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Abstract

Majority-voting or averaging the estimations made by the individuals in a collective are
simple rules that can effectively aggregate knowledge under some ideal conditions. However,
these rules can catastrophically fail in the frequent situation in which a minority brings knowl-
edge to a collective. Aggregation rules should ideally use majorities or averages when most
or all members have similar information and focus on a minority when it brings new relevant
information to the group. Here we turned to fish schools to test whether aggregation rules that
have evolved over hundreds of millions of years can use this flexible aggregation. We tracked
each animal in large groups of 60, 80 and 100 zebrafish, Danio rerio, with a newly developed
method. We used the trajectories to train deep attention networks and obtained a model that
is both predictive and insightful about the structure of fish interactions. A six-dimensional
function describes the focal-neighbour interaction and a four-dimensional function how infor-
mation is aggregated. The aggregation function shows that each animal sometimes averages
approximately 25 neighbours and sometimes focuses on fewer animals down to effectively a
single one, and that it can rapidly shift between these extremes depending on the relative po-
sitions and velocities of local neighbours. Animal collectives could thus avoid the limitations
of simple rules and instead flexibly shift from average many to follow few or one individual.

1 Introduction
Aggregation rules that weigh all members in a collective equally can give estimations that are
better on average than choosing one member at random [1, 2]. However, this is a mathematical
certainty only under some particular conditions [3, 4]; e.g. when all individuals in a collective are
noisy estimators but better than random and statistically independent [1, 5]. There is an intense
debate on whether the conditions under which these simple rules are guaranteed to work are useful
to defend a truth-tracking version of majority or plurality voting in society [6, 7, 4, 8]. These rules
might still work when knowledge is in a minority, for example when an ignorant majority chooses
with equal probability among all available options and the informed minority biases towards the
correct answer [5, 9, 10]. However, even if this is the case, the effect of a minority is small and
thus very sensitive to noise.

Many models of interactions in collective animal behavior also use an average-across-neighbours
approach as a simplifying assumption [11, 12, 9, 13, 14, 15, 16] or other operations that also
aggregate all individuals equally [17, 18, 19, 20, 21]. However, there are models, like the many-eyes
model for predator detection, explaining that, after some individuals detect a predator, the rest do
not aggregate all members equally but focus instead on the informed minority [22, 23, 24, 25, 26].

An ideal aggregation system would have these two cases —averaging or following very few
individuals— as extremes, shifting between them to match the changing knowledge distribution in
the group [4]. We set out to test for this type of aggregation rule using high-quality tracking data
of large animal groups of zebrafish, Dario rerio, obtained using the recently developed idtracker.ai
[27], and modelling techniques using deep attention networks [28, 29, 30].
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Figure 1: Deep-learning a model of collective behaviour. (A) Variables used to predict
future turns. Asocial variables, those only involving the focal, in red. Social variables, those
involving both the focal and a neighbour, in blue. (B) Pair-interaction subnetwork, receiving
asocial variables α and social variables σi from a single neighbour i, and outputting a vector of
128 components. All pair-interaction networks share the same weights. (C) Interaction network,
showing how the outputs of the pair-interaction subnetworks, one for each neighbour, are summed
and then fed to an interaction subnetwork. The output, z is the logit of the focal fish turning right
after 1 s. (D) Pair-interaction subnetwork of the attention network. (E) Aggregation subnetwork
of the attention network. Same structure as D, but the input is a restricted symmetric subset of
the variables and the output is passed through an exponential function to make it positive. (F)
Attention network, showing how the inputs of the pair-interaction and attention subnetworks are
integrated to produce a single logit z for the focal fish turning right after 1 s.

2 Results

2.1 Predicting the future using a deep interaction network
We recorded videos of groups of 60, 80 or 100 juvenile zebrafish, Danio rerio, (Fig. 1A for a
detail of two fish and Fig. S1 for illustrative video frames). We tracked videos using our system
idtracker.ai, obtaining high-quality position, velocity and acceleration values (see Materials and
Methods).

