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Abstract 

Cancer is a potentially lethal disease, in which patients with nearly identical genetic 

backgrounds can develop a similar pathology through distinct combinations of genetic 

alterations. We aimed to reconstruct the evolutionary process underlying tumour initiation, 

using the combination of convergence and discrepancies observed across 2,742 cancer 

genomes from 9 tumour types. We developed a framework using the repeatability of cancer 

development to score the local malignant adaptation (LMA) of genetic clones, as their 

potential to malignantly progress and invade their environment of origin. Using this 

framework, we found that pre-malignant skin and colorectal lesions appeared specifically 

adapted to their local environment, yet insufficiently for full cancerous transformation. We 

found that metastatic clones were more adapted to the site of origin than to the invaded 

tissue, suggesting that genetics may be more important for local progression than for the 

invasion of distant organs. In addition, we used network analyses to investigate evolutionary 

properties at the system-level, highlighting that different dynamics of malignant progression 

can be modelled by such a framework in tumour-type-specific fashion. We find that 

occurrence-based methods can be used to specifically recapitulate the process of cancer 

initiation and progression, as well as to evaluate the adaptation of genetic clones to given 

environments. The repeatability observed in the evolution of most tumour types could 

therefore be harnessed to better predict the trajectories likely to be taken by tumours and 

pre-neoplastic lesions in the future. 
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Introduction 

Cancer is a disease fuelled by somatic evolution (Nowell, 1976), in which cells from 

multicellular organisms switch to uncurtailed growth (Davies & Lineweaver, 2011), potentially 

leading them to invade distant organs and eventually to death. This evolution is at least partly 

explained by the accrual of (epi)genetic alterations in cells over several generations and is 

context-specific, with different recurrent alterations observed in different tissue types 

(Greaves & Maley, 2012). The hypothesis that malignant transformation requires multiple 

alterations provides an explanation to why cancer incidence increases with age (Armitage & 

Doll, 1954) and why progression to cancer occurs via intermediate benign stages (Fearon & 

Vogelstein, 1990; Vogelstein et al., 2013). This is further corroborated by the observation that 

most solid adult tumours harbour multiple “driver” alterations, i.e. those likely to functionally 

impact cell behaviour and push it towards malignancy (Zack et al., 2013). Yet, the dynamics 

and stochastic nature of malignant transformation are still insufficiently understood: clinicians 

still lack efficient diagnostic tools to accurately predict if and when benign lesions will 

progress to cancer (Martinez et al., 2018), which patients at risk will develop tumours and 

what their genetic characteristics will be (Lässig, Mustonen, & Walczak, 2017). 

The heterogeneity observed between tumours of the same type demonstrates that multiple 

evolutionary trajectories can converge toward malignancies with similar phenotypic 

characteristics (Yates & Campbell, 2012). Yet, how much impact individual driver alterations 

have on this adaptation or how they interact is still largely unknown. In addition, although 

metastatic cancer still represents a major clinical challenge, the role of the genetic makeup of 

the primary site in the adaptation to a novel distant site is also unclear. While reconstructing 

the genetic history of individual patients through sequencing becomes easier (Gerlinger et 

al., 2012; Nik-Zainal et al., 2012; Yates et al., 2017), the generic process of carcinogenesis 

underlying each tumour type remains elusive. The availability of public datasets describing 

the genetic characteristics of multiple specimen of various tumour types however represents 

an opportunity to decipher oncogenesis as a stochastic process. All tumours characterized 

so far are outcomes of their type-specific evolutionary process. This is akin to Gould’s 

contingency definition (Gould, 1990), as if “replaying the tape” of somatic evolution: recording 

all malignant developments starting from the mostly identical genetic backgrounds of different 

human individuals (Rosenberg et al., 2002). 

Here we investigate these recorded outcomes to infer the evolutionary landscape of each 

tumour type, mapping the evolutionary trajectories that can lead normal cells to cancerous 

transformation. We make the following assumptions 1) cancer is of monoclonal origin, 

whereby the genetic background of the initial clone is detectable in all subsequent 

generations; 2) although different evolutionary trajectories can lead to such a clone, they all 

are similarly capable of invading their organ-specific environment of origin. We thus estimate 

different evolutionary parameters to investigate the contribution of all drivers within genetic 

clones and calculate a local malignant adaptation (LMA) score resulting from their 

combination in 9 tumour types. Similar to a fitness definition in evolutionary biology, our score 

can be understood as a measure of adaptation to a disease-specific evolutionary context, 

leading to harmful over-proliferation and domination of the local environment. Our model 

highlights differences across tumour types regarding the interactivity between driver 

alterations and predicts that pre-malignant skin and colorectal lesions are adapted to their 

environment, yet not as much as invasive tumours. We find that genetic landscapes of local 

adaptation do not explain the location of distant metastases, suggesting that adaptation to 

metastatic sites does not rely on genetics as much as tumorigenesis does. Finally, we 
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suggest that networks can be used to represent stepwise genetic progression, providing 

useful tools to stochastically reconstruct the contingencies of the oncogenesis process and 

study its systemic properties. 

Methods 

TCGA data 

We downloaded data for 2,742 samples from The Cancer Genome Atlas (TCGA), for which 

we could obtain both allelic frequencies for mutations and copy number alterations (CNAs). 

This represented 133 bladder cancers (BLCA), 914 breast cancers (BRCA), 195 colorectal 

cancers (COAD), 256 glioblastomas (GBM), 296 head & neck squamous cell cancers 

(HNSC), 306 kidney clear cell renal cell carcinomas (KIRC), 262 lung adenocarcinomas 

(LUAD), 132 lung squamous cell cancers (LUSC) and 248 skin melanomas (SKCM). Raw 

SNP array data were normalised using the aroma R package (Ortiz-Estevez, Aramburu, 

Bengtsson, Neuvial, & Rubio, 2012) with paired normals and copy number profiles were 

called using ASCAT (Van Loo et al., 2010). 

Nevi & Melanoma data 

The mutational and copy number data for 37 primary melanomas with paired precursor 

lesions were downloaded from Shain et al (Shain et al., 2015). Nevi, blue nevi, and 

intermediate benign annotations were considered benign lesions, while intermediate 

malignant, melanoma in situ, melanoma (all stages), desmoplastic melanoma and blue-

nevus-like melanoma annotations were considered malignant. In the few cases in which 

multiple malignant lesions were found for a patient, the least advanced was selected. 

Mutations were considered clonal when the normalised MAF values in the reported 

sequencing data was > 0.8. To detect CNAs, we first calculated the mean and standard 

deviation in segment mean (i.e. logR ratios for expected chromosomal copies in a segment) 

for all segments from the reported normal samples. Gains and losses for the 4 CN drivers 

retained for the melanoma landscape (CDK4_gain, CDKN2A_loss, MDM2_gain, PTEN_loss) 

were calculated based on the reported segment mean for the relevant segment of each 

sample deviated significantly from the normal segment mean distribution, using a one-tailed 

test with the pnorm R function. It is whoth noting that, unlike whole-exome TCGA data, these 

data are mostly obtained through targeted sequencing of a 293-gene panel and may 

therefore miss information on given drivers. 

