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Abstract

We can easily identify a dog merely by the sound of barking or an orange by its citrus scent. In
this work, we study the neural underpinnings of how the brain combines bits of information into
meaningful object representations. Modern theories of semantics posit that the meaning of words
can be decomposed into a unique combination of individual semantic features (e.g., “barks”, “has cit-
rus scent”). Here, participants received clues of individual objects in form of three isolated semantic
features, given as verbal descriptions. We used machine-learning-based neural decoding to learn a
mapping between individual semantic features and BOLD activation patterns. We discovered that
the recorded brain patterns were best decoded using a combination of not only the three semantic fea-
tures that were presented as clues, but a far richer set of semantic features typically linked to the target
object. We conclude that our experimental protocol allowed us to observe how fragmented informa-
tion is combined into a complete semantic representation of an object and suggest neuroanatomical
underpinnings for this process.

Keywords: computationalmodeling, functional neuroimaging, fMRI, human language, word production, machine
learning

The brain binds available information about objects with prior
knowledge, thus allowing us to make sense of the world around

us. The ability to use available information about an object (e.g. the
observation of something that has legs, is gray and has a trunk), to
activate relevant existing knowledge in the semantic system (e.g. is
endangered, has white tusks) can be characterized as a process of
pattern completion where few elements serve to activate a number
of relevant elements in the same representation. While one can
easily demonstrate the existence of such a process behaviorally, as
in the example above, neuroimaging evidence of pattern completion
of semantic information is critically lacking. As such, we also do
not understand the neuroanatomical bases of this process. Thus,
in this study, we ask whether semantic pattern completion can be
demonstrated in the human brain and what brain regions are involved
in integrating features together into rich representations of objects.

Many neuro-cognitive accounts on the semantic system propose
that the meaning of objects can be formalized using smaller com-
ponents called features (e.g. Cree et al., 2006; McRae, Sa, et al.,
1997; Tyler, Moss, et al., 2000; Vigliocco et al., 2004). The features
which make an object are putatively coded in a distributed fashion,
primarily in the same regions that are involved in processing and
perceiving them (McClelland and Rogers, 2003; Plaut and Shallice,
1993; Tyler, Moss, et al., 2000; Tyler and Moss, 2001). According to
this view, a neural representation of the underlying object would be
defined as a specific and relatively stable pattern of activation across
the relevant feature nodes (Masson, 1995; McRae, Sa, et al., 1997;
Patterson et al., 2007; Taylor, Devereux, et al., 2011; Vigliocco et al.,
2004). Computational models further postulate that the activation
of a sufficient number of semantic features may lead to activation
of the whole semantic representation via a pattern-completion-like
process (Masson, 1995; McClelland and Rogers, 2003; Plaut and

Shallice, 1993). While pattern completion has been demonstrated in
the visual domain (Tang et al., 2014) and in the context of episodic
memory (e.g. O’Reilly and McClelland, 1994; O’Reilly and Rudy,
2001), there is little we know about the neural underpinnings of
reconstructing semantic representations. In this study, we assess
pattern completion of semantic information in the human brain, by
making use of a multi-dimensional semantic space. Each dimension
in the semantic space corresponds to a single semantic feature. The
meaning of an object is defined as a position in this space (a semantic
coordinate), which in turn is determined by the weighted combi-
nation of the dimensions. The distance (e.g. cosine) between two
concepts quantifies their semantic similarity. Semantic spaces can be
obtained, for example by using statistical co-occurrence information
collected from large text corpora (Erk, 2012; Kanerva and Ginter,
2014; Mikolov, Sutskever, et al., 2013; Turney and Pantel, 2010)
or using behavioral methods to estimate similarity of descriptive
content between items (Devereux et al., 2014; McRae, Cree, et al.,
2005; Vinson and Vigliocco, 2008; Sudre et al., 2012). Such seman-
tic spaces have been used as priors in machine learning based neural
decoding models that have successfully associated various semantic
feature sets (i.e. sets of dimensions that span the semantic space)
with neural signatures and, by combining them together, predicted
neural activation patterns for novel objects (Broderick et al., 2018;
Huth, Nishimoto, et al., 2012; Huth, Heer, et al., 2016; Just et al.,
2010; Mitchell et al., 2008; Pereira et al., 2018; Simanova et al.,
2010; Sudre et al., 2012). This demonstrates that the feature-based
model of the semantic system is useful in describing the neural
representation of meaningful stimuli.
The visual object processing system may provide insights into

