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ABSTRACT 1 

Background: Higher levels of educational attainment are associated with lower risk of dementia. 2 

However, the mechanisms underlying the association (for example, the role of education-related 3 

traits such as intelligence) are unknown. Identifying these mechanisms using observational methods 4 

is difficult due to bias from measurement error, confounding and reverse causation.  5 

Aims: To estimate the bidirectional causal effects of education on intelligence, and the total and 6 

independent effects of both education and intelligence on risk of Alzheimer’s disease (AD). 7 

Methods: Using univariable and multivariable two-sample Mendelian randomization (MR) we 8 

estimated (i) the overall effect of educational attainment on intelligence and vice versa (ii) the 9 

overall effects of both educational attainment and intelligence on AD risk and (iii) the effects of 10 

educational attainment and intelligence on AD risk that are independent of the other trait.  11 

Results: There was strong evidence of a causal, bidirectional relationship between intelligence and 12 

educational attainment, with the magnitude of effect being similar in both directions after filtering 13 

SNPs to check they are instrumenting the correct exposure. Similar overall effects were observed for 14 

both educational attainment and intelligence on AD risk in the univariable MR analysis; with each SD 15 

increase in years of schooling and intelligence, the odds of AD were, on average, 37% (95% CI: 23% 16 

to 49%) and 35% (95% CI: 25% to 43%) lower, respectively . There was little evidence from the 17 

multivariable MR analysis that educational attainment affected AD risk once intelligence was taken 18 

into account, but intelligence affected AD risk independently of educational attainment to a similar 19 

magnitude observed in the univariate analysis.  20 

Conclusions:  There is robust evidence for an independent, causal effect of intelligence in lowering 21 

AD risk, potentially supporting a role for cognitive training interventions to improve aspects of 22 

intelligence. However, given the causal effect of educational attainment on intelligence observed in 23 

this analysis, there may also be support for policies aimed at increasing length of schooling to lower 24 

incidence of AD.   25 
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INTRODUCTION 26 

Alzheimer’s disease (AD) is the leading cause of death in England and Wales1. Existing treatments are 27 

currently unable to reverse or delay progression of the disease. Thus, strategies for reducing the 28 

incidence of the disease by intervening on modifiable risk factors are important. Higher educational 29 

attainment is associated with a lower risk of dementia2-5. However, the mechanisms underlying the 30 

associations of educational attainment with AD risk are uncertain and this has implications for 31 

intervention design. In particular, what is the role of intelligence? The degree to which education 32 

affects intelligence, versus intelligence being largely fixed in early life and acting as a determinant of 33 

educational attainment, has been debated for decades6-10 and studies have provided evidence of an 34 

effect in both directions.8,11 If the principal direction of causality is intelligence to educational 35 

attainment, intelligence would induce confounding bias in the association between educational 36 

attainment and AD. In this case, interventions aiming to increase educational attainment (e.g. raising 37 

the school leaving age to increase years of schooling) are unlikely to affect risk of AD, but alternative 38 

prevention strategies such as cognitive training may prove effective. In contrast, if the principal 39 

direction of causality is such that greater educational attainment increases intelligence (i.e. 40 

intelligence lies on the causal pathway from educational attainment to AD risk), then interventions 41 

designed to prolong the duration of education may reduce AD risk, either directly or indirectly 42 

through subsequently increasing intelligence.   43 

 44 

Determining the relative contributions of education and intelligence to AD risk is of clear importance 45 

for designing appropriate policy interventions to reduce AD risk. Using observational methods to 46 

unpick these associations is challenging due to bias from measurement error, confounding and 47 

reverse causation. More recently, studies have attempted to estimate causal effects of educational 48 

attainment on AD risk using methods such as univariable Mendelian randomization (MR), in which 49 

genetic variants are used as proxies for a single environmental exposure to overcome limitations of 50 

observational methods12. However, these methods can be problematic with traits that are highly 51 
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genetically and phenotypically correlated (such as educational attainment and intelligence)13,14. 52 