Colorectal adenoma and carcinoma data 

We retrieved whole-genome sequencing data from 31 samples from 9 adenomas and 72 

samples from 11 carcinomas (Cross et al. accepted at Nature Eco & Evo). Mutations were 

called with platypus (Rimmer et al., 2014), copy number data and ploidy were obtained using 

the cloneHD software (Fischer, Vázquez-García, Illingworth, & Mustonen, 2014). Mutation 

clonality was estimated using the EstimateClonality package (McGranahan et al., 2015) on 

each of the 31 samples as for the TCGA data. Mutations were considered clonal in an entire 

adenoma when they were predicted as clonal in >= 75% of the related samples. 
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MET500 data 

Genomic data were retrieved from Robinson et al (Robinson et al., 2017) and via the 

MET500 website (https://met500.path.med.umich.edu/). Sample annotation was manually 

curated to attribute a tumour type to the primary site and metastatic site. All curated 

annotations are reported in Supp. Tables 2 and 3. Sample Purity was collected from the 

Supp. information of the original publication; sample ploidy was calculated as the mean copy 

number weighed by number of targeted exons. Mutation clonality was estimated using the 

EstimateClonality package. 

Clonality and driver alterations 

Mutation clonality was estimated thanks to the EstimateClonality package (McGranahan et 

al., 2015), clonal mutations were defined as those for which the 95% confidence interval of 

the cancer cell fraction (CCF) included 1. Gain and losses of each gene in each sample were 

defined relatively, if the copy number deviated by 0.6 or more from the ploidy given by 

ASCAT in the segment that included the gene of interest. Segments with less than 10 probes 

were filtered out. Driver alterations for each tumour type were retrieved from the IntOGen 

website (Gonzalez-Perez et al., 2013; Rubio-Perez et al., 2015). Due to the lack of an 

appropriate clonality estimation method, all copy number alterations were considered clonal. 

Final matrices of clonal mutations per sample are available via github. To limit the number of 

potential combinations, only the 50 most frequent driver alterations that occured in > 0.5% of 

a cohort were selected. Due to their proximity on the chromosome, CDKN2A loss and 

CDKN2B loss were merged into a single event, which avoids later biases when investigating 

co-occurrence. This left 34 drivers in GBM, 47 in KIRC and 50 in all other tumour types. 

Quantification of evolutionary parallelism 

We represented each datasets as a gene per patient matrix, using 0 to denote the absence 

of a clonal alteration and 1 for the presence of a specific clonal alteration in a specific patient.  

When multiple point mutations occur in the same gene in a patient, they are reported with a 

value of 1 encompassing all mutations. For each tumour type, 10 randomised matrices were 

generated by randomly reassigning the mutations of each patient. For instance, upon 

simulation, a patient with 300 clonal mutations out of 17,000 potential genes will still have 

300 clonal mutations albeit in different genes than the originally observed alterations. The 

Jaccard Index between two samples is then computed using the following formula: 

(1) 𝐽(𝐴, 𝐵) =
𝐴∩𝐵

𝐴 + 𝐵 − (𝐴∩𝐵)
 

Where A and B are the number of alterations in each sample, and A∩B the number of 

overlapping alterations. All pairwise indices are computed for each matrix. Indices from the 

10 simulated matrices are then pooled as randomised controls for a given tumour type. 

Genetic parameters of Local Malignant Adaptation 

The selective advantage of each driver alteration was defined as the ratio between 

expectations and observations in a given tumour type, considering mutations and CNAs 

separately. The expected number of mutations occurring in a gene was calculated by dividing 

the total number of mutations by the total number of genes in which at least 1 mutation was 

observed, weighted by each gene’s length in base pairs, as given by the median transcript 
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length for the gene in Ensembl (Zerbino et al., 2018). Only clonal mutations were considered. 

CNA selective advantage was calculated separately for gains and losses, by the ratio of 

expected occurrences given all events to the actual occurrences of each CNA, giving equal 

probability to all genes without weighing for length. The selective advantage SAd of each 

driver d is thus centred around 1 with a 0 lower boundary. 

We hypothesised that drivers that tend to occur with few other drivers had more impact on 

malignant progression, and thus more “self-sufficient”, that those occurring with more 

additional drivers. To calculate self-sufficiency, the number of “partners” of each driver 

alteration was first computed. For each driver alteration d in a tumour type, this is given by 

the number of additional clonal drivers in Sd, the subset of samples in which d is clonally 

mutated. For d, Npd is thus a vector of number of partners of the same size as Sd. Defining 

Npnd as the number of partners of all other drivers (“non d”) in all the samples in which they 

are mutated, we then compute Pd, the power of finding such difference in mean between Npd 

and Npnd using the power.t.test R function, with Npnd as the reference distribution. As self-

sufficiency is inversely correlated to the number of partners, SSd the self-sufficiency ratio for 

d is given by the following equation: 

(2) 𝑆𝑆𝑑  = (
𝑚𝑒𝑎𝑛(𝑁𝑝𝑛𝑑)

𝑚𝑒𝑎𝑛(𝑁𝑝𝑑)
)𝑃𝑑 

SSd is thus centred around 1, increases if d has fewer partners than the other drivers, and 

the deviation from 1 is lessened when statistical power is low due to few observations for d. 

In order to avoid infinite ratios when the mean of Npd is 0 due to the absence of any partner 

in all samples where d is mutated, mean(NPd) is substituted by (1 / (length(Npd) + 1)) in these 

cases. Only three such cases occurred, all in kidney clear cell carcinoma (KIRC) with ELF1, 

HDAC9 and SHMT1 mutations. 

