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Abstract 
Phylogenomics has revolutionized the study of evolutionary relationships. However, genome-
scale data have not been able to resolve all relationships in the tree of life. This could reflect the 
poor-fit of the models used to analyze heterogeneous datasets; that heterogeneity is likely to have 
many explanations. However, it seems reasonable to hypothesize that the different patterns of 
selection on proteins based on their structures might represent a source of heterogeneity. To test 
that hypothesis, we developed an efficient pipeline to divide phylogenomic datasets that 
comprise proteins into subsets based on secondary structure and relative solvent accessibility. 
We then tested whether amino acids in different structural environments had different signals for 
the deepest branches in the metazoan tree of life. Sites located in different structural 
environments did support distinct tree topologies. The most striking difference in phylogenetic 
signal reflected relative solvent accessibility; analyses of sites on the surface of proteins yielded 
a tree that placed ctenophores sister to all other animals whereas sites buried inside proteins 
yielded a tree with a sponge-ctenophore clade. These differences in phylogenetic signal were not 
ameliorated when we repeated our analyses using the site-heterogeneous CAT model, a mixture 
model that is often used for analyses of protein datasets. In fact, analyses using the CAT model 
actually resulted in rearrangements that are unlikely to represent evolutionary history. These 
results provide striking evidence that it will be necessary to achieve a better understanding the 
constraints due to protein structure to improve phylogenetic estimation. 
 
Introduction 

The growing availability of very large datasets, including genome-scale datasets, has 
revolutionized the field of phylogenetics. Phylogenomics, the use of very large-scale molecular 
datasets to address phylogenetic problems, was suggested to be a way to “end incongruence” by 
reducing the error associated with analyses of small datasets (Gee 2003). Phylogenomics has had 
many successes (e.g., Rokas et al. 2003; Nishihara et al. 2007; Misof et al. 2014;Wickett et al. 
2014) However, many relationships in the tree of life remain problematic, typically as a limited 
number of specific nodes within otherwise well-resolved phylogenomic trees (e.g., Nosenko et 
al. 2013; Cox et al. 2014; Jarvis et al. 2014; Whelan et al. 2015; Parks et al. 2018). Multiple 
distinct resolutions of those problematic relationships have emerged in different studies (e.g., 
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Ryan et al. 2013; Moroz et al. 2014; Dunn et al. 2015; King and Rokas 2017; Simion et al. 
2017), sometimes with strong support. These alternative resolutions of the tree can be viewed as 
distinct “signals” in the data; by signal we mean the topology that emerges when the data are 
analyzed using a specific method, regardless of whether that signal is historical or non-historical 
in nature. A major goal of phylogenomics is the identification of the historical signal (i.e., the 
species tree) amid the myriad other signals in genomic data (e.g., Castoe et al. 2009; Edwards 
2009; Townsend et al. 2012; Salichos and Rokas 2013; Reddy et al. 2017). Rather than putting 
an end to incongruence, phylogenomics has actually served to highlight the complexity of the 
signals present in genomic data.  

The idea that non-historical signals can overwhelm historical signal substantially predates the 
phylogenomic era (e.g., Felsenstein 1978; Hendy and Penny 1989). However, the availability of 
genome-scale data emphasized the large number of cases where that conflicting signals emerge 
in phylogenetic analysis. The most extreme cases correspond to those where analytical methods 
are subject to systematic error, where non-historical signal overwhelms historical signal. In those 
parts of parameter space, increasing the amount of data will cause phylogenetic methods to 
converge on inaccurate estimates of evolutionary history with high support. Thus, phylogenomic 
analyses should lead either to high support for the true tree (the desired result) or to high support 
for an incorrect tree (if the analytical method is subject to systematic error). Cases where support 
is limited despite the use of large-amounts of data could reflect one of two phenomena: 1) the 
data contains a mixture of signals, some historical and some that are misleading; or 2) that the 
underlying species tree contains a hard polytomy. Understanding the distribution of historical 
and non-historical signal(s) in large-scale data matrices could allow better understanding of 
analytical methods and their limitations with phylogenomic datasets. 

The problem of systematic error in phylogenomic analyses has been addressed using two 
basic approaches: 1) by data filtering focused on removing the misleading data (e.g., Collins et 
al. 2005; Liu et al. 2015); and 2) by using improved, typically more complex and (presumably) 
more “biologically-realistic” models of sequence evolution (e.g., Steel 2005; Wilke et al. 2012). 
These approaches are interrelated. The goal of data filtering is the removal of data that violate 
model assumptions whereas the goal of conducting analyses using more biologically realistic 
models is to improve the fit of the model to the data. The fundamental assumption underlying 
both of these approaches is that phylogenomic datasets are heterogeneous; i.e., that a single, 
simple model is unlikely to provide an adequate to fit to the data. More complex models 
typically introduce biological realism by adding heterogeneity in the model, which could address 
this issue without requiring the exclusion of data. Even restricting to single type of data, such as 
proteins, a number of heterogeneous models have been proposed (e.g., CAT; Lartillot and 
Philippe 2004), Thorne-Goldman-Jones structural models (Thorne et al. 1996; Goldman et al. 
1998), and structural mixture models (Le and Gascuel 2010), although the degree to which these 
approaches actually ameliorate the impact of misleading signals remains a subject of debate 
(Whelan and Halanych 2016). Moreover, both approaches ultimately require understanding the 
signals present in the data.  

Examining conflicting signals could provide as way to determine whether those signals are 
associated with specific parts of the phylogenomic data matrices, and may provide insights into 
the biological basis for the heterogeneity. Subdividing data matrices into individual loci is 
unlikely to be informative because individual loci are short and therefore have limited power to 
resolve difficult nodes (Patel et al. 2013); moreover, individual loci can be associated with 
distinct gene trees due to factors such as the multispecies coalescent (Maddison 1997; Slowinski 
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et al. 2007; Edwards 2009). However, it should be possible to examine signal as long as the total 
amount of data is large enough to overcome stochastic error (i.e., if a sufficient number of sites 
and gene trees are available). There are two alternative hypotheses regarding the distribution of 
signal in any phylogenomic dataset: 

H0: Conflicting signals are randomly distributed with respect to functionally-defined 
subsets of the data. This hypothesis predicts that separate analyses of those 
functionally-defined subsets of the data matrix will yield trees with the same 
topology (probably with lower support than the analysis of the complete dataset due 
to the smaller size of the subsets and the fact that conflicts within the data subsets are 
still present). 