Figure 1 illustrates possible models underlying the observed associations of educational attainment 53 

and intelligence with AD risk. In all models shown, causal effects for both exposures on AD risk 54 

would be implied from univariable MR analyses. However, depending on the underlying model, 55 

intervention targets will differ. Multivariable MR is an extension of univariable MR in which multiple 56 

exposures are included within the same model. It can estimate causal effects of one trait, 57 

independently of another related trait. Thus, extending MR analyses from the univariable to the 58 

multivariable setting may be a useful tool for further disentangling these relationships and 59 

establishing the respective roles of both education and intelligence in AD risk13. In this study, we 60 

estimated (i) the effect of educational attainment on intelligence and vice versa, (ii) the overall 61 

effects of educational attainment and intelligence on risk of AD and (iii) the independent effects of 62 

both education and intelligence on risk of AD (i.e. the effects of educational attainment and 63 

intelligence on AD risk that are independent of the other trait). 64 

 65 

  66 
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 Figure 1. A non-exhaustive list of possible models underlying the observed causal effects of educational 67 

attainment, intelligence and risk of Alzheimer’s disease. Please note that these are not intended to be 68 

directed acyclic graphs. IQ denotes intelligence. EA denotes educational attainment and AD denotes 69 

Alzheimer’s Disease. G denotes a set of instruments, which are drawn as a single node for visual simplicity. 70 

Panel (a) illustrates a model in which G is identified in a genome wide association study of EA, because it is 71 
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associated with EA indirectly through IQ. IQ has an independent effect on AD but EA does not. A spurious 72 

association between EA and AD is induced due to confounding by IQ. Accounting for IQ in multivariable 73 

analysis would reveal no independent effect of EA on AD risk and the intervention target should be IQ. Panel 74 

(b) illustrates a model in which G is identified in a genome wide association study of IQ because it is associated 75 

with IQ indirectly through EA. EA has an independent effect on AD but IQ does not. A spurious association 76 

between IQ and AD is induced due to confounding by EA. Accounting for EA in multivariable analysis would 77 

reveal no independent effect of IQ on AD risk and the intervention target should be EA. Panel (c) illustrates a 78 

model in which the effect of EA on AD risk is entirely mediated by IQ (i.e. IQ lies on the causal pathway 79 

between EA and AD). Multivariable analyses would reveal an independent effect of IQ on AD risk, but no 80 

independent effect of EA. The intervention target could be either IQ or EA. Panel (d) illustrates a model in 81 

which the effect of IQ on AD risk is entirely mediated by EA (i.e. EA lies on the causal pathway between IQ and 82 

AD). Multivariable analyses would reveal an independent effect of EA on AD risk, but no independent effect of 83 

IQ. The intervention target could be either EA or IQ. Panel (e) illustrates a model in which there is full 84 

horizontal pleiotropy through IQ. Horizontal pleiotropy occurs when G has a causal effect on disease 85 

independently of its effect on the exposure. In this case, multivariate analyses would reveal an independent 86 

effect of IQ on AD risk, but no independent effect of EA and the intervention target should be IQ. Panel (f) 87 

illustrates a model in which there is full horizontal pleiotropy through EA. Multivariate analyses would reveal 88 

an independent effect of EA on AD risk, but no independent effect of IQ and the intervention target should be 89 

EA. Panel G illustrates a model in which G independently effects all three traits, but the three traits have no 90 

causal effect on each other. Multivariable analysis would show no independent effects of EA or IQ on AD risk. 91 

Panel (h) illustrates a model in which there are joint independent effects of both EA and IQ on AD risk. 92 

Multivariate analysis would show independent effects of both IQ and EA and the intervention target could be 93 

either IQ or EA. Here, the bi-directional relationship between IQ and EA does not affect the qualitative 94 

interpretation. 95 

  96 
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METHODS AND STATISTICAL ANALYSIS 97 

