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Structured Abstract  
INTRODUCTION: We set out to characterize the causal variants, regulatory 

mechanisms, tissue contexts, and target genes underlying noncoding late-onset 

Alzheimer’s Disease (LOAD)-associated genetic signals. 

METHODS: We applied our INFERNO method to the IGAP genome-wide association 

study (GWAS) data, annotating all potentially causal variants with tissue-specific 

regulatory activity. Bayesian co-localization analysis of GWAS summary statistics and 

eQTL data was performed to identify tissue-specific target genes. 

RESULTS: INFERNO identified enhancer dysregulation in all 19 tag regions analyzed, 

significant enrichments of enhancer overlaps in the immune-related blood category, and 

co-localized eQTL signals overlapping enhancers from the matching tissue class in ten 

regions (ABCA7, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, EPHA1, FERMT2, 

ZCWPW1). We validated the allele-specific effects of several variants on enhancer 

function using luciferase expression assays.  

DISCUSSION: Integrating functional genomics with GWAS signals yielded insights into 

the regulatory mechanisms, tissue contexts, and genes affected by noncoding genetic 

variation associated with LOAD risk.  
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1. Background 

Alzheimer’s disease (AD) is the most common cause of dementia in the United States 

[1], but no effective therapies for treatment or prevention exist. Late-onset Alzheimer’s 

disease (LOAD), defined by age-at-onset after 60 years, is the most common form of 

AD. Heritability estimates for LOAD stand at 60-80%, implicating genetics as an 

important factor in disease development [2]. While the APOE locus shows the strongest 

association [3], LOAD is complex and polygenic [4], and genome-wide association 

studies (GWAS) have successfully associated over 20 other genetic variants with LOAD 

[5,6]. Recent studies have implicated a number of different biological processes in 

LOAD susceptibility such as microglial-mediated innate immunity [7–9].  

The majority of top GWAS variants reside in noncoding regions of the genome outside 

of protein-coding sequences [10]. Any variant in linkage disequilibrium (LD) with a top 

GWAS variant could be responsible for the association signal, and GWAS data alone 

lacks the granularity to identify these causal variants. In addition, noncoding variants 

presumably affect gene regulatory elements, and the affected target genes are often not 

the closest ones [11]. Thus, functional annotation is needed to reveal the causal 

variants, regulatory mechanisms, tissue context, and target genes underlying GWAS 

signals.  

Enhancers, which modulate the expression of a target gene independently of orientation 

and distance, are one of the most common regulatory elements in the noncoding 

genome [12–14]. Several consortia have generated large-scale functional genomics 

datasets to characterize regulatory activity in the noncoding genome across different 

tissue contexts [15–19]. Previous studies used these data to identify noncoding genetic 
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variants with regulatory potential for diabetes [20,21] and schizophrenia [22], but such 

studies often assume that the relevant tissue context is known a priori.  

We hypothesize that noncoding LOAD GWAS signals modulate disease risk by 

perturbing genomic elements that regulate genes involved in pathogenesis. To explore 

this hypothesis, we applied our bioinformatics pipeline, INFERNO (INFERring the 

molecular mechanisms of NOncoding genetic variants) [23] to LOAD GWAS data from 

the International Genomics of Alzheimer’s Project (IGAP) [6]. INFERNO characterizes 

noncoding GWAS signals by integrating information across diverse functional genomics 

data sources to identify causal noncoding variants and the regulatory mechanisms, 

tissue contexts, and target genes they affect (Figure 1a). INFERNO identified several 

putatively causal genetic variants in ten GWAS regions and uncovered strong functional 

evidence of their effects on immune- and brain-related regulatory mechanisms. Using 

luciferase reporter assays, we validated the enhancer activity and allelic differences of 

causal variants in three regions prioritized by relevant tissue context, strength of 

annotation support, and prior literature.  