HA: Conflicting signals are non-randomly distributed with respect to functionally-defined 
data subsets. Different subsets of the data matrix defined using functional 
information are associated with distinct signals (i.e., analyses of those subsets yield 
different topologies when the subsets are analyzed separately). 

Obviously, these hypotheses can only be tested for specific definitions of data subsets; failure to 
reject H0 could reflect a genuinely random distribution of signal or it could reflect failure to 
define those data subsets in an appropriate manner. The data subsets should also be large enough 
to overcome stochastic error (although cases where the data subsets are reduced to the point 
where stochastic error dominates the analysis are likely to resolve difficult nodes randomly with 
low support). However, if HA can be corroborated for a specific way of dividing phylogenetic 
data matrices into subsets using functional criteria (e.g., coding versus non-coding, highly 
transcriptionally-active versus largely untranscribed, and so forth; e.g., Reddy et al. 2017) it is 
likely provide substantial information about the patterns of sequence evolution (Wilke 2012). 
That information is likely to be useful for phylogenetic model development. 

Coding sequences are often used to examine phylogenetic relationships deep in the tree of 
life (e.g., He et al. 2014; Wickett et al. 2014; Raymann et al. 2015) and they are good candidates 
for this type of signal exploration. There are many biologically-motivated ways to divide 
proteins into subsets that are likely to have been subjected to different selective pressures to 
maintain their structure and function. Any approach used to subdivide protein alignments into 
subsets for phylogenetic signal exploration must meet two criteria: 1) it should result in subsets 
that are stable over evolutionary times; and 2) practical ways to assign aligned sites to subsets 
exist. Protein structure provides an obvious way to divide phylogenomic data that meets both 
criteria. Protein structures diverge much more slowly than protein sequences (Lesk and Chothia 
1986; Illergård et al. 2009), so it is reasonable to assume that alignments can simply be divided 
into structural classes that remain relatively constant over evolutionary time. Modern protein 
secondary structure prediction methods (e.g., Magnan and Baldi 2014) have proven to be very 
accurate (able to classify ~90% of residues accurately for proteins with homologs in pdb) so it 
should also be possible to construct analytic pipelines that meets the second requirement. 
Obviously, it is possible that conflicting signals are randomly distributed with respect to any 
particular approach to subdividing proteins based on their structure, but there are a number of 
ways to subdivide protein structures that have been extensively studied. Therefore, it is possible 
to propose testable sub-hypotheses of HA by focusing on strategies that reflect those extensively 
studied subdivisions. All that remains to test these hypotheses is a phylogenomic dataset likely to 
have internal conflicts; ideally, the test dataset would be large, analyses of the data should have 
fairly limited support for one or more focal clades. 
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We chose the early evolution of metazoa as a “model system” to examine whether different 
signals are associated with sites in different protein structural environments. There are several 
reasons why we expected the deepest branches in the animal tree of life to provide an ideal way 
to examine our hypotheses. First, the divergences among the major metazoan lineages are fairly 
ancient, so protein structure is likely to have had a fairly large impact on observed site patterns in 
the data. Second, deep metazoan phylogeny has been a difficult phylogenetic problem but there 
are a limited number of plausible trees (fig. 1). Specifically, the traditional hypothesis (fig. 1a), 
which also has support in some phylogenomic analyses (e.g., Philippe et al. 2009; Pick et al. 
2010; Pisani et al. 2015; Simion et al. 2017), places sponges sister to all other metazoans. The 
alternatives are the hypothesis that ctenophores are sister to all other metazoans (fig. 1b), a 
hypothesis supported by many analyses of large-scale datasets (e.g., Dunn et al. 2008; Hejnol et 
al. 2009; Nosenko et al. 2013; Moroz et al. 2014; Whelan et al. 2015; Whelan et al. 2017). A 
third hypothesis with a ctenophore-sponge clade (fig. 1c); has only been found in the Ryan et al. 
(2013) genomic dataset (hereafter “RG”). There is a good argument for T3 being the least likely 
topology since it requires many of the same assumptions as T2 (e.g., it requires multiple origins 
of the nervous system or a single origin of the nervous system followed by a loss in sponges) but 
T3 has not emerged in most other large-scale analyses. Moreover, support for the ctenophore-
sponge clade is limited in some analyses of the RG data and recovery of the clade is sensitive to 
taxon sampling, suggesting the RG dataset might have fairly strong internal conflicts. These 
internal conflicts could actually useful precisely because it should be possible to ask whether the 
conflicts are distributed randomly (H0) or non-randomly (HA) with respect to various subsets of 
the data defined using non-phylogenetic criteria. Herein, we subdivided the globular proteins in 
the RG dataset into subsets based on protein structure and explored the distribution of signal in 
different structural environments. Our results corroborated HA, revealing that the signal 
associated with solvent exposed residues differed from associated with buried residues. This has 
implications for the fit of models that are currently used for phylogenetic analyses of protein 
sequences. 
 
Results 
Sites in distinct structural environments have different signals 
Different structural classes were associated with different phylogenetic signals based on analyses 
using standard empirical models. The most obvious difference was evident when we divided a 
dataset with 231 globular proteins [the “filtered Ryan genomic” (FRG) dataset, see Methods] 
using relative solvent accessibility. Analyses of solvent exposed sites placed ctenophores sister 
(T2) to all other metazoa whereas analyses of the buried sites recovered a sponge-ctenophore 
clade (T3) (fig. 3). In all cases, the best-fitting standard empirical model was LG (Le and 
Gascuel 2008) but our results were robust to the use of different models for ML analyses (table 
1). In fact, they were robust to the use of the 20-state general time reversible (GTR) model, 
which had a better fit to the structurally-defined subsets of the FRG data than the LG model 
despite the large number of free-parameters that must be optimized for that model. Ultimately, 
we were unable to find a model that changed our conclusions.  