the neuroanatomical underpinnings of the semantic pattern com-
pletion process. Visual pattern completion has been suggested to
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Figure 1: Measurement and analysis protocol. A) Each trial in the experimental task consisted of a clue triplet representing a given target
object, e.g., “key”. B) The BOLD activation during each trial was measured. C) Word2vec model was used to extract semantic space
coordinates for the implied target word. D) In the stability selection stage, the voxels showing the highest consistency in activation patterns
across trials were selected for the analysis. Stability selection was not applied in the single-trial analysis. E) A training set and linear regression
were used to map the activation patterns of each target object to its respective semantic coordinates. F) The resulting mapping was evaluated
by using it to predict the semantic coordinates of two left-out objects based on BOLD activity. This scheme was repeated for all possible
leave-two-out pairs.

take place in the ventral stream via recurrent connections (Tang
et al., 2014; Clarke, Taylor, et al., 2011). Particularly, the perirhinal
cortex (PRC), which is located in the anterior apex of this hier-
archical system, has been deemed relevant in fine-grained visual
analysis of objects (Barense et al., 2010; Buckley and Gaffan, 2006)
and binding visual information with information from other sen-
sory modalities (Taylor, Moss, et al., 2006; Taylor, Stamatakis, et
al., 2009), including information about object meaning (Liu and
Richmond, 2000). This region has been suggested to be sensitive
to object-specific semantic information (Clarke and Tyler, 2014;
Kivisaari, Tyler, et al., 2012). Therefore, we hypothesize that the
ventral stream system, and the PRC in particular, may be involved
in the pattern completion process where fragmental semantic infor-
mation is completed to form a coherent object.
In this study, we probe target objects with a small set of verbal

semantic features and thereby putatively facilitate activation in a
rich network of other semantic features that are not presented but
are related to the target object. Specifically, we mimic a guessing
game where the participant is presented with a sequence of three
clues (henceforth, a “clue triplet”; e.g., “has legs”, “has a thick
skin”, “has a trunk”) and asked to guess the object that the clues
describe (i.e., “an elephant”). We take advantage of functional
magnetic resonance imaging (fMRI) and evaluate whether the blood-
oxygen-level dependent (BOLD) response is best predicted by the
semantic coordinates of the explicitly presented clues or a larger
set of features, extending to those that were never presented to the
participant (e.g., “is endangered”, “is heavy”, “does trumpet”). We
hypothesize that the brain automatically ties together the presented
clues with other features linked to the target object. If so, the best
decoding performance would be achieved by using an even larger set

of features that are associated with the target object, as compared to
the exact selection of features that were presented to the participants.
The semantic space in this study is built from a large Internet-

derived Finnish text corpus (Kanerva and Ginter, 2014) using the
word2vec algorithm (Mikolov, Sutskever, et al., 2013; Mikolov,
Chen, et al., 2013). In order to predict the brain activity to a given
object/feature, we use a linear-regression decoding approach which,
for each target object or semantic feature, maps its coordinates
in a multi-dimensional semantic space to a corresponding BOLD
activation pattern (Mitchell et al., 2008; Palatucci et al., 2009).
A leave-two-out scheme is used to assess the performance of this
mapping. We further employ representational similarity analysis
(RSA, Kriegeskorte et al., 2008) to visualize the brain regions which
are involved in representing the target objects or in completing the
patterns of object features into target concepts.

Results
Brain activation patterns reliably predict the target objects
The neural representations of each target object were probed in the
fMRI task using six different sets of clue triplets. Over all trials, the
participants guessed the implied identities of the target objects at a
high accuracy (93.3 percent correct; see also Table S1).
In the first analysis, we tested whether we can use the corpus-

derived semantic coordinates of the target objects to decode the
BOLD activation patterns elicited using clues. In order to optimize
the decoding accuracy, we averaged the BOLD activation maps of
the six trials for each target object. Furthermore, we restricted the
analyses to a subset of voxels (n = 500) that showed a consistent
activation pattern across the six trials (i.e., stability selection; cf. Just
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et al., 2010; Mitchell et al., 2008). The measurement and analysis
protocol for the machine learning analyses is detailed in Figure 1.
The overall level of classification accuracy using the semantic