2. Methods  

2.1. INFERNO analysis of IGAP top hits 

INFERNO (details of the algorithm are described in [23]) was used to analyze 19 top 

variants from Phase 1 of the IGAP study, excluding the locus near DSG2 (tagged by 

rs8093731) which did not replicate in Phase 2 and the HLA-DRB5 locus (rs9271192) 

which is difficult to analyze due to the dense LD structure in the major histocompatibility 

(MHC) region caused by population-specific selective pressure [24]. INFERNO was run 

using P value expansion within one order of magnitude and 500 kilobases (kb) of each 
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tagging variant, and the European population from the 1,000 Genomes Project [25] was 

used for LD pruning and expansion. For both pruning and expansion, a threshold of r2 

>=  0.7 was used to define LD blocks. All downstream analyses including lncRNA 

correlation and pathway analysis were performed as defined in [23]. 

2.2 Luciferase validation  

Through molecular cloning techniques, insert sequences including the enhancers (800-

1,739 base pairs (bp) in length, Supplementary Table 1) overlapping each prioritized 

variant were placed upstream of a minimal promoter and a luciferase reporter gene in a 

pGL vector. Two different vectors were generated for each prioritized variant: one with 

the minor allele of the prioritized variant and one with the major allele. Additionally, we 

generated vectors containing a minimal promoter with no enhancer inserted and 

another negative control vector with a minimal promoter and a ~1kb random genomic 

heterochromatin insert. 300ng of each vector was mixed with one-tenth the amount of a 

Renilla expressing vector, allowing us to normalize Luciferase expression for 

transfection efficiency. This mixture was transfected into separate aliquots of K562 cells 

using the Lonza Nucleofector Device with Kit V. A mock sample was run through the 

same transfection procedure with no DNA to account for background luminescence. 

The Promega Dual-Glo system was used to measure Luciferase and Renilla 

expression. Background-subtracted Luciferase luminescence levels were divided by the 

corresponding background-subtracted Renilla luminescence, and all ratios were 

normalized to the average of the minimal promoter condition for quantitative analysis. A 

total of n = 5 biological replicate experiments were carried out, each including 4 

technical replicates per condition.  
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Statistical analysis was performed using a linear mixed model treating experimental 

days as random effects and alleles as fixed effect using the lmerTest package [26] in R 

v3.4.4 [27]. P values for the comparisons between conditions were obtained by analysis 

of variance (ANOVA) using Satterthwaite’s approximation for degrees of freedom.  

3. Results  

3.1. Expansion and annotation of IGAP loci 

To identify genetic variants with regulatory potential for LOAD, we used INFERNO to 

analyze the 19 genome-wide significant loci from Phase I of IGAP (Figure 1a, Table 1) 

[6]. The region tagged by each top variant is referred to by the name of the nearest 

gene by convention, although these genes are not necessarily causal for the 

association signals. For each top variant, we identified all variants within 500kb that had 

a P value within an order of magnitude and the same minor allele effect direction. We 

pruned these p-value expanded sets by LD into independent variants, which we re-

expanded yielding 1,044 unique potentially causal variants (Table 1) for subsequent 

analyses. These variants were primarily in introns and intergenic regions, with only 17 in 

mRNA exons (Figure 1b-c).  

Next, we overlapped these variants with enhancers defined by bidirectional enhancer 

RNA (eRNA) transcription in 112 tissues and cell types from the FANTOM5 consortium 

[17] and by the ChromHMM epigenomic state-based method [28] in 127 tissues and cell 

types from the Roadmap Epigenomics Project [15,29,30]. This identified 38 variants 

overlapping FANTOM5 enhancers in 9 tag regions (Table 1). The FANTOM5 tissue with 

the most enhancer-overlapping variants was monocytes, with 25 overlapping variants, 

whereas the brain harbored only 6 variants (Supplementary Figure 1a). For the 
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Roadmap data, variants were overlapped with a total of 15 ChromHMM states including 

3 types of enhancer states (enhancers, genic enhancers, and bivalent enhancers). 652 

unique variants representing all 19 tag regions were found to overlap a ChromHMM-

defined enhancer state in at least one tissue (Table 1). Like the FANTOM5 results, 

primary monocytes from peripheral blood had the most overlapping variants (149 

unique variants, Supplementary Figure 1b), but 146 unique variants overlapped 

enhancers in at least one of the brain-related Roadmap datasets.  

