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Abstract 

Next-generation amplicon sequencing is widely used for surveying biological diversity in 

applications such as microbial metagenomics, immune system repertoire analysis and 

targeted tumor sequencing of cancer-associated genes. In such studies, assignment of reads 

to incorrect samples (cross-talk) is a well-documented problem that is rarely considered in 

practice. Here, I describe UNCROSS2, an algorithm designed to detect and filter cross-talk 

in OTU tables generated by next-generation sequencing of the 16S ribosomal RNA gene. On 

eight published datasets, cross-talk rates are estimated to range from 0.4% to 1.5% mis-

assigned reads. On a mock community test, UNCROSS2 identifies spurious counts due to 

cross-talk with sensitivity ~80% to 90% and error rate from ~1% to ~20%, but it is not 

clear whether the accuracy of the algorithm is sufficient to decisively improve diversity 

rates in practice. 

Introduction 

Recent examples of next-generation amplicon sequencing experiments include the Human 

Microbiome Project (HMP Consortium et al., 2012), which sequenced the 16S ribosomal 

RNA (rRNA) gene, an analysis of the response of the human immune system to influenza 

vaccination (Jiang et al., 2013), which sequenced antibody immunoglobulin genes, and a 

high-throughput search for cancer-relevant variants in 16 oncogenes (Hadd et al., 2013). In 

such studies, samples are usually multiplexed by embedding index sequences into PCR 

primers which identify the sample of origin. Index sequences are sometimes called tags or 

barcodes, but I will avoid the latter terms here as some authors use them to refer to the 
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biological sequence in an amplicon. An index sequence can be embedded in the forward 

primer (Caporaso et al., 2011; Derakhshani et al., 2016) (single-indexing), while dual-index 

schemes embed indexes in both primers (Kozich et al., 2013; Derakhshani et al., 2016) to 

enable larger numbers of samples. Reads are assigned to samples (demultiplexed) by 

identifying their index sequences. A cross-talk error occurs when a read is assigned to an 

incorrect sample. Previous studies have revealed unexpectedly high rates of cross-talk in 

both 454 (Carlsen et al., 2012) and Illumina (Kircher et al., 2012; Nelson et al., 2014) data, 

but the causes of cross-talk are currently not well understood. Indexing methods designed 

to mitigate cross-talk have recently been proposed by (Esling et al., 2015) and (Schnell et 

al., 2015), but so far have rarely been used in practice. Here, I describe UNCROSS2, an 

algorithm designed to detect and filter cross-talk in 16S rRNA OTU tables. 

Methods 

Datasets 

I analyzed eleven published datasets of 16S rRNA reads as summarized in Table 1. These 

studies sampled communities with low diversity (e.g. human vagina and prostate), 

moderate diversity (e.g. human gut) through high diversity (soil). In all but one of these 

datasets, as is typically the case in practice, samples were obtained from similar 

environments and there are no control samples with known composition. As an exception, 

the Koz2013 dataset includes samples from different environments (human gut, mouse gut 

and soil) together with designed (mock) control samples of known composition. Koz2013 

contains reads from eleven MiSeq runs which were processed using a total of three 

different versions of the Illumina Real-Time Analysis (RTA) and MiSeq Control Software 

(MCS). Twelve samples were sequenced in each run: three replicates of a mock sample and 

three replicates obtained from human gut, mouse gut and soil, respectively.  

OTU tables 

For all datasets, I generated OTU tables using the current recommended UPARSE (Edgar, 

2013) protocol (https://drive5.com/usearch/manual/uparse_pipeline.html, accessed 1st 

August 2018). 
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Cross-talk rate estimate with mock samples 

The rate of cross-talk was estimated using mock samples as follows. Find all OTUs which do 

not match known sequences in the mock species and have non-zero read counts in both 

mock samples and other samples. The non-zero counts for mock samples in these OTUs are 

most likely explained by cross-talk (contaminants are also possible). Let N be the total 

number of reads in these OTUs, M be the total number of reads assigned to mock samples, 

m be the number of mock samples, and n be the total number of samples. Assuming that the 

total number of reads mis-assigned to each sample is approximately equal, the number of 

reads mis-assigned to all samples is Mn/m, and the fraction of mis-assigned reads overall is 

estimated to be 

 

 fmock = (M/N) (n/m).         (1) 

De novo estimate of the cross-talk rate 

When control samples are not available, the cross-talk rate must be estimated de novo, i.e. 