coordinates of the unpresented target objects was high, ranging from
76.1 % to 93.3 % correct classifications across subjects (mean =
87.2 %, SD = 4.9; see also Table S1). The null-distribution for
chance level performance was determined through a permutation
test in which the relationship of each feature vector and its target
was randomized in the training set. This process was iterated 1000
times, each time using a randomly selected participant’s brain acti-
vation data. Based on the resulting distribution, decoding accuracies
>61.5 % were deemed significantly better than chance (p < 0.05);
this threshold was exceeded by a comfortable margin for all subjects.
Decoding across semantic category (e.g., elephant vs. car) was
expectedly more accurate (mean = 94.2 %, SD = 5.0; p < 0.05)
than decoding within a semantic category (e.g., elephant vs. giraffe;
mean = 64.5 %, SD = 7.1; p < 0.05). Decoding accuracies across
semantic category were significant (p < 0.05) in all participants,
whereas decoding accuracies within a semantic category were sig-
nificant in 12 out of 17 participants (see also supplementary Figure
S1 for a confusion matrix).
The aforementioned analysis yielded a bi-directional mapping

between BOLD activation patterns and the corpus-derived semantic
space. This mapping can be used to predict BOLD activation pat-
terns to any number of novel objects in the text corpus based on their
semantic space coordinates. In the supplementary online material
(https://users.aalto.fi/~vanvlm1/guessfmri), the recorded BOLD
activation patterns for each target object are visualized along with
their semantic space coordinates. Furthermore, we included some
additional targets to demonstrate how the mapping can be used to
predict the BOLD activation patterns for novel targets.

Semantic representation of the target object is best decoded by
summing many of its features
We next examined whether we can demonstrate pattern completion
in the BOLD activity patterns. We tested whether the neural repre-
sentations elicited by the clues are better defined through semantic
coordinates obtained as a summation of all available features linked
to a given target object, as compared to only using the exact clues
presented to the participants, or the semantic coordinates of the
target object alone. For this, we used a single-trial model where
no averaging was performed across the six repetitions of the same
target concept and all voxels in the grey matter were used (i.e. no
stability selection).
The brain activation patterns for each trial were predicted using

semantic coordinates obtained via different models: (1) the last clue
of each triplet (“clue 3”), (2) sum of the three clues of the triplet
(“clue 1+2+3”), (3) the target object and (4) sum of the full list of
semantic features typically associated with the target object (“all
available features”) (see Figure 5). Thus, the last model also in-
cluded many features that were never presented in the experiment.
The best approximation for multitude of semantic features associated
with each target object was obtained by using a list of behaviorally
produced object features from the Centre for Speech Language and
the Brain dataset (henceforth, the CSLB features; Devereux et al.,
2014). Using the same procedure as for the target words, we estab-
lished a semantic coordinate for each clue and each of the newly
listed features using the word2vec model Figure 2.

The best performingmodel was the one where the resulting seman-
tic coordinates represented the combination of all CSLB features of
a target object (Figure 2). This model contains numerous features for
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Figure 2: Decoding performance using different models in the single-
trial analyses. Each line represents a participant. The mean across
participants is indicated as a thick line. Significantly above chance-
level decoding performance (p < 0.05, based on a permutation test) is
marked as a dashed line. The p-value of pairwise t-tests (Bonferroni
corrected) comparing the accuracy scores between the different models
are also indicated.

a given object: both those included in any one of the trials as well as
those not presented to the participant in the whole experiment. This
model performed better than the target model and the clue 1+2+3
model, which combined the three clues used to probe the target in
a given trial. The next best model was the one using the semantic
coordinates of the single target word, on par with the model using
the semantic coordinates of the combination of the three presented
clues in a given trial. The model using only the last clue of each
triplet performed at the lowest level of all.

Activation patterns in the ventral stream and the perirhinal
cortex correlate with the semantic similarity of the full feature
sets
In the next step, we aimed to test the neuroanatomical hypothesis
of the semantic pattern completion. We used RSA to determine
the brain-wide set of regions in which activation patterns were cor-
related with the semantic similarity structure among the 60 target
objects, as represented by the semantic coordinates of all available
features (i.e., the best performing model in the zero-shot decoding).
The similarity was defined as the cosine distance between the corpus-
derived semantic coordinates. For this analysis, we used brain data
averaged across the six repetitions of the same target object. Based
on the permutation test, the analyses resulted in seven clusters. The
largest cluster was centered in the left middle occipital gyrus extend-
ing to the middle temporal gyrus, inferior parietal gyrus, superior
parietal gyrus, supramarginal gyrus and the rostral extent of the
lateral occipital cortex (Table 1, Figure 3). Medially this cluster
encompassed parts of the precuneus, isthmus and cingulate gyrus.
This large cluster also extended anteriorly to the medial and inferior
aspects of the temporal lobes bilaterally and covered a large extent
of particularly the left but also the right fusiform gyrus. The cluster
extended bilaterally to both PRCs (Table 1, see e.g., Insausti et al.,
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Figure 3: RSA searchlight results. A) Brain regions whose activation patterns correlated with the semantic similarity of the target objects
when they were each represented by a combination of their full semantic feature set. B) A coronal view of the anterior extent of the left and
right temporal lobes. The clusters overlap with the bilateral PRC.

