
1 A serial dilution method for assessment of microplastic toxicity in suspension

- 2 Zandra Gerdes, Markus Hermann, Martin Ogonowski and Elena Gorokhova
- 3 Department of Environmental Science and Analytical Chemistry, Stockholm
- 4 University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden.
- 5 **TOC**

7 Abstract

8	The occurrence of microplastic (MP) in the environment is of global concern. MP risk
9	assessment, however, is currently hampered by lacking ecotoxicological methods due
10	to conceptual and practical problems with particle exposure. Natural particles of
11	similar size as MP, e.g., clay and cellulose, occur abundantly in the environment. For
12	MP risk assessment and regulation it must be established whether the addition of MP
13	to these particles represents an additional hazard. We present a novel approach
14	employing a serial dilution of MP and reference particles, in mixtures, which allows
15	the differentiation of MP effects from other particulates. We demonstrate the
16	applicability of the method using an immobilisation test with Daphnia magna
17	exposed to polyethylene terephthalate (MP) and kaolin clay (reference material). In
18	the concentration range of 0.1 to 10000 mg L^{-1} of total suspended solids (TSS), with
19	MP contributing 0-100 %, the LC_{50} values for MP-kaolin mixtures were significantly
20	lower compared to the pure kaolin suspension. MP particles were thus more harmful
21	to daphnids than the reference material. The estimated threshold for %MP
22	contribution above which higher mortality was observed was 1 % MP at 36 mg TSS
23	L ⁻¹ . This approach has a potential for standardisation of MP ecotoxicological testing
24	as well as other particulate material of anthropogenic origin.

25 Introduction

26	The increasing environmental pollution with plastic waste is of global concern. What
27	is more, this debris eventually breaks down to small fragments collectively termed
28	microplastics (MP) that are omnipresent in aquatic environments, including alpine
29	lakes, rivers, oceans and arctic ice. ¹⁻⁴ The amounts of the plastic debris in general, and
30	MP, in particular, are expected to increase because of increased production,
31	continuous discharge, and fragmentation. ⁵ Research on the hazard assessment of solid
32	polymer particulates is in high demand due to public and scientific concerns.
33	Nevertheless, scientists disagree on the immediacy of the MP pollution problem, ^{6–9}
34	and it remains largely unclear whether MP are harmful to biota and what the impact
35	mechanisms are. The continuing uncertainty is, at least partly, related to the fact that
36	MP are a new type of environmental contaminant with yet unsettled methodology for
37	hazard testing.
38	The first experimental MP effect studies included a wide range of animal species
38 39	The first experimental MP effect studies included a wide range of animal species focusing mainly on feeding-related impacts in filter-feeders, such as bivalves ^{10–12} and
39	focusing mainly on feeding-related impacts in filter-feeders, such as bivalves ^{10–12} and
39 40	focusing mainly on feeding-related impacts in filter-feeders, such as bivalves ^{10–12} and zooplankton ^{13,14} Filter-feeders continue to be among the commonly used test
39 40 41	focusing mainly on feeding-related impacts in filter-feeders, such as bivalves ^{10–12} and zooplankton ^{13,14} Filter-feeders continue to be among the commonly used test organisms in MP effect studies because they are susceptible to MP exposure via
 39 40 41 42 	focusing mainly on feeding-related impacts in filter-feeders, such as bivalves ^{10–12} and zooplankton ^{13,14} Filter-feeders continue to be among the commonly used test organisms in MP effect studies because they are susceptible to MP exposure via ingestion. Since MP particles are nutritionally inert, their ingestion decreases the
 39 40 41 42 43 	focusing mainly on feeding-related impacts in filter-feeders, such as bivalves ^{10–12} and zooplankton ^{13,14} Filter-feeders continue to be among the commonly used test organisms in MP effect studies because they are susceptible to MP exposure via ingestion. Since MP particles are nutritionally inert, their ingestion decreases the energy intake. In other words, the ingestion of refractory material and alterations in
 39 40 41 42 43 44 	focusing mainly on feeding-related impacts in filter-feeders, such as bivalves ^{10–12} and zooplankton ^{13,14} Filter-feeders continue to be among the commonly used test organisms in MP effect studies because they are susceptible to MP exposure via ingestion. Since MP particles are nutritionally inert, their ingestion decreases the energy intake. In other words, the ingestion of refractory material and alterations in feeding (a primary response) leads to lower growth and reproduction (secondary
 39 40 41 42 43 44 45 	focusing mainly on feeding-related impacts in filter-feeders, such as bivalves ^{10–12} and zooplankton ^{13,14} Filter-feeders continue to be among the commonly used test organisms in MP effect studies because they are susceptible to MP exposure via ingestion. Since MP particles are nutritionally inert, their ingestion decreases the energy intake. In other words, the ingestion of refractory material and alterations in feeding (a primary response) leads to lower growth and reproduction (secondary responses) as a result of the decreased caloric intake. ¹⁵