We used the trajectories to obtain data-driven models of fish interactions. We required our
models to be predictive of the future of a focal fish in test data (video sequences not used to train
the model). We found deep interaction networks, good predictors of physical systems like the
motion of planets [31], to have the highest predictive power on test data. Our deep interaction
network is divided in two parts: (i) n pair-interaction subnetworks, each describing the interaction
of a focal fish with one of its n closest neighbors (Fig. 1B), and (ii) an aggregation subnetwork,
aggregating the n outputs of the pair-interaction subnetworks (Fig. 1C, subnetwork to the right).

The inputs to the network are quantities expressed in a coordinate system centered at the
focal fish and with the y-axis in the direction of the velocity of the focal (Fig. 1A, red). The
pair-interaction subnetwork has as inputs the asocial information of the focal, α (Fig. 1B, red),
and the social information of one neighbour i, σi (Fig. 1B, blue). The asocial information of the
focal is its speed, v, tangential acceleration, a‖, and normal acceleration, a⊥. We found that a‖
had little impact on accuracy (Table S1), so we did not consider it in further computations. The
social information is the neighbour position with respect to the focal, xi and yi, its velocity, vi,x
and vi,y, and acceleration, ai,x and ai,y. Neighbour accelerations had little impact on accuracy
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(Table S1) and were not used in further computations.
Predictability of the turning side of the focal fish after 1 second improves with the number of

neighbours, but with diminishing returns (Fig. S2); we chose n = 25 neighbors. The tangential
acceleration of the focal and the acceleration of the neighbours have a small impact on accuracy of
< 0.1% (Table S1) and we thus discarded them in further analysis. In the main text we provide
analysis of groups of 100 animals and prediction at 1 s in the future for illustration purposes. Our
models predict well a range of futures (Fig. S3). Results on how fish interact were found to be
similar in computations using 250 ms, 500 ms and 1.5 s in the future (Fig. S4-S6) and for groups
of 60 or 80 zebrafish (Fig. S7,8).

Predictability of the turning side after 1 s is higher for large turning angles than for turning
angles close to 0 or 180 degrees (Fig. S9). For turning angles of 20−160◦, the interaction network
predicted the correct side with an accuracy of 84.4%; up to 87 % for 40 − 100◦ (Fig. S9). In
contrast, a model using only focal variables failed to obtain a high accuracy and reached only 55
% . The high accuracy of the interaction network shows that the 6× 25 = 150 dimensions capture
an important part of the collective dynamics. The instances not predicted may originate from
a variety of effects, including higher-order correlations, individuality and non-markovian effects,
i.e. history-dependency, be it at short scales or at long scales (internal states or unaccounted
behavioural variables, like posture or eye movements). Accuracies were larger the larger the group
(Table S2), consistent with the idea that interactions lock individuals into social dynamics, less
stochastic and less dependent on individual internal states than asocial dynamics.

2.2 Deep attention networks obtain a predictive and analyzable model
The interaction model obtained is too high-dimensional to provide useful insight of animal inter-
actions. The pair interaction subnetwork takes the values of 6 variables as inputs and outputs 128
values (Fig. 1B). The aggregation subnetwork first sums up the 25 128-dimensional vectors to
give a single vector of 128 components, and then processes it to output a single number, z (Fig.
1C). However, the interaction network remains a useful reference for how predictive the behavior
is.

