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SUMMARY 

An increase in the number of targeted anti-cancer drugs and growing genomic stratification of 

patients has led to the development of basket clinical trials in which a single drug is tested 

simultaneously in multiple tumor subtypes under a master protocol. Basket trials typically involve few 

patients per type, making it difficult to rigorously compare responses across types. We describe the use 

of permutation testing to analyze tumor volume changes and Progression Free Survival across subtypes 

in basket trials for neratinib, larotrectinib, pembrolizumab, and imatinib. Permutation testing is a 

complement to the standard Simon's two-stage binomial approach and can test for differences among 

subgroups using empirical null distributions while controlling for multiple hypothesis testing. This 

approach uncovers examples of therapeutic benefit missed by a binomial test; in the case of the 

SUMMIT trial, our analysis identifies an overlooked opportunity for use of neratinib in lung cancers 

carrying ERBB2 Exon 20 mutations.  
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INTRODUCTION 

In a traditional clinical trial of a cancer therapy, the agent is tested in patients defined by specific 

inclusion and exclusion criteria that usually involve tissue of origin and disease stage. Growing research 

and use of molecularly targeted therapies has driven interest in evaluating multiple patient populations 

with different tumor types, potentially differing in the status of one or more biomarkers (most commonly 

a genetic alteration). As a result, ‘master protocol’ trial designs have been developed in which several 

therapeutic hypotheses are tested at the same time via multiple parallel sub-studies (‘baskets’) under a 

single clinical protocol (and its associated ethical and regulatory reviews). Use of master protocols is 

intended to expedite the development of drugs by reducing the time and number of patients required to 

find an efficacious therapy for specific subgroup (Hirakawa et al., 2018; Park et al., 2019; Renfro and 

Mandrekar, 2018). For example, the NCI-MATCH phase II precision medicine trial (ClinicalTrials.gov 

number NCT02465060) currently underway is comparing ~40 treatment arms and multiple genetic 

biomarkers using a master protocol (Mullard, 2015). Basket trials are particularly helpful when: (i) 

expanding from an initially successful indication to one or more additional tumor types (ii) searching for 

a responsive setting in which to perform pivotal trials (iii) studying the predictive value of a biomarker 

in multiple cancer types (Redig and Jänne, 2015; Tao et al., 2018; Woodcock and LaVange, 2017).  

Two recently completed trials demonstrate the potential for basket trials to identify tissue-

agonistic biomarkers. When the TRK inhibitor larotrectinib was tested in a diverse set of 12 solid tumors 

types (NCT02122913, NCT02637687, and NCT02576431) (Drilon et al., 2018) the presence of a TRK 

fusion gene, irrespective of tumor tissue of origin, was found to identify tumors responsive to 

larotrectinib. Similarly, in 12 tumor types, mismatch repair (MMR) deficiency was found to be 

predictive of responsiveness to the PD-1 immune checkpoint inhibitor pembrolizumab (NCT01876511) 

(Le et al., 2017). In most cases however, both biomarker status and tissue of origin have an influence on 

drug activity; for example BRAF inhibitors are much less effective in BRAF-mutant colorectal 
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carcinomas than BRAF-mutant melanomas (Korphaisarn and Kopetz, 2016). For any single gene, the 

type of mutation (i.e.: inhibitory, truncating or activating) can also affect response (Tao et al., 2018). 

Depending on the way subtypes are defined, a basket trial can be used to assess the impact of one or 

more of these variables. 

The ongoing SUMMIT trial is testing the activity of the ERBB kinase inhibitor neratinib in 21 

types of cancer having 42 different mutations in the ERBB2 and ERBB3 receptor tyrosine kinases 

(HER2 and HER3) (Hyman et al., 2018).  Neratinib is an irreversible pan-ERBB (pan-HER) inhibitor 

approved in 2017 for a relatively narrow indication: patients with early-stage HER2-positive breast 

cancer who had post-surgical adjuvant therapy using the ERBB2 inhibitor trastuzumab (Singh et al., 

2018). Mutation or overexpression of ERBB receptors is implicated in a range of human cancers but 

ERBB biology is complex, and pre-clinical models provide conflicting data on the potential efficacy of 

ERBB inhibition in human disease. The multi-center SUMMIT basket trial seeks to resolve this issue by 

testing neratinib in a wide range of tumor types and genotypes.  

