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Abstract: Regulatory agencies worldwide have adopted programs to facilitate drug 
development for diseases where the traditional approach of a randomized trial with a clinical 
endpoint is expected to be prohibitively lengthy or difficult. Here we provide quantitative 
evidence that this criterion is met for the prevention of genetic prion disease. We assemble age 
of onset or death data from N=1,094 individuals with high penetrance mutations in the prion 
protein gene (PRNP), generate survival and hazard curves, and estimate statistical power for 
clinical trials. We show that, due to dramatic and unexplained variability in age of onset, 
randomized preventive trials would require hundreds or thousands of at-risk individuals in order 
to be statistically powered for an endpoint of clinical onset, posing prohibitive cost and delay and 
likely exceeding the number of individuals available for such trials. Instead, the characterization 
of biomarkers suitable to serve as surrogate endpoints will be essential for the prevention of 
genetic prion disease. Biomarker-based trials may require post-marketing studies to confirm 
clinical benefit. Parameters such as longer trial duration, increased enrollment, and the use of 
historical controls in a post-marketing study could provide opportunities for subsequent 
determination of clinical benefit. 
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Introduction 
 
Placebo-controlled, double-blind, randomized trials with a clinical endpoint — a measure of how 
patients feel or function — constitute the gold standard for demonstration of therapeutic efficacy 
and, where feasible, are strongly preferred for approval of new drugs. Regulators worldwide 
have recognized, however, that in some diseases the duration of such trials may unduly delay 
patient access to potentially life-saving drugs. Many agencies have therefore created programs 
to support drug development in this situation. For instance, the United States Food and Drug 
Administration (FDA) Accelerated Approval program1 provides for conditional approval based on 
trials using surrogate endpoints, including biomarkers, with a requirement for post-marketing 
studies to confirm clinical benefit2. Honoring the specifics of each disease, FDA "consider[s] 
how to incorporate novel approaches into the review of surrogate endpoints… especially in 
instances where the low prevalence of a disease renders the existence or collection of other 
types of data unlikely or impractical"3. Here we present evidence that genetic prion disease 
meets this criterion. 
 
Prion disease is a fatal and, at present, incurable neurodegenerative disease caused by the 
misfolding of the prion protein, PrP, encoded by the gene PRNP4. Most subtypes of prion 
disease are extremely rapid, leading from first symptom to death in several months5. Prion 
diseases are transmissible, but today few cases are known to be acquired by infection. ~85% of 
prion disease cases are termed "sporadic," meaning they arise spontaneously with no known 
environmental or genetic trigger, while ~15% of cases possess protein-altering rare variants in 
PRNP, a subset of which are highly penetrant6. Various genetic subtypes of prion disease 
include fatal familial insomnia, genetic Creutzfeldt-Jakob disease, and Gertsmann-Sträussler-
Scheinker disease. 
 
To date, all completed clinical trials in prion disease have recruited only symptomatic patients, 
mostly with sporadic prion disease, and have used cognitive, functional, or survival endpoints7–

14. By the time of diagnosis many prion disease patients are in a state of advanced dementia, 
and even a therapy that halted the disease process entirely at this stage might only preserve the 
patient in a state with little or no quality of life15. Moreover, preclinical proofs of concept argue 
that a preventive, rather than therapeutic, approach is more likely to be effective. Multiple 
antiprion agents have been discovered that extend the survival time of prion-infected mice by 2-
4X when administered long before symptoms, yet these have diminished effects at later 
timepoints, and no effect when administered after clinical onset16–19. These observations 
indicate a need to enable preventive trials in presymptomatic individuals at risk for genetic prion 
disease. 
 
The ongoing preventive trial of crenezumab, an anti-amyloid β antibody, for PSEN1 E280A 
early-onset Alzheimer's disease, follows a design where presymptomatic individuals are 
randomized to drug or placebo and followed for five years to a cognitive endpoint20. While this 
represents one model for preventive trials in neurodegeneration, we hypothesized that this 
approach might be challenging for genetic prion disease due to its variable age of onset21,22, 
small presymptomatic patient population23, and more limited financial incentives for 
pharmaceutical companies. To test this hypothesis, we set out to aggregate age of onset data in 
genetic prion disease, generate survival and hazard curves, and simulate statistical power for 
randomized pre-approval trials with a clinical endpoint. We also set out to investigate the 
feasibility of one potential alternative: post-marketing studies using historical controls to confirm 
clinical benefit, following Accelerated Approval on a surrogate biomarker endpoint. 
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Results 
 
Age of onset in genetic prion disease 
 
We reasoned that any preventive trial with a clinical endpoint in genetic prion disease would 
derive most of its statistical power from individuals with high penetrance PRNP variants. Some 
PRNP variants can be identified as highly penetrant by their extreme enrichment in cases over 
population controls, but many variants are too rare in both groups for meaningful comparison6. 
We therefore reviewed the literature on 69 reportedly pathogenic PRNP variants and identified 
27 variants for which Mendelian segregation has been reported in at least one family with at 
least three affected individuals and/or for which a de novo mutation in a case has been 
identified (Table S1), thus suggesting high penetrance. 
 
We examined the frequency of these putative high penetrance variants in a recent case series6. 
The top three variants — E200K, P102L, and D178N — collectively explain 85% of high 
penetrance cases (Figure S1). Each of these arises from a CpG transition (a C to T DNA 
change where the adjacent base is G), a type of variant which occurs by spontaneous mutation 
10-100X more often than other mutation types24,25, explaining the recurrence of these three 
mutations on multiple PRNP haplotypes in families worldwide6,26,27. Therefore, regardless of the 
population studied, these three variants are likely to account for a large fraction of genetic prion 
disease cases with high penetrance variants. For this reason, we focused our analysis primarily 
on individuals with these three variants. We aggregated age of onset and/or age of death data 
on N=1,001 individuals with the E200K, P102L, or D178N mutations from nine study centers 
worldwide (Table 1 and Table S2), encompassing both direct clinical reports and family histories 
(see Methods), and including censored individuals. Statistics on N=93 individuals with the next 
four mutations most common in cases — 5-OPRI (insertion of five extra octapeptide repeats), 6-
OPRI, P105L, and A117V — are included in Table S3. We used these data to compile life tables 
and computed the annual hazard — risk of onset in each year of life — for each mutation 
(Supplementary Life Tables). 
 
We found wide variability in age of onset (Table 1), consistent with previous reports21,22,28. An 
implication of this variability is that high lifetime risk arises not from certain onset at a specific 
age, but from modest risk in any given year of life, accumulated over many decades of 
exposure. This poses a challenge for following presymptomatic individuals to onset in a 
preventive clinical trial, as it is difficult to ascertain a group of individuals for whom onset is 
imminent. For example, even at age 57, an E200K individual has only a 5% probability of 
disease onset occurring in any given year. This means that 20 person-years of follow-up for 
E200K individuals around this age would be expected to result in only one observed disease 
onset. Annual hazards do rise with age, but as they reach high levels, the number of surviving 
individuals also dwindles (Figure 1). For the three most common mutations, the annual hazard 
remains below 10% until after the majority of people have already died (Figure 1, Figure S3, and 
Supplementary Life Tables). Similarly, the median number of years until onset, conditioned on 
an individual's current age, remains ≥5 years until after the median age of onset has passed 
(Supplementary Life Tables). The next four most common mutations have tighter age of onset 
distributions, and so reach higher annual hazards sooner (Figure S3), but these mutations are 
also much rarer, accounting for only 10% of cases with a high penetrance variant6. 
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 without censored data survival curve including censored data 
mutation mean ± sd N median (IQR) range N 

P102L 53.7 ± 10.6 193 56 (47 - 60) 22 - 75 206 
D178N 51.3 ± 11.8 256 53 (46 - 60) 12 - 89* 289 
E200K 61.3 ± 10.0 456 62 (55 - 68) 31 - 92 506 

Table 1. Variability in age of onset in genetic prion disease. Censored data include individuals who 
were either alive and well at last follow-up or had died of an unrelated cause, and whose genetic status 
was known either through predictive testing or due to obligate carrier status. For D178N and E200K, 
because the majority of individuals have disease duration ≤1 year (Figure S2), age of death is used where 
age of onset is unavailable. For P102L, which more often has a longer disease duration, only age of 
onset is used. IQR, interquartile range. Range indicates highest and lowest observed age of onset, 
except where * indicates that the longest survival is a censored data point. 