Further subdivision of the FRG data based on other secondary structure information (helix, 
sheet, and coil) generally had less impact on topology, although we did find that buried sheet 
residues placed ctenophores sister to all other metazoans (unlike analyses of the other buried 
residues). However, all analyses of sheet residues, even when those sites were divided into 
solvent exposed versus buried sites, resulted in an unexpected clade comprising sponges and 
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placozoa (all treefiles are available from in Pandey and Braun 2018). Subdividing the helix and 
coil sites into exposed versus buried subsets still revealed the different signals evident when the 
exposed and buried sites were defined globally (Pandey and Braun 2018). Overall, these results 
indicate that, if the topology at the base of metazoans is used as a way to measure signal, the data 
subsets with the largest difference in signal are the exposed versus buried sites and that, with 
respect to the deepest branches in the metazoan tree, the signals in the RG dataset support either 
tree T2 or T3 (fig. 2).  
 
Decisive sites reveal conflicts within each structural class 
Strong phylogenetic signals are often limited to a subset of genes (Salichos and Rokas 2013; 
Brown and Thomson 2016; Shen et al. 2017) or even to specific sites within genes (Evans et al. 
2010; Kimball et al. 2013). Examining these strong phylogenetic signals can provide a way to 
determine the amount of conflict within the data subsets. We examined the number of “decisive 
sites” (sites that strongly support either of two trees in fig. 2) in the exposed and buried classes. 
There were significant differences (P < 0.01, Fisher’s exact test) in the numbers of decisive sites 
that correspond to solvent exposed sites versus those associated with buried residues (table 2). 
Taken as a whole, these results indicate that differences in signal in different parts of the FRG 
dataset that can be detected in comparisons of solvent exposed versus buried sites does not 
reflect an unusual concentration of decisive sites in any particular gene within the FRG dataset; 
instead, the contrasting signals appear to be a more universal feature of analyses focused on sites 
in the two different structural environments. 
 
Reduced taxon sampling also reduces the differences in signal 
Highly divergent outgroup taxa are known to affect phylogenetic inference (Philippe and Laurent 
1998); to examine the impact of outgroup taxon sampling on the signal associated with various 
structural environments we removed four divergent outgroups [two fungi (Saccharomyces and 
Spizellomyces) and two taxa from the classes Mesomycetozoea (Sphaeroforma) and Filasterea 
(Capsaspora)] from the FRG dataset. This limits the outgroups to Choanozoa, the sister group of 
metazoa (Carr et al. 2008; Schalchian-Tabrizi et al. 2008). Analyses of exposed and buried 
residues using the FRG dataset with the reduced taxon sample converged on a single basal 
topology (ctenophores sister to all other metazoa) regardless of whether analyses used GTR with 
parameters optimized for each subset (fig. 3 and Pandey and Braun 2018) or standard empirical 
models (table 1). However, the position of cnidaria and Trichloplax varied in analyses using the 
reduced taxon sample (table 1 and table 3), underlining both the complexity of the signals in the 
FRG dataset and differences among the structural environments. 
 
Sites in different structural environments exhibit distinct patterns of sequence evolution 
The two different topological signals evident in analyses of datasets that contain only exposed or 
buried residues (fig. 2) emerged regardless of whether analyses were conducted using standard 
empirical models (e.g., LG) or the GTR model optimized on the FRG dataset as a whole (rate 
matrix parameter estimates are available from Zenodo; Pandey and Braun 2018). Thus, the 
observed signal variation in exposed and buried classes cannot simply reflect the poor fit of 
standard empirical models to FRG, since the effect persists when the model is optimized for the 
dataset. However, standard empirical models and GTR optimized for a specific large-scale 
protein dataset share the property that the rate matrices reflect the patterns of sequence evolution 
for a mixture of sites from all structural classes. Thus, the values in the empirical rate matrix 
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probably reflect compromise values relative to the values that would be estimated using 
structurally divided data. This led us to examine the degree to which estimates of GTR model 
parameters differ among sites in different structural environments.  

A fundamental prediction of the hypothesis that distinct signals will emerge in analyses of 
sequence alignments comprising only those sites associated with a specific structural partition is 
that patterns of sequence evolution in each structural environment differ. If so, differences in the 
patterns of sequence evolution should be evident in estimates of GTR matrix parameters for each 
structural subset and these estimates should be fairly different from the values for standard 
empirical models. The model parameters for each structural environment are not only expected 
to differ from standard empirical models but also from each other. When the differences among 
models were examined by multidimensional scaling the strongest separation among models is 
related to the best models for the two solvent accessibility classes (fig. 4). Standard empirical 
models, like the LG, WAG, and Dayhoff models, formed a cluster closer to models estimated 
using buried residues (fig. 4 and supplementary figure S1, Supplementary Material online).  

The various structural subsets have different numbers of sites and the GTR model for amino 
acids has a large number of free parameters, raising the question of whether the observed 
differences in exchange rate parameter estimates simply reflect sampling error. The fact that the 
models appear to cluster in a manner that is correlated with structural class in multidimensional 
scaling space (e.g., note that buried sites and solvent exposed sites cluster in fig. 4 even when 
they are further subdivided into independent sets of helical, sheet, and coil sites) suggests that 
sampling error is unlikely to explain the observed difference. Nevertheless, we wanted to 
conduct an additional test focused on the impact of sampling variance. To do this we sampled 
sites from the FRG dataset randomly (i.e., without respect to structure) to generate datasets 
comparable in size to the structurally defined subsets and estimated model parameters on these 
random samples. Since the sites were sampled randomly, estimates of GTR model parameters 
should converge on the values estimated from the dataset as a whole, assuming that the number 
of sites that were sampled is sufficient to overcome sampling variance. We assessed the distance 
between the GTR model parameter estimates for the complete FRG dataset to those of randomly 
selected sites. We found that this distance rapidly decreased as the number of sites in the random 
sample increased (supplementary fig. S2, Supplementary Material online); the distances between 
the “global” model based on the complete FRG dataset and the estimates based on each 
structural subset are much greater than the distances expected based on sampling variance. This 
demonstrates that the differences in parameter estimates of structural classes differ much more 
than expected based on sampling variance. 
 
