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Abstract

Neuronal oscillations are ubiquitous in the human brain and are implicated in virtually all brain functions.
Often they are referred to by their frequency content, i.e., α-, β-, γ-oscillations. Although they indeed can be
described by a prominent peak in the power spectrum, their waveform is not necessarily sinusoidal and shows a
rather complex morphology which needs to be captured with multiple spectral harmonics. Both frequency and
temporal descriptions of such non-sinusoidal neuronal oscillations can be utilized. However, in non-invasive
EEG/MEG recordings the waveform of oscillations often takes a sinusoidal shape which in turn leads to a
rather oversimplified view on oscillatory processes.

In this study, we show in simulations how spatial synchronization can mask non-sinusoidal features of the
underlying rhythmic neuronal processes. Consequently, the degree of non-sinusoidality can serve as a measure
of spatial synchronization. To confirm this empirically, we show that a mixture of EEG components is indeed
associated with more sinusoidal oscillations compared to the waveform of oscillations in each constituent
component. Using simulations, we also show that the spatial mixing of the non-sinusoidal neuronal signals
strongly affects the amplitude ratio of the spectral harmonics constituting the waveform. This in turn has high
relevance for the interpretation of the relative strength of spectral peaks, which is commonly used for inferring
neuronal signatures corresponding to specific behavioral states.

Moreover, our simulations show how spatial mixing can affect the strength and even the direction of the
amplitude coupling between constituent neuronal harmonics. Consistently with these simulations, we also
demonstrate these effects in real EEG recordings. Our findings have far reaching implications for the neu-
rophysiological interpretation of neuronal oscillations and cross-frequency interactions, as well as for the
unequivocal determination of oscillatory phase.

1. Introduction

Neuronal oscillations are ubiquitous in the human
brain, being present in both cortical and subcortical
structures. Moreover, they have been shown to be
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relevant for sensory [1, 2], motor [3, 4] and cognitive
[5, 6] functions. Traditionally, neuronal oscillations
as recorded by EEG/MEG are considered to be si-
nusoidal. This observation is particularly driven by
the analysis tools frequently used in neuroscience.
These often include Fourier, Morlet wavelet and Ga-
bor transforms, all of which use sinusoids as a basis
function [7]. There is no a-priori reason why ex-
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actly these basis functions would be most relevant for
describing neuronal oscillations. Many nonlinear pe-
riodic processes in nature are in fact quasi-sinusoidal
[8]. For instance, the non-sinusoidal nature of ocean
waves has for long time been recognized [9], where
it was emphasized that conventional spectral analy-
sis is not sensitive to the non-sinusoidal nature of
periodic processes. Due to the complexity of such
waves, analysis in time domain is often suggested and
elaborate measures of horizontal and vertical asym-
metries have been presented [10]. A similar claim
has been recently voiced for large scale neuronal os-
cillations [11], which represent a particularly good
example where many nonlinearities are present in-
cluding thresholds, exponential decays and non-linear
coupling between neuronal elements. It is therefore
not surprising that often neuronal recordings only
approximately resemble sinusoidal processes espe-
cially when they are obtained with invasive techniques
[12, 13]. This in turn indicates that other concepts
and analysis tools are needed for a more adequate
description of periodic neuronal processes recorded
with EEG/MEG.

Waveform was largely neglected in large scale EEG/
MEG analysis up until recently [14, 15]. However, the
reasons why non-invasive neuronal recordings rather
show sinusoidal oscillations in contrast to invasive
recordings have not yet been clearly identified. Some
evidence for non-sinusoidality is also visible in the
spectral domain, as non-sinusoidal processes are man-
ifested through the presence of additional peaks being
usually integer multiples of the base frequency. Spec-
tral harmonic peaks are often observed in LFP and
EEG/MEG recordings. For instance, a spectral peak
in β-frequency range has been found to be exactly
twice the individual α-frequency peak [16, 17, 18].

The waveform of oscillations is also important for
the understanding of non-linear neuronal interactions.
which can be carried out not only within the same
frequency band (e.g., α, β, γ) but also across dif-
ferent bands. In this case they are referred to as
cross-frequency interactions and describe a mecha-
nism through which spatially and spectrally distributed
information can be integrated in the brain [19]. The
extent to which the presence of such cross-frequency
interactions can be due to spurious effects, particu-

larly due to non-sinusoidal waveform of oscillations
is being debated [20, 21, 22].