49	and resuspension, primarily affect the presence of nutritionally inert particles in the
50	water; whereas, human activities, like, dredging and stormwater runoff, may also
51	elevate their concentrations. High concentrations of total suspended solids (TSS) have
52	been found to reduce primary production, ²¹ suppress population growth of
53	zooplankton ²² and alter feeding behaviour in fish. ²³ Therefore, to protect wildlife,
54	water quality standards are implemented for TSS concentrations or allowable TSS
55	levels in, e.g. stormwater effluents, ²⁴ lakes and streams ²⁵ .
56	Regulatory efforts to set allowable MP levels are calling for adequate methodological
57	approaches for hazard assessment, relevant model species, and exposure scenarios. A
58	step towards quantifying hazardous properties of synthetic polymer microparticles is
59	to develop and apply standardised practices and experimental designs that will be able
60	to provide threshold values of these effects. However, given the presence of various
61	particulates and the hazardous effects of high TSS concentrations, such designs
62	should include the MP in question together with environmentally relevant reference
63	material(s). Particular attention should be paid to the similarity of basic physical
64	properties that are important for biological responses, e.g., size distribution and shape,
65	between the reference particles and the MP. ^{13,26} Also, to maintain the experimental
66	reproducibility and stable encounter rates in a pelagic exposure scenario, it is
67	important that all particles be kept in suspension during the incubation.
68	A recent comparison of the effects exerted by MP and mineral particulates suggests
69	some similarity in responses across different levels of biological organisation, albeit
70	with an indication of a greater hazard by MP. ²⁷ Since natural particles are more
71	abundant than MP in aquatic environments, ⁷ the hazardous levels of MP should rather

72 be presented as a relative contribution of MP to TSS and not the absolute

73 concentrations.

74	To date, there is no standard approach for MP effect assessment, ²⁸ despite a rapidly
75	rising number of reports on MP effects under laboratory conditions. This is partly
76	because it is challenging to design exposure experiments with environmentally
77	relevant concentrations of MP based on the commonly reported levels (<10 particles
78	m^{3}) ²⁹⁻³¹ . Moreover, the existing approaches do not explicitly test the effects of MP <i>per</i>
79	se but those of nutrition-free particulates. To move the field of MP ecotoxicology
80	forward, we need to use test methods that (1) are appropriate for delineating effects of
81	different particulate materials in mixtures, (2) provide estimation of the critical
82	concentrations of MP in different environments, (3) allow high-throughput testing,
83	and (4) support read-across and categorical assessment of solid polymer particles.
84	Here, we propose a new approach employing a linear serial dilution of MP and
85	reference particles in mixtures, to identify MP-specific toxicity while controlling for
86	the total concentration of suspended matter in the experimental system. Further, we
87	demonstrate the applicability of this approach using the 96-h exposure of the
88	cladoceran Daphnia magna to a mixture of polyethylene terephthalate (PET) as a test
89	MP and kaolin as a reference particle.

90 METHOD

91 The MP Ratio Test was designed to examine whether a particulate material (test particle) is 92 harmful when co-occurring in a mixture with naturally present particulates (reference 93 particle) across a range of TSS concentrations. The rationale is as follows: if the test particle is more harmful than the reference particle, then decreasing its contribution to a mixture with 94 95 the reference particles should decrease the overall toxicity, assuming additivity of the effects 96 (fig. 1). When the test (MP) and reference (mineral) particles are provided at varying 97 proportions for each TSS concentration, then, by using a range of TSS concentrations, a dose-98 response relationship can be established for each mixture.

100 Figure 1. Possible outcomes of the MP Ratio Test, shown as a response (in this case 101 Mortality%) to the relative MP contribution (%MP) to the TSS in the test system, including 102 three test concentrations of TSS. The TSS concentrations denoted as 1, 2 and 3 represent 103 increasing levels of TSS in the system. Scenario A shows no MP effect because mortality is 104 only responding to the increasing TSS level. Scenario B shows an additive effect of MP 105 because Mortality% is positively affected %MP above a critical threshold. Scenario C shows 106 an ameliorating effect of %MP on TSS toxicity. Based on existing reports for TSS effects on 107 Daphnia, we expect no effect at low TSS concentrations.

109 **Test organism.** The freshwater cladoceran *Daphnia magna* was used as the test species.

110 These microcrustaceans are the most common model organisms in aquatic ecotoxicology and

have been used extensively in studies assessing both $TSS^{13,22,32-34}$ and $MP^{13,33,35}$ effects. All

112 experimental animals originated from the same clone (Clone 5; The Federal Environment

113 Agency, Berlin, Germany) cultured in M7 media at a density ~ 10 ind. L⁻¹ and fed *ad libitum*

114 with a mixture of *Pseudokirchneriella subcapitata* and *Scenedesmus spicatus*.

115 The reference and test particles. Kaolin (Sigma-Aldrich) was used as the reference particle;

116 it occurs globally in suspended particulates and has previously been used in tests with

daphnids, both as a reference particle when assessing MP effects¹³ and as a test particle when

assessing effects of TSS^{32} . As the test MP, we used polyethylene terephthalate (PET

119 Goodfellow), to represent a plastic that is commonly found in the environment. The PET was

120 obtained as 3-5 mm-sized pellets from the manufacturer and milled to a powder by Messer

121 group GmbH, Germany. The powder was first mixed with milliQ water containing 0.01 %

122 v/v of a non-ionic surfactant (Tween 80, Sigma-Aldrich), and sequentially wet-sieved to

123 produce a size fraction similar to that of kaolin (for particle size distributions and details on

124 preparation of the test particles see Fig. S1-2, Supporting Information).

125 Test suspensions. Particle stocks were prepared by suspending weighed kaolin and MP with

126 M7 media (reconstituted lake water)³⁶; the volumes were adjusted to produce equal mass-

based concentrations (0.1, 1, 10, 100, 1000, 10000 mg L^{-1}). The test suspensions were

128 prepared in batches with 0 %, 20 %, 40 %, 60 %, 80 % and 100 % of MP contribution to

129 TSS. These test suspensions were then transferred to 50-mL polypropylene centrifuge tubes

130 and used in the exposure system.