Site-heterogeneous profile mixture models can yield surprising topological changes 
Site heterogeneous models, like the CAT model (Lartillot and Philippe 2004), represent another 
way to accommodate heterogeneity in the evolutionary process. CAT-type models assume 
aligned sites are drawn from a mixture with many distinct evolutionary processes (substitutional 
profiles) that differ in the equilibrium frequencies of the 20 amino acids. To complement the ML 
analyses using empirical models and the GTR model we analyzed the exposed and buried classes 
using the ML version of the CAT model (Le et al. 2008) with various numbers of profile mixture 
classes (C10-C60). We analyzed the full taxon set as well as reduced taxon set using the six ML 
variants of the CAT model implemented in IQ-TREE (Nguyen et al. 2015) . If variation among 
sites in their propensity to accept specific amino acids is necessary to obtain accurate estimates 
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of phylogeny then trees based on the two structural subsets (exposed versus buried) are expected 
to converge on the same topology.   

Analyses of the exposed and buried sites from the full taxon set using the CAT model with 
various number of categories did converged on a single tree T3, with three exceptions (C10, C30 
and C50 with exposed residues), but among C10, C30 and C50 two of these analyses converged 
on a tree with a sponge-ctenophore clade (table 3). In contrast, analyses of the reduced taxon 
sample using CAT models resulted in different topologies for exposed and buried classes (T2 
and T3 respectively; table 3). Surprisingly, we found that analyses of buried residues yielded a 
non-monophyletic Deuterostomia; all profile mixtures placed the echinoderm in the FRG dataset 
(the sea urchin Strongylocentrotus purpuratus) sister to a clade comprising chordates and all of 
the protostomes in the taxon sample (fig 5). Furthermore, we noted that the mixtures with a 
larger number of category profiles mixtures (C40, C50 and C60) had a zero or near zero weights 
for the mixture components (parameter estimates are available from Zenodo; Pandey and Braun 
2018). To test whether any of the observed topologies reflected differences between IQ-TREE 
and RAxML (e.g., in their search or numerical optimization routines) we confirmed that analyses 
using the site-homogeneous GTR model in IQ-TREE yielded the same results as analyses in 
RAxML (Pandey and Braun 2018). Although the most complex CAT model did have the best fit 
to the data based on the AICc other results that emerged when we used CAT models, like the 
very low estimates of weights for specific substitutional profiles, could indicate over fitting of 
the model. Regardless of the AICc values or parameter estimates, we emphasize two purely 
empirical observations that emerged when we used the ML variants of the CAT models: 1) the 
models were unable to increase congruence between estimates of phylogeny based on the 
exposed and buried residues in the FRG dataset; and 2) use of the CAT models revealed an 
unexpected signal in the buried residues (deuterostome non-monophyly) that is very likely to be 
non-historical. 
 
Discussion 
Analysis of the FRG dataset with various structural classes resulted in different tree topologies 
(e.g., fig. 2) and there were significant differences in the numbers of decisive sites favoring 
distinct placements of the metazoan root (table 2). Both of these results strongly corroborate the 
HA, the hypothesis that conflicting phylogenetic signals are non-randomly distributed in parts of 
the dataset that can be defined using protein structure. Dividing protein alignments into subsets 
based on relative solvent accessibility (exposed sites versus buried sites) showed this difference 
in signal most prominently. The different signals in exposed and buried sites were evident 
regardless of whether the phylogenetic inference was conducted using standard empirical models 
or with GTR model parameters optimized on each structural subset. Other division strategies 
(i.e., dividing aligned sites based on secondary structure of a combination of secondary structure 
and relative solvent accessibility) also revealed some differences in signal, but they were not as 
strong as the differences between solvent exposed versus buried sites.  

Limiting our analyses to Apoikozoa (the clade comprising Choanozoa and Metazoa; Budd 
and Jensen 2017) resulted in greater congruence between estimates of phylogeny based on 
exposed versus buried sites (fig. 3). With the exception of analyses based on the buried coil sites, 
all analyses conducted after excluding non-choanozoan outgroups supported the T2 (ctenophores 
sister; fig. 3). It is tempting to attribute these results to the suppression of long-branch attraction 
(LBA) since divergent outgroups were excluded. However, the major problems attributed to 
LBA at the base of metazoa has been attraction of the long ctenophore branch to the outgroups 
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(e.g., Philippe et al. 2009; Nosenko et al. 2013); an corollary of that hypothesis that is implicit in 
most studies is that the true tree is T1 (sponges sister to other metazoa) and that recovery of T2 
(ctenophores sister to other metazoa) reflects the impact of LBA. T3 (the ctenophore-sponge 
clade) is unlikely to reflect LBA, since the long ctenophore branch is united with the shorter 
branch leading to the sponge in that tree (supplementary fig. S3, Supplementary Material online). 
If T1 is hypothesized to be the true tree one also has to postulate that removing non-choanozoan 
outgroups caused analyses that support for one artifactual tree (T3) to shift towards support for 
another artifactual tree (T2) where the long ctenophore branch joins the outgroup branch. This 
would be surprising if LBA is the primary source of the systematic error. Hypothesizing that T2 
is the true tree eliminates this paradox; all that one needs to postulate is that a change in taxon 
sampling that increases congruence between the partitions also reflects a shift toward the true 
tree in analyses of the buried sites. The basis for the increased congruence is unclear because 
estimates of GTR model parameters for each structural subset were fairly similar regardless of 
whether the complete taxon sample or the Apoikozoan taxon sample was used to estimate their 
values (fig. 4 and supplementary fig. 1, Supplementary Material online). All of these analyses 
emphasize that different signals, probably reflecting different patterns of sequence evolution, 
emerge in different structural environments. 