Epistatic interactions were defined as the ratio of observed to expected number of pairwise 

co-occurrences between driver alterations in a tumour type, weighted by the distribution of 

mutations across samples and the number of sample bearing either mutation. To estimate 

the number of expected number of occurrences of any two alterations A and B, we first 

calculate the individual probabilities that A and B are mutated in each sample of the cohort 

given their relative frequency (i.e. number of A or B mutations divided by total number of 

mutations) and the number of mutations in each sample, using hypergeometric probabilities 

(phyper R function). This takes into account that co-occurrences are more likely to be 

observed in hypermutated samples. The probability that A and B co-occur in each sample s 

is thus given by Ps(A&B) = Ps(A) x Ps(B), assuming that A and B are independent. We 

proceeded to 10,000 simulations for each combination: a draw is performed for each sample 

s with a probability of success equal to Ps(A&B), and we recorded the number of success 

over all samples for each simulation. The co-occurrence ratio of A and B Cab is given by the 

actual number of samples in which A and B co-occur divided by the mean number of 

successes in the 10,000 simulations. If the observed number of co-occurrences was 0, it was 

set to either 0.5 if the mean of all draws was > 0.5, or to the mean of the draws otherwise, so 

that the ratio would be 1, indicating an interaction neither positive nor negative due to the 

lack of sufficient observations. As for self-sufficiency, we weighted this score so as to 

penalise the few outliers observed when two very infrequent genes co-occur potentially by 

chance. This was done by multiplying Cab by the fraction of the cohort that presented a 

mutation either in A or B. 
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Scoring Local Malignant Adaptation: models of parameter combination 

As the prevalence and interplay of each parameter is unknown, we designed different models 

that correspond to different combinations of the three LMA parameters investigated. For 

simplicity, all models rely on summing the contribution of each driver alteration to the 

adaptation of each individual sample, given its alteration load and tumour-type-specific 

context. Parameters in a model are then assigned specific weights, which are optimised so 

as to minimise the variation of the overall score between samples in each tumour type. 

We separated the 3 parameters into two types of LMA components: intrinsic (selective 

advantage, self-sufficiency) and interactive (epistatic interactions). In any given tumour type, 

the intrinsic component is driver-specific, while the interactive component is context-

dependent and relies on which other driver alterations are also present in a sample. We 

designed 4 models based on the combination of 2 criteria: 1) whether selective advantage 

and self-sufficiency are separate or combined ; 2) whether the epistatic score of a driver is 

given by the mean of all its interactions with the other drivers in the sample, or by the product 

of these interactions. This thus corresponds to 4 possible designs in total, which are labelled 

separate_mean, separate_prod, combined_mean, combined_prod (Supp. Table 1). The 

former 2 models therefore comprise the 3 parameters weighed individually then summed, 

while the latter 2 models only comprise 2 individually weighted parameters, with the intrinsic 

component being given for each driver d by SSd multiplied by SAd. Such a multiplicative 

relationship is more relevant than an additive one, as SAd (range: 0.3 - 208.5) has higher 

variability than SSd (range: 0.3 - 1.8). 

Weight inference 

To assign weights to the components of each model, we used 37 possible empirical values 

ranging from 0.01 to 100, symmetrically mirrored around 1. The complete list is [0.010, 0.011, 

0.012, 0.014, 0.017, 0.020, 0.025, 0.033, 0.05, 0.10, 0.11, 0.12, 0.14, 0.17, 0.20, 0.25, 0.33, 

0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. For all 4 models, we 

performed LMA score calculations using all possible combinations of values for each of the 

model’s parameters. For instance, using the combined_prod model with a 0.2 factor for the 

intrinsic component and the 3 factor for the interactive one, the LMA score for a sample s 

with N drivers is given by the following equation: 

(3) 𝐹(𝑠) = ∑ (𝑆𝐴𝑖  × 𝑆𝑆𝑖  ×  0.2 +  𝑝𝑟𝑜𝑑𝑢𝑐𝑡(∀(𝑗 ≠ 𝑖)𝐸𝑖𝑗)  ×  3)𝑁
𝑖  

Where Eij is the epistatic score for the interaction of drivers i and j. SAi, SSi and Eij depend on 

the context given by the tumour type of s. We calculated the standard deviation of the LMA 

scores from the related samples normalised by their median. We used an objective function 

aiming to minimise the standard deviation in normalised LMA while assessing all weight 

combinations, so as to match our initial assumption that most tumour-initiating clones in a 

given environment have a similar score. As different tumour types can involve different 

development mechanisms, the weights were optimised in tissue-specific fashion. The weight 

combination yielding the lowest standard deviation in normalised LMA was thus selected in 

each tumour type.  

Network representation 

Network images were produced using the cytoscape software (Shannon et al., 2003).  
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Results 

Cancer evolution is highly repeatable 

In order to calculate the adaptation of a genetic clone to its local environment, we defined 

landscapes of Local Malignant Adaptation (LMA) specific to each of 9 cancer types, based on 

the occurrence of their most frequent driver alterations. To accurately reflect the genetic 

background of the clones that ultimately adapted to each environment, we only focused on 

clonal driver alterations (i.e. those present in all cells of a tumour). We investigated the 

repeatability of cancer evolution in each tumour type using a Jaccard Index based at the 

gene level, considering all sample-specific sets of clonal alterations as the genotypes of 

similarly adapted phenotypes (Bailey, Rodrigue, & Kassen, 2015; Yeaman, Gerstein, 

Hodgins, & Whitlock, 2018). Results were compared to randomised distributions of mutations 

that followed the same mutational load per patient (see Methods). As expected given the 

recurrence of driver mutations, our results highlight a high parallelism within each tumour 

type (Fig. 1A). On average, the similarity between samples from the real distribution of 

alterations were 1.4 to 5.1 times superior to the 95th percentile of those observed in our 

randomised controls (Fig. 1B). The glioblastoma (GBM) and lung squamous cell cancer 

(LUSC) sets displayed particularly high parallelism, with 96% of the indices being higher than 

the 95th percentile of the randomised control. 

Genetic landscapes of Local Malignant Adaptation: parameter definition 

We identified 3 types of genetics-based factors that could quantify the adaptation of cells to a 

determined environment: selective advantage, driver self-sufficiency and epistatic 

interactions (Fig. 2A). Selective advantage has been the focus of numerous previous studies 

(Gonzalez-Perez & Lopez-Bigas, 2012; Lawrence et al., 2013; Martincorena et al., 2017; 

Zapata et al., 2018), and was defined in our case as the ratio of observed occurrence of each 

clonal alteration (driver or not) compared to its expected occurrence given its number of 

clonal observations, weighted by gene size (in base pairs). We compared our selection score 

to the corrected dN/dS measure obtained by Zapata et al. in a recent publication (Zapata et 

al., 2018). We find that both scores are moderately, yet significantly correlated (p < 0.001, 

Supp. Fig. 1). The observed variability can furthermore be explained by the fact that their 

analysis was based on pan-cancer data while our genetic landscapes are tumour-type 

specific, and the fact that we focus solely on clonal alterations. 

Driver self-sufficiency is however a novel measure, reflecting how many additional drivers are 

needed on average to induce malignant development. Differences could be observed across 

tumour types, with for instance a high discrepancy in the number of additional drivers in 

colorectal adenocarcinomas and a relatively homogeneous distribution in lung squamous 

cancers (Fig. 2B-C, Supp. Fig. 2). 

Both selective advantage and self-sufficiency measures are specific to single driver 

alterations in a given tumour type. We found they were significantly correlated, yet with a 

very high variability (R2=0.04, p<0.001, Supp. Fig. 2). This indicates that they can provide 

distinct information on the impact of each alteration and that mutations highly selected for 

may still require numerous other alterations in order to induce full cancerous transformation. 