Mendelian Randomization  98 

MR is a form of instrumental variable analysis that uses genetic variants to proxy for environmental 99 

exposures. Two-sample MR
15

 is an extension in which the effects of the genetic instrument on the 100 

exposure and on the outcome are obtained from separate genome-wide association studies (GWAS). 101 

This method is particularly useful for trying to identify early life risk factors for later life diseases like 102 

AD, because unlike in observational studies, rich longitudinal data across the whole life course 103 

(which are scarce) are not needed. To-date, MR studies have typically been univariable (i.e. 104 

examining the effect of one exposure on an outcome), thereby estimating the total effect of the 105 

exposure on the outcome through all possible pathways. More recently, multivariable MR methods 106 

have been proposed to investigate the independent effects of multiple traits on an outcome. 107 

Methods for conducting a multivariable MR analysis have been published elsewhere13,16,17. 108 

Data 109 

For educational attainment, we used the GWAS (discovery and replication meta-analysis, 110 

n=293,723)
18

 which identified 162 approximately independent genome-wide significant (p<5x10
-8

) 111 

single nucleotide polymorphisms (SNPs) associated with years of schooling. SNP coefficients were 112 

per standard deviation (SD) units of years of schooling (SD=3.6 years). For intelligence, we used the 113 

largest (n= 248,482) and most recent iteration of the Multi-Trait Analysis of Genome-wide 114 

association studies
19

, which identified 194 approximately independent (r
2 

threshold <0.01 within a 115 

10mb window using 1000 genomes reference panel
20

) genome-wide significant SNPs. SNP 116 

coefficients were per one SD increase in the intelligence test scores. F statistics provide an indication 117 

of instrument strength
21

 and are a function of R
2
 (how much variance in the trait is explained by the 118 

set of genetic instruments being used), the number of instruments being used and the sample size. 119 

The F statistics for the educational attainment and intelligence instruments are 43.5 and 29.5, 120 

respectively (F>10 indicates the analysis is unlikely to suffer from weak instrument bias)22. For the 121 

outcome (AD) we used the large-scale GWAS of AD conducted by the International Genomics of 122 
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Alzheimer’s Project (IGAP, n=17,008 AD cases and 37,154 controls)23. SNP coefficients were log odds 123 

ratios of AD.  124 

Estimating the bidirectional association between intelligence and educational attainment 125 

After (i) excluding non-independent SNPs (ii) excluding SNPs that overlapped between the two 126 

GWAS and (iii) harmonization across both GWAS, there were 148 genome-wide significant SNPs for 127 

educational attainment and 180 for intelligence available for these analyses. Univariable MR was 128 

used to estimate the total effect of intelligence on educational attainment, and educational 129 

attainment on intelligence, by combining SNP-exposure and SNP-outcome coefficients in an inverse-130 

variance-weighted (IVW) regression analysis
24

. This is equivalent to a weighted regression of the 131 

SNP-outcome coefficients on the SNP-exposure coefficients, with the intercept constrained to zero 132 

(i.e. assuming no horizontal pleiotropy). Full details of the harmonization procedure are provided in 133 

the online supplement. Results are presented in SD units to enable a comparison of the magnitude 134 

of effect across both exposures.  135 

Estimating the total and independent effects of education and intelligence on Alzheimer’s disease 136 

There were 142 genome-wide significant SNPs for educational attainment and 185 for intelligence 137 

available for these analyses, after excluding non-independent SNPs and harmonization across both 138 

GWAS (full details of harmonization in online supplement). Univariable MR was used to estimate the 139 

total effects of both intelligence and educational attainment (separately) on risk of AD, through all 140 

possible pathways, by combining SNP-exposure and SNP-outcome coefficients in an inverse-141 

variance-weighted (IVW) regression analysis24. As mentioned previously, this univariable method has 142 

been shown to yield biased effect estimates if the genetic instruments being used are non-specific 143 

for the hypothesised exposure.
13,14

 Thus, to demonstrate these effects as they would be observed in 144 

a typical univariable analyses, we did not exclude the 9 SNPs that overlapped across education and 145 

intelligence GWAS. We then used multivariable MR to estimate the independent effects of both 146 

educational attainment and intelligence on risk of AD, by including both exposures within the same 147 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401042doi: bioRxiv preprint 

https://doi.org/10.1101/401042


 