1998; Kivisaari, Probst, et al., 2013). The locations of all peak
voxels are reported in Table 1.

Discussion
Humans are able to recognize objects and understand their richmean-
ings even when only limited information about them is available. In
this study, we simulated such a situation by presenting the partici-
pants with brief verbal descriptions of sixty objects and asking them
to guess the identity of each of them. We showed that it was possible
to decode the implied target object with high accuracy without ever
showing the object explicitly suggesting that the clues triggered a
coherent representation of the target object. The single-trial results
further demonstrated that the brain activation patterns elicited by
the guessing game paradigm indeed contained more information
about each target object than what was initially given as input in
the experiment. This suggests that the entire neural representation
of an object became activated based on partial stimulation in the
form of only few features. This provides neuroimaging evidence
on semantic pattern completion whereby limited information in the
environment is used to reconstruct coherent object representations.
Distributed accounts of semantic representations postulate that

neural representations of objects can be modeled as unique and
consistent distributions of activity across a set of perceptual and
semantic feature nodes (e.g., Farah and McClelland, 1991; McRae,
Sa, et al., 1997; Tyler, Moss, et al., 2000; Tyler and Moss, 2001).
This model has been successful in describing, not only the healthy
semantic system (e.g., Masson, 1995; McRae, Cree, et al., 2005),
but also patterns of semantic impairments associated with brain
damage (Kivisaari, Tyler, et al., 2012; Moss et al., 2002; Plaut
and Shallice, 1993). Importantly, such a feature-based distributed
system also gives an account on how information is reconstructed
from incomplete patterns of information. Specifically, the activation
in a subset of feature nodes is postulated to propagate in the network

based on connection weights which, in turn, are based on experience
on co-occurence (Masson, 1995; McClelland and Rogers, 2003;
Rumelhart et al., 1986).

We found evidence of semantic pattern completion by combining
neuroimaging and machine learning with corpus-derived coordi-
nates of objects and their features in a shared semantic space. Using
single trials, we found the best mapping using semantic coordinates
created by summing many features for each given object, including
features never presented to the participant. This model performed
significantly better than the model using the semantic coordinates for
the target object alone or that using the sum of the clues presented
to the participant in the given trial. This finding therefore provides
neuroimaging markers of pattern completion, that is, that activation
in a subset of object features leads to activation in a network of
features associated with a given object entity (cf. Masson, 1995;
McClelland and Rogers, 2003; Plaut and Shallice, 1993; Rumelhart
et al., 1986).

A combination of the present RSA results and previous research
on visual processing may provide insights on how such semantic
pattern completion of objects takes place in the brain. Studies on
visual object recognition suggest that pattern completion in the
visual domain takes place in the ventral stream via recurrent connec-
tions (Tang et al., 2014; Clarke, Taylor, et al., 2011). The importance
of the ventral stream in processing also the meaning of visual objects
has been demonstrated by Clarke and Tyler, (2014). In that study,
the authors presented participants with a large set of naturalistic
color photographs and showed that regions in the lateral occipital
cortex and ventral stream were sensitive to the semantic similarity
of the presented visual objects. The anatomical pattern of the RSA
results in the ventral stream in our study bears remarkable similarity
to those of Clarke and Tyler, (2014) despite the fact that we never
showed images or pictorial stimuli to our participants. It is possible
that reading descriptions about objects, such as in the guessing game
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Table 1: Peaks of the significant RSA searchlight clusters (k > 10)

Anatomical location Pseudo-t Cluster extent Voxel-level p (FDR) x y z

Left occipital middle 10.97 10104 0.0008 -41 -78 24
Left inferior frontal 5.16 686 0.0008 47 38 15
Vermis 3.82 51 0.0052 0 -59 -35
Left superior frontal 3.56 14 0.0048 -19 63 18
Right inferior temporal 3.55 17 0.0076 62 -15 -25
Right inferior parietal 3.41 20 0.0088 37 -40 46
Left frontal superior medial 3.14 13 0.0079 0 53 43