 
Figure 1. Hazards and survival for the most common PRNP mutations. The hazard, or probability of 
disease onset, in each year of life (y axis) is plotted against age (x axis) with curve thickness representing 
the number of individuals still living at each age, which is the product of age-dependent survival and 
mutation prevalence. Supplementary mutations, and conventional survival curves and hazard plots, are 
included in Figure S3. 
 
Power for randomized pre-approval trials with a clinical endpoint 
 
We set out to calculate how many individuals would need to enroll in order to power prevention 
trials with an endpoint of disease onset, using the calculated age-dependent hazards for each 
mutation. While younger individuals or those with a mutation of modest penetrance might seek 
to enroll in trials or take a preventive drug, they would not contribute much statistical power to 
an endpoint of clinical onset. We therefore chose to base our power calculations on individuals 
with the three most common high penetrance mutations between age 40 and 80. 
 
We estimated how many individuals in this age range have high penetrance PRNP mutations. It 
is estimated based on disease prevalence that 1-2 people per 100,000 in the general population 
harbor high penetrance PRNP mutations (ref. 6 and Supplementary Discussion), but at present, 
many remain unaware of their risk due to underdiagnosis29 of affected family members, and few 
choose predictive testing23 as the results are currently considered medically unactionable. The 
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number of positive predictive genetic test results that have been provided in the U.S. is N=221 
(Supplementary Discussion), and based on the estimated proportion of high penetrance 
variants6 (75%), and the estimated proportion of positive test result recipients23 over age 40 
(36%) we estimate there are currently ~60 people in the U.S. who are age 40 or older and hold 
a positive predictive test for a highly penetrant variant.  
 
We used published formulae30 (see Methods) to calculate statistical power for a log-rank 
survival test in randomized clinical trials (Table 2). Across the three mutations and weighted by 
their prevalence among cases (Figure S1) and number of surviving individuals at each age 
(Figure 1), the average annual probability of onset for individuals aged 40 to 80 is 4.6%. We 
used the 4.6% figure as a baseline hazard, and made the following assumptions: pre-
symptomatic individuals are randomized half to drug and half to placebo and followed for 5 
years with an endpoint of clinical onset; events in the first year are ignored as a "run-in" period 
to ensure sufficient drug exposure among individuals analyzed; the withdrawal rate is 15.2% 
annually (the median value from eight prevention trials reviewed, Table S4); and the trial is 
designed for 80% power at the P=0.05 threshold. We then performed power calculations for 
such a trial as a function of the hazard ratio — the ratio of annual risk of onset in drug-treated 
individuals to that in placebo-treated individuals. For context, we also determined the effect size, 
in median years of healthy life added, to which each hazard ratio corresponds (Table 2). The 
calculations are sensitive to which mutations are included, the "run-in" period, the number of 
years of follow-up, and the assumed withdrawal rate, but we explored a range of different 
assumptions and none support a different overall interpretation of the data (Table S5 and 
Discussion). In particular, the assumption of a 15.2% annual withdrawal rate means that only 
44% of original participants remain after 5 years, but even reducing the withdrawal rate to zero 
only lowers the numbers of participants required by one-third (Table S5). Because FDA has 
cautioned against rare disease trial designs that assume a large effect size31, we focus below 
on the moderate hazard ratio of 0.5, which would correspond to seven years of life added for 
treated individuals. 
 

hazard ratio years of life added onsets required participants required 
0.1 undefined* 6 101 
0.2 21 12 189 
0.3 14 22 311 
0.4 10 37 498 
0.5 7 65 813 
0.6 5 120 1,406 
0.7 4 247 2,724 
0.8 2 631 6,602 
0.9 1 2,828 28,204 

Table 2. Preventive trial requirements under survival test power calculation. For example, a hazard 
ratio of 0.5 means that placebo-treated individuals have a 4.6% annual probability of onset, while drug-
treated individuals have only a 2.3% annual probability of onset. If a population of individuals were treated 
from an early age with such a drug, the median age of onset would be postponed by 7 years. To have 
80% power at P=.05 to detect the effect of such a drug, 65 individuals would need to become 
symptomatic during the trial — given the 0.5 hazard ratio, about two-thirds of these would occur in the 
placebo group and one-third would occur in the drug group. Observing this number of disease onsets 
would require randomizing 813 people for 5 years (data from the first year would be ignored, and the 
remaining four years of data would be analyzed). *For a hazard ratio of 0.1, most individuals never 
become sick, thus, the increase in median age of onset (the age where 50% of people have had onset) is 
undefined. 
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The above power calculations simplistically assume a uniform baseline hazard across all 
participants, regardless of age and PRNP mutation. We also used a simulation to account for 
the full shape of the hazard curve and diversity of genetic mutations, but the simulated power 
results were similar to those in Table 2 (see Table S6). Stratification by PRNP mutation did not 
improve power in our simulations (Supplementary Discussion), perhaps because age of onset 
distributions (Table 1) are wide and overlapping, such that PRNP mutation explains only a 
minority of the overall variance in age of onset (adjusted R^2 = 0.15, linear regression, P < 1e-
32). 
 
Statistical power might be improved by stratifying clinical trial analysis by relevant additional 
variables, but there are currently no variables that help to explain age of onset (Supplementary 
Discussion, Table S7, and Figure S4-5). For instance, we found no sex effect, and no evidence 
that parent and child age of onset are correlated after controlling for PRNP mutation and for 
child's year of birth, a variable that captures some effects of ascertainment bias32 (Table S7). A 
common genetic variant, PRNP M129V, is known to affect the clinical and pathological 
presentation of many forms of prion disease33 as well as the risk of sporadic and acquired prion 
disease34. This variant has previously been reported to affect age of onset in some forms of 
genetic prion disease but not others21,32,35,36. We found no evidence that codon 129 affects age 
of onset for P102L or E200K individuals (Table S7 and Figure S4). For D178N, our data are 
suggestive that a 129VV genotype may predispose to earlier onset than MM or MV genotypes 
(Figure S4 and Supplementary Discussion), but in the overall dataset, codon 129 failed to 
explain additional variance in age of onset (Supplementary Discussion). 
 
Based on this analysis, at present it is not possible to adequately power a randomized pre-
approval prevention trial with an endpoint of clinical onset in genetic prion disease. For example, 
for a drug that reduces annual risk by half (hazard ratio of 0.5), powering such a trial would 
require 813 participants age 40 or older, and even for a drug that reduces annual risk by ten-fold 
(hazard ratio of 0.1), 101 participants would be required (Table 2), versus the ~60 currently 
estimated to exist in the U.S. Key assumptions underpinning this analysis may change with 
time: new stratifying variables could help to predict age of onset, or a first drug for prion disease 
could improve diagnosis and recruitment (see Discussion). However, the insight that 
randomized pre-approval prevention trials with a clinical endpoint may not be feasible today has 
implications for drug development efforts likely to reach the clinic while current assumptions 
hold. For this reason, we next turned our attention to the possibility that a preventive drug might 
be developed through the Accelerated Approval pathway using a surrogate biomarker endpoint. 
 
Power for post-marketing studies 
 
We asked whether, if Accelerated Approval were achieved, the required post-marketing studies 
to confirm clinical benefit could be adequately powered by following drug-treated individuals to 
clinical onset and comparing their survival to that of historical controls. Such a trial design could 
increase power but also introduce bias; we considered each issue in turn. 
 