We also used INFERNO to find variants affecting transcription factor binding sites 

(TFBSs) as identified by HOMER [31]. This identified 451 variants representing all 19 

tag regions that either increased or decreased TFBS strength (measured by the change 

in the positional weight matrix, ∆PWM) for 191 unique transcription factors 

(Supplementary Figure 2). The majority of these overlaps had negative ∆PWM values, 

reflecting TFBSs disruptions. 

3.2 Integrative analysis of enhancer enrichment patterns 

Using INFERNO’s tissue categorization approach [23] that groups each functional 

genomics dataset into one of 32 high-level tissue categories, we identified 36 variants 

from nine tag regions (the CASS4, CELF1, EPHA1, FERMT2, MS4A6A, NME8, 

PICALM, PTK2B, and SLC24A4/RIN3 regions) that overlapped concordant FANTOM5 

and Roadmap ChromHMM enhancers in a tissue category (Figure 2a). All of these 

regions harbored at least one variant with concordant support in the blood category, 

supporting the hypothesis of immune mechanisms underlying LOAD genetic signals [7–

9]. The CELF1 region was the only one to harbor variants with concordant overlaps of 

brain enhancers, supporting the unbiased approach of not requiring an a priori 
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hypothesis of relevant tissue context. Many variants overlapped FANTOM5 enhancers 

in the blood category, which included all the immune-related cell lines such as 

monocytes and macrophages in addition to whole blood (Supplementary Figure 3a). All 

22 of the tissue categories sampled by the Roadmap Epigenomics consortium 

contained ChromHMM-defined enhancer-related states that harbored at least one 

variant in the expanded set (Supplementary Figure 3b). Again, many variants 

overlapped Roadmap enhancers in the blood category. 

INFERNO includes a method to statistically quantify the enrichments of variants 

overlapping FANTOM5 enhancers, Roadmap enhancers, or both in each tissue 

category. This revealed significant enrichments of variants overlapping both FANTOM5 

and concordant enhancers in the blood category and a significant enrichment of 

Roadmap enhancers in the brain category (Figure 2b) as well as several other 

enrichments including in the connective tissue category, which contains fibroblasts. 

3.3 Co-localization analysis with GTEx eQTLs  

To identify target genes affected by dysregulated enhancers, INFERNO uses 

expression quantitative trait loci (eQTLs) – variants whose alleles are correlated with 

differing levels of a target gene – from the Genotype-Tissue Expression (GTEx) project 

[16] across 44 tissues. Of the 1,044 potentially causal variants, 750 were significant 

eQTLs in at least one tissue. However, due to dense LD structures in many of our 

significant regions, this direct overlap approach may yield false positive variants in LD 

with the truly causal eQTL variant. To address this issue, INFERNO incorporates a 

Bayesian statistical model (COLOC [32]) to identify co-localized GWAS/eQTL signals 

with shared causal variants, quantified as the posterior probability P(H4). The COLOC 
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method also computes the probability of any individual variant being the shared causal 

variant, quantified as their Approximate Bayes Factors (ABFs). 

We applied COLOC to tissue-specific eQTL signals for 884 unique genes across all 19 

tag regions (median number of genes within each region = 34) for 25,435 tests of 

GWAS – tissue-specific eQTL co-localization (Supplementary Figure 4a, Methods). We 

identified 153 co-localized GWAS/eQTL signals (P(H4) >= 0.5 representing strong 

support for a shared causal signal [23]) representing 16 tag regions, 37 tissues and 71 

target genes (Supplementary Figure 4b). For 32 of these, COLOC identified individual 

variants with ABF >= 0.5, but in the majority of cases COLOC was not able to prioritize 

a single causal variant. This is likely caused by dense LD structures where GWAS and 

eQTL signals are dispersed across all variants in the LD block (Supplementary Figure 

4c). Thus, for each co-localized GWAS/eQTL signal we sampled the highest ABF 

variants until their sum was 0.5 or greater (Supplementary Figure 4d, [23]). Across the 

153 co-localized signals, this yielded 1,291 unique variant–tissue–target gene 

relationships accounted for by 286 unique variants, 182 of which were in the LD-

expanded set. 