Effects in clusters smaller than 10 voxels are not shown. FDR = False Discovery Rate.

task, recruits embodied visual representations of objects and, thus,
recruit the ventral stream system (see also Anderson et al., 2015).
Our results suggest that this system may also play a role in pattern
completion of meaningful object representations.
The significant link between brain activation patterns and the

similarity of semantic features of the objects was observed at a very
high level of ventral stream hierarchy. In fact, the cluster that showed
sensitivity to the semantic similarity of the target objects extended
all the way anteriorly to the PRC which is located at the apex of
this system. Importantly, this region has been highlighted in item-
specific processing of object meaning using a visual object naming
task (Clarke and Tyler, 2014) and a property-verification task with
pictures and words (Bruffaerts et al., 2013). Our findings extend
these results by showing that this region is involved in item-level
processing of objects even in the absence of pictorial stimuli. More-
over, the findings corroborate those by Taylor, Moss, et al., (2006)
and Taylor, Stamatakis, et al., (2009) who showed that the PRC is
involved in binding features from multiple modalities. Importantly,
the current study demonstrates that these features need not be visual
or auditory but they may also come in the form of more abstract
semantic properties. Therefore, this study strongly supports the
claim that this region is involved in processing object meaning.
We found a set of other regions that were associated with the

semantic similarity of the target objects in addition to those in the
ventral stream. These regions include the temporo-parietal junction
and inferior frontal cortex, whose involvement may reflect the verbal
nature of the task and conceptual and lexical preparation for the
verbal response (Indefrey and Levelt, 2004). Other regions include
the bilateral retrosplenial cortex, which in previous research has
been associated with visual imagery and memory, and whose in-
volvement can partly be explained by specific strategies employed
in the task (for a review, see Vann et al., 2009). Importantly, the
network of areas revealed by the RSA analysis are also likely to
be a reflection of the distributed nature of the semantic representa-
tions themselves. Indeed, Huth, Nishimoto, et al., (2012) and Huth,
Heer, et al., (2016) showed that semantic information in the brain
is organized systematically as smooth gradients reflecting seman-
tic similarity in wide-spread and distributed regions of the brain.
Therefore, we postulate that these regions are relevant in presenting
concrete objects such as those targeted in the current experiment.

Using stability selection and data averaged across all six trials of
the same target object resulted in a high decoding accuracy that was
comparable to those in studies which have used colored photographs
as stimuli (e.g., Mitchell et al., 2008). In the past, semantic category-
level decoding performance has, at least partly, been attributed to
a robust response to low-level visual features (Rice et al., 2014).
However, the present results demonstrate that these visual attributes

are not necessarily needed in order to achieve high-level decoding
accuracy. Moreover, we suggest that the guessing game paradigm
used in this study is highly engaging from the participant’s point of
view, leading to elaborate processing of the target stimuli. There-
fore, we suggest that it is particularly well-suited for experimentally
accessing semantic representations.

The present neuroimaging study used a novel experimental design
to examine how the brain completes patterns of fragmented infor-
mation into meaningful, coherent semantic representations. This
design, coupled with our machine learning models, allowed us to
study, for the first time, how the brain takes advantage of very limited
information and enriches it with prior knowledge of object meaning.
The present results give strong support for the distributed, feature-
based models of semantics in the brain and suggest that the ventral
stream is involved in binding the features together into coherent
object representations.

Methods
Subjects
18 native Finnish-speaking, right-handed individuals with no history of
developmental or acquired language or other neurological disorders par-
ticipated in the study. The participants were recruited via student mailing
lists in the Aalto University. One participant chose not to finish all mea-
surement runs and was therefore excluded from data analysis. Thus, the
sample consisted of 17 individuals (mean age = 21.1 years; SD = 3.4 years;
mean education = 12.8 years, SD = 1.7 years; 10 identified themselves as
females, and seven as males). All of the participants gave a written informed
consent before participating in this study. The study was approved by the
Aalto University Research Ethics Committee.

Stimuli
The stimuli consisted of 540 brief verbal descriptions of 60 target objects in
Finnish (9 to 29 characters including spaces, mean 17.5, SD 3.6). Fifty-eight
target objects were selected from the CSLB property data set (Devereux
et al., 2014). We additionally included two target objects that were not part
of the CSLB data [forklift (Finnish: “trukki”) and metro (subway) (Finnish:
“metro”)]. One fourth (n = 15) of the target objects fell into each of the
following semantic categories: animal, fruit/vegetable, tool and vehicle. We
created nine clues (i.e., descriptions) per each target object by translating
and adapting semantic features from the CSLB data. For the two objects
not included in the CSLB data set, we selected six features from that set
that applied to the target object and additionally created three new highly
distinctive features. We also created 29 new clues (5.3 % of clues in total)
in cases where sufficiently many suitable clues were not available in the
CSLB data set. The first, second and third clues were matched on length
across the four semantic categories (p > 0.59 for all).