Furthermore, a description of oscillations which takes
into account their non-sinusoidal waveform has impli-
cations for the understanding of oscillatory phase.
Oscillatory phase is important in theories of neu-
ronal processing [23, 24, 25], reflecting a change
in membrane potential for many synchronous neu-
rons. This in turn results in changes in cortical ex-
citability, which has been associated with periodic
inhibition. A non-sinusoidal waveform is associated
with a deviation from a 50% duty cycle and with a
non-uniform phase velocity [26]. This in turn would
lead to non-uniform changes in cortical excitability
and subthreshold stimulus detection rates along the
oscillation cycle.

Here, we investigate measures for quantifying non-
sinusoidality in the time domain, with simulation and
analysis primarily focused on α- and β-oscillations
in EEG recordings. The aim of the present study is
to show that the degree of non-sinusoidality in oscil-
lations may depend on the spatial mixing of the neu-
ronal sources reflected in EEG/MEG/LFP recordings.
Depending on synchronization strength and the tem-
poral delay between neuronal populations, the result-
ing waveform of oscillations can vary from strongly
non-sinusoidal to sinusoidal. Spatial mixing will in-
fluence measures such as amplitude envelope correla-
tions and α/β-ratio, as different temporal delays will
cancel or enhance different frequency components of
the non-sinusoidal waveform. Moreover, this might
lead to spurious inferences about cross-frequency in-
teractions, which may rather relate to changes in the
waveform reflecting in turn changes in spatial syn-
chronization.

2. Materials and Methods

2.1. Experimental Recordings

2.1.1. Participants

The study protocol conformed to the Declaration of
Helsinki and by the ethics committee at the medical
faculty of the University of Leipzig (reference num-
ber 154/13-ff). The EEG data were previously col-
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lected as part of the “Leipzig Cohort for Mind-Body-
Emotion Interactions” data set (LEMON) which is
currently being prepared for release. Written informed
consent was obtained prior to the experiment from all
participants. Data from 13 participants were excluded
due to missing event information, different sampling
rate, mismatching header files or insufficient data
quality. Additionally, data from 17 participants was
excluded for insufficient signal-to-noise ratio (see sec-
tion Data analysis and Statistics). This resulted in data
sets from 186 participants (117 male, 69 female, age
range: 20–70 years) with no history of neurological
disease and usage of CNS drugs.

2.1.2. EEG setup

Scalp EEG was recorded from a 62-channel active
electrode cap (ActiCAP, Brain Products GmbH, Ger-
many), with 61 channels in the international 10-20
system arrangement and one additional electrode be-
low the right eye recording vertical eye movements.
The reference electrode was located at electrode po-
sition FCz, the ground was located at the sternum.
Electrode impedance was kept below 5 kΩ. Data
were acquired with a BrainAmp MR plus amplifier
(Brain Products GmbH, Germany) at an amplitude
resolution of 0.1 µV with a bandpass filter between
0.015 Hz and 1 kHz and with a sample rate of 2500 Hz.
The recordings were performed in a sound attenuated
EEG booth.

The experimental session was divided into 16 blocks,
each lasting 60 s, with two conditions interleaved,
eyes closed (EC) and eyes open (EO), starting in the
EC condition. Participants were instructed to fixate
on a digital fixation cross during EO blocks. Changes
between blocks were announced with the software
Presentation (v16.5, Neurobehavioral Systems Inc.,
USA). Only data from the EC condition were used
for analysis.

2.2. Data analysis and computational modelling

2.2.1. Measures for assessing non-sinusoidality

To exploit the vast richness of the momentary EEG-
signal, we utilize measures of waveform shape in the
raw signal with only limited band-pass filtering. The

waveform features of an asymmetric signal are illus-
trated in Fig. 1. The crest period Tc is defined as
the time from up-crossing to the next down-crossing.
Conversely, the trough period Tt is the time from
down-crossing to next-up-crossing. Each period is
associated with two amplitude values, the crest ampli-
tude Ac and the trough amplitude At. We propose to
assess the non-sinusoidality of a signal by considering
the ratio of the crest period versus the trough period
Tc−Tt
Tc+Tt

, termed CT-difference. The more this value

deviates from 0, the more non-sinusoidal the signal
is. For more stable estimation, this can be done over

several segments of data, with ∆CT=
mean(Tc−Tt)
mean(Tc+Tt)

.