We identified several factors that are likely to decrease the number of participants required to 
power such a study compared to its randomized pre-approval equivalent: all, rather than half, of 
individuals are drug-treated; the number of historical controls can be large; a longer trial 
duration could be considered because the trial would overlap, rather than reduce, the drug’s 
effective market exclusivity period (Supplementary Discussion); and a post-marketing 
surveillance program might allow newly drug-treated individuals to enter the program on a 
rolling basis, replacing any who withdraw. The effects of these assumptions (Table 3) are 
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collectively to reduce the number of individuals required to demonstrate efficacy of a drug with 
hazard ratio of 0.5 from 813 to 37. At the same time, the number of individuals available for a 
trial might increase, because: an approved drug should have broader geographic reach than a 
pre-approval trial; a treatment might improve awareness and diagnosis of the disease; and a 
treatment might stimulate more individuals to pursue predictive genetic testing. For instance, of 
people at 50/50 risk for a PRNP mutation, currently only 23% pursue predictive testing, 
compared to 60% (2.6X higher) for BRCA1 or BRCA2 mutations37, which are considered 
medically actionable38. Thus, a post-marketing study could be adequately powered with 
available numbers of individuals for a hazard ratio of 0.5 (Table 3) and, over a range of 
assumptions, would bring power requirements into closer alignment with the number of 
available individuals (Figure S6 and Supplementary Discussion). 
 
scenario N required explanation 

Randomized pre-approval — 
5-year follow-up  

813 See Table 2 

Post-marketing with historical 
controls — 5-year follow-up 

229 Increased power because all, rather than 
half, of individuals are treated, and N=1,000 
historical controls are used for comparison. 

Post-marketing with historical 
controls — 15-year follow-up 

125 Increased power because longer trial 
duration may be financially tenable for post-
marketing studies. Power is still limited, 
however, by withdrawal rate, which means 
that few participants remain at the end of 
15 years. 

Post-marketing with historical 
controls — 15-year follow-up, 
no withdrawal 

37 Increased power because the withdrawal 
rate is set to zero, simulating a scenario 
where individuals who go on drug can 
continuously enter the surveillance 
program, and the cohort being monitored 
can maintain its size over time. 

Table 3. Comparison of power calculations for pre-approval and post-marketing studies. In each 
case the calculation is for a hazard ratio of 0.5, the N indicated is for 80% power at the P=0.05 threshold, 
and all assumptions other than those indicated in the table are the same as for Table 2. The number of 
individuals required for post-marketing studies is determined by simulation (Supplementary Discussion). 
 
While we conducted tests to ensure that our power simulation was not itself biased 
(Supplementary Discussion), a post-marketing study could still be biased in real life, if the 
historical controls used do not accurately estimate the true hazard rates facing the trial 
participants39. There are no environmental, demographic, or non-PRNP genetic factors known 
to affect prion disease risk or age of onset, although these might nonetheless exist40,41. Perhaps 
of greater concern is that most of our historical controls were collected retrospectively — 
individuals are only ascertained if they become sick — and may overestimate the hazard rates 
for individuals followed prospectively32. To assess this possible source of bias, we compared the 
survival of the limited number of individuals followed prospectively in our dataset (N=24 
individuals, with a cumulative 145 person-years of follow-up), conditioned on their ages at first 
ascertainment, to those of individuals with no prospective follow-up. We did not observe a 
significant difference in hazard (P=0.59, Cox proportional hazards test) between these two 
groups, although this could be due to a lack of power (see Discussion).  
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Discussion 
 
Both our power calculation and simulation indicate that direct demonstration of clinical benefit in 
a randomized pre-approval prevention trial would require enrolling a number of PRNP mutation 
carriers that is not currently realistic. For instance, for a drug that reduces annual risk of onset 
by half (hazard ratio of 0.5), estimated to correspond to a 7-year delay in median age of onset, 
80% power was reached only with 813 individuals randomized for 5 years (Table 2). Currently, 
only N=221 presymptomatic individuals in the U.S. have positive genetic test results for PRNP 
mutations, and we estimate that only ~60 of these have high penetrance mutations and fall in an 
age range (≥40 years) where their hazard is sufficiently high that they would contribute 
appreciable power to a randomized trial with a clinical endpoint. Randomized prevention trials 
might just barely achieve 80% power under the most wildly optimistic assumptions of an 
extremely effective drug (hazard ratio of 0.1, reducing annual risk of onset by ten-fold), along 
with some increase in predictive testing rates and a very successful trial recruitment effort. FDA 
has cautioned, however, that rare disease trials should not be designed around the hope of a 
huge effect size31, and even if a drug were so profoundly effective, it is unlikely that a sponsor 
would have sufficient confidence in this a priori to invest in a trial that is underpowered for more 
moderate effect sizes. 
 
At least three factors can explain why a randomized trial design following pre-symptomatic 
individuals to a clinical endpoint was deemed feasible for early-onset Alzheimer's disease, yet 
appears unviable for genetic prion disease. First, onset is less predictable in genetic prion 
disease. The standard deviation of age of onset ranges from ±10.0 to ±11.8 years for the three 
PRNP mutations we examined (Table 1), whereas estimates of the standard deviation of age of 
onset for PSEN1 E280A Alzheimer's disease range from ±6.4 to ±8.6 years42,43. In addition, an 
individual's age of onset in genetic Alzheimer's disease is reported to be correlated with parental 
age of onset43, and this property has been used to attempt to enrich for high-hazard individuals 
in trials44, whereas we have found no evidence that parent and child age of onset are correlated 
in genetic prion disease (Table S7 and ref. 32). Second, genetic prion disease is rarer. The 
PSEN1 preventive trial recruited from a single pedigree of ~5,000 individuals45 from which 1,065 
living individuals with the mutation have been enrolled in a registry46. There is no known genetic 
prion disease family this large. Third, genetic prion disease offers more limited financial 
incentives for a pharmaceutical sponsor. The cost of the PSEN1 preventive trial has been 
estimated at $96 million44,47, and while this price may be tenable for sponsors in view of 
potential for an expanded Alzheimer’s indication, no similar potential exists for prion disease. 
Indeed, even in Alzheimer’s disease, larger or longer primary prevention trials are likely to prove 
challenging for the private sector and may require public sector investment48. 
 
Preclinical proof-of-concept studies in mice have shown that some antiprion agents effective at 
delaying prion disease on a prophylactic basis become ineffective if given close to the time of 
clinical onset16,19, suggesting that trials in symptomatic patients could fail to show a benefit that 
would have been realizable in preventive treatment. Yet our results here indicate that it would 
be difficult or impossible to design a well-powered randomized preventive trial with a clinical 
endpoint in genetic prion disease. Together, these observations argue for the characterization of 
biomarkers suitable as endpoints in presymptomatic genetic prion disease, and for their 
evaluation by regulatory agencies as surrogate trial endpoints. Accompanying manuscripts 
describe one possible route to Accelerated Approval using a surrogate biomarker endpoint49,50. 
 
If Accelerated Approval could be achieved, then a post-marketing study would be required to 
confirm clinical benefit. We considered a model in which drug-treated individuals are enrolled in 
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a surveillance program and their survival is compared to that of historical controls. We estimate 
that, compared to randomized pre-approval studies, such a program could reduce the number 
of individuals required for 80% power at the P=0.05 threshold by 3- to 20-fold. Meanwhile, 
conditional approval of a first prion disease drug may alter key parameters such as diagnosis, 
recruitment, and genetic testing rates, the last of which alone could increase participant 
availability by more than 2-fold. Thus, while power for any trial depends upon how effective the 
drug is, there exists a range of assumptions under which a post-marketing study could be 
adequately powered. There may be various formats through which the Accelerated Approval 
requirement of a post-marketing study to confirm clinical benefit could be met. 
 