The nine clues assigned to each target object were further divided into
three clue triplets. When feasible, the presentation order of the clues within
a triplet was sorted such that the first clue in each triplet was the least
distinctive (e.g., ‘has four legs’), and the following two clues increasingly
distinctive (e.g., “is found in the savannah” > “has a trunk”) based on the
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  has legs                                     is a fruit                                     is heavy                                     is loud

   has a thick skin                            is peeled                                   does sink                                has wings

   has a trunk                               monkey food                              does rust                               used for flying

  ###########                            ###########                           ###########                          ###########

Figure 4: Examples of stimuli and experimental design in fMRI. Three clues were shown one at a time, after which the participants were
asked to guess which object they describe (i.e., an elephant, banana, anchor and airplane, respectively). A string of hash characters prompted
the participant to utter the name of the target object. The target object itself was never presented to the participants before or during the
experiment, either pictorially or as a word, and no feedback regarding correct or incorrect answer was provided.

CSLB feature norm data (Devereux et al., 2014). The purpose of this
approach was to ensure that the participants would guess the target object
approximately at the same stage (i.e., at the third clue).

Each individual clue was repeated twice in the fMRI experiment, once
in Set 1 and once in Set 2, with the two sets presented on different days.
The clue combinations were rearranged such that each clue’s position in a
triplet was retained, i.e., the first clue of the triplet in Set 1 was always the
first clue of a triplet in Set 2, but the clues it was grouped with were not
identical in both sets. This procedure resulted in six unique clue triplets
for each target object which were presented in six separate blocks. The
order of sets (across measurement days) and blocks (within a set) was
balanced across subjects. The full list of clues (Set 1) can be found in
https://github.com/AaltoImagingLanguage/kivisaari_2018.git.

Procedure
The fMRI experiment was conducted on two days, with three measurement
sessions (i.e., blocks) on each day. The two measurement days were on
average 10 days apart (mean = 9.9, SD = 7.9). Each trial started with a
fixation cross (‘+’, duration: 300 ms) after which the clues were presented
one after another. The clue duration was 1000 ms and the first two clues
were followed by a blank screen for 200 ms. The third clue was followed
by a jittered interval (mean = 8.0 s, min = 4.0 s, max = 11.8 s), after
which a string of hash characters “#################” was presented
for 1000 ms, prompting the participant to overtly name the target object
(Figure 4). The interval between the final clue and the naming prompt was
relatively long as we attempted to minimize the overlap between the peaks
of the BOLD signals. The naming condition was followed by a jittered
interval (mean = 4.0 s, min = 2.3 s, max = 6.2 s) after which the next
trial started. The jittering was generated using efMRI version 9 (Chris
Rorden, Columbia, SC, USA, www.mricro.com). The black text stimuli
were presented on a gray background. There were two 18 s rest periods
in each measurement session. The rest trials were signaled by a pair of
hyphens “--” that the participant was asked to fixate while remaining still.

Functional MRI data acquisition
Participants were scanned with a Siemens 3T Skyra Magnetom MRI device
using a custom 30-channel receiver head-coil. We acquired echo-planar
imaging (EPI) volumes in axial oblique angle using an acquisition matrix of
64×64 with 3.1 mm×3.1 mm voxel dimensions. The following acquisition
parameters were used: TE = 32 ms, TR = 2.4 s, flip angle = 90◦, slices =
41, FOV = 200 mm, phase resolution = 100 %. A structural T1-weighted
MPRAGE volume was also acquired (TE = 3.3 ms, TR = 1.1 s, slices =
176, FOV = 256 mm, phase resolution = 100 %).

The stimuli were controlled using Presentation R© 15.0 software (www.
neurobs.com) running on a Dell Optiplex 960 PC. The stimuli were
projected to a mirror mounted on the head-coil using a Panasonic PT-
DZ110XEJ projector using 1920 × 1200 resolution and 60 Hz frequency.
Participants’ verbal responses were recorded using an OptoAcoustics (Or-
Yehuda, Israel) FOMRI-III optic microphone with OptoActive noise control.
The microphone was mounted on the head-coil.