To compute Tc and Tt-values for empirical as well
as synthetic data, we used the WAFO toolbox [10],
originally developed for the analysis of ocean waves.
For computation of ∆CT, EEG data were bandpass
filtered in the frequency band 3–45 Hz (Butterworth,
filter order = 4). We used all periods with associated
pooled crest and trough amplitudes larger than the
50th amplitude percentile in order to avoid a con-
tamination with 1/f-noise in EEG signals. Similar
measures for the description of oscillatory waveform
have also been proposed by Cole and Voytek [14].
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Figure 1: Illustration: features of a non-sinusoidal wave-
form. The trough period Tt and the associated trough amplitude
At and the crest period Tc and associated crest amplitude Ac.
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2.2.2. Time series simulations

To study properties of the proposed measures, we
employed the following simulation procedure: First,
basis functions with an arc-shape waveform were con-
structed, resembling the non-sinusoidal activity of
a source. The waveform is composed of two sinu-
soids, the α-component with the base frequency of
10 Hz, and the β-component with a frequency of
20 Hz [27]. The sinusoids have a fixed phase shift
relative to each other, the power of the β-component
is four times smaller than the α-component: µ(t) =
A1 · sin(f · 2π · t) + A2 · sin(2f · 2π · t + ψ), with
A1 = 1, A2 = 0.25, f = 10 Hz, ψ = 1. The wave-
form is asymmetric by construction, see Fig. 1 for the
waveform and corresponding features. In a second
step, signals from N sources which have a tempo-
ral shift φi relative to each other, with φi ∼ N (0, σ)
were added to result in a compound signal X(t) =∑N

i=1 µ(t− φi). The sources represent spatially close
neuronal populations participating in the generation
of the compound signal. In some cases, the basis
signals were amplitude-modulated (resulting in the
same amount of amplitude modulation for α and β-
components) to produce amplitude envelopes with a
1/f-distribution as found in real EEG recordings.

2.3. Simulation of α/β-ratios and amplitude envelopes

α/β-ratios and amplitude envelope correlations were
evaluated using the compound signal X(t). The com-
pound signal was composed of 20 sources, mixed
with temporal delays drawn from a normal distribu-
tion with mean 0 and varying values for the standard
deviation σ. α/β-ratios were calculated as the ratios
of α- and β-SNR values of the compound signal, eval-
uated over time series segments of varying length.
Here, α-SNR was taken as oscillatory power at the
α-peak frequency and β-SNR as the oscillatory power
at twice that frequency. Power was computed by FFT,
Hann window, 1 s window length, 50% overlap. To in-
vestigate time courses between α- and β-components
of the compound signal, we calculate correlations
between their amplitude envelopes. Amplitude en-
velopes were calculated by individually bandpass-
filtering the compound signal in the base frequency
range and first harmonic frequency range ±2 Hz, re-
spectively (Butterworth, filter order = 9). Amplitudes

envelopes were determined for each frequency band
by the means of the Hilbert transform. Then, the
Spearman rank correlation coefficient was calculated
between α- and β- amplitude envelopes. The calcula-
tion was repeated 1000 times, every time using a new
instantiation of the compound signal, sampling new
temporal shifts and 1/f-noise for amplitude modula-
tion.

2.3.1. EEG data analysis and Statistics

The BBCI toolbox [28] was used for EEG data anal-
ysis. The data were downsampled from 2500 Hz
to 250 Hz, bandpass filtered in the frequency range
1–45 Hz (Butterworth filter, filter order 4). Visual in-
spection was utilized to exclude outlier channels with
frequency shifts in voltage and poor signal quality and
data intervals with extreme peak-to-peak deflections
or large bursts of high frequency activity. Principal
component analysis (PCA) was used for dimension-
ality reduction by keeping PCs that explain 95% of
the total data variance. Next, independent component
analysis (ICA) based on the Infomax algorithm was
performed. Components reflecting eye movement,
eye blink or heartbeat related artifacts were removed.
Remaining independent components (mean number:
21.4, range: 14–28) were projected back to sensor
space for further analysis.

As we are interested in oscillatory activity, only par-
ticipants with sufficient signal-to-noise ratio in the
α-band were included. To determine this, EEG time
series were spatially filtered with a Laplacian filter,
and the frequency spectrum (FFT, Hann window, 1 s
window length, 50% overlap) was computed. The
SNR-values of spectral peaks in the α-band (8–13 Hz)
were considered with the 1/f-component removed by
fitting a polynomial function to the computed spec-
trum and subtracting the estimated 1/f-fit [27]. Partic-
ipants were included if at least one channel displayed
a SNR > 5 dB in the α-band, as evaluated over the
whole recording length.