3.4 Comparison of enhancer overlaps with eQTL co-localization signals 

We next used the INFERNO tissue categorizations to stratify variants in the ABF-

expanded sets by whether they affected a TFBS, overlapped any enhancer, and 

whether the enhancer came from the same tissue category as the eQTL (Figure 2c). 

For the first stage of variant prioritization, we considered only variants overlapping 

concordant enhancers, and took two approaches for further prioritization: requiring 

TFBS overlap (TBFS prioritization) and requiring ABF >= 0.5 (ABF prioritization). TFBS 
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prioritization identified 43 unique variant–tissue–gene sets (20 unique variants across 8 

tag regions, Figure 2d, top row) including 15 in the brain or blood categories. ABF 

prioritization prioritized 14 variant–tissue–gene sets (6 unique variants across 5 tag 

regions, Figure 2d, left column), including 2 variants which also had motif overlaps. 

Together, these two approaches identified potentially causal variants in 10 tag regions 

(Table 2, Supplementary Tables 1-2). We prioritized four of these signals for 

experimental validation based on prior literature, strength of annotation support, and 

relevant tissue contexts: EPHA1, CD33, BIN1, and CD2AP.  

3.5 EPHA1 region functional variant upregulates lncRNA affecting the JAK2 

signaling axis 

The strongest signal by both annotation and ABF evidence was in the EPHA1 region, 

where the variant rs11765305 had an ABF of 0.999 underlying an eQTL for the EPHA1-

AS1 antisense long non-coding RNA (lncRNA) in whole blood (P(H4) = 0.516). This 

variant also colocalized with whole blood eQTLs for the TAS2R60 taste receptor gene 

(P(H4) = 0.516, ABF = 1.00) and the TAS2R62P taste receptor gene (P(H4) = 0.537, 

ABF = 0.714) (Supplementary Table 1). rs11765305 overlapped FANTOM5 and 

Roadmap enhancers in the blood category, including white blood cells in the myeloid 

lineage such as monocytes and macrophages (Figure 3a), and creates a stronger 

binding site for CEBPB (∆PWM score = 1.53), an enhancer-binding transcription factor 

that is associated with immune-related gene regulation [33]. This increase in TF binding 

is consistent with the positive effect of the rs11765305 minor allele on EPHA1-AS1 

expression observed in GTEx (β = 1.25, where a ß greater than 1 reflects an increase in 

gene expression).  
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To compare enhancer activity between the major and minor alleles of rs11765305, we 

performed luciferase assays in K562 leukemia cells, which are from the same myeloid 

cell lineage as monocytes. Although the major allele had no significant luciferase 

expression compared to controls, the minor allele had significantly higher expression 

compared to both controls and the major allele (Figure 3b). These results confirm the 

predicted monocyte enhancer activity in this region and are consistent with the 

mechanism that the minor allele of rs11765305 creates a stronger CEBPB TFBS, 

increasing the activity of an enhancer regulating EPHA1-AS1, TAS2R60, and 

TAS2R62P. 

We next set out to identify the downstream effects of EPHA1-AS1, as lncRNAs can 

modulate gene expression through recruitment of regulatory proteins or binding to target 

transcripts [34]. INFERNO uses GTEx RNA-seq data to identify genes whose 

expression is correlated with that of a lncRNA using a threshold of 0.5 on both Pearson 

and Spearman correlations across 44 tissues [23]. For EPHA1-AS1, this yielded one 

gene, JAK2 (Pearson r2 = 0.517, Spearman r2 = 0.582) (Figure 3c). JAK2 is part of the 

JAK2/STAT3 signaling axis, whose disturbance by amyloid-ß leads to memory 

impairment [35]. The tag variant in this region is protective and rs11765305 has the 

same effect direction, so INFERNO prioritized a mechanism whereby the protective 

minor allele of rs11765305 increases EPHA1-AS1 expression which in turn increases 

the activity of the JAK2/STAT3 signaling axis, implying that JAK2/STAT3 activation may 

protect against LOAD.  