Experimental setup and procedures. To demonstrate the application of the MP Ratio Test,
we conducted the *Daphnia* sp. acute immobilisation test (OECD 202), with some

133	modifications. The standard Daphnia immobilisation test assesses 48-h mortality
134	(immobilisation) in individuals exposed to a range of test concentrations. Based on our pilot
135	experiments with kaolin and the reported data for MP effects on <i>D. magna</i> mortality ³⁷ , we
136	prolonged the test duration to 96 h. Ten daphnids (<24 h old) were placed in each test tube
137	with the exposure media; 24 treatments (%MP \times TSS concentration) were used with four
138	replicates per treatment and two particle-free controls per run. Three TSS concentrations
139	were tested for the 20-80 %MP mixtures and six concentrations with the single particle
140	exposure. When sealing the test tubes, care was taken to avoid trapping air bubbles inside the
141	tube. The tubes were mounted on a plankton wheel in a thermo-constant room at 21°C with a
142	light: dark cycle of 16:8 h and the test was terminated after 96 h by counting live and dead
143	animals. The daphnids were considered dead if they did not move for 30 s after being
144	agitated.

145

146 Statistical analyses

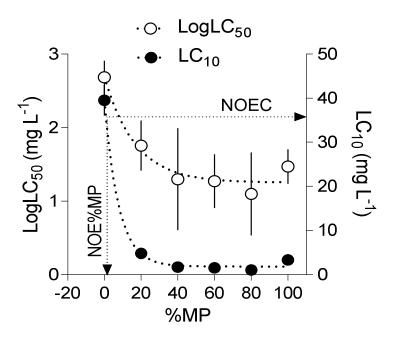
147	For each mixture, the LC_{50} values and the corresponding 95 % confidence intervals were
148	calculated using a dose-response curve fitted with three-parameter logistic regression
149	(GraphPad Prism, v. 7.0; GraphPad Software, La Jolla California USA). The median
150	mortality in the particle-free control was used as the bottom constraint and ≤ 100 % mortality
151	as the top constraint. The LC_{50} values were compared across the test mixtures to evaluate the
152	effect of %MP in the mixture; the non-overlapping confidence intervals were used as
153	evidence of the significant difference between the treatments (%MP). Further, we estimated
154	the corresponding LC_{10} values and used them as a surrogate for NOEC. ³⁸ One-phase
155	exponential decay function was fitted to describe the relationship between the LC_{10} values
156	and %MP in the mixture. As NOEC, we used the interpolated LC_{10} value corresponding to

157	the lower	bound of	the 95	%-	-confidence	interval	for	LC_{10}	in	pure kaolin	. The	critical
-----	-----------	----------	--------	----	-------------	----------	-----	-----------	----	-------------	-------	----------

- threshold for %MP in the mixture representing no effect level of %MP in the test system was
- 159 termed NOE%MP (No Effect Percentage of Microplastics).

160

161 RESULTS


- 162 Survival in the particle-free controls was high (average 95.4 %), and mortality in relation to
- 163 TSS followed the expected concentration-dependent response (Fig. S4, Supporting
- 164 Information). The LC₅₀ values in the treatments with 20-100 % MP were significantly lower
- 165 than in the 100 % kaolin treatment, 13-43 mg L^{-1} and 482 mg L^{-1} , respectively (Fig. 2), with
- 166 the non-overlapping confidence intervals between the treatments with pure kaolin and the
- 167 mixtures. The highest mortality was observed in the 80 % MP treatment; however, due to the
- broad confidence intervals for the LC_{50} values, particularly in the mixtures, the differences

across all treatments with MP were not statistically significant.

- 170 The one-phase exponential decay function provided an adequate fit for the relationship
- between the LC values and the %MP in the mixture (LC₅₀: $R^2 = 0.95$ and LC₁₀: $R^2 = 0.99$).

172 The curves suggested that at %MP exceeding 40 %, the LC values levelled off at 18 and 2 mg

- 173 L^{-1} for LC₅₀ and LC₁₀, respectively. The fit for the LC₁₀ values was used to derive the %MP
- 174 threshold (NOE%MP) above which significantly higher mortality was observed. This value
- 175 was determined as 1 % MP in the mixture with 36 mg L^{-1} TSS.

176

Figure 2. Relationships between the estimated $LogLC_{50}$ values (mean and 95 % confidence interval; left Y-axis) and the corresponding LC_{10} values (right Y-axis) for *D. magna* and the mass contribution of MP (%MP, 0 % to 100 %) in the test mixtures of MP and kaolin. Onephase exponential decay was used to find the LC_{10} for the MP-kaolin mixture corresponding to the lower bound of the confidence interval for the kaolin treatment (NOEC) and the NOE%MP representing no effect level of %MP in the test system.

184 DISCUSSION

Test performance

186	Using the MP Ratio Test, we delineated effects of MP from those of inorganic particles of
187	similar size and shape in the mixtures mimicking natural suspended solids in the aquatic
188	environment. Moreover, the test design allowed estimating critical levels for the suspended
189	MP that can be considered as hazardous. The hazardous level of MP contribution to TSS is an
190	important outcome of our test approach because the effects of particulate contaminants, such
191	as MP, depend not only on the absolute concentration but also on their relative contribution to
192	the suspended matter or sediment; the latter was also recently shown by Redondo-
193	Hasselerharm and co-workers. ³⁹
194	Ecotoxicological data describing effect thresholds in ecologically meaningful settings are
195	needed in microplastic research to support the hazard assessment of solid polymer particles.
196	The MP Ratio Test can be used as a tool for screening a variety of polymer materials and
197	particle types as well as for selecting suitable test organisms and endpoints. It is conceptually
198	similar to both the already standard bioassay approach for testing toxic effluents and
199	sediments by serial dilutions ⁴⁰ and evaluating algal toxicity in mixtures with varying
200	proportion of the test species. ⁴¹ Furthermore, the need for well-characterised reference
201	materials when evaluating, for example, particle size effects, is also recognised in
202	nanomaterial toxicity assessment. ^{42,43} However, to our knowledge, our study is the first to
203	assess the effects of suspended MP in mixtures with natural particles using a dose-response
204	approach.