Under some assumptions, a post-marketing study might last a decade or longer and would 
benefit from following all mutation carriers taking the drug. With creative and careful planning, 
we propose that these goals could be achieved. In one model, a post-marketing study might 
take the form of a surveillance program, in which treated patients are followed long-term, 
perhaps in collaboration with existing prion specialist clinics and surveillance centers worldwide. 
In such a model, drug costs would be reimbursed by payors, in contrast to a more traditional 
sponsor-funded pivotal trial. While this model would be a departure from the more conventional 
design of most post-marketing studies required for recent Accelerated Approval drugs2, 
precedents exist for regulatory innovation in this area. For example, FDA's Risk Evaluation and 
Mitigation Strategies (REMS) program for drugs with serious safety concerns entails indefinite 
post-market enrollment and monitoring of treated patients51, and post-approval study 
requirements for medical devices often include registries or surveillance efforts and are not 
always industry-funded52,53. 
 
Our study has several limitations. First, true age of onset distributions can only be obtained 
prospectively54, whereas our data are largely retrospective. We have included asymptomatic 
individuals with pathogenic PRNP variants where possible, but our ascertainment of them is 
certainly incomplete due to limited uptake of predictive testing23. This bias may tend to make our 
estimates of age of onset overly pessimistic32,55. To the extent that true age of onset is older, or 
total lifetime risk lower, than our data suggest, randomized preventive trials with a clinical 
endpoint would require even greater numbers of individuals, and thus further increase our 
caution around this study design. Second, although our dataset is, to our knowledge, the largest 
ever reported for genetic prion disease age of onset, our statistical power to detect genetic 
modifiers, which might aid in age of onset prediction, is still limited. Third, although we have 
attempted to select a reasonable set of assumptions for modeling clinical trials, we have by no 
means exhaustively sampled the set of possible trial designs and parameters. Fourth, powering 
a post-marketing study will require a good historical control dataset to compare to, and our 
dataset, which was collected mostly retrospectively, may or may not be adequate. We found no 
evidence that our dataset overestimates the hazards facing prospectively followed individuals, 
but this could be due to a lack of power in our analysis. Fifth, the ascertainment of genetic prion 
disease by prion surveillance centers may be biased towards rapidly progressive phenotypes, 
meaning that the prevalence of more slowly progressive forms might be underestimated. 
 
Our findings highlight two priorities for the prion field. First, the discovery and characterization of 
biomarkers capable of serving as trial endpoints may be essential to enable near-term 
presymptomatic trials in genetic prion disease. Second, a post-approval surveillance 
mechanism for age of onset merits consideration as one option for confirmation of clinical 
benefit in the context of Accelerated Approval. The ability to access therapies that can prevent 
or delay prion disease, yet which are likely to be less effective or ineffective after symptom 
onset, could be greatly enhanced by success in these areas.  
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Methods 
 
Literature annotation. We considered 69 reportedly pathogenic PRNP variants (Table S1) and 
reviewed primary literature to determine which had evidence of at least one family with at least 
three affected individuals in a pattern consistent with Mendelian segregation, or had a 
documented case with a de novo mutation. We identified 27 such variants, deemed likely high 
penetrance variants. The remainder were seen in isolated patient(s) with a negative or unknown 
family history, and/or have population allele frequencies inconsistent with high penetrance6. 
These variants will include both benign and low-risk variants. It is possible that some genuinely 
high penetrance variants may also lack literature evidence for high penetrance due to missing 
family history information or an unavailability of family member DNA to confirm de novo status, 
but this issue will only affect variants with very low case counts and thus will have minimal 
impact on the results reported here. 
 
Data collection. Age of onset data were gathered from nine study centers: the UK National 
Prion Clinic, the German Reference Center for TSEs, the Memory and Aging Center at 
University of California San Francisco, the Australian National CJD Registry, the reference 
center for CJD at University of Bologna, the DOXIFF study at the Mario Negri Institute, the 
Japanese national prion surveillance network, the French national reference center for CJD, and 
the Spanish National Center for Epidemiology. The data include both previously reported and 
newly identified families and individuals. Data were collected through clinical visits, reports to 
prion surveillance centers, and family histories, as previously described32,56–61. Age of onset was 
based on the earliest date of symptoms, determined by the patient or witnesses, that 
subsequently developed into prion disease. Data on the number of positive predictive genetic 
tests for PRNP mutations was provided by the National Prion Disease Pathology Surveillance 
Center for this study. 
 
Life tables and hazard curves. We tabulated, for each PRNP mutation and for each age from 
1-100, the number of individuals alive at the beginning of the interval (lives; l), becoming sick or 
dying within the interval (deaths; d), or being censored – alive and well at last followup or dead 
of a different cause – within the interval (withdrawals; w). The raw hazard (q) was computed as 
onsets divided by the mean number of people observed over the interval: q = d/(l - w/2), and a 
smoothed hazard (q_smooth) was computed by passing a Gaussian filter (sd=3 years, 
maximum width=15 years) over the raw hazard. The proportion surviving for each interval (p) 
was 100% for the first year and was computed as (1-q) times the proportion surviving in the 
previous interval for every year thereafter. To compute the 95% confidence intervals on the 
smoothed hazard, we sampled each mutation's data, with replacement, 1000 times, generated 
life tables for iteration, and then chose the 2.5th and 97.5th percentile of the hazards in the 
bootstrapped distributions at each age. 
 
Assumptions. To determine a reasonable assumption for withdrawal rate, we performed 
Google Scholar searches for preventive trials in neurology (N=2) or cardiology (N=6). The 
annual withdrawal rate was computed as w = 1 - exp(log(A)/t)), where A is the proportion of 
patients completing the trial at time t. Results are summarized in Table S3. 
 
Power calculation. The number of events (disease onsets, d) required was computed per 
Schoenfeld et al30 (equation 1). The number of patients required in order to observe that number 
of disease onsets was computed using an exponential model per Kohn et al62. Hazard in the 
placebo group was the baseline hazard specified in the text (4.6% for Table 2), and hazard for 
the drug group was the baseline hazard times the hazard ratio. The cumulative event rate in 
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each group was computed as C = (h/(h+w)) * (1-exp(-(h + w)*t))), where h = hazard, w = 
withdrawal rate, and t = years of followup. The overall cumulative event rate Ctot was the 
average of the cumulative event rates for the two groups, weighted by proportion treated (in this 
case, 50/50). The number of randomized individuals required for d events to be observed was 
calculated as d /Ctot. To account for ignoring the first g years of data, we reasoned that the 
cumulative rate of events usable in the final dataset would be Cusable = (h/(h+w)) * (1-exp(-(h + 
w)*t))) - (h/(h+w)) * (1-exp(-(h + w)*g))), which simplifies to Cusable = (h/(h+w)) * (exp(-(h + w)*g)-
exp(-(h + w)*t)) 
 
Simulations. Details of the simulations of randomized trials and historical control trials are in 
the Supplementary Discussion. 
 
Source code and data availability. Raw data cannot be made available due to identifiability 
concerns, but life tables have been included in supplement (Supplementary Life Tables). All 
analyses were conducted in the R programming language. Life tables and R source code are 
presented in a public GitHub repository at https://github.com/ericminikel/prnp_onset and are 
sufficient to reproduce most analyses and figures herein. 
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Supplementary Discussion 

Estimation of number of individuals available for trials 
 
It is possible to estimate the true number of high penetrance PRNP mutation carriers based on 
disease prevalence. Using data from recent case series, 1,176 prion disease cases harbored a 
PRNP variant classified here as highly penetrant, out of 10,460 sequenced cases or 16,025 
total cases6. Thus, 7 - 11% of prion disease cases have a high penetrance PRNP variant. Prion 
disease is responsible for ~1 in 5,000 deaths6, suggesting that ~1 in 45,000 to 71,000 deaths 
are due to a high penetrance PRNP variant. The carrier rate among the living population will be 
somewhat lower because these variants reduce life expectancy, but it is reasonable to suppose 
that ~1 in 100,000 people harbors a high penetrance PRNP variant. This is in line with recent 
population control data, where out of 138,632 individuals in the gnomAD database as of 
December 2017 (http://gnomad.broadinstitute.org/)63, there is one individual with the E200K 
mutation and no others with any variant classified here as high penetrance. Similarly, out of 
~531,575 individuals genotyped by 23andMe, between 1 and 5 harbored one of four well-known 
high penetrance variants (P102L, A117V, D178N, and E200K) and between 1 and 5 harbored 
one of an additional set of variants which includes three classified here as high penetrance 
(P105L, T183A, and F198S). If the true carrier rate is 1 in 100,000, then there may exist 3,000 
people in the United States with high penetrance PRNP variants. However, this figure greatly 
overestimates the number of people available for trials, as most of these individuals have not 
undergone predictive testing. Indeed, many are likely not even aware that they are at risk, 
perhaps because a family history is absent or a family member was not diagnosed correctly. 
 