without prior knowledge of the sample composition. The UNCROSS2 algorithm estimates 

the rate by searching the OTU table for a subset of OTUs (candidates) which have the 

strongest evidence of cross-talk (Fig. 1). A candidate OTU has counts for some samples 

which are much smaller than the expected number that would be observed if the reads 

were evenly distributed over all samples. Such small counts are consistent with cross-talk, 

though this cannot be confirmed unless the composition of the sample can be determined 

independently of the OTU table. A count c is considered low if it is 0 < c ≤ sNi/n, where Ni is 

the total number of reads in the ith OTU and the user-settable parameter s is 0.1 by default 

so that a low count is at least ten times less than the mean for the OTU. Let Si be the number 

of samples with low counts for this OTU, and Xi the sum of the low counts. The OTU is a 

candidate iff Ni≥Nmin and Si≥Smin, where by default Nmin=1,000 and Smin=3. A large value of 

Nmin was chosen to avoid large random fluctuations which are likely to occur when counts 

are small, and Smin is greater than one as a check that the effect is reproduced in multiple 

samples. Low counts are tentatively inferred to be entirely due to cross-talk, and the 

estimated cross-talk rate fi for a candidate OTU is calculated similarly to eq. (1) above, 
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  fi = (Xi/Ni) (ni/si).          (2) 

 

If fi is found to be greater than a plausible maximum for the cross-talk rate (fmax, set to 0.02 

by default), the OTU is rejected as a candidate. At least Cmin candidate OTUs are required, 

with Cmin=10 by default; otherwise the data is considered insufficient to make a de novo 

estimate. To mitigate possible problems caused by false positives (FPs) and outlier cases, 

which could have anomalously high or low rates, the median rate for candidate OTUs is 

reported rather than the mean. The median rate is denoted f without a subscript. 

UNCROSS2 score 

If the cross-talk rate is f, and the total number of reads assigned to the ith OTU is Ni, then on 

average a count which should be zero will be zi=f Ni/n, where n is the number of samples. 

Based on this observation, an algorithm could consider all counts ≤zi to be consistent with 

cross-talk and set them to zero. However, this algorithm is likely to have a very high false 

negative (FN) rate, i.e. will fail to correctly identify many counts which are entirely due to 

cross-talk. First, the cross-talk rate between a given pair of samples may be much higher 

than the average rate. This will surely be the case for cross-talk due to base call errors in 

index reads. For example, if the correct indexes for a sample pair have a single difference, 

the rate will be much higher than a pair where all bases are different. Second, the rate will 

vary due to fluctuations, especially when counts are small. For example, suppose f=0.01, 

n=10 and Ni=10. Then the expected value for a count which should be zero is zi=0.01, which 

is much less than one. But if we have 1,000 OTUs with Ni=10, and the true count for all 

these OTUs is zero in in sample A, then we expect ~10 of them to have a spurious non-zero 

count for A. In these OTUs, the observed cross-talk rate is at least 0.1 (one of ten reads is 

mis-assigned), which is much greater than the mean rate f. For OTUs where the cross-talk 

rate is much greater than f, a threshold of zi is much too low. With these considerations in 

mind, I designed an ad hoc score t for a count c ranging from zero (minimum indication of 

cross talk) to one (maximum indication of cross-talk), 

 

 t = 2/(1 + exp(c/zi)).         (3) 
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Here, exp(x) is the exponential function ex. If c is much less than the expected value zi, then t 

is close to 1, and if c is much greater than zi then t is close to zero. The filtering threshold is 

specified as a minimum value of t, which by default is set to tmin=0.1. This value is intended 

to identify a large majority of spurious counts due to cross-talk, at the possible expense of 

having a high FP rate, i.e. setting many counts to zero that should be at least one. This is 

because the most likely motivation for using a cross-talk filter is to improve estimates of 

alpha and beta diversity. A threshold which is designed to minimize the number of errors 

by balancing FPs and FNs, or to minimize FPs, is likely to leave many unfiltered spurious 

counts in the table. This is a similar situation to denoising algorithms, which set thresholds 

designed to minimize FNs (bad sequences which are falsely reported as correct) at the 

possible expense of a high rate of FPs (correct sequences which are falsely reported as bad) 

(Edgar, 2017). The value of denoising is undermined if the minority of bad sequences that 

remain after filtering are comparable to or more numerous than the correct sequences, 

which could easily happen given that the diversity of bad sequences is likely to be much 

larger than the diversity of correct sequences even if the base call error rate is very low 

(https://drive5.com/usearch/manual/tolstoy.html). With cross-talk, there is similarly little 

point in removing many or most spurious counts if the minority that remain after filtering 

could be more numerous than the valid non-zero counts. Both denoisers and cross-talk 

filters should therefore strongly favor minimizing FNs by default. 