 
Different models for different structural environments 
The obvious explanation for the conflicting signals in each structural class, especially the strong 
difference between the exposed and buried signals, is that the sites in each of these classes 
exhibit different patterns of sequence evolution. The poor fit of standard empirical models to the 
data could then result in an incorrect inference. This could result in the observed difference in 
signal, with one structural subset yielding the correct tree while analyses of the other one result 
an incorrect estimate of phylogeny. Alternatively, it is possible that analyses of both exposed and 
buried sites yield different topologies, both of which are inaccurate. GTR model parameter 
estimates for each class certainly indicate that the patterns of sequence evolution are different in 
each structural environment (fig. 4 and supplementary fig. S1, Supplementary Material online). 
However, conducting analyses using GTR model parameters optimized on each class did not 
cause analyses in the two classes to converge on a single topology (in fact, the topologies were 
unchanged relative to those that emerged in the analyses that used standard empirical models). 
Finally, we note one intriguing aspect of our model comparisons: the rate matrix parameters for 
most empirical models lie closer to the models based on buried sites (this was true for all 
empirical models trained on diverse datasets; i.e., all empirical models except those trained using 
the more limited organellar or viral datasets).  

 The basis for the differences we observed among the structural classes in their patterns of 
evolution almost certainly reflects differences in the nature of the purifying selection on sites in 
different structural environments. It is well known that protein evolution is heterogeneous and 
depends on the site-specific biochemical constraints like structure, dynamics, and biochemical 
functions (Echave et al. 2016). More precisely, depending on their position and role in the 
overall conformation and function of the protein specific sites will only accept subsets of the 20 
amino acids, with all other possibilities being selected against. For example, if we consider the 
case of relative solvent accessibility, the sites that are exposed to an aqueous environment will 
include more polar residues whereas buried sites which form the cores of proteins and are 
inaccessible to solvent, will include more non-polar residues and be more resistant to changes in 
side chain volume (Gerstein et al. 1994). Similar differences among sites located in the major 
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secondary structural classes have also been appreciated for some time (Thorne et al. 1996; 
Goldman et al. 1998; Le and Gascuel 2010), although the differences among the secondary 
structure classes does not appear to be as extreme as those based on solvent accessibility. Our 
observations suggest that these differences in evolutionary patterns among the structural classes 
can lead to different signals in each structural class. 

Models of sequence evolution that incorporate protein structure have also been proposed in 
the context of phylogenetics. For example, Goldman et al. (1998) developed a hidden Markov 
model approach that assigns distinct rate matrices to sites based on in secondary structure and 
solvent accessibility (where secondary structure and solvent accessibility are the hidden states). 
Le and Gascuel (2010) implemented a mixture model that uses available protein structure 
annotations. Both of these studies revealed that efforts to acknowledge the different structural 
classes for sites in protein multiple sequence alignments can have a major impact on model fit, 
measured using the improvement in log likelihood values. However, both of those methods 
estimate a tree topology for the complete alignment; our approach of dividing proteins into 
structural classes follows the same basic idea but shifts the focus toward study the phylogenetic 
signals in these structural classes separately. Combined analysis of data is very useful since it has 
long been thought that best estimate should emerge from analyses that include as much evidence 
as possible (cf. Kluge 1989). However, the combined analysis paradigm suffers from the 
drawback that the phylogenetic analysis can simply converge reveal the topology that reflects the 
dominant signal in the data. Specifically, one might imagine a case similar to that illustrated by 
this study, where different structural classes are associated with distinct phylogenetic signals. If 
one further imagines observing one topology when the complete dataset is analyzed using a 
model that does not consider structure and a different topology when it is analyzed using second 
model that does consider structure one is faced with a question: do the observed topological 
differences reflect increased congruence between the structural classes (i.e., the tree topology 
signal associated with site patterns in each structural class disagrees given standard approaches 
but agrees when the data are analyzed using a structure-aware model) or do they reflect the 
strengthening (in relative terms) of the signal associated with one subset of the data without any 
increase in the agreement between the structurally-defined data subsets? As the true tree is 
unknown in all empirical studies, it is difficult to understand whether resulting topology reflects 
the true historic signal or a misleading (and potentially dominant) signal in the dataset. By 
dividing the data into subsets based on protein structure we can actually determine the signal in 
each of the structural classes actually changes to increase the congruence among the subsets. 
 
Site-heterogeneous models do not increase congruence in signal for different structural 
classes 
Site-heterogeneous models like CAT has been used in many studies focused on the deep 
branches in the metazoan tree (e.g., Philippe et al. 2009; Pick et al. 2010; Philippe et al. 2011a; 
Egger et al. 2015) and it has been asserted that the CAT model is more realistic than empirical 
models or the GTR model (Lartillot and Philippe 2004; Liu et al. 2009; Tsagkogeorga et al. 
2009; Finet et al. 2010; Philippe et al. 2011a; Nosenko et al. 2013). Analyses using CAT models 
have been suggested to be less prone to systematic error, such as LBA, than site-homogeneous 
models like the standard empirical models when they are applied to heterogeneous data (Lartillot 
et al. 2007; Brinkmann and Philippe 2008; Philippe et al. 2011b; Roure et al. 2013). If there is 
heterogeneity within protein secondary structural elements the CAT model could represent a 
better way to introduce heterogeneity into phylogenetic analyses than structure aware models 
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(Thorne et al. 1996; Goldman et al. 1998; Liò et al. 1998). Nonetheless, it is important to 
recognize that all the models are approximations; whether or not any specific approximating 
model (e.g. the CAT model) can reveal the true historical signal in a specific dataset better than 
another approximating model (e.g., the GTR model) ultimately represents an empirical question. 

We observed several indications that analyses of the FRG dataset using the CAT model did 
not behave ideally. If the CAT model captured the heterogeneity in each subset of the data and 
improved the results of phylogenetic analyses, then we would expect the trees estimated using 
the exposed and buried subsets of the data to converge on the same topology. We would also 
expect the resulting topology to be T1 or T2, since there are convincing arguments that T3 is the 
least plausible topology. However, our analysis using CAT models with various profile mixtures 
for exposed and buried residues either shifted back and forth between T2 and T3 or converged 
towards less plausible T3 topology. We believe that this indicates that CAT models are unable to 
capture the heterogeneity in these subsets in an appropriate manner. Furthermore, an unexpected 
clade uniting chordates and protostomes (i.e., the branch that implies deuterostome non-
monophyly) also emerged in analysis using buried sites. We believe the observed support for the 
unexpected chordate-protostome clade as well as the shifts between T2 and T3 when increasing 
the number of categories provides evidence that CAT models are inappropriate for analyses of 
these data, possibly reflecting the overestimation of the number substitutional categories 
appropriate for larger datasets; the zero or near zero estimated weights for specific substitutional 
profiles provides another line of evidence for this idea. Regardless, our results certainly indicate 
that CAT models do not represent a panacea for phylogenetic analyses of proteins. 