The National Prion Disease Pathology Surveillance Center in Cleveland, Ohio, as the sole 
provider of PRNP gene testing in the U.S., has exhaustive ascertainment of individuals who 
have chosen predictive testing for genetic prion disease in this country. In the period from 1996 
through January 2017, it provided N=221 positive predictive test results, for any PRNP variant, 
to individuals who are not known to have developed disease as of 2017. Privacy concerns 
prevent publication of a breakdown of this number by age and specific PRNP mutation, but 
estimates can be made based on other cohorts. Among U.S. symptomatic prion disease cases 
with a rare PRNP variant, 75% (271/362) of individuals had a mutation classified here as high 
penetrance (Table S1), and in the reported U.K. predictive testing cohort23, 36% (37/104) of 
individuals who chose predictive testing were age 40 or older. Thus, a conservative estimate 
that there are only 221× 75%×36% = ~60 individuals alive in the United States today who meet 
the criteria we use in our power calculations. 
 
The above estimate is conservative in that it reflects individuals who currently know their genetic 
status. In the U.K. predictive testing cohort, only 23% of individuals at 50/50 risk chose 
predictive testing23, similar to reported figures in Huntington's disease, another incurable 
neurological disease (see refs in 23). In contrast, 60% of individuals at risk for BRCA1 or BRCA2 
mutations, for which preventive measures are available, chose predictive testing37. Thus, it is 
possible to imagine a 60%/23% = ~2.6X increase in the uptake of predictive testing if a 
preventive therapy for prion disease were available. Thus, a more generous estimate of the 
number of individuals age ≥40 available in the U.S. is 60×2.6 = 156. Such an estimate is 
probably more realistic when considering an approved prevention measure (as in post-
marketing studies) than when considering an experimental drug entering randomized pre-
approval trials (see below). 
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Although we contemplated worldwide trials with multiple international sites, we did not have 
adequate data to estimate the number of genetically tested presymptomatic individuals 
worldwide. The NHS National Prion Clinic in the U.K. has seen 72 presymptomatic individuals 
with PRNP mutations since 1990, and the French surveillance center in Paris has delivered 18 
positive PRNP predictive test results since 2004, but the other centers involved in this report did 
not have comprehensive data on predictive testing in their respective countries analogous to 
that available for the U.S. We also note that a large number of E200K mutation carriers are 
suspected to exist in Slovakia and Israel due to founder mutations, although fewer than 100 
carriers appear to have been identified in each country to date64,65. 
 
We also considered estimates based on the incidence of genetic prion disease. U.S. prion 
surveillance reported 271 individuals dying of prion disease with high penetrance mutations, 
suggesting that at least a comparable number of carriers in the U.S. are currently healthy and 
will have onset with a correct diagnosis within the next 15 years. The comparable figure 
including Europe, Australia, and Japan is 1,176. These last two figures are still lower than the 
true number of carriers in existence due to underdiagnosis, yet they overestimate the number of 
individuals actually reachable for trials because they ignore the question of how many 
individuals would choose predictive testing, and they include individuals who would be difficult to 
ascertain prospectively because they lack a known family history of prion disease, either due to 
de novo mutations, incorrect or incomplete information about previous family illnesses, or 
<100% penetrance.  
 
For all of the above estimates, an important caveat is that the number of individuals successfully 
recruited, screened, and enrolled for a trial will be only a fraction of the number who meet the 
most basic enrollment criteria such as genetic status and age. Willingness, geography, and 
various exclusion criteria will dramatically lower the number actually enrolled. 
 
Finally, it is worth noting that all of our calculations and assumptions are based upon the 
present moment, when there exists no drug for prion disease. It is likely that approval of a first 
prion disease drug would increase the number of patients available for future trials. A drug could 
improve diagnosis rates, as prion disease is not currently prioritized in the differential diagnosis 
of rapidly progressive dementia due to its being untreatable66. The U.S. observes an incidence 
of ~1 prion disease case per million population per year, but up to twice that incidence has been 
observed in countries with more intense surveillance systems29. Because many prion disease 
patients die undiagnosed, their relatives may never learn that they are at risk for a PRNP 
mutation. A drug might also increase the uptake of predictive genetic testing among those who 
do learn that they are at risk. The 23% uptake observed for prion disease23 is consistent with 
other currently “medically inactionable” indications such as Huntington’s disease67, while as 
noted in the main text, “actionable” indications such as BRCA1/2 mutations appear to have 
much higher uptake37. Finally, the existence of a drug may promote general awareness of the 
disease and improve the infrastructure for surveillance, registries, and patient ascertainment. 
 

Simulation of power for randomized preventive trials with a clinical endpoint 
 
Individuals were assigned one of the three PRNP mutations and a starting age distributed 
between 40 and 80, weighted by mutation prevalence and by the proportion of individuals 
surviving at each age. As above, we assigned half of individuals to drug and half to placebo, 
and assumed a w=15.2% annual withdrawal rate, a P=0.05 statistical threshold, and a 5-year 
trial duration with a 1-year "run-in" period. For each year of the trial, each individual withdraws 
with probability w, becomes sick with a probability corresponding to the hazard function for their 
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particular PRNP mutation and age at the time, multiplied by the simulated hazard ratio if drug 
treated, or else continues on in the trial. At the end of each simulated trial, we analyzed the 
censored trial data to determine a P value. For non-stratified simulations, drug/placebo status 
was assigned without regard to mutation, and survival status was regressed on drug/placebo 
status alone using a log-rank test, with the overall P value as the readout. For stratified trials, 
drug/placebo status was assigned 50/50 within each mutation, and mutation was included as a 
covariate in a Cox proportional hazards regression, with the P value for the "drug" parameter as 
the readout.  
 
We then compared this model to the power calculation results by taking the calculated required 
numbers of individuals for 80% power (Table 2) and then running the simulation (500 iterations) 
to determine the power for this number of individuals. The results (Table S6) show overall good 
agreement between the power calculation and the simulation — for most scenarios tested, the 
power is indeed close to 80%, with or without stratification. Stratification actually reduces 
statistical power for the conditions with low N and low hazard ratios. Under such conditions, it is 
a common occurrence that there may be zero disease onsets either in one randomized group 
(usually the drug-treated group) or in one mutation, resulting in an infinite regression coefficient 
or beta in the Cox model. Thus, the regression never converges, and the simulated trial results 
turn out statistically non-significant. 

Codon 129 effects on age of onset and disease duration  
 
To determine whether codon 129 affects age of onset for the three most prevalent mutations 
considered here, we used a log-rank model based on codon 129 diplotype (phased genotype) 
where available (Table S7). In this model, only D178N showed clear evidence for genetic 
modification of age of onset and disease duration, with P values significant after multiple testing 
correction. To determine the nature of this genetic modification, we plotted survival curves by 
codon 129 diplotype and, because phase was unknown for many codon 129 heterozygous 
individuals, we also considered phaseless genotypes. In pairwise tests for D178N, M/M was not 
significantly different from M/V (nominal P = 0.14) nor from V/M (nominal P = 0.69), and in the 
phaseless survival curve, MV was overall similar to MM (Figure S4D). These results suggest 
that the significant codon 129 effect on D178N age of onset is most likely driven primarily by a 
younger age of onset in V/V individuals compared to other diplotypes. Despite the strong 
statistical significance of this difference, the small number of D178N-129VV individuals means 
that codon 129 does not add any explanatory power for age of onset in the dataset as a whole. 
As noted in the main text, mutation alone explains limited variance in age of onset (adjusted 
R^2 = 0.15, P = 1.3e-33). Adding cis and trans codon 129 to this model decreases the variance 
explained (adjusted R^2 = 0.14, P = 3.6e-18). 
 