We defined epistatic interactions as the ratio of co-occurrence between two genes given their 

respective frequencies and the number of mutations per sample in a cohort, using 

hypergeometric probabilities (see Methods). The most negative interaction was the one 
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found between known antagonists BRAF and NRAS in melanoma (Curtin et al., 2005), while 

the most positive interactions included those between AURKA gain, APC and TP53 

mutations in colorectal cancer (Fig. 2E). Across cancers, CNAs tended to frequently co-occur 

with each other and TP53 mutations (Supp. Fig. 4), in agreement with the role of TP53 in 

promoting genome instability, which then accelerates CNA acquisition (Martinez et al., 2016; 

Sansregret, Vanhaesebroeck, & Swanton, 2018). 

Model selection 

In this study, we aim to calculate the adaptation of genetic clones that reached invasive 

potential in each tumour type. We decide to model LMA as the sum of the contribution of all 

clonal drivers in a sample using different models, corresponding to distinct combinations of 

the 3 parameters previously calculated. The selective advantage and self-sufficiency 

parameters correspond to the intrinsic component of LMA, as they solely depend on 

individual driver properties. Epistatic interactions define the interactive component of LMA, 

depending on interaction between all drivers present in a sample. We used four models 

based on these two criteria: either combining (“combined”) or separating (“separate”) 

selective advantage and self-sufficiency; and either quantifying the epistatic interactions as 

the mean of all interactions between a driver and its partners (“mean”) or the product of these 

interactions (“product”). We then established the optimal weights for all components of each 

model that minimised the variation in LMA across all samples on a tumour type basis (see 

Methods). This objective function aims at producing data matching our assumption that the 

initiating clones in different tumours of the same type are all similarly well adapted in this 

landscape. 

We evaluated the relevance of these models by calculating the prevalence of each 

component in the LMA score of all samples on a per set basis, as well as the correlation 

between LMA and the number of drivers in each sample (Fig. 3). Both models separating the 

intrinsic component of LMA were found to be optimal by down-weighing selection strength 

and the resulting scores were often dominated by a single component, often being self-

sufficiency (Fig. 3A-B, Supp. Fig. 5). In addition, the separate_mean model diminished the 

contribution of epistatic interactions, while they appeared as major contributors in several 

tumour types under the separate_prod model. A similar observation was made for the 

combined models, in which the epistatic interactions were down-weighted in the 

combined_mean model while this was not the case in the combined_prod model (Fig. 3C-D). 

Under all models and in most tumour types, the resulting LMA score of a sample was highly 

correlated to its number of drivers (all p<0.001, Fig. 3E). The combined_prod model was 

however the model in which LMA and number of drivers were the least correlated (p<0.01 

against all other models, paired Wilcoxon test). We therefore elected the combined_prod 

model as the most appropriate of the 4 models to calculate LMA, as it was less dominated by 

a single component and was less likely to measure adaptation as a static process of stacking 

up driver alterations. 

Differences among and within cancer types 

We measured the percentage of the LMA scores accountable to the intrinsic component for 

each sample of each tumour type (Fig. 3F). Our results suggest our assumption that all 

malignancies are equivalently adapted to their local environment could rely on different 

evolutionary dynamics in different tissue-specific contexts. Colorectal, head & neck and lung 
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(adenocarcinomas and squamous cell) cancers were defined by a prevalence of the intrinsic 

component in the scores of their specific samples, while the interactive component prevailed 

in glioblastoma. Interestingly, we observed a high variability in the share of each LMA score 

component of all samples in many tumour types, particularly in breast cancer. These 

observations reflect the extensive heterogeneity recurrently observed both inter- and intra-

tumour at the genetic and phenotypic levels, which can be mirrored by our occurrence-based 

framework to calculate local malignant adaptation. 

Pre-malignant lesions are specifically adapted to the local landscape 

We analysed two published cohorts of pre-malignant lesions linked to melanomas and 

colorectal carcinomas (CRC), to understand whether these precursors differed from full-

blown tumours in our measure of adaptation. We first analysed 30 malignant and 23 benign 

skin lesions from (Shain et al., 2015), including 18 precursor/melanoma pairs. We observed 

that the LMA score of the melanomas was consistently and significantly higher than the one 

of their paired benign precursor (p=0.001 paired Wilcoxon test, p=0.01 unpaired, Fig. 4A). 

We additionally analysed 9 colorectal adenomas and 11 carcinomas from (Cross et al, under 

review). Multiple samples were available for all cases (2-6 per adenoma, 4-13 per carcinoma, 

see Methods). The LMA of carcinomas was higher than the one of adenomas, although not 

significantly, possibly due to the limited sample size and absence of benign/malign pairing 

(p=0.37, Wilcoxon test, Fig. 4B). A similar trend was observed with significance when 

investigating individual biopsies rather than whole lesions, although the redundancy and 

uneven number of samples across cases may bias this observation (p=0.018, Wilcoxon test, 

Supp. Fig. 6). 

When we calculated the LMA scores of the 23 nevi and 9 adenomas in other tumour-type-

specific landscapes, they appeared more adapted respectively to the melanoma and CRC 

landscapes than to the other landscapes on average (p<0.001 and p=0.005, paired Wilcoxon 

test, Fig. 4C-D, Supp. Fig. 7). Our model is thus able to detect that pre-malignant lesions are 

specifically adapted to their local environment, further suggesting that additional evolutionary 

steps are still necessary to acquire locally invasive capacity. 

Metastasis does not rely on genetic adaptation to the distant site’s landscape 

We then applied our methods to metastatic samples, in order to shed light on whether the 

genetic basis of adaptation to an environment was as relevant for its metastatic colonisation 

as for local invasion. We used the MET500 dataset of 500 metastatic samples (Robinson et 

al., 2017) and used sample annotation to identify 170 samples for which we had a primary 

site LMA landscape (i.e. one of the 9 tumour types analysed), 82 samples with an available 

metastatic site landscape, and 35 for which the landscape of both metastatic and primary 

sites was known. Manual curation was employed to attribute a relevant tumour type to each 

sample (Supp. Tables 2 and 3). As we had 2 different potential landscapes corresponding to 

lung metastases (LUAD, adenocarcinoma, and LUSC, squamous cell cancer), all 

calculations were replicated by taking either type as default landscape for lung metastases. 