The LEMON data set was available with sampling
frequency of 250 Hz. To improve estimation of zero-
crossing timing, the data was interpolated to a sam-
pling frequency of 1000 Hz (spline interpolation), for
1 millisecond precision of Tc and Tt-values. For the
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extraction of oscillatory components, spatial-spectral
decomposition (SSD) [29] was used. The frequency
band of interest was identified as the subject-individual
spectral peak in α-frequency range ± 2 Hz. All SSD
components with SNR > 5 dB were kept. For demon-
strations, we generated synthetic compound signals
from data by adding extracted SSD components with
a varying time shift. Empirical α/β-ratios were calcu-
lated as the ratio of α- and β-SNR values, evaluated
over segments of varying time length. The subtrac-
tion of 1/f-fit was not performed here, as its estima-
tion becomes unstable for segments of short length.
Amplitude envelopes were calculated with the same
parameters as for the synthetic compound signals.

3. Results

3.1. Waveforms become more sinusoidal with decreased
spatial synchronization

Spatial mixing of non-sinusoidal sources results in
more sinusoidal compound signals. Considering the
example in Fig. 2a, seven basis signals are added with
temporal delays drawn from a normal distribution.
The compound mean signal has lost its asymmetri-
cal shape and shows no difference between crest and
trough periods (shown for one oscillation cycle in
Fig. 2b), compared to the basis functions. Note that
the disappearance of the non-sinusoidal waveform is
not due to the changes in SNR but due to the time de-
lay between individual sources. As a temporal delay
of e.g. 10 ms is equivalent to 1

5
π for the α-component,

but twice as large, 2
5
π for the β-component, this leads

to faster attenuation of the β-component.

To quantify the attenuation of the faster component,
we computed the power spectrum of the compound
signal X(t) by the Fourier transform as a function of
standard deviation of the temporal delays σ. The ana-
lytical solution is proportional to exp(2 (π · σ · f ·N)2),
as obtained by Fourier analysis of the compound sig-
nal as a function of σ. The quadratic dependency on
the frequency term results in a faster attenuation of
higher frequencies, as seen in Fig. 2c. This results in
a more sinusoidal signal for larger values of σ. Not
only spectral power, but also the proposed measure
for non-sinusoidality in the temporal domain is able

to detect non-sinusoidality in the compound signal as
a deviation from 0 (see Fig. 2d). In our unconstrained
simulations, the spectral peak of the β-component can
be higher than the spectral peak of the α-component
(see also later sections in the results). In this case,
extreme ∆CT values are observed, leading to an in-
creased standard deviation for large temporal delays.
The implication is that the degree of non-sinusoidality
present in the waveform can serve as an indicator of
spatial synchrony. It can also constrain the mixing
coefficients, which are known in simulations, but are
not known for real EEG recordings.

As an example for the ∆CT-measure, we illustrate
the Tc and Tt-distributions for different types of EEG
oscillations in the 8–13 Hz frequency band for an
exemplary participant. After SSD decomposition,
one motor and one visual component was identified
from the associated activation patterns. We compute
Tc and Tt for motor and posterior oscillations, shown
in Fig. 3. In this participant, a more non-sinusoidal
oscillation can be found for the motor-component.

3.2. Demixed recordings show higher degree of non-
sinusoidality

We quantified the extent to which ∆CT is affected
by a demixing procedure, which brings sensor sig-
nals closer to their sources. For this, ∆CT was com-
puted in sensor space recordings for all included par-
ticipants, as well as for SSD-extracted components.
SSD components have a higher ∆CT indicating a
higher degree of non-sinusoidality across participants
(p=5.7·10−15, two-sided Wilcoxon signed rank test),
as illustrated in Fig. 4.