 
Conclusions 
We believe that our signal exploration focused on structure-based classes provided two valuable 
insights on how current phylogenetic methods deal with phylogenomic datasets. First, we 
corroborated the hypothesis that different phylogenetic signals are associated with specific parts 
of proteins that can be defined using non-phylogenetic criteria (in this case, structural criteria). 
Analyses of data from two structural environments resulted in conflicting trees that each had 
relatively high support, suggesting that this could reflect systematic error. Second, we provided 
evidence that one should not eschew the use of site-homogeneous models (like GTR or empirical 
models such as LG or rtREV) in favor of more complex site-heterogeneous models like CAT 
despite the better fit of the latter models based on commonly-used model selection criteria like 
the AICc. It is important to recognize the difficulty to assess the fit of models in absolute terms 
(Gatesy 2007). Even the most complex models currently available for phylogenetic analyses, 
including the site-heterogeneous models, may be quite far from the true underlying processes of 
molecular evolution and, therefore, every bit as subject to systematic error as simpler models. 
Indeed, Sanderson and Kim (2000) worried that the very large AIC increases that accompany the 
addition of relatively small numbers of free parameters to phylogenetic models might indicate 
that all models that are being considered may be very far from the unknown true model. Perhaps 
the AICc increases we observed indicates a case where the CAT model is indeed closer to the 
true model but deviates from that model in ways that obscure historical signal rather than 
revealing that signal. Although available site-heterogeneous models might be very useful in 
some contexts; they do introduce a large number of free parameters that may not be constrained 
in a biologically-realistic manner. Steel (2005) worried that very parameter-rich models would 
be impractical because they would have to have enough parameters “to fit an elephant” (based on 
the colorful metaphor that some have attributed to John von Neumann; Dyson 2004). The 
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observed association between protein structure and phylogenetic signal points towards a way to 
overcome this “elephant factor”. Although it is probably impossible to devise a reasonably 
realistic model for any biological process that has a very low dimension, further analyses of 
protein evolution in the context of protein structure and function may allow us to constrain 
models of sequence evolution in ways that permit the true historical signal to be recovered more 
accurately, thereby addressing the shortcomings of available methods. 
 
Materials and Methods 
Dataset 
The Ryan et al. (2013) genomic (RG) dataset comprises 242 orthologous protein-coding genes 
extracted from genomic data for 19 taxa. We used the alignments from Ryan et al. (2013), who 
aligned the sequences using CLUSTALW (Thompson et al. 2002) with default parameters and 
excluded poorly aligned regions using Gblocks (Castresana 2000). As a check, we visually 
inspected all of the alignments in Geneoius v. 9.1.5 (Biomatters Ltd., Auckland, New Zealand) 
and none of the Ryan et al. (2013) alignments appeared problematic. We used the TopCons 
prediction server (Tsirigos et al. 2015) to determine whether there were any transmembrane 
proteins in the RG data; we identified 10 transmembrane proteins (Pandey and Braun 2018). We 
removed the transmembrane proteins because our structural assignment pipeline is not 
appropriate for those proteins. 

The 232-protein dataset that resulted when the transmembrane proteins were excluded had 
102,000 sites and 19.81% missing data. We conducted preliminary analyses of this 232-protein 
dataset by dividing the alignment into structural subsets; analyses of the exposed and buried 
subsets resulted in two distinct trees identical to those in fig. 2. We then determined whether any 
specific gene strongly favored either topology using a “decisive gene” analysis (see below in the 
“phylogenetic analyses” section). We found that gene 41 had a strong signal favoring the buried 
topology. In an unpartitioned analyses using the LG model the likelihood difference given the 
two trees in fig. 2 was more than three-fold greater for gene product 41 than for any of the other 
proteins in the data matrix (ΔlnL = 106.63 favoring the buried tree for protein 41 compared to a 
range of ΔlnL = 9.39 to 28.67 for the other proteins; see Pandey and Braun 2018). Because 
protein 41 was an outlier relative to the other sequences (there are many reasons why it might be 
unusual, including a mistaken orthology call) we removed that gene to yield a 231-protein data 
matrix that we called the filtered Ryan genomic (FRG) dataset. We emphasize that removing 
protein 41 did not alter the trees recovered after dividing sites into subsets based on structure (see 
Results); however, we felt it was important to remove any outlier genes that might not be true 
orthologs. 

We conducted BLASTP searches of UNIPROT (Uniprot Consortium 2018) to determine the 
identity and function of each gene (using annotation of the human sequence for most genes). 
There were 22 cases where the human sequence was absent from the RG alignment; in those 
cases, we used the Drosophila sequence to identify the genes. These functional annotations are 
available from Zenodo (Pandey and Braun 2018). This analysis revealed that remaining proteins 
represent a diverse set of globular proteins without an overrepresentation of sequences from a 
particular protein family making it a relatively unbiased dataset. We provide all protein 
alignments as Nexus files with structural annotation, generated as described below, in Zenodo 
(Pandey and Braun 2018). We analyzed two taxon samples: 1) the full taxon sample comprising 
all 19 taxa in the RG dataset; and 2) a reduced (apoikozoan) taxon sample that excluded four 
relatively divergent (non-choanozoan) outgroups (Capsaspora, Saccharomyces, Sphaeroforma, 
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and Spizellomyces). 
 
Structural Class Assignment 
We assigned secondary structures to the MSAs using the SSpro and ACCpro programs in the 
SCRATCH 1D suite (Cheng et al. 2005). SSpro classifies sequences into three secondary 
structural classes (helix, sheet, and coil) with a prediction accuracy of 92% for proteins with 
homologs in PDB (Magnan and Baldi 2014). ACCpro assigns each residue to one of the two 
categories: exposed (e) or buried (-) (Pollastri et al. 2002) with the latter defined as amino acids 
with <25% relative solvent accessibility; it has a predication accuracy of 90% (Magnan and 
Baldi 2014). We used a weighted consensus sequence representing each protein in the RG 
dataset as input for SSpro and ACCpro. We generated a weighted consensus sequence for each 
protein using the Henikoff and Henikoff (1994) method; the amino acid residue with the highest 
weight at each position was used in the consensus sequence. The structural data were 
extrapolated from the consensus sequence to the whole alignment and written as CHARSETS in 
the nexus file. We then extracted sites of a given structural class from all the genes and created a 
concatenated alignment for a given structural class. The perl program for this analysis is 
available from github (https://github.com/aakanksha12/Structural_class_assignment_pipeline).  
 