For the 35 samples with existing landscapes for the primary and metastatic sites, we 

observed that LMA scores were consistently higher in the primary site than in the metastatic 

one (p<0.001, paired Wilcoxon test, Fig. 5A and Supp. Fig. 8). This suggests that metastatic 

clones are more genetically adapted to the environment in which they originated than to the 

one they colonised. As for pre-malignant lesions, we analysed the LMA scores of each 
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sample in all the other tumour types. LMA in the landscape of the primary site was 

significantly higher than the average LMA in the other 8 landscapes (p<0.001, paired 

Wilcoxon test, Fig. 4B, Supp. Fig. 9), while we did not observe any difference when 

considering the adaptation in the metastatic site’s landscape (Fig. 5C, Supp. Fig. 10). This 

suggests that these genetic clones were specifically adapted to their environment of origin. 

However, their genetic makeup did not provide them with the potential to specifically adapt to 

their metastatic site as well as local primary tumours. 

TCGA landscapes as graphs 

Our results demonstrate that our LMA model can quantify genetic adaptation to specific 

somatic evolutionary contexts. Our method can further be combined to a network approach 

to understand adaptation dynamics as individual driver alterations accrue in a clone over 

time. Fitness landscapes can be represented by graphs (Diaz-Uriarte & Wren, 2018; Palmer 

et al., 2015) in which nodes are unique combinations of drivers, each with a distinct fitness. 

We reproduced such and architecture with our LMA scores, where edges connect nodes as 

additional drivers are added on top of previous combinations (Fig. 6A). This network 

architecture can represent all evolutionary trajectories as successive acquisitions of any 

given number of driver alterations. As such a combinatorial approach is computationally 

heavy, we restricted our analysis to the 15 most common alterations in each tumour type. 

This corresponds to a maximum of 32,767 unique combinations of driver alterations per 

tumour type. 

We took advantage of this framework to investigate how malignant adaptation to the local 

environment evolves in the 9 investigated TCGA tumour types, by following how genetic 

clones progress through the graph by acquiring new alterations. We observed differences in 

LMA dynamics depending on the properties of each tumour type. We see that in many cases 

LMA increases linearly on average with each novel driver, as can be expected from our 

approach based on summing the contextualised contributions to adaptation of each driver in 

a clone. However, tumour types in which our model predicted a high prevalence of epistatic 

interactions (GBM, BRCA) display a strong deviation from linearity (Fig. 6B). This is also 

reflected in how fast the maximum LMA score in the network is reached, with some tumour 

types displaying a log-like distribution with decreasing improvement with each additional 

alteration, while the maximum LMA of GBM increases exponentially (Fig. 6C). Interestingly, 

the maximum LMA for BLCA, BRCA and COAD is reached early and decreases after 

respectively 10, 12 and 13 alterations, as would be expected under diminishing returns 

epistasis (Chou, Chiu, Delaney, Segrè, & Marx, 2011). This highlights that our model can 

produce non-linear relationships between LMA and the number of drivers, depending on the 

nature of epistatic interactions among driver alterations. 

Finally, we investigated if these network representations could represent a basis on which to 

predict the evolutionary trajectories potentially leading to cancer. In all tumour types, we 

recorded all trajectories that reached a LMA score superior or equal to the median score 

observed in the corresponding TCGA cohort. The first node meeting such a criterion in a 

trajectory was considered final and its offspring nodes were not investigated. These 

trajectories thus represent all combinations of genes that likely lead to sufficient genetic 

adaptation for tumorigenesis. The number of drivers in these combinations was superior to 

the one observed in the actual sample, which was expected given that their LMA score had 

to be equal or higher than the dataset’s median (Fig. 6D-E). The mean number of required 

alterations is however strongly correlated to the mean number of clonal drivers observed in 
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each tumour type (R2=0.91, p < 0.001, Fig. 6F). This suggest that networks of contingency-

based adaptation metrics can thus provide a framework to both represent and study pre-

cancerous progression under a novel angle, while recapitulating the specificities of different 

tumour types. Their use can furthermore identify system-level properties of the evolutionary 

context that funnels malignant somatic evolution in different organs and environments. 

Discussion 

Here we developed a methodology to investigate the progression of normal cells towards 

oncogenesis, by way of measuring the adaptation of genetic clones to a given environment. 

Our method relies on the contingency and repeatability of cancer development, observed 

when multiple same-type cancers occur with distinct evolutionary trajectories in different 

human individuals. We built and optimised simple models to quantify Local Malignant 

Adaptation based on the presence of recurrent genetic alterations in 9 cohorts corresponding 

to 9 tumour types. This approach is similar to fitness landscapes that aim to map the space in 

which phenotypes evolve and adapt in evolutionary biology. We then applied our method to 

independent datasets of pre-malignant and metastatic lesions to analyse the impact of 

genetics in the adaptation to and the colonisation of different environments. 

Our exploratory model aimed at simplicity and still suffers from several limitations. First of all, 

our model is solely based on genetics and ignores the potential influence of a cell’s 

phenotypic state on its response to specific genetic insults, which can impact tumorigenesis 

(Morel et al., 2017; Puisieux, Pommier, Morel, & Lavial, 2018) or lead to non-genetic 

selection (Shaffer et al., 2017). It also ignores the contribution of epigenetic alterations as 

potential drivers, the inclusion of which will require a more general understanding on the 

recurrent epigenetic alterations functionally linked to tumour formation (Timp & Feinberg, 

2013). There furthermore exists no method to estimate the clonality of CNAs, thus hampering 

our accuracy in including only the truly clonal ones in LMA calculations. Despite the fact that 

our model includes epistatic relationships, it is unable to estimate the ordering of alterations, 

which can heavily influence evolutionary trajectories (Ortmann et al., 2015). Aside from 

genetic alterations, our model does not include the interactive adaptation relationship 

between a pre-invasive cell and its environment, the interplay between both being very likely 

to modify selective pressures as potential tumour-initiating cells develop (Bissell & Radisky, 

2001; Rozhok, Salstrom, & DeGregori, 2016; Scott & Marusyk, 2017). Finally, our work 

focuses on a single clone being responsible for initial local invasion, while it is possible that 

this process can involve multiple clones (Casasent et al., 2018). Such polyclonal invasion 

would however likely involve a recent common ancestor. Addressing these drawbacks in the 

future will allow to better stochastically model malignant progression. 

Despite these limitations, our model fits the hypothesis that carcinogenesis is likely a 

stepwise process. Our analyses highlighted that pre-malignant lesions were specifically 

adapted to their environment, yet insufficiently to promote local malignant invasion. This thus 

suggests that cancer arises when benign lesions acquire further driver alterations, at least in 

melanomas and colorectal carcinomas. In addition, the analysis of metastatic lesions 

suggested that genetics contributed to the formation of the primary tumours but were not a 

defining factor in the adaptation to the metastatic site. Metastasis to a specific site requires 

convergent evolution for clones from divergent backgrounds to adapt to the new environment 

(Cunningham, Brown, Vincent, & Gatenby, 2015). This adaptation may however not depend 

on novel genetic alterations, potentially relying on cellular plasticity (Varga & Greten, 2017), 
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or may involve completely different genetic determinants than ab-initio oncogenesis in the 

same site. 