PET toxicity estimates

We found PET MP to be more hazardous than kaolin for *D. magna*. The addition of PET powder to the kaolin suspension increased *Daphnia* mortality, with LC_{50} values dropping more than 8-fold in mixtures with >20 % of MP. Moreover, TSS containing 1 % PET was predicted to have significantly lower LC_{10} than pure kaolin suspension. The corresponding concentration for 1 % PET-kaolin mixture was 36 mg L⁻¹, which would represent NOEC of TSS containing plastics (Fig. 2).

213 The reported effect concentrations of MP are highly variable and span orders of magnitude 214 even within the same level of biological organisation.²⁷ Unfortunately, only a few reports provide dose-response data for MP-exposed microcrustaceans,^{33,37,44} and reference particles 215 are rarely employed.^{13,33} Although truly comparable published data on PET toxicity for 216 217 daphnids are not available; some reports are still relevant. For example, a 6-day static exposure of the copepod *Parvocalanus crassirostris* to 14 mg L^{-1} of PET (<11 μ m; assuming 218 219 that particles are $10-\mu m$ and spherical, with a density of 1.38 g cm^3) was found to decrease 220 population size.⁴⁵ This concentration is four times higher compared our LC_{10} for 100 % MP. 221 The difference, at least partially, can be explained by the fact that our animals were starved 222 during the exposure. Moreover, the suspended amount of PET in the study with P. *crassirostris*⁴⁵ is uncertain, because of the static exposure and the lack of information on the 223 224 MP mass in the system. For other planktonic filter-feeders and various MP, the reported LC_{50} 225 values are similar to what we have found for PET using the MP Ratio Test. For example, a 96-h LC₅₀ of 57.43 mg L⁻¹ was reported for *D. magna* neonates exposed to 1- μ m 226 227 polyethylene (PE) particles, although some mortality was observed already at 12.5 mg $L^{-1.37}$. 228 Also with *D. magna*, exposure to PE fragments (10-75 µm) produced a 48-h LC₅₀ of 65 mg L^{-1} ⁴⁴ These findings are comparable with the 96-h LC₅₀ observed in the 100 % MP treatment 229 (30 mg L^{-1}) as well as in the mixtures $(13-43 \text{ mg L}^{-1})$, although our values are consistently 230 231 lower, which could be related to possible variations in MP aggregation and settling during the

exposure as well as in specific properties of polymers and particle size.⁴⁶ The differences in the experimental setup highlight the importance of both particle characterisation in MP research²⁸ and keeping the test particle in suspension when using pelagic feeders. Still, based on either modelled data or some of the highest levels reported in the ocean,^{7,47} the levels of MP accessible for zooplankton in nature are much – approximately two to four orders of magnitude – lower than the experimentally determined MP levels for the observed effects.

238

239 Important issues in experimental design

240 The straightforward logistics of our approach makes it possible to examine a large number of 241 treatments (e.g., TSS concentrations, plastic material, particle size and shape) with reasonable 242 effort. When testing the PET effects on the daphnid survivorship, one person was able to 243 handle 50 experimental units per day routinely. Further developments should include a higher 244 number of treatments with lower %MP to provide more ecologically meaningful test 245 suspensions and improve the threshold estimates for the hazardous MP levels. Furthermore, 246 when more information of the environmentally realistic exposure becomes available, future 247 experimental designs can focus on narrowing concentration ranges, as well as including 248 endpoints that are more sensitive. When testing PET, for example, a higher resolution of the 249 % MP at the lower range (<20 %) would have provided a more precise estimate of NOEC and 250 the corresponding %MP in the mixture. Also, various reference particles can be used 251 depending on the research context, both natural and anthropogenic. 252 The selection of the reference particles is not a trivial task. One possible criterion is size 253 because size spectra for MP and many naturally occurring particles overlap (clay: $<2 \mu m$, silt: $2-50 \,\mu\text{m}$, and sand: $50 \,\mu\text{m} - 2 \,\text{mm}$).⁴⁸ Another recently advocated option is to benchmark the 254 test particles to the reference MP using reference plastics supplied by commercial vendors,²⁸ 255

256	which have a narrow size range and reliable certificates of analysis. Such reference materials
257	would add credibility to any adverse effects exerted by unknown materials. Here, we used
258	kaolin, because it has been relatively well studied in hazard assessment of suspended solids. ⁴⁹
259	Several studies also suggest its low toxicity for daphnids, ^{13,50} which was supported by our 96-
260	h LC ₅₀ of 482 mg L ⁻¹ . However, in chronic tests with <i>D. magna</i> , Robinson and colleagues
261	observed a 7-d LC ₅₀ of 74.5 mg L^{-1} , ³² which can be related to both delayed effects and
262	possible difference in kaolin composition and aggregation during the test. Kaolin powder is a
263	commercially available standard product, but depending on the vendor, it might contain
264	impurities and vary in particle size distribution.
265	When testing effects of suspensions on planktonic organisms, it is essential to prevent that
266	particles sediment or float, because it will affect the encounter rate and intake by the animals.
267	Moreover, particles with different specific gravity will settle with different rates; hence
268	performing tests under static conditions would not provide stable exposure levels. The
269	exposure of planktonic organisms should preferably be conducted using a plankton wheel that
270	keeps particles in suspension, thus, ensuring stable exposure conditions. ^{51,52} In plankton
271	ecology, the use of a plankton wheel is a standard procedure when conducting grazing
272	experiments because it minimises the sedimentation of algae. Although less common in
273	ecotoxicological testing, the plankton wheel has been used to assess the effects of suspended
274	clay and other particulate materials on planktonic filtrators. ⁵³ Even though this method
275	requires some additional effort compared to static exposures commonly employed in OECD-
276	tests for soluble chemicals, it is a necessity for standardising the exposure conditions.
277	Another area of concern with respect to the standardisation of the testing procedure is particle
278	behaviour, such as aggregation and settling, during the exposure. Since suspended particles
279	may have complex behaviour, their dispersion stability during exposure should be controlled.
280	The extent of aggregation, i.e., aggregate size, composition and cohesion, is dependent on the