To gain insight, we used a deep attention network instead [28, 29]. Like the interaction network,
the attention network has a subnetwork to describe the interaction of the focal with each of the n
neighbors, except now with a single output (Fig. 1D). The aggregation subnetwork is a function
weighting differently each neighbor depending on its kinematic parameters and those of the focal
(Fig. 1E). We found that focal and neighbor speed and neighbor position are the inputs to the
aggregation subnetwork with the highest impact in accuracy. We can express the probability that
the focal turns to the right after 1 s, p, as p = 1/1 + exp(−z), where z is the logit that the deep
attention network outputs (Fig. 1F),

z =
n∑
i=1

Π(α, σi)
W (α(w), σ

(w)
i )∑

jW (α(w), σ
(w)
j )

. (1)

The pair-interaction subnetwork, Π(α, σi), describes the interaction of the focal and one neighbour
i. The aggregation network W gives different weights to the different neighbors i in the aggre-
gation depending on the kinematic parameters of focal α(W ) and neighbor relative to focal σ(W )

i .
The subscript indicates that these variables may be different to the ones in the pair-interaction
subnetwork.

Since we want the pair-interaction subnetwork, Π, and the aggregation subnetwork, W , to
represent the logit of turning after 1 s given a neighbor and a weight representing the importance
of that neighbor, respectively, they must differ on several accounts. (i) Π can have any real output,
while W must be always positive. (ii) Π must be antisymmetric with respect to reflection on the
y-axis, while W must be symmetric. This is because we assume that a neighbour to the right
makes the focal go to the right as much as an identical neighbour to the left of the focal makes the
focal move to the left. For the aggregation weight W , however, we assume that the importance of
the two cases is the same. (iii) The aggregation weights must sum 1. These three conditions are
required and we enforced them by: (i) using an exponential as final activation function of W , (ii)
antisymmetrizing Π and using symmetric input in W , and (iii) normalising the outputs of W by
the sum across all neighbours prior to the integration with the outputs of Π.

The resulting attention network achieves 83.2% accuracy for turns between 20◦ and 160◦ and
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around 85.9% for 30-100◦ (Fig S9). This is slightly less accurate than the interaction network,
but the much lower dimensionality of the two subnetworks allows for a detailed analysis.

2.3 The structure of interaction of a pair of animals in a collective
The pair-interaction subnetwork Π is a six-dimensional function. We plotted its output, the logit
of the focal fish turning to the right after 1 s, z, as a function of two variables: the angle, θi, and
the speed of the neighbour, vi (Fig. 2). We fixed the other four variables: focal at median velocity
of 3.04 BL/s, focal normal acceleration at a⊥ = 0, and neighbor position at xi = 7 BL and yi = 1
BL). At a neighbour velocity above the median (Fig. 2A, left; median speed indicated with a
horizontal line at 3.04 BL/S), the focal animal is sensitive to the neighbour orientation, with a high
probability of turning right (left) after 1 s when the neighbour is moving away from (toward) the
focal, resulting in an alignment of the focal to the neighbour. When the neighbour speed is below
the median, however, the focal is attracted towards it regardless of the neighbour orientation.

As a contrasting example, consider when the neighbour is closer and slightly in front, at xi = 3
BL and yi = 1 BL (Fig. 2A, right). In this case, the focal gets repelled by the neighbour when
the neighbor speed is below 3 BL/s.

These two examples illustrate how alignment, attraction and repulsion depend not only on the
neighbour location but also on its speed (Fig. 2B, similar to Fig. 2A but for a 8x8 matrix of
subplots, each for a different neighbour position), and on the speed and acceleration of the focal
(Fig. S10-14).

From this six-dimensional function we can define alignment regions as those where the logit
changes sign with neighbour orientation, that is, when focal will turn right (left) if neighbour orients
to the right (left) (Fig. 3, gray regions. The alignment score (see Materials and Methods)
measures how sensitive the logit is to neighbour orientation (Fig. 3A, gray region; focal speed
fixed at median value of 3.04 BL/s and neighbour speed indicated on top of each subplot). The
alignment region increases in size and in score with increasing neighbour speed. At high neighbour
velocities, strong alignment areas are 2-5 BL behind the focal and 3-5 BL at the sides (Fig. 3A,
right, darker gray regions). In a region 5-7 BL behind the focal there is a weak orientation score
but reversed in sign, with focal turning right (left) when neighbour orients to the left (right),
(Fig. 3A, pink). This anti-alignment region extends when increasing focal speed, while keeping
neighbour speed fixed at the median value of 3.04 BL/s (Fig. 3B, pink).