Finally, we propose that this methodology could be combined with network approaches to 

model oncogenesis as a stochastic process and investigate systemic differences between 

tumour types. We report that our approach reflects the specificity of tumorigenesis in the 

different evolutionary contexts dictated by the tissue of origin. Future improvements could 

help the accurate reconstruction of tumorigenesis in-silico, allowing to computationally 

investigate new opportunities for early detection and prognostication. A recent method based 

on phylogenetics and machine-learning also detected patterns in the repeatability of cancer 

evolution, which can help classify patients on their prior (and likely future) evolutionary 

trajectories (Caravagna et al., 2018). By extension, reconstructing fitness/adaptation 

landscapes of already invasive tumours based on different therapeutic options can help tailor 

ad-hoc therapeutic regimens: based on the fitness and frequency of all (sub)clones 

composing each tumour, these landscapes can allow to optimise sequential drug schedules 

so as to dynamically reduce overall fitness (Nichol et al., 2017). Occurrence-driven definition 

of epistatic interactions requires large numbers of observations but can be completed by 

animal models in which driver combinations can be induced and followed over time (Rogers 

et al., 2018). The reconstruction of therapy-specific human fitness landscapes thus critically 

requires efforts to generate large, centralised public datasets, with accurate clinical 

annotation for each treatment type, ideally with samples before and after treatment. 

Author contributions 

PM designed the experiments. NT and PM analysed the data. CML and SS organised the 

collaboration. CML, AP, SS and PM supervised the work. PM wrote the article. All authors 

reviewed the article. 

Acknowledgements 

The results published here are in part based upon data generated by the TCGA Research 

Network: http://cancergenome.nih.gov/. International mobility and collaboration were 

facilitated by the International Alliance Research Internship (IARI, part of the Programmes 

d’Investissement d’Avenir) programme between the universities of Tokyo (UTokyo) and Lyon 

(UdL). The authors wish to thank William CH Cross and Trevor A Graham for their help with 

the colorectal data; as well as Benjamin Roche and Robert J Noble for valuable suggestions 

on the manuscript. 

Data archiving statement 

The code and data used for this analysis are available on github: 

https://github.com/pierremartinez/ConFitLand. 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/401059doi: bioRxiv preprint 

https://github.com/pierremartinez/ConFitLand
https://doi.org/10.1101/401059
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

Literature cited 

Armitage, P., & Doll, R. (1954). The age distribution of cancer and a multi-satge theory of 
carcinogenesis. British Journal of Cancer, VIII(I), 1–12. 
https://doi.org/10.1038/bjc.1954.1 

Bailey, S. F., Rodrigue, N., & Kassen, R. (2015). The Effect of Selection Environment on the 
Probability of Parallel Evolution. Molecular Biology and Evolution, 32(6), 1436–1448. 
https://doi.org/10.1093/molbev/msv033 

Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nature Reviews Cancer, 1(1), 
46–54. https://doi.org/10.1038/35094059 

Caravagna, G., Giarratano, Y., Ramazzotti, D., Tomlinson, I., Graham, T. A., Sanguinetti, G., 
& Sottoriva, A. (2018). Detecting repeated cancer evolution from multi-region tumor 
sequencing data. Nature Methods, 15(9), 707–714. https://doi.org/10.1038/s41592-018-
0108-x 

Casasent, A. K., Schalck, A., Gao, R., Sei, E., Long, A., Pangburn, W., … Navin, N. E. 
(2018). Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell 
Sequencing. Cell, 0(0). https://doi.org/10.1016/j.cell.2017.12.007 

Chou, H. H., Chiu, H. C., Delaney, N. F., Segrè, D., & Marx, C. J. (2011). Diminishing returns 
epistasis among beneficial mutations decelerates adaptation. Science, 332(6034), 
1190–1192. https://doi.org/10.1126/science.1203799 

Cunningham, J. J., Brown, J. S., Vincent, T. L., & Gatenby, R. A. (2015). Divergent and 
convergent evolution in metastases suggest treatment strategies based on specific 
metastatic sites. Evolution, Medicine, and Public Health, 2015(1), 76–87. 
https://doi.org/10.1093/emph/eov006 

Curtin, J. A., Fridlyand, J., Kageshita, T., Patel, H. N., Busam, K. J., Kutzner, H., … Bastian, 
B. C. (2005). Distinct Sets of Genetic Alterations in Melanoma. New England Journal of 
Medicine, 353(20), 2135–2147. https://doi.org/10.1056/NEJMoa050092 

Davies, P. C. W., & Lineweaver, C. H. (2011). Cancer tumors as Metazoa 1.0: tapping genes 
of ancient ancestors. Physical Biology, 8(1), 015001. https://doi.org/10.1088/1478-
3975/8/1/015001 

Diaz-Uriarte, R., & Wren, J. (2018). Cancer progression models and fitness landscapes: a 
many-to-many relationship. Bioinformatics, 34(5), 836–844. 
https://doi.org/10.1093/bioinformatics/btx663 

Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 
61(5), 759–67. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2188735 

Fischer, A., Vázquez-García, I., Illingworth, C. J. R., & Mustonen, V. (2014). High-definition 
reconstruction of clonal composition in cancer. Cell Reports, 7(5), 1740–52. 
https://doi.org/10.1016/j.celrep.2014.04.055 

Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., … 
Swanton, C. (2012). Intratumor heterogeneity and branched evolution revealed by 
multiregion sequencing. The New England Journal of Medicine, 366(10), 883–92. 
https://doi.org/10.1056/NEJMoa1113205 

Gonzalez-Perez, A., & Lopez-Bigas, N. (2012). Functional impact bias reveals cancer 
drivers. Nucleic Acids Research, 40(21), e169. https://doi.org/10.1093/nar/gks743 

Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Tamborero, D., Schroeder, M. P., 
Jene-Sanz, A., … Lopez-Bigas, N. (2013). IntOGen-mutations identifies cancer drivers 
across tumor types. Nature Methods, 10(11), 1081–1082. 
https://doi.org/10.1038/nmeth.2642 

Gould, S. (1990). Wonderful Life: The Burgess Shale and the Nature of History. {W. W. 
Norton}. Retrieved from citeulike-article-id:2287032 

Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–13. 
https://doi.org/10.1038/nature10762 

Lässig, M., Mustonen, V., & Walczak, A. M. (2017). What makes evolution predictable? 
NATURE ECOLOGY & EVOLUTION, 1. https://doi.org/10.1038/s41559-017-0077 

Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A., … 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/401059doi: bioRxiv preprint 

https://doi.org/10.1101/401059
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

Getz, G. (2013). Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature. https://doi.org/10.1038/nature12213 