 

9 
 

model13. After clumping the full list of SNPs from both the education and intelligence GWAS (to 148 

ensure only independent SNPs are included) and restricting to those SNPs (or proxies) found in the 149 

AD GWAS, a total of 231 SNPS were available for the multivariable MR analyses (84 for education 150 

and 156 for intelligence, 9 of which overlap between both GWAS).  151 

Sensitivity analyses 152 

Firstly, in the bidirectional analysis between educational attainment and intelligence, we 153 

endeavoured to rule out the possibility that the genetic instruments used to proxy for educational 154 

attainment are actually instruments for intelligence and vice versa (i.e. we wanted to test that the 155 

hypothesised causal direction was correct for each SNP used). To do this we performed Steiger 156 

filtering25 for each SNP to examine whether it explains more variance in the exposure than it does in 157 

the outcome (which should be true if the hypothesised causal direction from exposure to outcome is 158 

correct). We then re-ran analyses excluding those SNPs for which there was evidence that it 159 

explained more variance in the outcome than the exposure. Secondly, to check that the SNPs do not 160 

exert a direct effect on the outcome apart from through the exposure (which would violate a key MR 161 

assumption of no horizontal pleiotropy
12

), we compared results from all univariable (both the 162 

bidirectional education on intelligence analyses and the analysis of education and intelligence on AD 163 

risk) and multivariable IVW regressions to those obtained with MR-Egger regression (in which the 164 

intercept is not constrained to zero)
26,27

. Full details of the MR-Egger regression analyses are 165 

provided in the online supplement. Thirdly, we conducted a leave-one-out analysis for the 166 

univariable models in which we systematically removed one SNP at a time to assess the influence of 167 

potentially pleiotropic SNPs on the causal estimates
28

. If any single SNP was invalid, there would 168 

likely be distortion in the distribution of the causal effects estimates. Fourth, in all univariable 169 

analysis, we assessed whether causal estimates from different genetic variants were comparable 170 

(i.e. heterogeneity) using Cochran’s Q statistic26. Considerable heterogeneity would imply that the 171 

MR assumptions may not be valid for all the variants included in the analysis. Finally, funnel plots 172 

were generated to enable the visual assessment of the extent to which pleiotropy is balanced across 173 
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the set of instruments used in each analysis. Symmetry in these plots provides evidence against 174 

directional pleiotropy. 175 

RESULTS 176 

Bidirectional effects of intelligence on educational attainment, and their influences on AD risk 177 

Using 180 and 148 genetic instruments for intelligence and educational attainment, respectively 178 

(and no overlapping SNPs), we found strong evidence of causal effects both of intelligence on 179 

educational attainment, and of educational attainment on intelligence (Table 1). However, the 180 

magnitude of the effect was over two-fold greater for educational attainment on intelligence 181 

compared with intelligence on educational attainment.   182 

 183 

The main IVW regression using all SNPs from the educational attainment GWAS showed that, with 184 

each SD more years of schooling (i.e. ~3.6 years), the odds of AD were, on average, 37% lower (95% 185 

CI: 23% to 49%). Per one SD higher intelligence test score, the odds of AD were, on average, 35% 186 

lower (95% CI: 25% to 43%, Figure 2 and Table C of the online supplement).  187 

Multivariable analysis of education and intelligence on AD 188 

When both intelligence and educational attainment were included within a single multivariable 189 

model, there was little evidence of an effect of educational attainment on AD risk, independent of 190 

intelligence (Figure 2 and Table C of the online supplement). There was, however, evidence that 191 

higher intelligence lowers risk of AD, independently of educational attainment. On average, after 192 

accounting for educational attainment, odds of AD were 38% lower (95% CI: 12% to 56%) per one SD 193 

higher intelligence test score Figure 2 and Table C of the online supplement).  194 