We define attraction (repulsion) regions as those where the logit does not change sign when
changing the neighbour angle. Instead, the focal is attracted towards (repelled from) the neigh-
bour’s location independently of its orientation. The attraction-repulsion score (see Materials
and Methods) measures how positive (attraction) or negative (repulsion) is the logit of turning
towards the neighbour (Fig. 3A). Attraction regions shrink with increasing neighbour speed.
They are mainly located to the side at 6-8 BL, extending to the back. Repulsion takes place only
when the neighbour speed is below the median speed and neighbours are close to the focal (Fig.
3A,B, purple).

However, classifying interactions into only 4 classes is oversimplistic, and a more complete
account is captured by the six dimensional pair-interaction function in Fig. 2. For example, when
the neighbour is at (xi, yi) = (3, 1) BL and at high velocity, there is alignment but with a much
higher probability of turning left at angles below π/2 than turning right at angles above π/2. This
asymmetry in angles makes the sensitivity to orientation to the neighbour a mix of alignment and
repulsion. We can see the full extent of relative attraction and repulsion zones by plotting the
average over neighbour orientation angles for all points in space (Fig. 3C for different neighbour
speeds and Fig. S15 for different focal speeds). There is an approximately 5 BL diameter region of
relative repulsion around the focal. Regions with a mix of alignment and repulsion (or attraction)
are those of alignment in Fig. 3A and Fig. 3B that overlap with regions of relative repulsion
(attraction) in Fig. 3C and Fig. S15, respectively.

2.4 How information is aggregated: shifting between majorities and mi-
norities

The aggregation subnetwork W outputs the (positive) weight of each neighbor in the aggregation.
We found it to depend mainly on 4 variables: focal speed v as the asocial variable and neighbor
speed vi and relative position of neighbour, xi and yi. In each subplot of Fig. 4A, we give W for
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Figure 2: Properties of interaction between a pair of fish in the collective. (A) Logit
z resulting from the pair-interaction subnetwork of the attention network, plotted as a function
of the orientation of the neighbour respect to the focal, θi, and speed of the neighbour, vi, for
neighbour located at (xi, yi) = (7, 1) BL (left) and (xi, yi) = (3, 1) BL (right). Focal speed is fixed
at median velocity of 3.04 BL/s and focal acceleration at a⊥ = 0 BL/s2. Red colour is evidence
that the focal fish will turn right in 1s, while blue is evidence that the focal fish will turn left.
Horizontal dashed line highlights the median speed of 3.04 BL/s. (B) Same as (A) but for 64
different neighbour positions (xi, yi), with xi and yi taking values in (−7,−5,−3,−1, 1, 3, 5, 7).
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Figure 3: Alignment, attraction and repulsion zones depend on kinematic parameters
of focal and neighbour (A, B). Alignment (gray), attraction (orange), repulsion (purple) and
anti-alignment (pink) zones. Plotted at four different values of the neighbour speed (1, 2, 4 and 8
BL/s) while keeping focal speed fixed at the median speed 3.04 BL/s (A), and at four different focal
speeds (1, 2, 4 and 8 BL/s) while keeping neighbour speed fixed at the median speed 3.04 BL/s
(B). Attraction-repulsion score is computed as the average logit across relative orientation angles,
θi, and it is computed for those regions without change in logit when changing orientation angle.
Alignment score measures the range in logit to changes in orientation angle, and it is computed
for those regions with change in sign of logit when changing orientation angle (see Materials and
Methods). It is negative (anti-alignment) when it is anticorrelated with the relative orientation
angle (pink). Focal speed fixed at median speed of 3.04 BL/s and focal normal velocity fixed at
a⊥ = 0. (C, D) Relative attraction and repulsion zones. In contrast to (A,B), the logit is averaged
over orientation angles also in the regions that were previously of alignment. Regions of alignment
in (A,B) mixed with attraction or repulsion show here as relative attraction or repulsion.
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Figure 4: How a fish aggregates information from neighbours. A. Logarithm of the ag-
gregation weight, log(W ), as a function of neighbour position, xi and yi. Top row: focal speed
fixed at 3.04 BL/s and each subplot corresponding to different neighbour speeds marked on top of
each. Bottom row: same as top row but for fixed neighbour speed at 3.04 BL/s and different focal
speeds. B. Distribution of inequality score (value of highest weight). Three example frames with
each neighbour colored with its weight in the aggregation. Focal animal is indicated in gray color,
with a horizontal line proportional to the normal acceleration to either left or right and a small
dot in its frontal positions indicating the focal position 1 second into the future.
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different neighbour positions, keeping neighbour and focal speed constant. Generally, W is higher
for neighbours that are closer to the focal, and lower for neighbours behind the focal. In the upper
row of Fig. 4A all subplots have the same focal speed at the median velocity of 3.04 BL/s, and
each indicates the neighbour speed on top, with values vi = 1, 2, 4 and 8 BL/s. We see how W
increases with neighbour speed for most neighbour positions, implying that faster neighbours carry
more weight in the aggregation. This is more pronounced close by and to the side. In the lower row
of Fig. 4A, all subplots have the same neighbor speed at the median value and each one indicates
above the focal speed. We see how the mass of W increasingly shifts towards the front the faster
the focal fish moves. Adding other variables to the attention marginally improves accuracy, and
still further insight is gained. When the neighbour orientation angle is added, higher values of the
weightW are obtained in positions leading to an immediate collision (Fig. S16). The final impact
of each neighbour on the probability of the focal turning right is given by its weight relative to the
weights of the rest of neighbours, W (α(w), σ