The dependence of the ∆CT of SSD-components to
SNR was assessed by computing the SNR in the α-
frequency band via 1/f-corrected spectrum and ab-
solute value of ∆CT for all SSD-components with
α-SNR> 5 dB. We found a correlation of .242 (Spear-
man’s rho, p < 6.99 · 10−31) of absolute ∆CT with
α-SNR, with more non-sinusoidal signals as mea-
sured by ∆CT for higher SNR. Resorting the abso-
lute ∆CT-values according to their associated β-SNR
values shows that a β-SNR-level of the same magni-
tude as α-SNR of e.g∼8 dB is associated with higher
∆CT values. In other terms, a pronounced β-peak in
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Figure 2: Simulation: dependence of waveform measures on spatial mixing. (a) Illustration how non-sinusoidal waveforms add
up to a more sinusoidal compound signal if they are shifted with respect to each other with a certain standard deviation σ (example
for σ = 30 ms). (b) Examples of one cycle of source and compound waveforms and their respective zero-crossings with associated
∆CT values. (c) The relative power of the two frequency components of the compound signal as evaluated from the Fourier spectrum.
The β-component attenuates faster than the α-component. Number of iterations = 1000. Error bars indicate ± 1 SD. In simulations,
the obtained power for large temporal delays is constrained by the finite number of generators used and results in a deviation from the
analytical solution. (d) ∆CT for the compound signal drops as a function of the standard deviation σ. In unconstrained simulations,
SNRβ can get larger than SNRα, resulting in high values of ∆CT. Number of iterations = 1000. Error bars indicate ± 1 SD.
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Figure 3: Illustration: ∆CT differs for two EEG oscillatory components. Components extracted for one participant. Left: SSD
component pattern. Middle: for every oscillatory cycle, there are two corresponding ∆CT and Tc- and Tt-values. Red dot indicates
mean Tc- and Tt-values. Right: example time course excerpt of the signal. In this case, the motor component shows a characteristic
arc-like shape with larger non-sinusoidality than the posterior component.
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the 1/f-corrected spectrum corresponds to a higher de-
gree of non-sinusoidality than an α-peak of the same
magnitude. This observation is in agreement with
our simulations presented above indicating that the
presence of β-oscillations defines non-sinusoidality
of the waveform.

The topographic distribution of ∆CT-values can be
seen in Fig. 4d, which shows considerable variation
across participants. Although the group average in
Fig. 4a shows increased values for both central-motor
and occipital channels, on a single subject level either
a central-motor or an occipital maximum is rather vis-
ible. In sum, the non-sinusoidality of EEG recordings
is affected by spatial mixing of oscillatory sources
and also by SNR in relation to 1/f-noise.

3.3. Constructive and destructive interference with
respect to temporal delays

A spatial summation of basis signals with the same
spectral content but different temporal delays can
have differential consequences for the respective con-
stituent frequencies, enhancing or diminishing respec-
tive oscillatory power. We provide three examples for
this phenomenon.

3.3.1. Attenuation of the α-component and enhance-
ment of the β-component

Non-sinusoidal signals can mix in such a way that
the more prominent α-component is attenuated, while
higher harmonics are preserved. This will lead to
the emergence of β-events in the compound signal
without the strong presence of α-events, even though
the original source signals still have a high amount
of α-frequency spectral content. Fig. 5 shows two
basis segments of real EEG recordings which have
the same spectral content (the bottom one is the time-
reversed version of the top one), which are added with
varying temporal delays. Depending on this delay,
this results in periods in the compound signal where
the α-component is diminished, and a higher amount
of β-spectral content emerges. This phenomenon is
most pronounced if the temporal delay is approaching
π of the base oscillation (i.e. destructive interference),
which corresponds to 2π for the first harmonic (i.e.
constructive interference)

3.3.2. Influence of temporal delays on α/β-ratios

Next, we show the impact of spatial synchronization
on α/β-ratios in a simulation with a higher number
of source basis signals, each having identical spectral
content. As the temporal delay between source signals
increases, a spread in α- and β-SNR becomes visible,
as shown in Fig. 6.

A mixture of a larger number of source signals can
yield a change in spectral content of the compound
signal, even without any changes in the spectral con-
tent of the source basis signals. This has implications
for measures relating oscillatory power of two fre-
quencies, for instance α/β-ratio. Changes in these
measures may not necessarily reflect changes in spec-
tral content, but a change in temporal coupling of
non-sinusoidal signals.

α/β-ratios were also computed for real EEG record-
ings. A spread in these ratios is visible, see Fig. 7a.
Considering segments of short length, periods were β-
power is larger than α-power results in α/β-ratios< 1.
To summarize, in agreement with the simulations, we
show that obtaining larger β-power than α-power is
also possible in real EEG data and this phenomenon
can be observed more often when considering shorter
segments (Fig. 7b).