Sensitivity analyses  195 

The Steiger filtering provided evidence that all intelligence SNPs explained more variance in 196 

intelligence than educational attainment, suggesting they were all in the correct causal direction (i.e. 197 
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from intelligence to education). However, there was evidence that 125 (85%) of the 148 education 198 

SNPs explained more variance in intelligence than educational attainment, suggesting the 199 

hypothesised causal direction is incorrect and is more likely to go from intelligence to education. This 200 

left 23 education SNPs. When using only these 23 education SNPs, there was still strong evidence of 201 

a causal effect of educational attainment on intelligence (standardised β =0.57, 95% CI: 0.48 to 0.66, 202 

Table A of the online supplement), but the magnitude attenuated so that it was comparable to the 203 

effect of intelligence on educational attainment (as opposed to the main analysis which showed over 204 

2-fold greater magnitude of effect for education on intelligence than vice versa). There was some 205 

evidence of horizontal pleiotropy only in the estimate of the total effect of intelligence on AD risk 206 

(Tables B and C of the online supplement). However, for all univariable and multivariable analyses 207 

(including the bidirectional effects of intelligence on educational attainment), MR-Egger effect 208 

estimates adjusting for pleiotropy were consistently comparable to those from the IWV regressions 209 

(Tables B and C of the online supplement). As expected the standard errors were much larger for 210 

MR-Egger estimates, because MR-Egger regression provides estimates of two parameters (i.e. both 211 

an intercept and a slope) compared to the single parameter in the IVW regressions (i.e. only the 212 

slope). The MR-Egger estimate for the total effect of intelligence on risk of AD went in the opposite 213 

direction to the IVW estimate (i.e. greater rather than lower odds of AD per SD increase in the 214 

intelligence score); however, the confidence intervals were very wide, and the effect estimate could 215 

plausibly go in either direction (OR: 1.36, 95% confidence interval: 0.75, 2.48). There was no 216 

distortion in the leave-one-out plots for univariable analyses (Figures A to D), suggesting that no 217 

single SNP was driving the observed effect from any analysis. There was evidence of heterogeneity in 218 

the causal effect estimates from all univariable analyses (P values for all analyses <0.02, Tables B and 219 

C of the online supplement). However, provided the pleiotropic effects of genetic variants are 220 

equally likely to be positive or negative (i.e. no directional pleiotropy), the overall causal estimate 221 

based on all genetic variants is likely to be unbiased and the funnel plots showed little evidence of 222 

departure from symmetry (Supplemental figures E to H). 223 
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DISCUSSION 224 

Bidirectional causal effects in the relationship between of educational attainment and intelligence  225 

In this study we examined the bidirectional effects of intelligence on educational attainment. We 226 

found that the relationship between intelligence and educational attainment is indeed likely to be 227 

bidirectional in nature (i.e. there is evidence of an effect in both directions), with the magnitude of 228 

effect being similar in both directions after filtering SNPs to check they are instrumenting the correct 229 

exposure. A recent meta-analysis of quasi-experimental studies of educational effects on intelligence 230 

provides evidence that support our MR findings. Across 142 effect sizes from 42 data sets involving 231 

over 600,000 participants, the authors reported consistent evidence for beneficial effects of 232 

education on cognitive abilities of approximately one to five IQ points (contingent on study design, 233 

inclusion of moderators, and publication-bias correction) for an additional year of education
11

. These 234 

findings are similar to ours in respect to magnitude of effect. Assuming a SD of 15 for IQ (as 235 

described in the meta-analysis
11

), intelligence was, on average, up to one-third of a SD higher per 236 

year of schooling. In our study we show an average of 0.57 SD higher in intelligence per SD (or. 3.6 237 

years) increase in years of schooling, which equates to 0.16 SD higher intelligence per one additional 238 

year of schooling. It is worth nothing that in the quasi-experimental policy reform studies, levels of 239 

prior intelligence (or underlying general cognitive ability) will be similar among individuals who left 240 

school before and after the policy reforms, making confounding by prior intelligence unlikely. 241 