Phylogenetic Analyses 
We used RAxML v. 8.2.4 for tree searches and log likelihood estimation. We examined a set of 
standard empirical models (LG, WAG, VT, JTT-DCMUT and rtREV) with ML estimation of 
amino acid frequency parameters (-PROTGAMMALGX option in RAxML) and we used GTR 
model parameters optimized on the complete dataset (the “grand GTR parameters”) and various 
subsets of the data (see below for a description of the structural partitions). In all cases we also 
used GTRGAMMA (i.e., the GTR model combined with a four-category discrete approximation 
to the Γ distribution that describes rates across sites). We assessed the nodal support using rapid 
bootstrap (Stamatakis et al. 2008) using the bootstopping criterion (Pattengale et al. 2009) as 
implemented in RAxML (i.e., the -N autoMR option). 

To examine whether there were any observed differences among partitions in their signal we 
searched for decisive genes and decisive sites (cf. Kimball et al. 2013; Shen et al. 2017). 
Decisive genes and decisive sites are defined as those genes or sites with a very large impact on 
the likelihood given each a specific topology. We identified decisive genes and decisive sites by 
calculating per site likelihoods for each candidate topology using RAxML (via the ‘-f G’ option). 
To identify decisive genes we calculated the sum of the likelihood values within each gene and 
then calculated ΔlnL (lnL given tree 1 minus lnL given tree 2). At the level of individual sites we 
calculated ΔlnL for each site and, based on Kimball et al. (2013), viewed sites with ΔlnL > 5 
standard deviations as decisive sites. 
 
Model estimation 
We obtained ML estimates of the model parameters (amino acid exchangeabilities and amino 
acid frequencies) for each structural class using RAxML (Stamatakis 2014). Our approach 
relaxes the notion that all sites evolve following the same Markovian process, but it still assumes 
that all the sites in the same subset of the MSA follow the same stationary and homogeneous 
Markov process (i.e., each subset has its own set of GTR parameter estimates). We examined the 
following classes: 

a. Two relative solvent accessibility (RSA) based classes (EXPOSED and BURIED). 
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b. Three secondary structure-based classes (HELIX, SHEET, and COIL). 
c. Six classes, combining RSA and secondary structure (HELIX_EXP, HELIX_BUR, 

SHEET_EXP, SHEET_BUR, COIL_EXP, and COIL_BUR). 
We estimated the GTR model parameters (-f e option in RAxML) for each structural class and 
then performed a tree search in RAxML. We used the ML tree from Ryan et al. as a starting tree 
and estimated the model parameters. If the best tree obtained using the estimated parameters 
differed from the starting tree, we re-estimated model parameters using the new tree, iterating 
this procedure until the input and output tree converged (cf. Le and Gascuel 2010). Hereafter, the 
model parameters optimized for each structural class are further referred as structure-based 
model estimates; the parameter estimates are available from Zenodo (Pandey and Braun 2018). 

We used multidimensional scaling in R (R Development Core Team 2011)  to visualize the 
differences among estimates of exchange rate parameters obtained from the structural partitions 
as well as the standard empirical models. Since 20x20 exchangability matrix is symmetrical, we 
treated the half matrix of exchangability values for each model as a vector with 190 elements, 
normalized the elements to sum to one, and calculated the Euclidean distances among those 
vectors of exchange rate parameters. Then we used R cmdscale function to reduce this matrix to 
two dimensions (R script link: https://github.com/aakanksha12/Multidimensional-
Scaling/blob/master/MDS_NoTM.md).  

To test whether the different rate matrix parameter estimates might differ due to sampling 
variance alone we randomly sampled between 500 and 55,000 sites from the original dataset and 
estimated GTR exchangability parameters on those random samples. We then calculated the 
Euclidean distance between the GTR exchangability parameters estimated using the complete 
concatenated dataset (the grand GTR parameters) and those estimated using the randomly 
sampled subsets. These distances were then compared to the distance between GTR parameters 
estimated using each structural classes and the overall concatenated dataset GTR.  
 
Analyses using site heterogeneous models 
To investigate the capability of site heterogeneous models to explain the differences between 
exposed and buried residues, we used the ML based version of CAT (Le et al. 2008) model 
integrated into IQ-TREE v. 1.5.3 (Nguyen et al. 2015) for various profile mixture classes (C10 – 
C60).  We ran various profile mixture classes (C10 – C60) with exposed and buried alignments 
with (I+G4+FO) options in the program. Nodal support was assessed using ultrafast bootstrap 
(Minh et al. 2013) with 1000 replicates (-bb 1000). 
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Figures 
 

 
 
Fig. 1. Topologies for the deepest branches in the metazoan tree recovered in phylogenomic 
analyses. (A) Porifera (sponges) sister to all other metazoa. This hypothesis includes a clade 
designated Eumetazoa (E). (B) Ctenophora (comb jellies) sister to all other metazoa. (C) A 
sponge-ctenophore clade sister to all other animals. All trees shown include a clade named 
Parahoxozoa (P) (Ryan et al. 2010). The topology for Parahoxozoa was fixed based on King and 
Rokas (2017). 
 