3.3.3. Influence of temporal delays on amplitude en-
velope cross-frequency correlations

Another result of differential attenuation of separate
frequency bands is that correlations between ampli-
tude envelopes across frequencies are influenced by
spatial synchronization. An argument for the separa-
tion of α- and β-rhythms into individual components
(not stemming from non-sinusoidal waveform) is that
only weak amplitude envelope correlations [30] can
be found. In simulations, we analyzed amplitude en-
velope correlations between α- and β-components,
extracted with the corresponding band-pass filtering.
Even though the basis functions were generated as
a non-sinusoidal waveform with fixed phase delay
between the two rhythms, a range of very different
correlation values can be observed for individual seg-
ments of the compound signal (i.e. a simulation of
synthetic EEG data). Fig. 8a shows exemplary time
courses for large positive and surprisingly even nega-
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Figure 4: Data analysis: empirical ∆CT-distributions. (a) absolute ∆CT across participants computed from sensor space data,
plotted topographically. (b) Maximal SSD absolute ∆CT is larger than sensor space absolute ∆CT across participants, N=186,
p=5.7·10−15, two-sided Wilcoxon signed rank test. (c) Binned α-SNR and β-SNR as estimated from 1/f-adjusted spectrum versus
mean absolute ∆CT in that bin. Error bars are 25th−75th percentile value ranges for absolute ∆CT for the respective bin. Wilcoxon
signed rank test between absolute ∆CT-values corresponding to the 10th bin of β-SNR and 5th bin of α-SNR: p-values: 5.40 · 10−18.
(d) 18 single subject absolute ∆CT-topoplot examples show substantial variability of spatial ∆CT-distribution. Participants were
selected according to the number of channels satisfying the SNR-criterion of 5 dB, so a topography is visible.
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Figure 5: Illustration: the emergence of β-events from α-dominated sources. (a) Two basis functions (black) mix with a temporal
delay (σ = 15 ms) such that the α-power is enhanced in the compound signal (blue) during the segment marked in gray. (b) The
corresponding power spectrum of the segment marked in gray for subplot (a) for basis functions (black) and compound signal, where
both α- and β-spectral peaks are enhanced (blue). (c) Two basis functions (black) mix with a temporal delay (σ = 43 ms) such
that the α-power is diminished in the compound signal (red) during the segment marked in gray. (d) The corresponding power
spectrum of the segment marked in gray for subplot (c) for basis functions (black) and compound signal, where the α-peak is largely
diminished and β-peak is enhanced (red).
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Figure 6: Simulation: α/β-ratios change with different levels of spatial synchronization. (a) α- vs. β-power for compound
signals composed of non-sinusoidal basis signals for varying standard deviations of the time shift. Spread in power is larger for
larger time shifts. Each point signifies α- and β-power as computed from one compound signal. (b) This results also in a spread of
α/β-ratios as constructed from α- and β-power. Number of generators: 20, number of iterations: 1000, segment length = 5 s.

tive α- vs. β-correlations. These negative correlations
can not be predicted from the amplitude dynamics of
individual sources as they only have positive correla-
tions by construction. The observed correlations are
dependent on the standard deviation of the mixing
coefficient distribution, as illustrated in Fig. 8b, with
negative correlations emerging with the increase of
the standard deviation of mixing coefficients. The
shown examples are for a fixed segment length, but
Fig. 8c shows that the effect is present for different
lengths of segments.

To validate predictions from simulations, we also
quantified α vs. β amplitude envelope correlations
in empirical data. Fig. 9 shows that amplitude en-
velope segments as extracted by SSD display larger
positive correlations compared to sensor space am-
plitude envelope correlations. The figure also shows
the presence of negative correlations in agreement
with the predictions from simulations. Note that with
smaller segments one can observe more and stronger
negative correlations due to their transient nature.

4. Discussion

In this study we investigated how spatial neuronal syn-
chronization can influence the waveform of neuronal
oscillations, affect α/β-ratios and α- vs. β-envelope
relations. Compound signals become more sinusoidal
than their sources for a certain range of temporal de-
lays. We show that the examined measures can be
affected solely by these delays even when the basic
waveform and spectrum remain the same for the orig-
inal sources. Moreover, in short segments,β-SNR can
be larger than the α-SNR, through the attenuation of
the base frequency. This in turn might relate to the
detection in EEG/MEG of β-oscillations without the
concurrent presence of detectable α-oscillations.