Semantic space from text corpus data

The model of semantic space used in the decoding was estimated from a
1.5 billion token Internet-derived text corpus in lemmatized Finnish (Kan-
erva and Ginter, 2014). The semantic space was built using a word2vec
skip-gram model with a maximum context of 5 + 5 words (5 words be-
fore and after the target word) (Kanerva and Ginter, 2014). The skip-
gram model is a fast and efficient method for learning dense vector rep-
resentations of words from large amounts of unstructured text data. The
model objective is to find vector representations that are useful for pre-
dicting the surrounding words in a sentence given a target word (Mikolov,
Chen, et al., 2013; Mikolov, Sutskever, et al., 2013). The code is avail-
able online at https://code.google.com/archive/p/word2vec, and the
word vector data set used is available online at http://bionlp-www.utu.
fi/fin-vector-space-models/fin-word2vec-lemma.bin. The word vectors
of the model have the dimensionality of 300, and they were used in the
machine learning analyses and the representational similarity analysis (RSA;
Kriegeskorte et al., 2008). Note that single dimensions of the semantic
space are not interpretable.

We extracted the semantic coordinates for each target object word, which
resulted in a 60 × 300 matrix (i.e., number of target stimuli × number of
dimensions of the semantic space). Furthermore, we extracted semantic
coordinates from the word2vec model for all clues and all the individual
features of each target item as provided in the behavioral CSLB norm data.
We used altogether four sets of semantic space coordinates: (1) the last
single clue of the triplet that was used as the onset for the fMRI response
(Clue 3); (2) the sum of the first, second and third clue of the triplet that
were used to probe a given target word (Clue 1+2+3), (3) the target word
alone (Target) and (4) the sum of the semantic coordinates of all features for
a given target object available in the CSLB data set (All available features;
Devereux et al., 2014), including features that were never presented to the
participant. In cases where the clue/feature consisted of more than one
word, we selected and lemmatized one key word (e.g., has legs→ leg) and
extracted the corresponding semantic coordinate from the corpus data.
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Clue 3: Clue 1+2+3: Target: All available features:

has tusks it is gray
lives in herds
has tusks

an elephant is big
is an animal
has legs
does eat
has a tail
is a mammal
is scared of mice
lives a long time
...

is gray
made of bones
has skin
has ears
is endangered
is  clever
does find water
has tusks
...

is ridden
does trample
has a trunk
lives in herds
eats plants
has species
is found in Asia
has a good memory
...

B. Resulting semantic coordinates used in single-trial machine learning models

A. Words for which semantic coordinates were extracted using word2vec

Figure 5: The four types of semantic coordinates used in the single-trial machine learning analysis. The key word whose semantic coordinates
was built using word2vec is shown in boldface. The semantic coordinate was either based on one word (i.e., Clue 3 and Target) or several
words (i.e., Clue 1+2+3 and All available clues) in which case the final semantic coordinate was a sum of the semantic coordinates of all
words in the respective model.

FMRI data preprocessing
The preprocessing was performed using SPM8 software (Wellcome Trust
Centre for Neuroimaging, University College London, UK) running on
Matlab (MATLAB 2014a, MathWorks In., Natic, MA). The EPI volumes
were first corrected for slice timing and head motion and coregistered to
the structural volume of the same participant. We used a General Linear
Model approach, where the model contained the head motion and session
parameters as nuisance regressors as well as high-pass filtering. Each of
the target objects in each of the six blocks was modeled by convolving a
canonical hemodynamic response function from the onset of the last clue
of a triplet. All analyses were run on native-space unsmoothed data. For
visualization purposes, the data was co-registered to Montreal Neurological
Institute (MNI) reference space (Talairach & Tournoux, 1988). Anatomical
labeling was based on the AAL atlas (Tzourio-Mazoyer et al., 2002) unless
otherwise cited.

Zero-shot learning and model evaluation
The machine learning analyses were run on Python 3 (www.python.org)
using the Anaconda distribution (2016) and the scikit-learn module (Pe-
dregosa et al., 2011). The machine learning model implemented in this
study evaluated the contributions of the brain activation patterns to each of
the 300 features of the corpus (Figure 1). The model was trained by using a
subset (n − 2) of the items and the respective multi-dimensional semantic
coordinates such that, in the end, each semantic dimension was associated
with a particular weighted activation pattern. For this, we used multiple
regression with regularization parameters. The model was evaluated after
the training such that the predicted semantic coordinates of the two left-out
objects were compared with the original corpus-derived (“true”) semantic
coordinates. The classification outcome was determined using cosine dis-
tance. This training and evaluation process was iterated 1770 times to cover
all leave-two-out combinations. We evaluated the level of statistical sig-
nificance using a permutation test with 1000 iterations, randomly selected
subjects and randomly shuffled order of the semantic coordinates across the
target objects.