We also investigated in further detail previously reported associations. For disease duration, 
D178N M/M and V/V were significantly more rapid than either heterozygous diplotype, 
consistent with previous reports. Although codon 129 diplotype did not have a significant effect 
on E200K disease duration overall (nominal P = 0.10), a phaseless genotypic model was 
suggestive (nominal P = 0.031), with MV heterozygotes appearing to have a slightly longer 
disease duration than MM homozygotes, a direction of effect consistent with previous reports5,32. 
Whereas P102L age of onset was reported to be higher for M/V than M/M individuals36, here we 
find no evidence for this and, ignoring phase, the non-significant trend is towards younger onset 
in MV than MM individuals (nominal P = 0.056). 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/401406doi: bioRxiv preprint 

https://doi.org/10.1101/401406
http://creativecommons.org/licenses/by/4.0/


Minikel et al - Genetic prion disease age of onset - 2018-08-29  16 

Potential age of onset confounders 
 
Because our data were gathered from a variety of study centers using a variety of 
methodologies, we asked whether any confounders might affect age of onset (Table S7). There 
was no difference in age of onset between directly and indirectly ascertained individuals (P = 
0.78). Age of onset was correlated with year of birth after controlling for mutation (P < 1e-48), 
which is a previously reported artifact caused by our relatively limited ability to ascertain 
individuals whose onset has not yet arrived (though we ascertain some of them through 
predictive testing) or whose onset occurred before genetic diagnosis of prion disease was 
possible (though we ascertain some of them through family histories)32. This correlation does 
not affect estimation of overall age of onset distributions. Age of onset appeared to differ slightly 
among the nine contributing study centers after controlling for mutation, although it was not 
significant after multiple testing correction (nominal P = 0.012, Bonferroni P = 0.26, two-way 
ANOVA), and it only marginally increased variance explained (adjusted R^2 = 0.16) compared 
to mutation alone (adjusted R^2 = 0.15, see above). Year of onset showed evidence of positive 
correlation with age of onset after controlling for study center and mutation (nominal P = 
0.00032, Bonferroni P = 0.008, linear regression), although the effect size was small (+0.12 
years of age per calendar year, or in other words, cases in 2010 have on average an age of 
onset 1.2 years older than cases in 2000) and, again, the impact on variance explained was 
minimal (adjusted R^2 = 0.18). This slight positive correlation might be due to improved 
ascertainment of older-onset cases as prion surveillance strengthens over time. 
 

Justification for trial duration assumptions 
 
In the main text, we argued that a longer trial duration could be considered for a post-marketing 
study because it would run concurrently with, rather than reducing, the drug’s effective market 
exclusivity period (the period before generic equivalents can be approved). In the U.S., new 
drugs may be protected by patent exclusivity granted by the Patent and Trademark Office 
and/or by market exclusivity measures granted by FDA; these exclusivity periods are not 
additive. Patents last 20 years beginning from their filing, which is usually during the preclinical 
development phase. The 1984 Hatch-Waxman Act allows sponsors to recover up to 5 years of 
additional exclusivity, not to exceed a total of 14 years of market exclusivity, to make up for time 
the drug spends in FDA review68. FDA can offer varying periods of market exclusivity depending 
upon the indication and treatment modality, including 12 years for new biologics69 and 7 years 
for rare disease drugs granted Orphan Drug designation70. In practice, new drugs receive on 
average about 12 years of effective market exclusivity71,72. The vast majority of pivotal trials 
supporting new drug approvals last less than one year73. While there are rare examples of 5-
year trials47, a 10- or 15-year prevention trial would exhaust most or all of a drug’s effective 
market exclusivity period. In contrast, as noted in the Discussion, there do exist precedents for 
very long-term surveillance of patients receiving a drug after approval. 
 

Historical control trial simulation 
 
As for the simulation of randomized trials, individuals were assigned one of the three PRNP 
mutations and a starting age distributed between 40 and 80, weighted by mutation prevalence 
and by the proportion of individuals surviving at each age. Again, we assumed a w=15.2% 
annual withdrawal rate (Table S5), a P=0.05 statistical threshold, and a 1-year "run-in" period 
where disease events are ignored. Distinct from the randomized trial simulation, here all 
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simulated individuals are treated with the drug. For each year of the trial, each individual 
withdraws with probability w, becomes sick with a probability corresponding to the hazard 
function for their particular PRNP mutation and age at the time, multiplied by the simulated 
hazard ratio, or else continues on in the trial. At the end of each simulated trial, the censored 
trial data on treated individuals are compared to our original dataset as historical controls 
(Supplementary Life Tables). To determine a P value we used a Cox proportional hazards 
counting model accounting for different left-truncation times74: for untreated individuals in the 
original dataset, we assumed age 0 as a start time, while for treated individuals, we assumed 
left truncation at the age at trial enrollment, plus one year to account for the "run-in" year. 
 
While we cannot currently rule out the possibility that our dataset is biased relative to the true 
hazards facing mutation carriers in real life (see main text Discussion), we sought to confirm that 
our simulation method is not itself biased. We reasoned that if our simulation was unbiased, 
then for a drug with hazard ratio equal to 1 (a completely ineffective drug), even long trials with 
large numbers of individuals should have power equal to alpha, by the definition that alpha is 
the false positive rate when the null hypothesis (no efficacy) is true. We therefore ran 1000 
iterations of a simulation with a hazard ratio of 1 and 1000 individuals followed for 20 years. We 
observed a significant result at P < 0.05 in only 5.5% of iterations, consistent with the expected 
5%. 
 
In contrast to the result for randomized trials (see discussion above and Table S6), we found 
that stratification by mutation in the analysis of historical control trial simulation did just slightly 
increase statistical power. For example, with N=156 individuals followed for 15 years with a 
hazard ratio of 0.5, power was 90.6% (906/1000 iterations) without stratification and 94.1% 
(941/1000 iterations) with stratification. This difference from the randomized trial simulation may 
be a property of the Cox counting model, combined with the fact that our historical comparison 
dataset has N=1,000 individuals, and we considered follow-up periods of up to 15 years, 
meaning that the dataset was large enough for the small explanatory power of different PRNP 
mutations to matter. Nevertheless, for consistency with the methods used for the randomized 
trial simulations, we chose not to stratify in the simulations used for Table 3 and Figure S6. 
 
We performed power calculations for post-marketing studies using historical controls under a 
range of assumptions in addition to those explored in Table 3 in the main text. In one set of 
experiments, we considered the effects of varying the length of the follow-up period. For a 
hazard ratio of 0.5, 80% power could be achieved within 9 years for N=156 participants, but is 
never achieved for N=60 participants (Figure S6A). This is because statistical power eventually 
plateaus for lack of participants: our assumption of a 15.2% withdrawal rate compounded 
annually means that after 10 years, only 19% of the original participants remain in the trial. If the 
set of drug recipients followed in a post-marketing study were fixed shortly after approval, then 
this is a realistic concern. If, on the other hand, study design allows new individuals who are 
prescribed the drug to be added to the monitored cohort continually, the number of individuals in 
the trial could stay constant or even grow. To simulate this possibility, we also considered a zero 
withdrawal rate scenario. Under this assumption, even with N=60 individuals, 80% power is 
achieved in 10 years (Figure S6A). 
 