Regarding the variability in spectral profiles, differ-
ent scenarios are possible when estimating α- and
β-relationships arising from the non-sinusoidality of
waveforms. Importantly, these diverse spectral pro-
files can arise from the spatial mixture of non-sinusoidal
basis signals with the same waveform. As illustrated
in Fig. 10, for the simple scenario with only two
sources, different components of a non-sinusoidal
waveform can cancel depending on the temporal delay
between them. While we primarily focus in this study
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Figure 7: Data analysis: empirical α/β-ratios. All SSD com-
ponents from all participants pooled. (a) α/β-ratios for different
segment lengths, pooled over segments. (b) Percentage of α/β-
ratio ¡ 1 (i.e. β-SNR is higher than α-SNR) for different segment
lengths.

on the relationships between α- and β-oscillations,
the results can be generalized to the relationships be-
tween oscillations at other frequency bands.

4.1. Limitations

In the present study, we realized the mixing of signals
from individual neuronal populations with unitary
weights in the simulations. For empirical recordings,
data B recorded with EEG/MEG can in general be
represented as B = L · J , where L is a lead-field
matrix and J contains dipole currents at different
locations. In our simulations, the sources can be as-
sumed to be located close to each other (e.g. < 5 mm)
and in practical terms their location and orientation
could be considered to be approximately the same
thus having the same gain in L matrix. In this way the
same gain (unitary or not) for all sources is justified
and would lead to similar results. Already on this
spatial scale, sources display great dynamical variety
[31], with diverse temporal delays [32]. Of course,
EEG activity reflects the superposition of a large num-
ber of other remote sources, where the mixing of
signals at the sensor level would occur with different
weights. This, however, would not change one of the
main findings of the study qualitatively, namely that
the mixing of many non-sinusoidal sources results in
more sinusoidal signals.

From our simulations, it follows that if the ampli-
tude weight from one of the sources would be very
large (far larger than the weight from other sources),
then the signal would remain strongly non-sinusoidal.
Only when weights of other multiple sources have
sufficient strength and these sources are not synchro-
nized at exactly zero-lag delay [33], only then the
superposition of the signals results in more sinusoidal
signals. At the level of the remote neuronal popula-
tions recorded with EEG, this observation has been
confirmed in our study. We showed that ∆CT devi-
ated stronger from 0 for SSD components compared
to sensor space data since in the latter case effects
of the spatial mixing are more pronounced. Conse-
quently, introducing simulations with different spatial
weights would only result in superimposed signals
having more non-sinusoidal waveform. Even despite
relatively simple but neurophysiologically plausible
simulations, we are still capable to show the effects of
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Figure 9: Data analysis: SSD components show increased
correlations between α- and β-envelope time courses com-
pared to sensor space. Subplots are for different segment
lengths, (a) 2 s (b) 5 s (c) 10 s. Three sensor space channels
(C3, C4, Oz) and three SSD components for each participant,
pooled over participants, p-values for Wilcoxon rank sum test
(NSSD=464, Nsensors=374).

spatial mixing on waveforms and on complex cross-
frequency interactions. While in simulations temporal
delays can be specified, these delays are not known for
empirical recordings. Therefore, investigating wave-
form of oscillations can aid in constraining empirical
mixing temporal delays.

4.2. Implications

Non-sinusoidality in EEG/MEG recordings should be
present to a higher degree in signals which demon-
strate less spatial mixing. This is the case for instance
for many LFP recordings where spatial mixing is re-
stricted to local neuronal populations located in the
proximity to the recording electrode [12, 13]. There-
fore, non-sinusoidality of the oscillations can be used
as a proxy for demixing of neuronal signals recorded
with EEG/MEG. Improved methodology will aid in
determining functional properties of oscillations with
increased sensitivity (not affected by narrow band-
pass filtering) when relating oscillatory component to
behavioral and stimulation outputs.