Martincorena, I., Raine, K. M., Gerstung, M., Dawson, K. J., Haase, K., Van Loo, P., … 
Campbell, P. J. (2017). Universal Patterns of Selection in Cancer and Somatic Tissues. 
Cell. https://doi.org/10.1016/j.cell.2017.09.042 

Martinez, P., Mallo, D., Paulson, T. G., Li, X., Sanchez, C. A., Reid, B. J., … Maley, C. C. 
(2018). Evolution of Barrett’s esophagus through space and time at single-crypt and 
whole-biopsy levels. Nature Communications, 9(1), 794. https://doi.org/10.1038/s41467-
017-02621-x 

Martinez, P., Timmer, M. R., Lau, C. T., Calpe, S., Sancho-Serra, M. del C., Straub, D., … 
Krishnadath, K. K. (2016). Dynamic clonal equilibrium and predetermined cancer risk in 
Barrett’s oesophagus. Nature Communications, 7, 12158. 
https://doi.org/10.1038/ncomms12158 

McGranahan, N., Favero, F., de Bruin, E. C., Birkbak, N. J., Szallasi, Z., & Swanton, C. 
(2015). Clonal status of actionable driver events and the timing of mutational processes 
in cancer evolution. Science Translational Medicine, 7(283), 283ra54-283ra54. 
https://doi.org/10.1126/scitranslmed.aaa1408 

Morel, A.-P., Ginestier, C., Pommier, R. M., Cabaud, O., Ruiz, E., Wicinski, J., … Puisieux, 
A. (2017). A stemness-related ZEB1–MSRB3 axis governs cellular pliancy and breast 
cancer genome stability. Nature Medicine, 23(5), 568–578. 
https://doi.org/10.1038/nm.4323 

Nichol, D., Rutter, J., Bryant, C., Jeavons, P., Anderson, A., Bonomo, R., & Scott, J. (2017). 
Collateral sensitivity is contingent on the repeatability of evolution. BioRxiv, 185892. 
https://doi.org/10.1101/185892 

Nik-Zainal, S., Van Loo, P., Wedge, D. C., Alexandrov, L. B., Greenman, C. D., Lau, K. W., 
… Campbell, P. J. (2012). The life history of 21 breast cancers. Cell, 149(5), 994–1007. 
https://doi.org/10.1016/j.cell.2012.04.023 

Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science (New York, 
N.Y.), 194(4260), 23–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/959840 

Ortiz-Estevez, M., Aramburu, A., Bengtsson, H., Neuvial, P., & Rubio, A. (2012). CalMaTe: a 
method and software to improve allele-specific copy number of SNP arrays for 
downstream segmentation. Bioinformatics (Oxford, England), 28(13), 1793–4. 
https://doi.org/10.1093/bioinformatics/bts248 

Ortmann, C. A., Kent, D. G., Nangalia, J., Silber, Y., Wedge, D. C., Grinfeld, J., … Green, A. 
R. (2015). Effect of Mutation Order on Myeloproliferative Neoplasms. New England 
Journal of Medicine, 372(7), 601–612. https://doi.org/10.1056/NEJMoa1412098 

Palmer, A. C., Toprak, E., Baym, M., Kim, S., Veres, A., Bershtein, S., & Kishony, R. (2015). 
Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes. 
Nature Communications, 6, 7385. https://doi.org/10.1038/ncomms8385 

Puisieux, A., Pommier, R. M., Morel, A. P., & Lavial, F. (2018). Cellular Pliancy and the 
Multistep Process of Tumorigenesis. Cancer Cell, 33(2), 164–172. 
https://doi.org/10.1016/j.ccell.2018.01.007 

Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R. F., WGS500 Consortium, A. O. 
M., … Lunter, G. (2014). Integrating mapping-, assembly- and haplotype-based 
approaches for calling variants in clinical sequencing applications. Nature Genetics, 
46(8), 912–918. https://doi.org/10.1038/ng.3036 

Robinson, D. R., Wu, Y.-M., Lonigro, R. J., Vats, P., Cobain, E., Everett, J., … Chinnaiyan, A. 
M. (2017). Integrative clinical genomics of metastatic cancer. Nature. 
https://doi.org/10.1038/nature23306 

Rogers, Z. N., McFarland, C. D., Winters, I. P., Seoane, J. A., Brady, J. J., Yoon, S., … 
Winslow, M. M. (2018). Mapping the in vivo fitness landscape of lung adenocarcinoma 
tumor suppression in mice. Nature Genetics 2018, 1. https://doi.org/10.1038/s41588-
018-0083-2 

Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M., Kidd, K. K., Zhivotovsky, L. A., 
& Feldman, M. W. (2002). Genetic structure of human populations. Science, 298(5602), 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/401059doi: bioRxiv preprint 

https://doi.org/10.1101/401059
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

2381–2385. https://doi.org/10.1126/science.1078311 
Rozhok, A. I., Salstrom, J. L., & DeGregori, J. (2016). Stochastic modeling reveals an 

evolutionary mechanism underlying elevated rates of childhood leukemia. Proceedings 
of the National Academy of Sciences of the United States of America. 
https://doi.org/10.1073/pnas.1509333113 

Rubio-Perez, C., Tamborero, D., Schroeder, M. P., Antolín, A. A., Deu-Pons, J., Perez-
Llamas, C., … Lopez-Bigas, N. (2015). In Silico Prescription of Anticancer Drugs to 
Cohorts of 28 Tumor Types Reveals Targeting Opportunities. Cancer Cell, 27(3), 382–
396. https://doi.org/10.1016/j.ccell.2015.02.007 

Sansregret, L., Vanhaesebroeck, B., & Swanton, C. (2018). Determinants and clinical 
implications of chromosomal instability in cancer. Nature Reviews Clinical Oncology, 
15(3), 139–150. https://doi.org/10.1038/nrclinonc.2017.198 

Scott, J., & Marusyk, A. (2017). Somatic clonal evolution: A selection-centric perspective. 
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 
https://doi.org/10.1016/j.bbcan.2017.01.006 

Shaffer, S. M., Dunagin, M. C., Torborg, S. R., Torre, E. A., Emert, B., Krepler, C., … Raj, A. 
(2017). Rare cell variability and drug-induced reprogramming as a mode of cancer drug 
resistance. Nature, advance on. Retrieved from http://dx.doi.org/10.1038/nature22794 

Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., … Bastian, B. C. 
(2015). The Genetic Evolution of Melanoma from Precursor Lesions. New England 
Journal of Medicine, 373(20), 1926–1936. https://doi.org/10.1056/NEJMoa1502583 

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. 
(2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular 
Interaction Networks. Genome Research, 13(11), 2498–2504. 
https://doi.org/10.1101/gr.1239303 

Timp, W., & Feinberg, A. P. (2013). Cancer as a dysregulated epigenome allowing cellular 
growth advantage at the expense of the host. Nature Reviews Cancer, 13(7), 497–510. 
https://doi.org/10.1038/nrc3486 