In another set of experiments, we compared the power for post-marketing studies with historical 
controls, with or without modeling withdrawal, in comparison to pre-approval randomized trials, 
for a range of hazard ratios (Figure S6B). For the same hazard ratio and level of statistical 
power, post-marketing trials generally required only about one fifth as many individuals, and if 
withdrawal is set to zero, simulating continuous enrollment, only one twentieth as many, as pre-
approval randomized trials. 
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Certainly, a post-marketing study is not a panacea, and under certain assumptions even this 
trial design is not well-powered: for instance, for a drug of marginal efficacy (hazard ratio 0.9, 
delaying onset by ~1 year) even a 15-year trial with no withdrawal could not achieve 80% power 
with 1,000 participants. But, under a range of moderate assumptions, a post-marketing study is 
more feasible than randomized pre-approval trials with a clinical endpoint. 
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Supplementary Tables 

Table S1. Literature review to identify probable high penetrance variants 
 
"Mendelian segregation" indicates the presence of at least one family with at least three affected 
individuals in a pattern consistent with Mendelian segregation. "De novo" indicates a case with a 
confirmed de novo mutation. — indicates neither of these criteria was present.  
 

variant evidence for high 
penetrance comments 

P39L — 75  

2-OPRD — 76,77  

1-OPRI — 78,79  

2-OPRI — 80  

3-OPRI — 81  

4-OPRI — 82 most cases have a negative family 
history 

5-OPRI Mendelian segregation83  

6-OPRI Mendelian segregation35  

7-OPRI Mendelian segregation84  

8-OPRI Mendelian segregation84,85  

9-OPRI Mendelian segregation86, de 
novo87 

 

12-OPRI Mendelian segregation88  

P84S — 89  

S97N — 90  

P102L Mendelian segregation36  

P105L Mendelian segregation91 2 sibs affected & genotyped, 1 
ungenotyped parent likely affected 

P105S — 92  

P105T Mendelian segregation93  

G114V Mendelian segregation94,95 pedigree suggests penetrance high 
though not 100% 

A117V Mendelian segregation96  
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variant evidence for high 
penetrance comments 

129insLGGLGGYV de novo97  

G131V — 98,99 positive family history in one case 

S132I Mendelian segregation100 extensive family history, only 
proband genotyped 

A133V — 101  

Y145X — 102  

R148H — 31  

R156C — 103  

Q160X Mendelian segregation104  

Y162X Mendelian segregation105  

Y163X Mendelian segregation106,107  

D167G — 108  

D167N — 58  

Y169X Mendelian segregation107  

V176G — 109  

D178Efs25X Mendelian segregation110 only proband genotyped 

D178N Mendelian segregation111, de 
novo27 

 

V180I — 112  

T183A Mendelian segregation113  

H187R Mendelian segregation114  

T188A — 115  

T188K — 116 some patients have a positive 
family history116–118 

T188R — 116,119  

T193I — 120  

K194E — 59  

E196A — 121  

E196K Mendelian segregation122 only proband genotyped 

F198S Mendelian segregation123,124  
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variant evidence for high 
penetrance comments 

F198V — 90  

E200G — 125  

E200K Mendelian segregation126  

T201S — 127  

D202G Mendelian segregation128 only proband genotyped 

D202N — 129  

V203I — 130  

R208C — 90  

R208H — 131  

V210I — 132,133  

E211D Mendelian segregation134 supplement describes 1 family with 
3 affected 

E211Q — 122 2 sibs affected 

Q212P — 58  

I215V — 135  

Q217R — 124 2 affected 

Y218N Mendelian segregation136  

A224V — 137  

Y226X — 138  

Q227X — 138  

M232R — 112  

M232T — 139  

P238S — 57  
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Table S2. Descriptive statistics regarding sources of age of onset data 
 
study center N 
Japanese national prion surveillance network (Shimotsuke & Kanazawa, Japan) 215 
MRC Prion Unit (London, U.K.) 211 
French national reference center for CJD (Paris, France) 168 
UCSF Memory and Aging Center (San Francisco, U.S.) 147 
Spanish National Center for Epidemiology (Madrid, Spain) 114 
German Reference Center for TSEs (Göttingen, Germany) 101 
DOXIFF study at the Mario Negri Institute (Milan, Italy) 65 
Reference Center for CJD at University of Bologna (Bologna, Italy) 49 
Australian National CJD Registry (Melbourne, Australia) 24 

total 1094 
method of ascertainment N 
direct (clinical visit, autopsy, or surveillance report) 843 
indirect (family history) 251 

total 1094 
vital status N 
censored — died due to intercurrent illness without developing prion disease 4 
censored — alive and well at last follow-up 101 
symptomatic with prion disease at last follow-up 81 
died of prion disease 908 

total 1094 
 
 

Table S3. Age of onset statistics on supplementary variants 
 
 without censored data survival curve including censored data 
mutation mean ± sd N median (IQR) range N 
5-OPRI 46.8 ± 6.0 14 49 (44 - 53) 34 - 56 18 
6-OPRI 35.1 ± 5.8 31 35 (32 - 39) 23 - 47 34 
P105L 46.5 ± 8.5 13 47 (40 - 51) 31 - 61 13 
A117V 41.2 ± 7.8 26 41 (37 - 45) 25 - 58 28 
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Table S4. Withdrawal rates in preventive clinical trials 
w, annual withdrawal rate. CHD, coronary heart disease. NSAID, non-steroidal anti-inflammatory drug. 
See Methods for details. 
 
category trial description w 

cardiology WOSCOPS140 pravastatin for CHD 6.9% 
cardiology AFCAPS/TexCAPS141 lovastatin for CHD 7.1% 
cardiology OSLER142 evolocumab for CHD 9.0% 
cardiology JUPITER143 rosuvastatin for CHD 14.1% 
neurology ADAPT144 NSAIDs for Alzheimer's 16.3% 
cardiology ODYSSEY LONG TERM145 alirocumab for CHD 19.0% 

cardiology NCT00607373146 
mipomersen for homozygous LDLR 

hypercholesterolemia 
22.1% 

neurology PRECREST147 creatine for Huntington's disease 54.9% 
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Table S5. Power calculations under alternative assumptions.  
 
Each block of this table is equivalent to Table 3 but with different assumptions as indicated (except where 
stated, other assumptions are identical to those in Table 2). A) Best case scenario: overall average 
hazard is 4.8% (the higher figure including the less common mutations shown in Table S2 and Figure 
S1), the withdrawal rate is 6.9% per year (the lowest rate in any of the trials we reviewed, see Table S4), 
and there is no run-in period — the drug is effective immediately and so disease onsets within the 1st 
year of the trial are included. B) Worst case scenario: overall average hazard is only 3.5% — one quarter 
lower than calculated in this manuscript, because our data are biased due to under-incluson of 
asymptomatic individuals, and/or because predominantly younger people enroll in a trial — and the 
withdrawal rate is 54.9% per year (the highest rate in any trial we reviewed, see Table S4). C) Targeted 
trial scenario: only the mutations with higher hazards — 5-OPRI, 6-OPRI, P105L, and A117V — are 
targeted for recruitment, resulting in a higher baseline hazard of 5.2%. Although the enrollment 
requirements for this scenario are lower than in Table 2, these mutations are also approximately one 
order of magnitude rarer6, making achievement of these enrollment numbers yet more unlikely. D) Long 
follow-up scenario: trial duration is 15 years. This reduces the required numbers somewhat, but this 
benefit is limited by the withdrawal rate, which means that few individuals are still enrolled after 15 years. 
E) Zero withdrawal scenario: withdrawal rate is set to zero.  
 

alternate 
scenario 

hazard 
ratio 

years of 
life added 

onsets 
required 

participants 
required 

A 
(best case) 

0.1 undefined* 6 59 
0.2 21 12 110 
0.3 13 22 182 
0.4 9 37 291 
0.5 7 65 475 
0.6 5 120 821 
0.7 3 247 1,589 
0.8 2 631 3,850 
0.9 1 2,828 16,434 

B 
(worst 
case) 

0.1 undefined* 6 357 
0.2 21 12 666 
0.3 14 22 1,097 
0.4 10 37 1,757 
0.5 7 65 2,866 
0.6 5 120 4,955 
0.7 4 247 9,586 
0.8 2 631 23,196 
0.9 1 2,828 98,897 

C  
(targeted 

trial) 

0.1 undefined* 6 92 
0.2 undefined* 12 171 
0.3 10 22 280 
0.4 7 37 449 
0.5 5 65 732 
0.6 4 120 1,267 
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0.7 3 247 2,457 
0.8 2 631 5,958 
0.9 1 2,828 25,471 

 
 
 
 

D  
(long follow-

up) 

0.1 undefined* 6 59 
0.2 21 12 108 
0.3 14 22 178 
0.4 10 37 285 
0.5 7 65 465 
0.6 5 120 806 
0.7 4 247 1,568 
0.8 2 631 3,816 
0.9 1 2,828 16,384 

E 
(zero 

withdrawal) 

0.1 undefined* 6 66 
0.2 21 12 123 
0.3 14 22 202 
0.4 10 37 323 
0.5 7 65 527 
0.6 5 120 912 
0.7 4 247 1,767 
0.8 2 631 4,285 
0.9 1 2,828 18,314 

 
 

Table S6. Comparison of power calculation and simulation results.  
 