(w)
i )/

∑
jW (α(w), σ

(w)
j ). For example, if all neighbors

are assigned the same weight by W , no matter how large or small this value is, the final logit is
the average of the individual logits, z = 1

n

∑n
i=1 Π(α, σi). If one of the neighbours has a higher

(lower) value of W , its importance in the integration increases (decreases), while the importance
of the other neighbours decreases (increases).

The highest relative weight among all neighbours can be used to quantify the inequality of
relative weights at any point in time. We find a wide distribution of values of this inequality
score (Fig. 4B). In some cases, all neighbours have similar weights, and the inequality score is
small (Fig. 4B, upper left). Most often, a subgroup of neighbours is weighed more, the most
common inequality score being just below 0.2 (Fig. 4B, upper right). The distribution of the
inequality score has a long tail, making high inequality disproportionately common. In some cases,
one neighbour overweighs the others by far (Fig. 4B, lower right), up to the combined weight of
all others.

3 Discussion
Our results show that animals in collectives can use an aggregation rule that naturally allows
individuals to shift from simple averaging to following a single individual. This helps to close the
gap between models using averages [11, 12, 15, 16] and few individuals [22, 23]. Also, it opens the
door to study how animals match interactions among themselves to the knowledge distribution in
the group [32, 26]. Note that our models and its source code can be reused for any species.

From the pairwise interaction in the collective, we could extract attraction, repulsion and
alignment as approximate notions [12, 13]. Usually, these interaction classes are defined only in
terms of relative position of neighbour. However, we found them to exist in a 6-dimensional space.
This translates into these classes also depending on speeds of focal and neighbour, focal acceleration
and relative orientation between the two fish. Moreover, the three classes are not cleanly separated
as alignment regions are mixed with attraction or repulsion.