Similarly, in the MR analyses, we endeavoured to exclude any SNPs for education for which there 242 

was evidence that they explained more variance in intelligence than education, making it unlikely 243 

that our findings for the effect of education on intelligence are a result of all genetic instruments 244 

being associated with intelligence and not educational attainment. Thus, both genetic and non-245 

genetic instruments (which contain different sources of bias) provide consistent evidence that 246 

educational attainment affects later intelligence. The underlying mechanisms by which educational 247 

attainment improves intelligence are uncertain, but several hypotheses have been proposed 248 
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including the teaching of material directly relevant to the intelligence tests, the training of thinking 249 

styles such as abstract reasoning, and the instilling of concentration and self-control
29

. It is also 250 

established that learning increases the strength of synaptic connections between neurons in grey 251 

matter
30,31

, and human brain imaging has revealed structural changes in white matter after learning 252 

complex tasks
32,33

.  253 

 254 

Longitudinal observational studies have previously reported associations between early-life 255 

intelligence and educational attainment
8
. However, we are unaware of any longitudinal studies that 256 

have compared the magnitude of effect for baseline intelligence on educational attainment, with 257 

educational attainment on subsequent intelligence in the same sample. One previous study has 258 

examined the association between education and lifetime cognitive change after controlling for 259 

childhood IQ. The authors reported that (after controlling for childhood IQ score) education was 260 

positively associated with IQ at ages 70 and 79 (with the two outcome ages being in different 261 

samples), and more strongly for participants with lower initial IQ scores. Education, however, 262 

showed no significant association with processing speed, measured at ages 70 and 83 (again, with 263 

the two ages being in different samples)34. Another study examined associations between father’s 264 

occupation, childhood cognition, educational attainment, own occupation in the 3rd decade, and 265 

self-reported literacy and numeracy problems in the 4th decade in the 1946 and 1958 Birth 266 

Cohorts35. The authors report inverse associations between childhood cognition, educational 267 

attainment and adult literacy and numeracy problems. Some studies have looked at genetic overlap 268 

between the two traits19,36 and reported correlations of up to 0.719,37 but to date, none have 269 

explicitly tried to examine the direction of the association using genetic variants that are associated 270 

with each of them. As mentioned previously, the largest and most robust evidence to date comes 271 

from a recent meta-analysis of quasi-experimental studies of educational effects on intelligence.11 272 
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Effects of educational attainment and intelligence on AD risk 273 

In addition to assessing the bidirectional causal effects in the relationship between educational 274 

attainment and intelligence, we also examined the total and independent effects of these traits on 275 

risk of AD. Our findings imply that the existing associations reported in the literature between 276 

greater educational attainment and lower AD risk are likely to be largely driven by intelligence, 277 

rather than there being an independent protective effect of staying in school for longer. This 278 

provides evidence against the underlying models illustrated panels (b), (d), (f) and (h) in Figure 1 (i.e. 279 

models in which there is an independent effect of educational attainment on AD risk). There are 280 

then four main possible explanations for our finding. The first is that prior intelligence is a 281 

confounder and induces a spurious association between education and AD risk (i.e. panel (a) in 282 

Figure 1). However, given the evidence supporting an effect of education on later intelligence from 283 

instrumental variable analyses using policy reforms to increase the school leaving age (in which prior 284 

intelligence is randomly distributed among instrument arms and thereby cannot confound), the 285 

model in panel (a) is unlikely. The second and third explanations relate to horizontal pleiotropy 286 

(either a pathway through IQ as in panel (e) or G independently effecting all traits as in panel (g)). 287 