Parameter tuning and validation 

The UNCROSS2 algorithm has user-settable parameters s, Nmin, Smin, fmax, Cmin and tmin. 

Ideally, these would be trained and validated using several independent datasets with 

control samples. However, the only suitable training dataset I am aware of is Koz2013. I 

therefore used an alternative strategy, as follows. I selected default parameter values which 

seemed intuitively reasonable and produced similar results to my own manual analyses of 

OTU tables based on informed guesswork. To investigate whether results are robust 

against varying parameter values, I measured predicted cross-talk rates using all 

combinations of parameters shown in Table 2. Using the mock samples in Koz2013, I 

measured the number of true positives (TPs, i.e. non-zero counts which were correctly 

identified as solely due to cross-talk) true negatives, (TNs, i.e. counts which were correctly 
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identified as valid non-zero values), FPs and FNs for each set of parameter values. Denoting 

the number of TPs as NTP etc., I calculated the sensitivity Sens = NTP/(NTP + NFN) and 

error rate Err = (NFP + NFN)/(NTP + NTN + NFP + NFN). 

OTU table coloring 

To facilitate manual (i.e., visual) review, UNCROSS2 optionally generates an OTU table in 

HTML format where the cell for each count is colored according to the score given by eq. 

(3). A zero count is indicated by a blank white cell. If t≥0.5, the background color is dark 

orange, if t≥0.1 (the default threshold), the color is light orange, otherwise green. An 

example is shown in Fig. 2. 

Results 

Accuracy on Koz2013 runs 

Results for the eleven runs in Koz2013 are summarized in Table 3. Cross-talk rates 

measured on mock samples are in good agreement with rates estimated de novo, 

consistently reporting ~1% mis-assigned reads. The largest disagreement is on run 

130125, where the de novo estimate (0.013) is approximately twice as large as the 

measured mock rate (0.0068), noting that the true mean over all samples may differ from a 

subset such as mock samples. Sensitivity ranges from 77% (run 130306) to 89% (three 

different runs), while the error rate ranges from 1% (130125) to 20% (130306). Sensitivity 

in the range 77% to 89% would often be considered good performance for a bioinformatics 

algorithm, but here it corresponds to a false negative rate of 11% to 23% which could 

substantially inflate diversity estimates in practice. 

Accuracy with varying threshold 

Table 4 shows results obtained with varying tmin values on a typical Koz2013 run (130417). 

Both sensitivity and error rate improve with smaller values of tmin, noting that there is 

some redundancy between the two measures because the error rate includes false 

negatives which are also reflected in the sensitivity. If parameters were tuned to this data, 

the smallest value of tmin would be selected. However, I believe this is an artifact of the 

mock community which has a much smaller number of OTUs than are typically found in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/400762doi: bioRxiv preprint 

https://doi.org/10.1101/400762


vivo. In this artificial case, removing most small counts gives a more accurate OTU table, 

while in practice it would probably tend to give an unacceptably high false positive rate. 

Robustness of de novo rate estimate against varying parameters 

Results with varying parameters for all datasets are summarized in Table 5. On most 

datasets, the standard deviation of the de novo rate estimate is small compared to the 

mean, indicating it is robust against variations in the parameters. This also shows that 

parameters are not over-tuned to Koz2013, which is the only dataset for which cross-talk 

can be determined independently of the OTU table. The mean value over all parameter sets 

is similar to the default value on all datasets where a de novo estimate is reported. 

Discussion 

De novo estimation of cross-talk rate 

Several lines of evidence suggest that UNCROSS2 reports a good de novo estimate of the 

cross-talk rate: agreement with measurements on mock samples, robustness against 

varying parameters, and the observation that estimated cross-talk rates are comparable 

across several diverse datasets (Table 5), as would be expected on the assumptions that 

cross-talk errors occur with similar rates in different studies using similar sequencing 

protocols and are independent of the biological sequences in the reads. 

An attempt to filter cross-talk, with limited success 

On the mock samples in the eleven Koz2013 runs, UNCROSS2 filtering has sensitivity 77% 

to 91% and an error rate of 1% to 20%. While these results suggest that the algorithm is 

reasonably effective in removing many of the spurious counts due to cross-talk, this may 

not be sufficient to decisively improve diversity estimates in practice. 