3.6 Functional validation of blood regulation of CD33 
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In the CD33 region, COLOC identified co-localized GWAS/eQTLs for CD33 itself in 

whole blood (P(H4) = 0.955) and for AC018755.1 (P(H4) = 0.683) in brain hypothalamus. 

In both cases, rs12459419 was prioritized by concordant enhancer and motif overlap. 

However, the tag variant rs3865444 had a higher ABF in both cases (0.491 and 0.489, 

respectively). rs3865444 overlaps Roadmap enhancers in 6 cell lines including primary 

monocytes and primary T regulatory cells from peripheral blood. In contrast, 

rs12459419 only overlapped Roadmap enhancers from 3 cell lines including primary T 

regulatory cells from peripheral blood and fetal brain but lacked the monocyte enhancer 

overlap (Supplementary Table 1). Additionally, rs3865444 has been extensively studied, 

with previous work showing that the protective minor allele (A) decreases the levels of 

CD33 protein [36], decreases CD33 mRNA expression consistent with the direction of 

the GTEx eQTL effect (β = 0.352) [37], and reduces cell surface expression of CD33 in 

monocytes [38].  

Based on the prior literature, the strong ABF signal, and the monocyte enhancer 

overlap, we analyzed rs3865444 in our luciferase assays. This found significant 

increases for the major allele and significant decreases for the minor allele relative to 

the controls, as well as a striking decrease in enhancer activity of the minor allele 

relative to the major allele (Figure 4a). This was consistent with prior reports and the 

GTEx eQTL direction for this variant (ß = 0.352).   

3.7 Functional validation of lymphocyte regulation of BIN1  

In the BIN1 region, INFERNO identified a co-localized GWAS/eQTL for BIN1 in EBV-

transformed lymphocytes (P(H4) = 0.652) with the variant rs4663105 prioritized by ABF 

(ABF = 0.777). This variant overlaps Roadmap enhancers in primary monocyte cells 
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and placenta but does not overlap any TFBSs. rs4663105 has been previously 

associated with LOAD risk, and an insertion in that region was associated with 

increased BIN1 expression [39]. This previous study found no difference in luciferase 

activity between the two alleles of rs4663105 in SKNSH-SY5Y and HEK cells. However, 

their construct only spanned 60bp around the variant, whereas the monocyte enhancer 

is 800bp. Therefore, we cloned the full Roadmap enhancer region (Supplementary 

Table 1) for luciferase assays in K562 cells, which are more relevant to the functional 

annotations in this region. This found significantly increased enhancer activity for both 

alleles of rs4663105 relative to the control vectors, and a slight but significant decrease 

of the minor allele relative to the major allele (p = 0.0328, Figure 4b), consistent with the 

direction of the GTEx eQTL (ß = 0.496).  

3.8 CD2AP region variants modulate lncRNA with widespread brain regulatory 

effects 

Finally, in the CD2AP region, INFERNO prioritized several co-localized signals including 

RP11-385F7.1 in brain cerebellar hemisphere and cerebellum (P(H4) = 0.904 and 

0.923, respectively) and an eQTL for CD2AP in fibroblasts (P(H4) = 0.801). TFBS 

prioritization implicated rs9367279, which overlaps Roadmap enhancers in 33 

tissues/cell lines from 13 tissue categories and disrupts a CArG-box binding site (∆PWM 

= -1.38) for the MADS-box family of transcription factors, which includes the enhancer-

related factors SRF and MEF2A [40,41]. CD2AP encodes a scaffolding molecule that 

regulates the actin cytoskeleton and is involved in endocytic processes [42], while 