281	complex interplay between various components, such as particle material, size, concentration,
282	media ion composition, and organic material present. Aggregation may have affected the
283	amount and size spectra of PET and kaolin and could potentially explain the non-linear
284	response of LC to %MP. The relationship between the aggregate formation and the measured
285	response is particularly relevant at high TSS concentrations. On the other hand, aggregation,
286	at least to some extent, is preventable by, for example, dispersants and sonication, which may
287	be sufficient in short-term experiments. These methods are employed in nanomaterial effect
288	assessments ⁴² and, in some cases, microplastic studies. ⁵⁴

289 The exposure duration is yet another issue that needs to be considered in acute tests. Daphnid 290 energy expenditure may increase in the presence of non-food particles since the induced filtering activity is similar as for food particles,⁵⁵ while the cost of cleaning appendages and 291 egestion through postabdominal rejections increase.¹⁵ Sensitivity to the refractory material 292 293 would increase with starvation, and the higher energy expenditure may decrease survival. In 294 D. magna neonates, the critical exposure time is 96 h, which marks the depletion of their fat 295 reserves.⁵⁶ Earlier studies using the *D. magna* acute immobilisation test for particle 296 suspensions have also shown that it is suitable to extend the exposure period to 96 h from the standard 48 h to increase the sensitivity of the test.³⁷ However, if a test organism other than 297 298 Daphnia neonates is used, the duration of the exposure must be adjusted depending on its 299 capacity to withstand starvation.

300

301 Implications for regulatory measures and concluding remarks

302 Many suspension- and filter-feeders frequently face turbid environments with high

303 concentrations of refractory materials generated by natural processes, such as terrestrial

304 runoff, currents, and weather-induced bottom sediment resuspension,⁵⁷ but also by

305	anthropogenic activities, such as dredging and capping of contaminated sediments using
306	various materials. In aquatic ecology, conditions with elevated TSS are acknowledged as
307	stressful ⁵⁸ and regulated by water quality standards. ^{24,59} The quality standards vary across
308	regions and types of aquatic systems, e.g., lotic and lentic, and systems with different natural
309	levels of suspended solids. For example, the Alaskan state standard for clear-water lakes is a
310	maximum increase of TSS, above background levels, equivalent to 25 mg L ⁻¹ , whereas an
311	increase of 100 mg L ⁻¹ is acceptable for streams. ²⁵ Similarly, hazard assessment of MP in
312	different systems would eventually require that effect-thresholds are established for the
313	critical MP concentration, such as NOE%MP, relative to the background TSS levels and their
314	combined interactions with biota.
215	By using reference particles – natural minerals or standardised plastics – with predictable
315	By using reference particles – natural initierals of standardised plastics – with predictable
316	effects on the test organisms, one may identify and account for the general responses
317	anticipated from exposure to suspended solids. The relative importance of MP addition to the
318	suspension could thereby be assessed. Interestingly, the hazard level we found for MP
319	contribution to TSS using a planktonic organism is virtually identical to the EC_{10} of 1 % MP
320	per sediment dry weight, reported for a benthic macroinvertebrate. ³⁹ This could further
321	support the possibility to benchmark MP effects against the lower 95 % confidence bound of
322	the reference material and using the corresponding contribution of MP in the mixture to
323	estimate the hazard level of MP (Fig. 2).
324	The hazard assessment and the regulatory framework for MP contaminants in aquatic systems
325	require integration with an assessment of particulate matter pollution at large because the
326	approaches required to establish toxicity are similar. Moreover, raising levels of black carbon

327 in the atmosphere implies increased inputs of these particles in the aquatic systems, where

328 their environmental effects are also a matter of concern.⁶⁰ Addressing all types of particulate

329	pollution an	d focusing on	physicochemical	properties o	f these particles	would provide a
-----	--------------	---------------	-----------------	--------------	-------------------	-----------------

translational value when developing testing and regulatory practices.

331

332 ACKNOWLEDGEMENT

- 333 This research was funded by projects WEATHER-MIC, irPLAST and MICROPOLL, which
- are supported through the Joint Programming Initiative Healthy and Productive Seas and
- 335 Oceans (JPI-Oceans), Swedish Research Council for Environment, Agricultural Sciences and

336 Spatial Planning (FORMAS), the joint Baltic Sea research and development programme

- 337 (BONUS) and the Swedish Innovation Agency VINNOVA.
- 338 **Supporting Information.** Additional text and four figures describing particle preparation
- and size distributions analyses, confirmed particle ingestion and separate dose-response
- 340 curves for all the tested mixtures of and kaolin and PET.