The first four columns are reproduced from Table 2 for ease of comparison. The number of participants 
required was calculated to yield 80% power; the final two columns show the power for this number of 
participants, at P=0.05, indicated by simulation. See Supplementary Discussion above for details of the 
method. 
 

hazard 
ratio 

years of 
life added 

onsets 
required 

participants 
required 

calculated 
power 

simulated 
power without 
stratification 

simulated 
power with 

stratification 
0.1 undefined* 6 101 80.0% 62.2% 35.0% 
0.2 21 12 189 80.0% 71.8% 69.2% 
0.3 14 22 311 80.0% 78.6% 76.6% 
0.4 10 37 498 80.0% 80.0% 81.2% 
0.5 7 65 813 80.0% 80.0% 81.8% 
0.6 5 120 1406 80.0% 83.2% 79.8% 
0.7 4 247 2,724 80.0% 80.4% 80.8% 
0.8 2 631 6,602 80.0% 81.4% 77.6% 
0.9 1 2,828 28,204 80.0% 80.6% 78.0% 
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Table S7. Tests for modifiers and confounders of age of onset 
 
All p-values are two-tailed. As explained in Supplementary Discussion, diplotypes (phased genotypes) 
are indicated with a slash (cis/trans to the mutation) while unphased genotypes have no slash. We were 
unable to obtain phase data for many 129MV individuals, so the genotypic tests represent not only a 
different grouping of data but also include more data points than the corresponding diplotypic tests. Thus, 
we considered them as independent tests for the purposes of multiple testing correction. p (raw) indicates 
the raw p value; p (bc) is Bonferroni-corrected for 22 tests. For parent-child comparisons n is the number 
of pairs. For linear regressions, child year of birth was included in the model as a covariate. The prior 
column represents the prior expectation of whether there would be a significant difference in each test 
based on previous reports in the literature. 
 
variable mutation comparison n test P (raw) P (bc) prior evidence 

onset P102L M/M vs. M/V vs. 
V/V 

125 vs. 13 
vs. 1 log-rank 0.18 1 

mixed21,35,36 
onset P102L MM vs. MV vs. 

VV 
125 vs. 32 

vs. 1 log-rank 0.057 1 

onset D178N M/M vs. M/V vs. 
V/M vs. V/V 

133 vs. 18 
vs. 9 vs. 13 log-rank 0.000062 0.0014 

none21,28,34,148 
onset D178N MM vs. MV vs. 

VV 
133 vs. 58 

vs. 13 log-rank 0.000018 0.00040 

onset E200K M/M vs. M/V vs. 
V/M vs. V/V 

286 vs. 33 
vs. 10 vs. 5 log-rank 0.13 1 none for trans 

allele21,32,34,149, 
suggestive for 

cis allele32 onset E200K MM vs. MV vs. 
VV 

288 vs. 92 
vs. 5 log-rank 0.30 1 

duration P102L M/M vs. M/V 89 vs. 8 log-rank 0.55 1 none36 duration P102L MM vs. MV 89 vs. 21 log-rank 0.93 1 

duration D178N M/M vs. M/V vs. 
V/M vs. V/V 

62 vs. 13 
vs. 8 vs. 10 log-rank 0.000081 0.0018 

yes28 
duration D178N MM vs. MV vs. 

VV 
62 vs. 33 

vs. 10 log-rank 0.00000010 0.0000022 

duration E200K M/M vs. M/V vs. 
V/M vs. V/V 

208 vs. 21 
vs. 6 vs. 5 log-rank 0.10 1 

yes5,32,64 
duration E200K MM vs. MV vs. 

VV 
210 vs. 50 

vs. 5 log-rank 0.031 0.68 

onset P102L parent vs. child 32 linear 
regression 0.44 1 suggestive150 

onset D178N parent vs. child 15 linear 
regression 0.12 1 none 

onset E200K parent vs. child 40 linear 
regression 0.68 1 none32 

onset top three men vs. women 446 vs. 492 Cox 0.22 1 none 

duration top three men vs. women 264 vs. 281 linear 
regression 0.02 0.44 yes5 

onset top three 
direct vs. 
indirect 

ascertainment 
843 vs. 251 Cox 0.78 1 none 

duration top three 
direct vs. 
indirect 

ascertainment 
544 vs. 90 linear 

regression 0.64 1 none 

onset top three year of birth 697 linear 
regression 3.6E-49 7.9E-48 yes32 

onset top three study centers 973 two-way 
ANOVA 0.012 0.26 none 

onset top three year of onset 697 linear 
regression 0.00032 0.0070 none 
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Supplementary Life Tables 
 
These tables are made available as .tsv and .xls files in the code and data repository for this 
manuscript: https://github.com/ericminikel/prnp_onset 
 

Supplementary Duration Tables 
 
These tables are made available as .tsv and .xls files in the code and data repository for this 
manuscript: https://github.com/ericminikel/prnp_onset 
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Supplementary Figures 
 

Figure S1. Variant prevalence among prion disease cases with a high penetrance variant. 
Genetic variants deemed highly penetrant based on the literature review in Table S1 are plotted by the 
rank (x axis) versus number (left axis) and cumulative proportion (right axis) of high penetrance cases 
they explain in a recent case series6.  
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Figure S2. Disease duration by mutation 
 
A) Disease duration (time from first symptom to death) in genetic prion disease. D178N and 
E200K are classified as rapidly progressive mutations, with >50% of individuals dying within one 
year of first symptom. B) Zoomed out to 30 years (note y axis) and including supplementary 
mutations. Disease duration data are provided in the Supplementary Duration Tables. 
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Figure S3. Survival and hazard curves. 
 
A) Hazard vs. time with line thickness representing survival, as Figure 1 but including the top 7 
mutations. B) Survival curves for the 7 mutations. C-I) Hazard vs. age with 95% confidence 
intervals displayed in 50% transparency. 
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Figure S4. Age of onset and codon 129 
 
Survival curves for age onset or death in P102L (A-B), D178N (C-D), and E200K (E-F) genetic 
prion disease stratified by codon 129 diplotype (A, C, E) or phaseless genotype (B, D, F). 
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Figure S5. Disease duration and codon 129 
 
Survival curves for disease duration (time from first symptom to death) in P102L (A-B), D178N 
(C-D), and E200K (E-F) genetic prion disease stratified by codon 129 diplotype (A, C, E) or 
phaseless genotype (B, D, F). 
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Figure S6. Power increases with long follow-up periods in simulations using historical 
controls. 
 
A) Simulated trial power under the Cox proportional hazards model as a function of the number 
of individuals randomized and the number of years of follow-up with (solid line) or without 
(dotted line) modeling withdrawal, assuming a hazard ratio of 0.5 and a run-in period of one 
year. B) Number of participants required for 80% power at P < 0.05, as a function of hazard 
ratio (x axis) and trial design (different curves). Numbers for randomized trials (red curve) are 
taken directly from Table 2, while numbers for post-marketing studies (dark and light blue 
curves) are obtained by simulation (Supplementary Discussion). 
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