RP11-385F7.1 is a lncRNA near the promoter for the CD2AP gene.  
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We performed luciferase assays, but both alleles of rs9367279 had significantly 

decreased enhancer activity relative to the controls, and there was no strong difference 

between the two alleles, suggesting that this enhancer may not be active in K562 cells 

(Figure 4c, p = 0.1892). RP11-385F7.1 was strongly correlated with 64 transcripts 

(Figure 4d, Supplementary Table 4), and we performed pathway analysis of these 

targets using the WebGestalt tool [43,44] to interpret the increased number of targets 

relative to section 3.5, but found no enrichments after controlling for false discovery 

rate. The gene with the strongest Pearson correlation was PPP1R16A (Pearson r2 = 

0.641, Spearman r2 = 0.593) and the gene with the strongest Spearman correlation was 

COQ4 (Pearson r2 = 0.608, Spearman r2 = 0.660). PPP1R16A, also known as MYPT3, 

directs the protein phosphatase PP1c to its targets and is involved in actin binding and 

G-protein coupled receptor pathways [45]. COQ4 is part of the coenzyme Q 

biosynthesis pathway, an antioxidant that may modify LOAD-associated oxidative 

damage [46]. The eQTL effects of rs9367279 on RP11-385F7.1 are weak and 

inconsistent between the two brain regions (ß = 0.969 in cerebellar hemisphere and 

1.194 in cerebellum), suggesting that rs9367279 contributes to fine-scale regulation of 

RP11-385F7.1 in brain, although it has a relatively strong repressive effect on CD2AP in 

fibroblasts (ß = 0.505).  

4. Discussion  

Our application of INFERNO to LOAD GWAS data prioritized perturbations of tissue-

specific regulatory mechanisms in 10 IGAP tag regions (Table 2, Supplementary Table 

3). In the EPHA1, CD2AP, CELF1, and CASS4 regions, the target genes of the co-

localized GWAS/eQTL signals included lncRNAs, so identifying affected enhancers and 
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target genes may be only the first step towards understanding genetic effects on 

regulatory networks contributing to disease pathogenesis. The tissue classification 

approach implemented in INFERNO also enabled the unbiased investigation of the 

relevant tissue contexts affected by each genetic signal. Limiting our analysis to only 

brain datasets would have missed the blood-category signals that we detected. These 

immunity-related signals are in line with other recent work highlighting 

neuroinflammation as a crucial component of LOAD pathogenesis and etiology [7–9].  

INFERNO did not identify regulatory mechanisms in all 19 of the IGAP regions, and this 

may be driven by several aspects of this analysis. We are limited by the sample sizes 

and sets of tissues that were assayed by the FANTOM5, Roadmap, and GTEx 

consortia and the number of datasets that went into each tissue category, with some 

categories being much more sparsely sampled than others [23]. Another consideration 

is that this regulatory analysis focused on transcriptional enhancers, but it is possible 

that the noncoding signals in the unexplained tag regions affect other regulatory 

mechanisms such as small noncoding RNA (sncRNA) loci. Previous studies implicated 

sncRNA dysregulation in LOAD pathogenesis [47], suggesting that this will be a fruitful 

approach for future analysis efforts.   

In conclusion, our application of INFERNO to IGAP GWAS data yielded insights into the 

regulatory mechanisms affected by noncoding LOAD-associated genetic variants. 

Experimental validation supported our computationally predicted regulatory effects, 

suggesting that our approach is able to prioritize truly causal regulatory mechanisms at 

GWAS loci for post-GWAS experiments. Incorporating more functional genomics data 

as it is generated in concert with more refined validation experiments using a broader 
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range of cell types and molecular techniques will yield insights into a range of 

phenotypes.  
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Figure legends and tables 

Figure 1: LD expansion and functional annotation of top IGAP hits. a) Flowchart of 

analysis approach. b) Genomic localization of all variants in P value- and LD-expanded 

set. c) Genomic partition proportions split by tag regions. 