Van Loo, P., Nordgard, S. H., Lingjærde, O. C., Russnes, H. G., Rye, I. H., Sun, W., … 
Kristensen, V. N. (2010). Allele-specific copy number analysis of tumors. Proceedings of 
the National Academy of Sciences of the United States of America, 107(39), 16910–5. 
https://doi.org/10.1073/pnas.1009843107 

Varga, J., & Greten, F. R. (2017). Cell plasticity in epithelial homeostasis and tumorigenesis. 
Nature Cell Biology, 19(10), 1133–1141. https://doi.org/10.1038/ncb3611 

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., & Kinzler, K. W. 
(2013). Cancer genome landscapes. Science (New York, N.Y.), 339(6127), 1546–58. 
https://doi.org/10.1126/science.1235122 

Yates, L. R., & Campbell, P. J. (2012). Evolution of the cancer genome. Nature Reviews 
Genetics, 13(11), 795–806. https://doi.org/10.1038/nrg3317 

Yates, L. R., Knappskog, S., Wedge, D., Farmery, J. H. R., Gonzalez, S., Martincorena, I., … 
Campbell, P. J. (2017). Genomic Evolution of Breast Cancer Metastasis and Relapse. 
Cancer Cell, 32(2), 169–184.e7. https://doi.org/10.1016/j.ccell.2017.07.005 

Yeaman, S., Gerstein, A. C., Hodgins, K. A., & Whitlock, M. C. (2018). Quantifying how 
constraints limit the diversity of viable routes to adaptation. BioRxiv, 279661. 
https://doi.org/10.1101/279661 

Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A. D., Saksena, G., Tabak, B., … 
Beroukhim, R. (2013). Pan-cancer patterns of somatic copy number alteration. Nature 
Genetics, 45(10), 1134–1140. https://doi.org/10.1038/ng.2760 

Zapata, L., Pich, O., Serrano, L., Kondrashov, F. A., Ossowski, S., & Schaefer, M. H. (2018). 
Negative selection in tumor genome evolution acts on essential cellular functions and 
the immunopeptidome. Genome Biology, 19(1), 67. https://doi.org/10.1186/s13059-018-
1434-0 

Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., … Flicek, P. 
(2018). Ensembl 2018. Nucleic Acids Research, 46(D1), D754–D761. 
https://doi.org/10.1093/nar/gkx1098 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/401059doi: bioRxiv preprint 

https://doi.org/10.1101/401059
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

Figure legends 

 

Fig. 1 – Repeatability of cancer evolution. A) Jaccard distances between the clonal 

genetic makeup of samples in the TCGA (left, vivid colours) and randomised controls (right, 

light colours) for each of the 9 tumour types. B) Jaccard distances in the TCGA data 

normalised via division by the 95th percentile of each corresponding randomised data. 

Horizontal red line highlights a value of 1 (no difference). The percentage of observations 

exceeding the simulated 95th percentile is reported left of each distribution. boxes represent 

the middle quartiles; black horizontal bars represent the median of each distribution; whiskers 

extend up to 1.5 times the interquartile range (box height) away from the box. Outliers 

(beyond the whiskers) are not displayed. 

 

Fig. 2 – Evolutionary parameters of Local Malignant Adaptation. A) General scheme. 

Selective advantage is computed from the repartition of alterations per gene, self-sufficiency 

and epistatic interactions are calculated from the repartition of alterations per patient. The 

parameters are combined according to different models to calculate the LMA of all tumour-

initiating clones in each cohort. The parameters corresponding to the lowest deviation in the 

overall LMA score across specimens are selected. B) Number of additional drivers observed 

in samples harbouring the 20 most frequent alterations in COAD (colorectal 

adenocarcinoma) and C) LUSC (lung squamous cell carcinoma). Horizontal green bars 

represent the median; diamonds represent the mean. Blue means significantly fewer partners 

than expected, red means significantly more. Dotted line indicates the overall mean. D) 

Epistatic interactions between all retained drivers in COAD (top right) and SKCM (skin 

melanoma, bottom left). Blue indicates negative interaction due to co-occurrences rarer than 

expected, red indicates positive interactions (higher co-occurrence than expected). 

 

Fig. 3 – Model selection. A-B) Optimal weights found for selective advantage, self-

sufficiency and epistatic interactions in the “separate” models (log10 scale). A) 

separate_mean; B) separate_prod. C-D) Optimal weights found for the intrinsic (selective 

advantage x self-sufficiency) and interactive (epistatic interactions) components of the 

combined models (log10 scale). C) combined_mean; D) combined_prod. E) Distribution of R2 

values for the correlation between Local Malignant Adaptation and number of drivers in all 9 

tumour types according to all 4 models. F) Share of the LMA score of each tumour specimen 

corresponding to the intrinsic component using the combined_prod model in all tumour types. 

 

Fig. 4 – Pre-malignant lesions. A) Normalised LMA scores of paired melanomas (left) and 

their precursor lesions (right). B) Normalised LMA scores of unpaired colorectal carcinomas 

(left) and adenomas (right). C) Normalised LMA scores of nevi in the SKCM landscape (left) 

and in the 8 other landscapes on average (right). D) Normalised LMA scores of adenomas in 

the COAD landscape (left) and in the 8 other landscapes on average (right). 

 

Fig. 5 – Metastatic lesions. A) Normalised LMA scores of 35 lesions with landscapes 

existing for both primary and metastatic site. Left, LMA in the primary site’s landscape; right, 

LMA in the metastatic site’s landscape. B) Normalised LMA scores of 170 lesions with a 

primary site landscape in their specific landscape (left), or in the other 8 landscapes on 

average (right). C) Normalised LMA scores of 82 lesions with a metastatic site landscape in 

their specific landscape (left), or in the other 8 landscapes on average (right).  
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Fig. 6 – Graphs of Local Malignant Adaptation. A) Example graph with the 5 most 

common driver alterations in colorectal cancer (COAD). Nodes are combinations of 

alterations, each connected to all possible previous and posterior combinations of step-by-

step driver acquisition. LMA is increasingly coloured in blue to red to yellow. An example of 

evolutionary trajectory in which a clone subsequently acquires 4 mutations is highlighted by a 

green dashed line throughout the network. B) Average and C) maximum node LMA score per 

number of driver alterations in all tumour types. Landscapes were limited to the 15 most 

prominent drivers of each tumour type. D) Number of clonal drivers per TCGA patient and E) 

number of drivers in all evolutionary trajectories allowing to reach a minimal LMA score equal 

to the median TCGA score of the same tumour type. Yellow bars indicate the mean of each 

tumour type, dotted line indicates the overall mean. F) Correlation between the mean number 

of clonal drivers actually observed in TCGA patients and the mean number of drivers 

required to reach at least the median TCGA score in the corresponding landscape. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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