Given our causal effect estimates were comparable when using methods to quantify and adjust for 288 

horizontal pleiotropy, these models are also unlikely to fully explain our findings. The fourth 289 

explanation is that there is an effect of educational attainment on AD risk, but it is largely mediated 290 

by its effects on later intelligence (i.e. panel (c)). Given the existing evidence supporting an effect of 291 

education on later intelligence from quasi-experimental studies11, and from our own MR analyses, 292 

this explanation seems most plausible.  293 

 294 

Together, these findings suggest that increasing education attainment (for example, by increasing 295 

years of schooling) may have beneficial consequences for future AD incidence. As such, they offer 296 

support to the most recent change in school policy in the United Kingdom (in 2013), which now 297 

requires young people to remain in at least part-time education until age 18 years (as opposed to 16 298 
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years). Our findings also suggest that there may potentially be other ways of reducing risk of AD by 299 

improving various aspects of intelligence (e.g. with cognitive training), which may be particularly 300 

effective in those with lower educational attainment or in populations where increasing years of 301 

schooling is not feasible (e.g. older populations). However, it is worth nothing that it is not clear 302 

what type of training (if any) would be beneficial (i.e. memory tasks, abductive reasoning tasks, 303 

creative tasks) or when in the life course (and indeed disease course) such training would confer 304 

protection (e.g. completing training earlier in life, versus much later but prior to onset of preclinical 305 

disease, versus throughout early disease stages).  306 

 307 

Our findings are consistent with the ‘brain reserve’ and the ‘cognitive reserve’ hypotheses. Brain 308 

reserve refers to structural differences in the brain itself that may increase tolerance of pathology. 309 

Cognitive reserve refers to differences in the ability to tolerate and compensate for the effects of 310 

brain atrophy, using pre-existing cognitive-processing approaches or compensatory mechanisms38. In 311 

support of this, higher levels of education have been shown to be associated with whole brain and 312 

ventricular volume as well as cortical thickness39-41. However, it is important to note that these 313 

studies often do not consider the potential confounding effects of prior intelligence. One previous 314 

study that examined associations between education and brain structure at 73 years found that that 315 

the majority of associations observed between education and brain structure (cortical thickness in 316 

bilateral temporal, medial-frontal, parietal, sensory and motor cortices) attenuated to the null after 317 

accounting for childhood intelligence at age 11, and that neither education nor age 11 IQ was 318 

associated with total brain atrophy or tract-averaged fractional anisotropy42. A post-mortem study of 319 

130 elderly patients who had undergone cognitive assessment approximately 8 months before death 320 

also showed that, at any given level of brain pathology, higher education was associated with better 321 

cognitive function
43

. Higher educational attainment may lead to extrinsic compensation through 322 

adaptations. Hence, more educated people will usually have occupations that are more intellectually 323 

demanding or have greater resources to partake in intellectual activities, resulting in greater 324 
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cognitive stimulation and consistent with the “use it or lose it” hypothesis44. These compensatory 325 

mechanisms may confer protection against advancing AD pathology by increasing the time it takes 326 

for an individual to reach the threshold of cognitive impairment, whereby daily living is adversely 327 

affected, and a clinical AD diagnosis is made. In addition to compensatory mechanisms, higher 328 

education is also associated with avoidance of other potential downstream risk factors such as 329 

smoking and excessive alcohol consumption, as well as better engagement with health care systems 330 

surrounding primary and secondary prevention (e.g. uptake of and adherence to statin or anti-331 

hypertensive medications).  332 

Limitations 333 

There are a number of limitations to our study. Firstly, in two-sample MR, “winner’s curse” (i.e. 334 

where the effect sizes of variants identified within a single sample are likely to be larger than in the 335 

overall population, even if they are truly associated with the exposure) can bias causal estimates 336 

towards the null. However, we used SNPs identified in the meta-analysis of the discovery and 337 

replication samples of the educational attainment GWAS18 making it unlikely that the estimate of the 338 

independent effect of education is biased to the null.  Secondly, in the presence of weak instruments 339 