Figure 2: Integrative analysis of annotations for IGAP top hits. a) Integrative tissue 

context analysis of enhancer overlaps from FANTOM5 and Roadmap datasets. b) 

Results of LD-collapsed bootstrapping for enhancer annotation overlap enrichments c) 

Distributions of variant probability of underlying highly colocalized signals stratified by 

annotation overlap. d) Barplots of numbers of variant – eQTL comparisons across tag 

regions stratified by motif overlap, enhancer support, and concordant support in a 

relevant tissue class. 

Figure 3: Functional variant in EPHA1 region upregulates EPHA1-AS1 lncRNA 

which regulates the JAK2 signaling axis. a) Genome browser view of the region 

around rs11765305 (in red box) including relevant FANTOM5 and Roadmap enhancer 

annotations. b) Luciferase assay results for rs11765305 in K562 cells. Luciferase 

expression is normalized against Renilla expression in the same well. Negative control 

is randomly sampled heterochromatin insert. c) Scatterplot of Pearson and Spearman 

correlations between expression of EPHA1-AS1 and all other genes in the genome 

across all GTEx tissues.  

Figure 4: Luciferase and lncRNA analysis in the BIN1, CD33, and CD2AP regions. 

a) Luciferase validation in the CD33 region. b) Luciferase validation in the BIN1 region. 

c) Luciferase validation in the CD2AP region. d) Scatterplot of Pearson and Spearman 
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correlations between expression of RP11-385F7.1 (CD2AP region) and all other genes 

in the genome across all GTEx tissues. 

Supplementary Figure 1: Number of enhancer overlaps across individual tissues 

from FANTOM5 and Roadmap. a) Number of variants overlapping eRNA-defined 

enhancers across 112 FANTOM5 tissue and cell type facets. b) Number of variants 

overlapping each type of ChromHMM-defined enhancer state across 127 Roadmap 

tissues and cell types. 

Supplementary Figure 2: HOMER motif overlap ∆PWM distributions 

Supplementary Figure 3: Number of enhancer overlaps across tissue categories 

sampled in FANTOM5 and Roadmap. a) Number of variants overlapping eRNA-

defined enhancers in each tag region across the 28 tissue categories that include 

FANTOM5 samples. b) Number of variants overlapping any of the three ChromHMM-

defined enhancer states in each tag region across the 22 tissue categories that include 

Roadmap samples.  

Supplementary Figure 4: Colocalization analysis of GTEx eQTLs with IGAP GWAS 

signals. a) Distributions of the 5 colocalization hypotheses across all tissues and tag 

regions. b) Histograms of P(H4) for highly colocalized (P(H4) >= 0.5) signals across tag 

regions. c) Histograms of the approximate Bayes factor values of the most supported 

variants across tag regions. d) Histograms of the number of variants required to 

cumulatively account for 50% of the individual variant probability (ABFs) for each 

colocalization signal across tag regions. 
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Table 1: IGAP top hits expansion counts and annotation overlaps 