As a strategy to extract the relevant variables for behavior, we have required them to pre-
dict future behavior (like e.g. [33, 34, 30, 16]). This approach has the additional advantage of
automatically generating labelled data for supervised training of networks. It can be enriched,
at the cost of increasing the model dimensionality, with more information about behavioral his-
tory, possible internal variables (parametrized, for example, by time of day or more direct internal
measurements), explicit dynamics and posture using reduced variables [35, 36, 37, 38]. A second
requirement for our models was that they should work for data not used to obtain the model.
These two requirements are standard in machine learning, but not in the study of collective animal
behavior.

Our results illustrate how modular deep networks enable flexible data-driven modelling without
losing insight. Each module is flexible, with tens of thousands of parameters, but implements a
function with low dimensionality in the number of inputs and outputs. Combinations of modules
[39, 40], two types in the attention network, achieve high compositional complexity that adds
flexibility without losing insight.
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4 Methods

4.1 Data availability
60- and 100-fish as well as the new 80-fish videos can be found at www.idtracker.ai. Code is free
and open source software ( https://github.com/fjhheras/fishandra)

4.2 Animal rearing and handling
Zebrafish, D. rerio, of the wild-type TU strain were raised by the Champalimaud Foundation
Fish Platform, according to methods in [41]. Experimental procedures were approved by the
Champalimaud Foundation Ethics Committee and the Portuguese Direcção Geral Veterinária in
accordance to to the European Directive 2010/63/EU. Handling procedures were as in [27]. We
used juveniles of 31-33 days post fertilization.

4.3 Videos and tracking
We used 6 videos of 60 and 100 freely swimming juvenile zebrafish from [27], and 3 new videos of
80 juveniles. The camera had a frame rate of 32 fps and 20 Mpx of definition. We obtained all the
fish trajectories using idtracker.ai (Fig S1) with an accuracy of 99.95 (mean) ±0.01% (std) [27].

4.4 Preprocessing
We interpolated linearly the very small holes in the tracked trajectories (0.027% for 100-fish videos).
We normalized trajectories, by translation (center of arena at (0,0)) and scaling (radius of the arena
at 1). To reduce noise while preventing contamination by any future information, we smoothed
the trajectories using a 5-frame half-Gaussian kernel with σ = 1 frame. We obtained velocity
and acceleration by finite differences, using only current and past frames. To avoid direct border
effects, we removed datapoints where the focal fish is further away from the center than 80% of the
radius. Each video was divided in three parts, to obtain the training, validation and test datasets
(97%/2%/1%).

In each video frame, for each individual, we found the n nearest neighbours (I). We then
obtained (i) velocity and acceleration of the focal fish, (ii) relative position, absolute velocity and
absolute acceleration of the closest n neighbours, (iii) whether the focal fish has turned right or
left after Nf frames in the future.

4.5 Deep networks
We implemented the Deep Networks using TensorFlow through its Python API [42]. We solved the
following classification task: Given dynamical properties of a focal fish and its n closest neighbours,
does the focal fish turn right or left after 1s? Asocial information is the set of speed and normal
and tangential acceleration of the focal,

α = {v, a⊥, a‖ . . . }. (2)

Social information from a neighbour i is its location, velocity and acceleration

σi = {xi, yi, vi, θi, ax,i, ay,i, . . . }, (3)

whose coordinates we calculate in an instantaneous frame of reference that is not moving, which
is centered in the focal fish and whose y-axis is co-lineal with the focal fish velocity. Note that vi
is the absolute speed, while (xi, yi) is the relative position of the neighbour, rotated to the frame
of reference. In each network, we first obtain the logits z, and then the probabilities by using a
logistic function p = 1/(1 + e−z).