(i.e. SNPs that are not associated with the exposure at the genome-wide significance level), sample 340 

overlap in two-sample MR can bias estimates towards the confounded observational estimate
42

. 341 

There were no overlapping samples in the analysis of educational attainment and intelligence on AD 342 

risk, but there was considerable overlap in the samples used for the bidirectional educational 343 

attainment on intelligence analysis. Given that all instruments used in the analysis were strong 344 

(associated with the exposure at p <5x10
-08

), any bias should be minimal. Thirdly, it is currently not 345 

possible to estimate the F statistic (a measure of instrument strength) for multivariable MR in a two- 346 

or three-sample setting. Thus, we are unable to assess the conditional strength of our instruments 347 

for each exposure, once the SNP effect on the other exposure is taken into account13. Fourth, the 348 

estimated effect of an exposure on an outcome, that are both associated with mortality, may be 349 

susceptible to survival bias.{Hernan, 2008 #55} For example, if individuals with lower educational 350 
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attainment are more likely to die before the age of onset of AD, bias may occur because those 351 

individuals with a genetic predisposition for higher educational attainment are likely to live longer, 352 

thus having greater risk of being diagnosed with AD. This may induce a non-zero causal effect 353 

estimate even if no true biological association exists. In a previous study, we performed simulations 354 

to investigate whether our estimates of the effect of educational attainment on AD risk may be 355 

biased by survival and found no evidence to suggest this was the case{Anderson, 2017 #10}. Fifth, 356 

the phenotype used in the GWAS of intelligence was typically brief (a 2-minute, 13-item test) and 357 

heterogeneous. Thus, results may be different if a better phenotype of intelligence was available for 358 

GWAS studies. Finally, the educational attainment GWAS only assessed years of full-time academic 359 

training from primary education through to advanced qualifications (e.g. degree). Therefore, it 360 

remains unclear whether the same genetic variants would be associated with other aspects of 361 

education, such as completing vocational courses or completing part-time as opposed to full-time 362 

courses. It’s also not clear whether education needs to be completed in a formal setting (such as 363 

school or college), or whether any form of learning (e.g. learning new skills ‘on the job’ such as in an 364 

apprenticeship during adolescence, or through career development and training courses as an adult 365 

in existing full-time employment) would confer the same degree of cognitive protection. This likely 366 

depends on the mechanism driving the association between education and AD, thus further studies 367 

to unpick the mechanisms may help to shed light on which forms of learning may confer cognitive 368 

benefits later in life and in turn, reduce AD risk.  369 

Conclusions 370 

Our findings imply that there is a bidirectional effect of intelligence on educational attainment and 371 

that the magnitude of effect is likely to be similar in both directions. There is robust evidence for an 372 

independent, causal effect of intelligence in reducing AD risk. The implications of this are uncertain, 373 

but it potentially increases support for a role of cognitive training interventions to improve various 374 

aspects of fluid intelligence. However, given that greater educational attainment also increases 375 
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intelligence, there is potentially also support for policies aimed at increasing length of schooling in 376 

order to lower incidence of AD.  377 
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Table 1: Bidirectional effect of intelligence on years of schooling  

 Causal effect estimates 

Total effects N SNPs 
Standardised β 

(95% CI) 
P 

Intelligence on years of schooling 180 0.51 (0.49, 0.54) 1.77e-95 

Years of schooling on intelligence 148 1.04 (0.99, 1.10) 9.36e-80 

SNP – single nucleotide polymorphism. β – beta coefficient. CI – confidence interval. Results are interpreted per 

one standard deviation increase years of schooling and intelligence test scores.  
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Figure 2: Forest plot showing (i) total effect estimates for years of schooling (in standard deviations) 

and intelligence (in standard deviations) on odds of AD and (ii) independent effect estimates for both 

years of schooling and intelligence on odds of AD, when each exposure is adjusted for the other.  
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