Cross-talk is probably ubiquitous in practice 

Estimated cross-talk rates on the tested datasets range from 0.4% mis-assigned reads 

(Yow2017, V4) to1.6% (Gev2014). While it cannot be ruled out that de novo values are 

overestimated for reasons that are currently unknown, it is conservative to assume that a 

cross-talk rate of ~1% is typical in practice. 
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Better data is needed 

Analysis of cross-talk is severely hampered by limitations in available data. Most studies do 

not include control samples, precluding reliable measurements of cross-talk (or other types 

of error). In the case of MiSeq, demultiplexing is performed by the Illumina platform 

software which generates separate FASTQ files for each sample. The underlying data used 

to perform demultiplexing, i.e. the index reads and their quality scores, are generally not 

provided to the user. Next-generation amplicon sequencing datasets in public archives such 

as the NCBI Short Read Archive and the European Nucleotide Archive rarely include usable 

information about index sequences, index reads or which samples were sequenced 

together in a single run. 

Possible improvements to the algorithm 

UNCROSS2 analyses an OTU table without considering other information that is potentially 

informative such as a list of the index sequences assigned to each sample, index reads 

sequences and index read quality scores. This design choice is pragmatic: an OTU table is 

almost always available, or can be constructed from available data, while index reads are 

rarely available. It seems likely that accuracy could be improved by considering the index 

reads, but this would have limited value until such time as index reads are routinely 

provided by sequencing machine software and are routinely deposited in public archives to 

enable independent re-analysis of published datasets. 

Mitigating cross-talk by modified indexing schemes 

Given that cross-talk with currently popular indexing schemes cannot be reliably filtered, 

the problem can be more effectively addressed by modifications to the PCR and sequencing 

protocol such as those proposed in (Kircher et al., 2012; Esling et al., 2015). 

Using UNCROSS2 in practice 

When control samples are included, UNCROSS2 can provide an accurate measurement of 

cross-talk into the controls. When control samples are not available, its de novo estimates 

of the cross-talk rate appear to be reliable, though this is not definitively established by the 

results in this paper because de novo predictions could be verified only on one dataset 

(Koz2013). An accurate estimate of the overall mean cross-talk rate is useful for assessing 
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the scope of the problem, but does not necessarily enable effective filtering because of 

fluctuations around expected values. With currently popular indexing protocols, cross-talk 

analysis should be performed on a separate OTU table for each sequencing run because 

cross-talk between samples in different runs cannot occur. Given that filtering may have a 

high error rate and that an optimal threshold is ill-defined and/or difficult to determine, I 

suggest that the most robust approach is to perform diversity analysis multiple times using 

tables filtered at different thresholds. Biological conclusions are supportable if they are 

repeatable across these tables, e.g. if significant P-values are obtained on all of them. 
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Tables 

 

Dataset Reference Reads Environments 

Car2016 (Carini et al., 2016) MiSeq 2×250 Soil. 

Dev2018 (De Vrieze et al., 2018) MiSeq 2×300 Adiabatic digestion plants. 

Gev2014 (Gevers et al., 2014) MiSeq 2×175 Human rectum, ileum and gut. 

Gil2016 (Giloteaux et al., 2016) MiSeq 2×250 Human gut. 

Koz2013 (Kozich et al., 2013) MiSeq 2×250 Mock, soil, mouse gut and human gut. 

Mac2015 (MacIntyre et al., 2015) MiSeq 2×300 Human vagina. 

Now2015 (Nowak et al., 2015) MiSeq 2×300 Human gut. 

Par2017 (Nitin Parulekar et al., 2017) MiSeq 2×300 Phytoplankton bloom. 

Tho2016 (Thomas et al., 2016) PGM ~400 Human gut. 

Vir2017 (Virtanen et al., 2017) MiSeq 2×300 Human vagina. 

Yow2017 (Yow et al., 2017) MiSeq 2×250 Human prostate. 

 

Table 1. 16S rRNA datasets analyzed in this paper. 
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Parameter Values 

fmax 0.01, 0.02, 0.05, 0.1 

s 0.01, 0.05, 0.1, 0.2 

Nmin 100, 500, 1000 

 

Table 2. Tested parameters for the UNCROSS2 algorithm. Defaults are highlighted. All 

of the 48 possible combinations obtained by selecting one value for each parameter were 

tested. The de novo rate estimate is not meaningfully sensitive to parameters Smin and Cmin, 

which were therefore excluded from parameter variation testing. 
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Run Mock rate De novo rate TP TN FP FN Sens. Err. 