4.5.1 Interaction network

In the interaction network [31], given asocial (α) and social ({σi, i ∈ I}) information, the logit of
turning right is calculated as

z = I(α, {σi}) = Γ

(∑
i∈I

ΠI(α, σi)

)
. (4)
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The function ΠI is the pair-interaction subnetwork. We modelled it using a fully-connected network
with 3 hidden layers of 128 neurons each, plus a readout layer of 128 neurons. There are rectified
linear unit (ReLU, [43]) nonlinearities after each hidden layer (but not after the readout). The
outputs of ΠI for different neighbours are summed together and transformed by a second function,
Γ. We modelled Γ as a fully-connected layer with one hidden layer of 128 neurons, plus a one-
neuron readout layer. There are ReLU nonlinearities preceding the whole network and after each
hidden layer (but not after the one-neuron readout layer).

To effectively multiply available data by n, we considered all neighbours to be equal. Equiv-
alently, there is symmetry with respect to exchange of neighbour labels. We did not observe any
turning side preference. Therefore, to effectively multiply available data by 2, we forced the net-
work to be antisymmetrical with respect to a reflection along the body axis by antisymmetrization
of I,

z = I(α, {σi})− I(α∗, {σ∗i }), (5)

where the star superscript represents a reflection along the longitudinal axis of the body, calculated
by switching the sign of all x components.

4.5.2 Attention network

Eq. [1] in main text can be rewritten using a notation that compares directly with Eq. [4] in
Methods as

z = A(α, {σi}) =
∑
i∈I

ΠA(α, σi)
W (α, σi)∑
kW (α, σi)

. (6)

The function ΠA captures the effect of pairwise interactions. It has the same structure as ΠI except
that its readout layer has only one neuron, and that we antisymmetrise it. W is an attention layer,
weighting the logits of the different neighbours. W has the same structure as ΠA, except that it
accepts as input a y-axis-reflection-invariant subset of the asocial and social variables, and that
there is an exponential function after the single-neuron readout signal.

4.5.3 Loss

Following standard procedures in binary classification, when training the network to estimate the
probability pi of turning right, we minimised the cross-entropy loss, [43]

L = − 1

Nb

Nb∑
i=1

log(p∗i ). (7)

summed along Nb data points in the minibatch and where p∗i is the probability given by the network
to the actual turn. When the network predicts a right turn with probability pi, p∗i = pi if the actual
turn was to the right, and p∗i = 1 − pi if the actual turn was to the left. We minimise loss using
Adam [43]. We stopped training if validation loss did not reach a local minimum for 10 epochs
and did increase 25% from the minimum, or after 100 training epochs. In the attention network,
we annealed learning rate from 10−4 to 10−5, using a batch size of 500. In the attention network,
we annealed learning rate from 5 × 10−5 to 10−5 and trained with a batch size of 200. Dropout
[43] did not improve accuracy.

4.6 Attraction-repulsion and alignment scores
Attraction-repulsion score is obtained as

sign(x)〈zi〉θi∈[0,2π), (8)

with attraction (repulsion) when the score is positive (negative). Alignment score is obtained as

max
θi∈[0,2π)

{zi sign(θi)} − max
θi∈[0,2π)

{−zi sign(θi)}. (9)
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Table S1: Predictability of large turns (test data) when using different variables. 25
neighbours, interaction network, best of two runs. A good trade-off between complexity and
accuracy is using neighbour speed, focal speed and focal normal acceleration.

Neighbour

Focal

ai vi vi + ai
a 81.6% 84.1% 84.2%
v 80.7% 83.9% 83.7%
v + a 81.5% 84.5% 84.5%
v + at 80.9% 83.7% 83.8%
v + an 81.5% 84.5% 84.4%

Table S2: Predictability of large turns (test data) for videos of different number of
animals. 25 neighbours, best of two runs.

