34280-34286 (2002).
- 35. Nikolaev, V.O. et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. *Science* **327**, 1653-7 (2010).
- 36. Rosemblatt, M., Hidalgo, C., Vergara, C. & Ikemoto, N. Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. *J Biol Chem* **256**, 8140-8 (1981).

- 37. Lau, Y.H., Caswell, A.H., Brunschwig, J.P., Baerwald, R. & Garcia, M. Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle. *J Biol Chem* **254**, 540-6 (1979).
- 38. Pediconi, M.F., Donoso, P., Hidalgo, C. & Barrantes, F.J. Lipid composition of purified transverse tubule membranes isolated from amphibian skeletal muscle. *Biochim Biophys Acta* **921**, 398-404 (1987).
- Post, J.A., Langer, G.A., Op den Kamp, J.A. & Verkleij, A.J. Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and 'gas-dissected' membranes. *Biochim Biophys Acta* 943, 256-66 (1988).
- 40. Post, J.A., Verkleij, A.J. & Langer, G.A. Organization and function of sarcolemmal phospholipids in control and ischemic/reperfused cardiomyocytes. *J Mol Cell Cardiol* **27**, 749-60 (1995).
- 41. Fearnley, C.J., Roderick, H.L. & Bootman, M.D. Calcium signaling in cardiac myocytes. *Cold Spring Harb Perspect Biol* **3**, a004242 (2011).
- 42. Louch, W.E., Stokke, M.K., Sjaastad, I., Christensen, G. & Sejersted, O.M. No rest for the weary: diastolic calcium homeostasis in the normal and failing myocardium. *Physiology (Bethesda)* **27**, 308-23 (2012).
- 43. Verkleij, A.J. & Post, J.A. Membrane phospholipid asymmetry and signal transduction. *J Membr Biol* **178**, 1-10 (2000).
- 44. Houser, S.R. & Molkentin, J.D. Does contractile Ca2+ control calcineurin-NFAT signaling and pathological hypertrophy in cardiac myocytes? *Sci Signal* **1**, pe31 (2008).
- 45. Langer, G.A. & Peskoff, A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. *Biophys J* **70**, 1169-82 (1996).
- 46. Peskoff, A. & Langer, G.A. Calcium concentration and movement in the ventricular cardiac cell during an excitation-contraction cycle. *Biophys J* **74**, 153-74 (1998).
- 47. Philipson, K.D., Bers, D.M. & Nishimoto, A.Y. The role of phospholipids in the Ca2+ binding of isolated cardiac sarcolemma. *J Mol Cell Cardiol* **12**, 1159-73 (1980).
- 48. Boettcher, J.M. et al. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. *Biochemistry* **50**, 2264-73 (2011).
- 49. Haverstick, D.M. & Glaser, M. Visualization of Ca2+-induced phospholipid domains. *Proc Natl Acad Sci U S A* **84**, 4475-9 (1987).
- 50. Wang, Y.H., Slochower, D.R. & Janmey, P.A. Counterion-mediated cluster formation by polyphosphoinositides. *Chem Phys Lipids* **182**, 38-51 (2014).
- 51. Zhu, W., Zeng, X., Zheng, M. & Xiao, R.P. The enigma of beta2-adrenergic receptor Gi signaling in the heart: the good, the bad, and the ugly. *Circ Res* **97**, 507-9 (2005).
- 52. Schmid, E. et al. Cardiac RKIP induces a beneficial beta-adrenoceptordependent positive inotropy. *Nat Med* **21**, 1298-306 (2015).
- 53. Woo, A.Y., Song, Y., Xiao, R.P. & Zhu, W. Biased beta2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. *Br J Pharmacol* **172**, 5444-56 (2015).
- 54. Bayeva, M., Sawicki, K.T., Butler, J., Gheorghiade, M. & Ardehali, H. Molecular and cellular basis of viable dysfunctional myocardium. *Circ Heart Fail* **7**, 680-91 (2014).
- 55. Waagstein, F. & Rutherford, J.D. The Evolution of the Use of beta-Blockers to Treat Heart Failure: A Conversation With Finn Waagstein, MD. *Circulation* **136**, 889-893 (2017).

- 56. Kehat, I. & Molkentin, J.D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. *Circulation* **122**, 2727-35 (2010).
- 57. Xiao, R.P., Ji, X.W. & Lakatta, E.G. Functional Coupling of the Beta(2)-Adrenoceptor to a Pertussis-Toxin-Sensitive G-Protein in Cardiac Myocytes. *Molecular Pharmacology* **47**, 322-329 (1995).
- 58. Sato, M., Gong, H., Terracciano, C.M., Ranu, H. & Harding, S.E. Loss of betaadrenoceptor response in myocytes overexpressing the Na+/Ca(2+)-exchanger. *J Mol Cell Cardiol* **36**, 43-8 (2004).
- 59. Ottolia, M., Torres, N., Bridge, J.H., Philipson, K.D. & Goldhaber, J.I. Na/Ca exchange and contraction of the heart. *J Mol Cell Cardiol* **61**, 28-33 (2013).
- 60. Kalogeris, T., Baines, C.P., Krenz, M. & Korthuis, R.J. Cell biology of ischemia/reperfusion injury. *Int Rev Cell Mol Biol* **298**, 229-317 (2012).
- 61. Murphy, E. & Steenbergen, C. Ion transport and energetics during cell death and protection. *Physiology (Bethesda)* **23**, 115-23 (2008).
- 62. Conigrave, A.D. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. *Front Physiol* **7**, 563 (2016).
- 63. Gregorio, G.G. et al. Single-molecule analysis of ligand efficacy in beta2AR-Gprotein activation. *Nature* **547**, 68-73 (2017).
- 64. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. *Proc Natl Acad Sci U S A* **98**, 10037-41 (2001).
- 65. Dolinsky, T.J., Nielsen, J.E., McCammon, J.A. & Baker, N.A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. *Nucleic Acids Res* **32**, W665-7 (2004).
- 66. Velez-Ruiz, G.A. & Sunahara, R.K. Reconstitution of G protein-coupled receptors into a model bilayer system: reconstituted high-density lipoprotein particles. *Methods Mol Biol* **756**, 167-82 (2011).