Investigating waveform in the temporal domain may
aid in an improved determination of phase. A short-
coming of current methods for the computation of
spatial filters which are based on linear decomposi-
tions (SSD, CSP, ICA) is that their solutions are invari-
ant with respective to sign/polarity of the extracted
signals. It has been shown that brain states associ-
ated with specific phases have differential functional
consequences for cortical excitability and plasticity
[23, 34, 35]. Therefore, it is important to be able
to uniquely define positive and negative peaks of an
ongoing rhythm, which is possible when considering
measures such the ∆CT. Additionally, the concept of
a protophase [26] may aid in describing non-uniform
phase velocity and the resulting relationships between
cognitive functions and the evolution of oscillations.
In fact, as indicated in previous studies [36] duty
cycle in neuronal oscillations relates to windows of
opportunity for spike transfer between distinct neu-
ronal populations. While 50% duty cycle relates to
the same duration of excitatory and inhibitory phases,
a deviation from this number (e.g. 30%) can intro-
duce significantly shorter duration of excitatory phase
thus providing more precise tuning for the neuronal
communication, effectively blocking effects of spikes
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arriving at the considerably longer inhibitory phase.
Spatial mixing in EEG/MEG, leading to more sinu-
soidal signals, might create an illusion of oscillations
with 50% duty cycles while at the source level the
duty cycle can be considerably different. When using
band-pass filtering non-sinusoidality is removed since
only one Fourier component is preserved effectively
representing only one frequency and its immediate
neighborhood. Behavioral and stimulation effects of
such band-pass filtered signal will still be present yet
neurophysiological interpretation can be different.

It has been debated whether α/β-rhythms have a com-
mon or separate origin [27, 30, 37]. One of the argu-
ments in favor of both rhythms originating from the
same source is that if α- and β-oscillations are gen-
erated by the same neuronal source, producing rhyth-
mic but non-sinusoidal waveform, then one should
observe a strong positive amplitude correlation be-
tween the two oscillations [30]. This argumentation
is based on the linearity of the Fourier transform, as
briefly illustrated in the following:

As shown above, our non-sinusoidal signal can be
represented as S = α + b · β, with the corresponding
Fourier transform of S being F (S). When the ampli-
tude of S is changing in different time segments (mul-
tiplied by Ai), the corresponding Fourier transform at
segment i, can be written as: F (Ai · (α + b · β)) =
Ai(F (α)) + Ai · b(F (β)), which in turns shows that
the amplitude of α- and β-oscillations should covary
linearly when the amplitude of S changes by Ai. The
amplitude of oscillations in different frequency bands
can covary for different neuronal sources, but the
presence of strong correlations between oscillations
at different frequencies with similar spatial topogra-
phies is consistent with the idea of them originating
from the same neuronal source. Yet, our simulations
show that even when a comodulation between α- and
β-oscillations is certainly known to originate from
the non-sinusoidal waveform of oscillations, due to
the peculiarities of the spatial mixing, it is possible
not to observe such positive comodulation. Moreover,
surprisingly it is even possible to detect anticorrela-
tion between the amplitudes of α- and β-oscillations.
However, this is entirely due to the effects of spa-
tial mixing of individual signals each of which by
itself has only positive correlations between α- and

β-oscillations. Yet, a spatial summation may lead to
the occurrence of negative correlations at the sensor
level. Importantly, even when using sophisticated
spatial filtering techniques such as ICA, SSD, etc. it
is unlikely to disentangle such spatial mixing effects
originating from the local cortical patches since the
resolution of EEG/MEG and even LFP recordings is
not sufficient. This also applies to the argument sup-
porting a separate origin of oscillatory components
requiring independence of the corresponding tempo-
ral dynamics. We have shown that seemingly separate
amplitude time courses may not be an indication for
the independence of the rhythms, but can also occur
when the coupling between different sources changes
in the span of only a few hundreds of milliseconds.
Whether β-events can arise through decoupling of
oscillators as in the presented simulations, is a topic
for further research. This can reveal insights about
mesoscopic brain organization and the interplay of
different local rhythms, as extracted by EEG/MEG.

Regarding cross-frequency interactions, our study
shows that the amplitude-to-amplitude cross-frequency
coupling can also be affected by the non-sinusoidal
waveform of the oscillations. For all three types of
cross-frequency interactions (phase-to-phase, phase-
to-amplitude, amplitude-to-amplitude), spatial syn-
chronization can lead to either very strong or weak
indices characterizing cross-frequency interactions,
corresponding respectively to a small or rather large
jitter in the time delays between neuronal sources (see
Fig. 10). This again requires careful interpretation
of the obtained data and discussion about the possi-
ble effects of spatial synchronization among neuronal
populations generating EEG/MEG/LFP signals.
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