Interaction Attention
100 individuals 84.4% 83.2%
80 individuals 77.1% 76.4%
60 individuals 73.4% 72.2%

13

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 26, 2018. ; https://doi.org/10.1101/400747doi: bioRxiv preprint 

https://doi.org/10.1101/400747
http://creativecommons.org/licenses/by-nc/4.0/


A

B

C

Figure S1: Example video frames. Each fish has been individually tracked by identification
using idtracker.ai [27]. A. 60-fish video. B. 80-fish video. C. 100-fish video.
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Figure S2: Predictability of large turns (test set) as a function of number of closest
neighbours. Both the interaction network (blue) and the attention network (orange) improve in
accuracy with the number of neighbours, and then plateau after approx. 20 neighbours.
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Figure S3: Predictability (test set) for different times to prediction. The prediction
from an interaction model with 25 neighbours (orange) and from a model that is blind to any
social information (blue). Predictability for immediate futures (<100 ms) is high for both models,
because of correlations in the acceleration. Predictability with 25 neighbours has a local minimum
for futures of 250 ms, it has a broad maximum when predicting futures between 1 and 10 s, and
then it drops slowly when predicting more distant futures.
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Figure S4: Pair interaction and aggregation in 250 ms predictions. A Same as Figure
3A. B Same as Figure 3B C Same as Figure 4A. Note how high-attention areas are closer to the
focal fish. D Same as Figure 4B
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Figure S5: Pair interaction and aggregation in 500 ms predictions. A Same as Figure
3A. B Same as Figure 3B C Same as Figure 4A. D Same as Figure 4B
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Figure S6: Pair interaction and aggregation in 1500 ms predictions. A Same as Figure
3A. B Same as Figure 3B C Same as Figure 4A. Note how high-attention areas are closer to the
front. D Same as Figure 4B
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Figure S7: Pair interaction and aggregation, obtained from 80-fish videos. A Same as
Figure 3A. B Same as Figure 3B C Same as Figure 4A. D Same as Figure 4B
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Figure S8: Pair interaction and aggregation, obtained from 60-fish videos. A Same as
Figure 3A. The most conspicuous difference with Figure 3A is the weakening of anti-alignment B
Same as Figure 3B C Same as Figure 4A. D Same as Figure 4B. Note the comparatively weak
attention at the back of the focal.
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Figure S9: Accuracy in the prediction of which side a fish is turning towards in 1s
as a function of angle turned by the fish after 1s. Accuracy of a network using only focal
variables (blue) remains low at all turning angles. Both networks integrating information from 25
neighbours, interaction (orange) and attention (green) perform better at turning angles between
40 and 100.
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Figure S10: Properties of interaction between a pair of fish in the collective when the
focal fish is moving at low speed. As Figure 2B in main text but for focal speed fixed to 1
BL/s.
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Figure S11: Properties of interaction between a pair of fish in the collective when the
focal fish is moving at medium-low speed. Same as Figure S2A but focal speed is fixed to
v = 2 BL/s.
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Figure S12: Properties of interaction between a pair of fish in the collective when the
focal fish is moving at medium-high speed. Same as Figure S2A but focal speed is fixed to
v = 4 BL/s.
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Figure S13: Properties of interaction between a pair of fish in the collective when the
focal fish is moving at high speed. Same as Figure S2A but focal speed is fixed to v = 8 BL/s.
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Figure S14: Properties of interaction between a pair of fish in the collective when the
focal fish is in the midst of a right turn. Same as Figure 2B in main text but with focal
normal acceleration fixed to a⊥ = 100 BL/s2.
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Figure S15: Relative attraction and repulsion zones depend on kinematic parameters
of focal Like Fig. 3C but at four different focal speeds (1, 2, 4 and 8 BL/s) while keeping neighbour
speed fixed at the median speed, vi = 3.04 BL/s
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Figure S16: Aggregation with information about relative orientation. Same as Fig. 4A,
but when the attention subnetwork is trained with the relative orientation of the neighbour, in
addition to the variables used in the main text. A The neighbour is parallel (at 0 degrees) to the
focal. B The neighbour is at 45 degrees (towards the right) with the focal, C the neighbour is
perpendicular (90 degrees) and pointing to the right of the focal. D The neighbour is antiparallel
(180 degrees) to the focal.
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