342 REFERENCES

- 343 (1) Imhof, H. K.; Ivleva, N. P.; Schmid, J.; Niessner, R.; Laforsch, C. Contamination of Beach
- Sediments of a Subalpine Lake with Microplastic Particles. *Curr. Biol.* 2013, 23 (19), R867–
 R868.
- 346 (2) Hurley, R.; Woodward, J.; Rothwell, J. J. Microplastic Contamination of River Beds
- 347 Significantly Reduced by Catchment-Wide Flooding. *Nat. Geosci.* **2018**, *11* (4), 251–257.
- 348 (3) Cózar, A.; Echevarría, F.; González-Gordillo, J. I.; Irigoien, X.; Úbeda, B.; Hernández-León,
- S.; Palma, Á. T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; et al. Plastic Debris in the Open
 Ocean. *Proc. Natl. Acad. Sci.* 2014, *111* (28), 10239–10244.
- 351 (4) Peeken, I.; Primpke, S.; Beyer, B.; Gütermann, J.; Katlein, C.; Krumpen, T.; Bergmann, M.;
- 352 Hehemann, L.; Gerdts, G. Arctic Sea Ice Is an Important Temporal Sink and Means of
- 353 Transport for Microplastic. *Nat. Commun.* **2018**, *9* (1), 1505.
- 354 (5) Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.;
- Law, K. L. Plastic Waste Inputs from Land into the Ocean. *Science* **2015**, *347* (6223), 768–
- 356 771.
- 357 (6) Backhaus, T.; Wagner, M. *Microplastics in the Environment: Much Ado about Nothing? A*358 *Debate*; e26507v1; PeerJ Preprints, 2018.
- 359 (7) Lenz, R.; Enders, K.; Nielsen, T. G. Microplastic Exposure Studies Should Be

360 Environmentally Realistic. *Proc. Natl. Acad. Sci.* **2016**, 201606615.

- 361 (8) Burton, G. A. Stressor Exposures Determine Risk: So, Why Do Fellow Scientists Continue To
 362 Focus on Superficial Microplastics Risk? *Environ. Sci. Technol.* 2017, *51* (23), 13515–13516.
- 363 (9) Hale, R. C. Are the Risks from Microplastics Truly Trivial? *Environ. Sci. Technol.* 2018, 52
 364 (3), 931–931.
- 365 (10) Wegner, A.; Besseling, E.; Foekema, E. m.; Kamermans, P.; Koelmans, A. a. Effects of

366 Nanopolystyrene on the Feeding Behavior of the Blue Mussel (Mytilus Edulis L.). Environ.

367 *Toxicol. Chem.* **2012**, *31* (11), 2490–2497.

368	(11)	Cole, M.:	Galloway.	T. S	. Ingestion	of Nano	plastics and	Micro	plastics b	v Pacific C	Ovster

- 369 Larvae. Environ. Sci. Technol. 2015, 49 (24), 14625–14632.
- 370 (12) Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M. E. J.; Le Goïc,
- 371 N.; Quillien, V.; Mingant, C.; Epelboin, Y.; et al. Oyster Reproduction Is Affected by
- 372 Exposure to Polystyrene Microplastics. *Proc. Natl. Acad. Sci. U. S. A.* **2016**, *113* (9), 2430–
- 373 2435.
- 374 (13) Ogonowski, M.; Schür, C.; Jarsén, Å.; Gorokhova, E. The Effects of Natural and
- Anthropogenic Microparticles on Individual Fitness in *Daphnia magna*. *PLOS ONE* 2016, *11*(5), e0155063.
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Galloway, T. S. The Impact of Polystyrene
 Microplastics on Feeding, Function and Fecundity in the Marine Copepod *Calanus*

379 *helgolandicus. Environ. Sci. Technol.* **2015**, *49* (2), 1130–1137.

- 380 (15) Kirk, K. L. Effects of Suspended Clay on *Daphnia* Body Growth and Fitness. *Freshw. Biol.*381 **1992**, 28 (1), 103–109.
- 382 (16) Kirk, K. L. Suspended Clay Reduces *Daphnia* Feeding Rate. *Freshw. Biol.* 1991, 25 (2), 357–
 383 365.
- 384 (17) Cranford, P. J.; Gordon, D. C. The Influence of Dilute Clay Suspensions on Sea Scallop
- (Placopecten Magellanicus) Feeding Activity and Tissue Growth. *Neth. J. Sea Res.* 1992, *30*,
 107–120.
- 387 (18) Wilson, W. J. The Effects of Concentration and Particle Size of Suspended Materials on
 388 Growth and Condition of the Pacific Oyster (Crassostrea Gigas). 1973.
- 389 (19) Kaposi, K. L.; Mos, B.; Kelaher, B. P.; Dworjanyn, S. A. Ingestion of Microplastic Has
- 390 Limited Impact on a Marine Larva. *Environ. Sci. Technol.* **2014**, *48* (3), 1638–1645.
- 391 (20) Martínez-Gómez, C.; León, V. M.; Calles, S.; Gomáriz-Olcina, M.; Vethaak, A. D. The
- Adverse Effects of Virgin Microplastics on the Fertilization and Larval Development of Sea
 Urchins. *Mar. Environ. Res.* 2017.
- (21) Lloyd, D. S. Turbidity as a Water Quality Standard for Salmonid Habitats in Alaska. *North Am. J. Fish. Manag.* 1987, 7 (1), 34–45.