121203 0.0063 0.0059 96 57 0 14 87% 8% 

121205 0.0078 0.0065 191 57 0 28 87% 10% 

121207 0.0075 0.0081 166 59 0 16 91% 7% 

130125 0.0068 0.013 29 60 0 1 97% 1% 

130211 0.0077 0.0075 125 60 0 22 85% 11% 

130220 0.0083 0.0082 322 58 0 33 91% 8% 

130306 0.015 0.0089 288 57 0 85 77% 20% 

130401 0.015 0.011 615 57 0 78 89% 10% 

130403 0.015 0.010 702 60 0 72 91% 9% 

130417 0.014 0.0085 448 60 0 55 89% 10% 

130422 0.013 0.0091 454 60 0 55 89% 10% 

 

Table 3. Results on the Koz2013 runs. These results were obtained using default 

parameters. 
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tmin TP TN FP FN Sens Err 

0.0001 485 60 0 18 96.42 3.2 

0.001 479 60 0 24 95.23 4.26 

0.01 468 60 0 35 93.04 6.22 

0.1 448 60 0 55 89.07 9.77 

0.5 385 60 0 118 76.54 20.96 

 

Table 4. Results on Koz2013 run 134017 obtained with varying tmin values. Accuracy 

improves with smaller tmin, but this may be unrealistic in practice due to the low diversity 

of the mock samples (see main text for discussion). 
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Dataset Run Samples Mock rate De novo rate Avg. rate Std. dev. 

Koz2013 121203 Mock+soil+gut 0.0063 0.0059 0.0072 0.003 

Koz2013 121205 Mock+soil+gut 0.0078 0.0065 0.0088 0.005 

Koz2013   121207 Mock+soil+gut 0.0075 0.0081 0.0089 0.005 

Koz2013 130125 Mock+soil+gut 0.0068 0.013 0.013 0.0006 

Koz2013 130211 Mock+soil+gut 0.0077 0.0075 0.0083 0.004 

Koz2013 130220 Mock+soil+gut 0.0083 0.0082 0.0090 0.004 

Koz2013 130306 Mock+soil+gut 0.015 0.0089 0.0099 0.006 

Koz2013 130401 Mock+soil+gut 0.015 0.011 0.010 0.005 

Koz2013 130403 Mock+soil+gut 0.015 0.010 0.01 0.005 

Koz2013 130417 Mock+soil+gut 0.014 0.0085 0.0098 0.005 

Koz2013 130422 Mock+soil+gut 0.013 0.0091 0.01 0.006 

Car2016 - Soil - (undet., 0) - - 

Dev2018 - AD plants - (undet., 1) - - 

Gev2014 - Rectum+ileum+gut - 0.016 0.024 0.02 

Gil2016 - Gut - 0.015 0.021 0.02 

Mac2015 - Vagina - (undet., 5) - - 

Now2015 - Gut - 0.016 0.023 0.02 

Par2017 - Phytoplankton bloom - (undet., 3) - - 

Tho2016 - Gut - (undet., 8) - - 

Vir2017 - Vagina - 0.012 0.014 0.01 

Yow2017 V2-V3 Prostate  - 0.0048 0.0041 0.002 

Yow2017 V4 Prostate - 0.0065 0.0069 0.003 

 

Table 5. Results obtained with varying parameters. Here, De novo rate is the rate 

predicted with default parameters, Avg. rate is the mean de novo rate over all tested 

parameter values, and Std. dev. is the standard deviation of the rate. Cases where <10 

candidate OTUs were found are undetermined (undet., n where n is the number of 

candidates). These results show that the estimated de novo rate is robust against varying 

parameters and ambiguous data, and that the parameters are not over-tuned to the 

Koz2013 dataset. 
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Figures 

 

  

Figure 1. Abundance distribution of a candidate OTU. The histogram shows sample 

counts sorted in order of size. "Low" counts are much less than the mean, "moderate" 

counts are comparable to the mean, and "high" counts are much greater than the mean. A 

candidate OTU has at least three low counts which are greater than zero and less than 10% 

of the mean value. The low counts are tentatively interpreted as cross-talk. 
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Figure 2. OTU table with counts colored by UNCROSS2 score. This is a partial table for 

Koz2013 run 134017 showing the most abundant OTUs. The cell for each count is colored 

according to the UNCROSS2 score given by eq. (3). A zero count is indicated by a blank 

white cell. If t≥0.5, the background color is dark orange, if t≥0.1 (the default threshold), the 

color is light orange, otherwise green. 
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