Tag 
variant 

Gene 
region 

# P value 
expanded 

# LD 
pruned 

# LD 
expanded 

# 
FANTOM5 
overlaps 

# Roadmap 
ChromHMM 

enhancer 
overlaps 

# HOMER 
TFBS 

overlaps 

rs4147929 ABCA7 7 2 9 0 8 6 

rs35349669 BIN1 2 1 3 0 3 1 

rs7274581 CASS4 20 2 23 4 19 10 

rs10948363 CD2AP 80 5 83 0 45 30 

rs3865444 CD33 3 1 6 0 3 4 

rs10838725 CELF1 92 7 264 13 147 110 

rs28834970 CLU 10 1 11 0 11 7 

rs6656401 CR1 20 1 22 0 12 9 

rs11771145 EPHA1 9 3 9 2 16 2 

rs17125944 FERMT2 32 7 92 2 79 43 

rs6733839 INPP5D 65 2 114 0 66 54 

rs190982 MEF2C 2 1 3 0 2 1 

rs983392 MS4A6A 80 3 173 5 91 75 

rs1476679 TXNDC3 
/ NME8 44 5 96 4 44 47 

rs10792832 PICALM 2 1 18 2 16 11 

rs9331896 PTK2B 7 2 14 3 14 8 

rs10498633 SLC24A4 5 3 5 4 4 4 

rs11218343 SORL1 1 1 1 0 1 1 

rs2718058 ZCWPW1 15 4 98 0 78 28 
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Table 2. Summary of colocalization results in 4 top prioritized tag regions.  

Tag Region  
Top affected 

mechanism(s) and 
evidence 

Direction of effect 
Experimental 

validation 
performed? 

EPHA1 

Whole blood eQTL for 

EPHA1-AS1 supported by 

high ABF and increased 

CEBP TFBS variant 

rs11765305 

Protective haplotype has 

strong increase in EPHA1-

AS1 expression 

Yes, strong 

enhancer activity 

and allelic 

difference 

CD33 

Whole blood eQTL for 

CD33 with high ABF tag 

variant rs3865444 

Protective tag variant 

decreases CD33 

expression 

Yes, strong allelic 

difference 

BIN1 

Lymphocyte eQTLs for 

BIN1, high ABF variant 

rs4663105 

Risk haplotype decreases 

BIN1 expression 

Yes, significant 

allelic difference 

CD2AP 

Cerebellar eQTL for RP11-

385F7.1 and fibroblast 

eQTL for CD2AP with TF 

disrupting variant 

rs9367279 

Risk haplotype with 

moderate, inconsistent 

effects on lncRNA 

expression in brain, 

decrease in CD2AP 

expression 

Yes, no K562 

enhancer activity 
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Supplementary Table 1: Luciferase enhancer regions (Excel file)  

Supplementary Table 2: Full colocalization annotation results. Top signals in 

each region are highlighted. (Excel file) 

Supplementary Table 3: Summary of colocalization results in 6 non-prioritized 

regions 

Tag Region  

Top affected 

mechanism(s) and 

evidence 

Direction of effect 

Experimental 

validation 

performed? 

ABCA7  

Digestive system eQTLs 

for ABCA7, high ABF 

variant rs4147929 

Risk haplotype increases 

ABCA7 expression 

No, irrelevant tissue 

category 

CASS4  

Fibroblast eQTL for 

CASS4 with high ABF 

variant rs6014724, blood 

eQTL for CASS4 with high 

ABF variant rs927174 

Protective haplotype 

increases expression in 

fibroblasts, lowers in blood  

No, inconsistent 

effect directions and 

lack of TFBS 

overlap 

 CELF1 

Brain eQTL for RP11-

750H9.5 supported by 

rs7947450 with moderate 

TF disruption, fibroblast 

eQTL for MADD with high 

ABF variant rs11039281 

Risk haplotype decreases 

expression of eQTL genes 

No, very dense LD 

region, molecular 

cloning for single 

variant failed 
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CLU 

Epithelial and digestive 

eQTLs for ZNF395 and 

FZD3, both supported by 

rs2070926 with TFBS 

overlap 

Protective haplotype 

decreases ZNF395 and 

FZD3 expression 

No, irrelevant tissue 

categories 

FERMT2 

Skeletal muscle eQTL for 

FERMT2, several variants 

with enhancer + motif 

support 

Risk haplotype decreases 

FERMT2 expression 
No, irrelevant tissue 

ZCWPW1 

Brain eQTLs in several 

different regions for PVRIG 

and STAG3 supported by 

rs1727138 with strong 

TFBS disruption  

rs1727138 has 

inconsistent effects on 

expression levels across 

tissues & genes 

No, inconsistent 

effect directions for 

rs1727138 and its 

GWAS effect 

direction does not 

match the tag 

variant 

 

Supplementary Table 4. Highly correlated genes with RP11-385F7.1. (Excel table) 
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