- 396 (22) McCabe, G. D.; O'Brien, W. J. The Effects of Suspended Silt on Feeding and Reproduction of
- 397 Daphnia pulex. Am. Midl. Nat. **1983**, 110 (2), 324–337.
- Robertson, M. J.; Scruton, D. A.; Clarke, K. D. Seasonal Effects of Suspended Sediment on the
 Behavior of Juvenile Atlantic Salmon. *Trans. Am. Fish. Soc.* 2007, *136* (3), 822–828.
- 400 (24) Multi-Sector General Permit for Stormwater Discharges Associated with Industrial Activity
- 401 (MSGP). United States Environmental Protection Agency (EPA), National Pollutant Discharge
- 402 Elimination System (NPDES) April 6, 2015.
- 403 (25) Lloyd, D. S. Turbidity in Freshwater Habitats of Alaska a Review of Published and
- 404 Unpublished Literature Relevant to the Use of Turbidity as a Water Quality Standard; 85–1;

405 Alaska Department of Fish and Game - Habitat Division, 1985.

- 406 (26) Gerritsen, J.; Porter, K. G. The Role of Surface Chemistry in Filter Feeding by Zooplankton.
 407 Science 1982, 216 (4551), 1225–1227.
- 408 (27) Ogonowski, M.; Gerdes, Z.; Gorokhova, E. What We Know and What We Think We Know
- 409 about Microplastic Effects A Critical Perspective. *Curr. Opin. Environ. Sci. Health* 2018, *1*,
 410 41–46.
- 411 (28) Connors, K. A.; Dyer, S. D.; Belanger, S. E. Advancing the Quality of Environmental
 412 Microplastic Research. *Environ. Toxicol. Chem.* 2017, *36* (7), 1697–1703.
- 413 (29) Zhao, S.; Zhu, L.; Li, D. Microplastic in Three Urban Estuaries, China. *Environ. Pollut.* 2015,
 414 206, 597–604.
- (30) Cole, M.; Webb, H.; Lindeque, P. K.; Fileman, E. S.; Halsband, C.; Galloway, T. S. Isolation
 of Microplastics in Biota-Rich Seawater Samples and Marine Organisms. *Sci. Rep.* 2014, *4*.
- 417 (31) Fischer, E. K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic Pollution in Lakes and
- 418 Lake Shoreline Sediments A Case Study on Lake Bolsena and Lake Chiusi (Central Italy).
- 419 *Environ. Pollut.* **2016**, *213*, 648–657.
- 420 (32) Robinson, S. E.; Capper, N. A.; Klaine, S. J. The Effects of Continuous and Pulsed Exposures
- 421 of Suspended Clay on the Survival, Growth, and Reproduction of *Daphnia magna*. *Environ*.
- 422 *Toxicol. Chem.* **2009**, *29* (1), 168–175.

- 423 (33) Casado, M. P.; Macken, A.; Byrne, H. J. Ecotoxicological Assessment of Silica and
- 424 Polystyrene Nanoparticles Assessed by a Multitrophic Test Battery. *Environ. Int.* 2013, *51*, 97–
 425 105.
- 426 (34) Rellstab, C.; Spaak, P. Starving with a Full Gut? Effect of Suspended Particles on the Fitness
 427 of *Daphnia hyalina*. *Hydrobiologia* 2007, *594* (1), 131–139.
- 428 (35) Besseling, E.; Wang, B.; Lürling, M.; Koelmans, A. A. Nanoplastic Affects Growth of S.
- 429 Obliquus and Reproduction of D. Magna. *Environ. Sci. Technol.* **2014**, *48* (20), 12336–12343.
- 430 (36) OECD. *Test No. 202: Daphnia sp. Acute Immobilisation Test*; Organisation for Economic Co431 operation and Development: Paris, 2004.
- 432 (37) Rehse, S.; Kloas, W.; Zarfl, C. Short-Term Exposure with High Concentrations of Pristine
- 433 Microplastic Particles Leads to Immobilisation of *Daphnia magna*. *Chemosphere* 2016, *153*,
 434 91–99.
- 435 (38) Beasley, A.; Belanger, S. E.; Brill, J. L.; Otter, R. R. Evaluation and Comparison of the
- 436 Relationship between NOEC and EC10 or EC20 Values in Chronic *Daphnia* Toxicity Testing.
 437 *Environ. Toxicol. Chem.* 2015, *34* (10), 2378–2384.
- 438 (39) Redondo-Hasselerharm, P. E.; Falahudin, D.; Peeters, E. T. H. M.; Koelmans, A. A.
- 439 Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates. *Environ. Sci.*
- 440 *Technol.* **2018**, *52* (4), 2278–2286.
- 441 (40) Ferraz, M. A.; Alves, A. V.; de Cássia Muniz, C.; Pusceddu, F. H.; Gusso-Choueri, P. K.;
- 442 Santos, A. R.; Choueri, R. B. Sediment Toxicity Identification Evaluation (TIE Phases I and II)
- Based on Microscale Bioassays for Diagnosing Causes of Toxicity in Coastal Areas Affected
 by Domestic Sewage. *Environ. Toxicol. Chem.* 2017, *36* (7), 1820–1832.
- 445 (41) Jónasdóttir, S. H.; Kiørboe, T.; Tang, K. W.; St. John, M.; Visser, A. W.; Saiz, E.; Dam, H. G.
- 446 Role of Diatoms in Copepod Production: Good, Harmless or Toxic? Mar. Ecol. Prog. Ser.
- 447 **1998**, *172*, 305–308.
- 448 (42) Handy, R. D.; Brink, N. van den; Chappell, M.; Mühling, M.; Behra, R.; Dušinská, M.;
- 449 Simpson, P.; Ahtiainen, J.; Jha, A. N.; Seiter, J.; et al. Practical Considerations for Conducting