Fig. 2. Analyses of sites from different structural environments reveal conflicting phylogenetic 
signals. We show simplified RAxML trees with both trees are limited to the metazoan ingroups 
and the choanozoan outgroup [i.e., only Apoikozoa sensu Budd and Jensen (2017) are shown]. 
The position of the root drawn in these trees was established by the outgroup taxa (the holozoans 

Bilateria

Cnideria

Placozoa

Ctenophora

Porifera

Bilateria

Cnideria

Placozoa

Ctenophora

Porifera

Porifera

Ctenophora
T1 (c)(b)(a)

Eumetazoa (E)
monophyly

E

PP P
*

*

T2

Ctenophores
sister

Bilateria

Cnideria

Placozoa

T3

Ctenophore+
sponge clade

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2018. ; https://doi.org/10.1101/400465doi: bioRxiv preprint 

https://doi.org/10.1101/400465
http://creativecommons.org/licenses/by-nd/4.0/


Capsaspora and Sphaeroforma and the fungi Saccharomyces and Spizellomyces). Bootstrap 
support for the positions of sponges and ctenophores given the GTR and LG models is indicated 
next to the arrow. All trees are available from Zenodo (Pandey and Braun 2018). 
 

 
Fig. 3. Heat map showing support for tree topologies obtained using various structural classes 
and taxon samples. In the online version colors indicate support values (Dark green > 95, lighter 
Dark green >75, Yellow > 50 and Pink < 50; No color: Tree not present) 
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Fig. 4. Multidimensional scaling plot showing the Euclidean distances between various amino 
acids exchange rate matrices. Different colors indicate different categories of the matrices in the 
online version (Green: exposed residues, Orange: buried residues, Purple: secondary structure, 
and Pink: standard empirical models). 
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Fig. 5. Heat map showing support for deuterostome monophyly for exposed and buried residues 
using GTR and CAT models. Colors in the online version indicate presence and absence of 
deuterostome monophyly (No color: present, Purple: absent). 
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Table 1. Log likelihood values and AICc scores obtained using standard empirical models and 
GTR model optimized for exposed and buried site classes. 
 
Structural 

Subset 

 

Model 

 

T2 

 

T3 

 

Cni+Bil
a
 

 

Cni+Pla
b
 

 

lnL 

 

AICc 

Exposed GTR 92 - - 100 -1212232.985 2424956.474 

 LG 100 - - 100 -1222489.017 2445088.162 

 WAG 87 - - 100 -1225898.553 2451907.235 

 VT 96 - - 98 -1225672.633 2451455.395 

 rtREV 90 - - 98 -1222733.929 2445577.986 

 JTTDCMUT 94 - - 98 -1229028.451 2458167.031 

Buried GTR - 82 61 - -1045694.924 2091880.072 

 LG - 87 62 - -1050022.577 2100155.267 

 WAG - 85 58 - -1054829.256 2109768.626 

 VT - 81 61 - -1059148.671 2118407.455 

 rtREV - 89 52 - -1054432.123 2108974.359 

 JTTDCMUT - 81 - 54 -1061103.295 2122316.704 
a Support for cnidaria + bilateria clade  
b Support for cnidaria + placozoa clade 
 
 
 
 
Table 2. Decisive sites favoring topology T2 vs. T3 in the exposed and buried residuesa. 

 Ctenophore sister (T2) Ctenophore + Porifera (T3) 
Exposed 172 150 
Buried 167 205 

a T2 and T3 refer to the arrangement of ctenophores, sponges, and remaining metazoa (fig. 1); 
other relationships were held constant. Numbers of decisive sites given other arrangements of the 
outgroups and the Cni+Bil and Cni+Pla clades are available in supplementary tables S1 and S2, 
Supplementary material online 
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Supplementary Figures 

 
SUPPLEMENTARY FIG. S1. Multidimensional scaling plot based on Euclidean distances among 
amino acids exchange rate matrices. This plot expands fig. 4 to allow us to label all standard 
empirical models (pink circles); small arrows indicate the empirical models used in this study. 
Squares and triangles indicate rate matrices estimated using either all taxa (squares) or the 
reduced taxon set limited to choanozan outgroups (the Apoikozoa taxon set). Green and orange 
dotted ovals enclose clusters of rate matrices for exposed and buried residues, respectively; rate 
matrices based on all exposed or buried sites are emphasized by shaded boxes within those ovals. 
Rate matrices based on exposed or buried sites separated into subsets based on secondary 
structure are paired and labeled. Purple rectangular boxes indicate the three groups of rate 
matrices based on secondary structure (helix, sheet, and coil) without separating those residues 
into exposed and buried subsets. 
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SUPPLEMENTARY FIG. S2. Euclidean distance between “grand” GTR rate matrix parameters (i.e., 
the rate matrix parameters estimated using the GTR model with the complete FRG dataset) and 
GTR rate matrix parameters estimated using subsets of the data. Rate matrix parameters 
optimized on sites defined using protein structure are presented as blue diamonds. The other 
points represent distances between the grand GTR model and rate matrix parameter estimates 
optimized using random samples (ranging in size from 500-55,000 aligned amino acid sites) that 
were drawn from the concatenated FRG dataset. For each data subset size, we generated 10 
random samples; the distance between the rate matrix for structurally defined sites and the grand 
GTR model always exceeds the distance for random samples of sites of comparable size. 
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SUPPLEMENTARY FIG. S3. Estimates of metazoan phylogeny based on buried residues presented 
as unrooted phylograms. Outgroup taxa are emphasized using blue (Choanozoa) and red (other 
outgroups). (a) Complete dataset emphasizing. (b) Reduced (Apoikozoa only) taxon set. Note 
that the branch separating the choanozoan outgroups from the ingroups (indicated using a dashed 
line) is almost bisected by the other outgroup taxa. Drawings used to illustrate taxa are identical 
to those used to illustrate the major clades in fig. 1. 
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Supplementary Tables 
 
 

 
 
 
 
 
 
 
 
 

 

Table S1. Decisive sites obtained using T2 and T3 from fig. 2 with exposed and buried residues

T2 T3

Exposed 248 151

Buried 228 255

T2 Tree obtained using EXPOSED residues with GTR optimized on exposed residues (fig. 2, left)

T3 Tree obtained from BURIED residues with GTR optimized on buried residuesas (fig. 2, right)

Table S2. Decisive sites obtained using T2* and T3* with Exposed and Buried residues

T2* T3*

Exposed 178 147

Buried 172 199

T2* Tree with ctenophores sister to  all other metazoans with (placoazoa + cnidaria clade)

T3* Tree with ctenophore + sponges clade tree (with placozoa + cnidaria clade)
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