Analyses on averaged data and stability selection
We focused the machine learning analyses on a subset of voxels that showed
a consistent activation pattern across the six trials of each target object (Just
et al., 2010; Mitchell et al., 2008). First, we masked the native space
beta images using an individual gray matter mask extracted from the SPM
segmentation. We then extracted beta values for each voxel of each repeated
trial (n = 6) of each object (n = 58, i.e., excluding the leave-two-out objects
at each iteration). We then calculated pairwise Pearson correlations across
the six repetitions of each target object and averaged the correlations over
the 58 target objects in the training set. Finally, the 500 most stable voxels,
i.e., those with the highest average correlation, were selected for further
analyses.

Single-trial analysis
In the single-trial analysis, no averaging was performed over the six trials
of the same target object, but each trial was considered as an isolated event.
The brain activation patterns related to each trial were then used to predict
the target object or different sets of features (for details, please see section:
Semantic space from text corpus data). In the classification stage, we ignored
those pairwise leave-two-out combinations that would have included the
same target object from different trials (e.g., dog block 1 vs. dog block 2,
hammer block 2 vs. hammer block 4). The performance of different models
was compared using a pairwise t-test using a Bonferroni correction. Note
that we did not use stability selection in the single-trial analysis, since there
were no repeated trials over which stability selection could sensibly have
been performed. Furthermore, as each trial had a different set of clues, we
did not want to potentially wipe out this variability.

Visualization of the zero-shot results
To demonstrate the mapping between the brain and semantic space learned
by the zero-shot decoding algorithm, we have created an interactive vi-
sualization (https://users.aalto.fi/~vanvlm1/guessfmri) that shows for
each target object, its coordinates in the semantic space and the correspond-
ing BOLD activation pattern, averaged across the six trials. T-Distributed
Stochastic Neighbor Embedding (t-SNE) (van derMaaten and Hinton, 2008)
was used to obtain a two-dimensional visualization of the semantic space
and pycortex (Gao et al. 2015) was used to visualize the BOLD activation
pattern. To illustrate that the mapping between the brain and semantic
space is defined at all coordinates, we added 19 new targets (mouse, parrot,
chicken, goat, lynx, peach, grapefruit, beetroot, broccoli, lettuce, plane,
screw, plate, watch, tape, tram, tank, dinghy, gondola) to the interactive
visualization. By reversing the mapping to obtain a linear transformation
between the semantic space and the brain (Haufe et al., 2014), BOLD
activation patterns were predicted for these novel items.

Representational similarity analysis
In the RSA analysis, we used data averaged over the six repetitions of
each target object so as to maximize the signal-to-noise-ratio. We used
searchlight mapping (Kriegeskorte et al., 2008) and RSA toolbox (Nili
et al., 2014) running on Matlab 2014a to find regions where similarity of
activation patterns was related to the similarity structure of the all available
features of the target objects. A searchlight (radius = 7 mm) was formed
around each voxel in the measured volume and the distance (1 – Pearson’s
correlation) was computed between each averaged trial. This procedure
yielded a symmetrical 60 × 60 BOLD representational dissimilarity matrix
(RDM), where the value in each cell reflects the dissimilarity of activation
patterns between a pair of target objects. The resulting RDM was compared
to that derived from the summed semantic coordinates of all available
features. This semantic model RDM was also a 60 × 60 matrix, where the
value in each voxel represents the cosine distance between these semantic
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coordinates. The Spearman’s rank correlation of the BOLD RDM and
semantic model RDM were Fisher transformed in order to make them
normally distributed. Finally, the resulting correlation values were projected
back onto each searchlight’s center voxel and subjected to group-level
analyses.

The correlation maps of each participant were transformed into MNI
space and smoothed at 6 FWHM. The resulting normalized and smoothed
images of each participant were subjected to a group-level SnPM analysis
using variance smoothing of 6 FWHM and 10000 permutations (SnPM13;
http://go.warwick.ac.uk/tenichols/snpm). Clusters surviving family-
wise-error-corrected p < 0.05 that are over 10 voxels in size are reported.
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