450	Ecotoxicity	Test Methods	with Manufacture	d Nanomaterials:	What Have V	We Learnt so	Far?

- 451 *Ecotoxicology* **2012**, *21* (4), 933–972.
- 452 (43) Stone, V.; Nowack, B.; Baun, A.; van den Brink, N.; von der Kammer, F.; Dusinska, M.;
- 453 Handy, R.; Hankin, S.; Hassellöv, M.; Joner, E.; et al. Nanomaterials for Environmental
- 454 Studies: Classification, Reference Material Issues, and Strategies for Physico-Chemical

455 Characterisation. *Sci. Total Environ.* **2010**, *408* (7), 1745–1754.

- 456 (44) Frydkjær, C. K.; Iversen, N.; Roslev, P. Ingestion and Egestion of Microplastics by the
- 457 Cladoceran *Daphnia magna*: Effects of Regular and Irregular Shaped Plastic and Sorbed
- 458 Phenanthrene. Bull. Environ. Contam. Toxicol. 2017, 99 (6), 655–661.
- 459 (45) Heindler, F. M.; Alajmi, F.; Huerlimann, R.; Zeng, C.; Newman, S. J.; Vamvounis, G.; van
- 460 Herwerden, L. Toxic Effects of Polyethylene Terephthalate Microparticles and Di(2-
- 461 Ethylhexyl)Phthalate on the Calanoid Copepod, Parvocalanus Crassirostris. *Ecotoxicol*.

462 Environ. Saf. **2017**, 141, 298–305.

463 (46) Rist, S.; Baun, A.; Hartmann, N. B. Ingestion of Micro- and Nanoplastics in Daphnia magna –

464 Quantification of Body Burdens and Assessment of Feeding Rates and Reproduction. *Environ.*465 *Pollut.* 2017, 228, 398–407.

- 466 (47) Enders, K.; Lenz, R.; Stedmon, C. A.; Nielsen, T. G. Abundance, Size and Polymer
- 467 Composition of Marine Microplastics ≥ 10 mm in the Atlantic Ocean and Their Modelled 468 Vertical Distribution. *Mar. Pollut. Bull.* **2015**, *100* (1), 70–81.
- 469 (48) Handy, R. D.; Brink, N. van den; Chappell, M.; Mühling, M.; Behra, R.; Dušinská, M.;
- 470 Simpson, P.; Ahtiainen, J.; Jha, A. N.; Seiter, J.; et al. Practical Considerations for Conducting
 471 Ecotoxicity Test Methods with Manufactured Nanomaterials: What Have We Learnt so Far?
- 472 *Ecotoxicology* **2012**, *21* (4), 933–972.
- 473 (49) McFarland, V. A.; Peddicord, R. K. Lethality of a Suspended Clay to a Diverse Selection of
 474 Marine and Estuarine Macrofauna. *Arch. Environ. Contam. Toxicol.* **1980**, *9* (6), 733–741.
- 475 (50) Weltens, R.; Goossens, R.; Puymbroeck, S. V. Ecotoxicity of Contaminated Suspended Solids
 476 for Filter Feeders *Daphnia magna*. *Arch. Environ. Contam. Toxicol.* 2000, *39* (3), 315–323.

- 477 (51) Robins, D. B.; Bellan, I. E. A Controlled-Temperature Plankton Wheel. *Mar. Biol.* 1986, 92
 478 (4), 587–593.
- 479 (52) Anraku, M. Some Technical Problems Encountered in Quantitative Studies of Grazing and
- 480 Predation by Marine Planktonic Copepods. J. Oceanogr. Soc. Jpn. **1964**, 20 (5), 221–231.
- 481 (53) Kirk, K. L.; Gilbert, J. J. Suspended Clay and the Population Dynamics of Planktonic Rotifers
 482 and Cladocerans. *Ecology* 1990, *71* (5), 1741–1755.
- 483 (54) Hüffer, T.; Praetorius, A.; Wagner, S.; von der Kammer, F.; Hofmann, T. Microplastic
- 484 Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to
- 485 Engineered Nanoparticles. *Environ. Sci. Technol.* **2017**, *51* (5), 2499–2507.
- 486 (55) Wiedner, C.; Vareschi, E. Evaluation of a Fluorescent Microparticle Technique for Measuring
 487 Filtering Rates of *Daphnia*. *Hydrobiologia* 1995, *302* (2), 89–96.
- 488 (56) Tessier, A. J.; Henry, L. L.; Goulden, C. E.; Durand, M. W. Starvation in *Daphnia*: Energy
 489 Reserves and Reproductive Allocation. *Limnol. Oceanogr.* 1983, 28 (4), 667–676.
- 490 (57) Gulati, R.; Demott, W. The Role of Food Quality for Zooplankton: Remarks on the State-of-

491 the-Art, Perspectives and Priorities. *Freshw. Biol.* **1997**, *38* (3), 753–768.

- 492 (58) Pelletier, M.; Ho, K.; Cantwell, M.; Perron, M.; Rocha, K.; Burgess, R. M.; Johnson, R.; Perez,
- 493 K.; Cardin, J.; Charpentier, M. A. Diagnosis of Potential Stressors Adversely Affecting
- 494 Benthic Invertebrate Communities in Greenwich Bay, Rhode Island, USA. *Environ. Toxicol.*
- 495 *Chem.* **2016**, *36* (2), 449–462.
- 496 (59) Canadian Council of Ministers of the Environment. 2002. *Canadian Water Quality Guidelines* 497 *for the Protection of Aquatic Life: Total Particulate Matter*; Canadian environmental quality
- 498 guidelines; Winnipeg, 1999; pp 1–13.
- 499 (60) Shrestha, G.; Traina, S. J.; Swanston, C. W. Black Carbon's Properties and Role in the
- 500 Environment: A Comprehensive Review. *Sustainability* **2010**, *2* (1), 294–320.