In common with a majority of Phase II clinical trials, SUMMIT has no comparator control arm, 

and SUMMIT instead makes use of a Simon two-stage optimal design to evaluate drug activity based on 

a dichotomous response metric (Simon, 1989). In this approach, drug response is measured using a 

radiological assessment of tumor volume according to RECIST criteria (Eisenhauer et al., 2009). 

Patients whose tumors shrink by ≥30% are scored as responders and others as non-responders; the 

fraction of responders is the Overall Response Rate (ORR). A binomial test is then used to statistically 

evaluate the ORR. Using a pre-specified ORR for lack of efficacy (the null hypothesis; typically set at 

ORR ≤ 10%), the ORR expected under the alternative hypothesis (typically 30%), and the desired rates 

of Type I and Type II error (≤ 5% and ≤ 20% respectively, corresponding to ≥80% power) the Simon 

design uses a binomial distribution to calculate the minimum number of patients who must respond in 

each subgroup for the null hypothesis to be rejected; this calculation is performed separately for each 
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subgroup. If the number of responses in the first stage of a basket is consistent with the null hypothesis, 

then the treatment is considered futile and corresponding trial arm is terminated. Otherwise the arm 

expands in a second stage involving additional patients with the goal of testing the alternative hypothesis 

(e.g. 30% ORR); parameters of the trial design determine the number of patients enrolled in the second 

stage and the number of responses needed for a therapy to be considered efficacious. The Simon design 

thereby seeks to detect strong responses in the first phase while minimizing the number of patients 

subjected to ineffective treatments; it then expands potentially positive subgroups for a larger and more 

rigorous test in the second phase.  In the case of the SUMMIT trial, up to seven patients were initially 

enrolled per subgroup in Stage 1 and response was evaluated radiologically. Enrollment in each basket 

was expanded in Stage 2, typically to include 25 patients in total, only if at least one Stage 1 patient 

exhibited an objective overall response. 

Because all basket trials described to date use ORR, in which the assessment of response is 

dichotomous, the magnitude of tumor volume changes, and changes in the rate of tumor progression, are 

not considered. The Simon design, as well as Bayesian and frequentist interim analyses developed to 

determine whether to close enrollment in any subgroups (Cunanan et al., 2017a, 2017b; Drilon et al., 

2018; Hyman et al., 2015; LeBlanc et al., 2009; Simon et al., 2016) also assess efficacy independently 

for each subgroup thereby answering the question “which cancer subtypes surpass a pre-specified 

threshold for response.”  Here we propose a complementary approach in which tumors are compared 

across subtypes in a basket trial by using permutation testing to evaluate two related null hypotheses: ‘no 

difference in efficacy by tumor type’ or ‘no difference in efficacy by class of mutation’. These hypotheses 

are plainly relevant to basket trials that may ultimately lead to the approval of therapies for multiple 

tumor types defined by genetic features. The formulation of hypotheses in this manner has the 

substantial benefit that all patients enrolled in a trial contribute to the null distribution, and that 

continuous response variables rather than dichotomous scores can be evaluated (in the current work, 
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duration of Progression-Free Survival (PFS) and magnitude of change in tumor volume). For any 

specific subgroup, null distributions having an appropriate number of patients for each subgroup are 

generated by subsampling the all-patient distribution. When response rates are low, as in SUMMIT, the 

‘no difference’ null hypothesis is similar to a null hypothesis of ‘low or no activity’ and can be used to 

test whether any group has significantly superior responses; when response rates are high, as with 

larotrectinib, the ‘no difference’ hypothesis tests for both inferior and superior responses. In the case of 

SUMMIT, lung cancers fail Simon criteria but significantly exceed the no-difference null with respect to 

volume changes and PFS. In contrast, breast cancers in SUMMIT exhibit a high ORR, but are no 

different from average with respect to PFS. These data suggest an alternative approach for interpreting 

basket trials with the potential to better discover therapeutic opportunities for subsequent testing in 

Phase III trials. 

 

RESULTS 

Analysis of SUMMIT trial reveals overlooked therapeutic opportunity for neratinib in lung 

cancers carrying ERBB2 Exon 20 mutations. 

Results for the first 141 patients in the SUMMIT basket trial were recently reported (Hyman et 

al., 2018). Multiple genetic markers were assessed, including 31 unique HER2 and 11 unique HER3 

mutations. Clinical response was measured by radiological assessment of tumor volume changes and by 

progression free survival (PFS), the time from enrollment until death or radiological evidence of tumor 

progression. FDA guidance recommends the use of ORR as measured by RECIST criteria (Eisenhauer 

et al., 2009) in master protocol trials (Research, 2019) largely because ORR is an accepted surrogate 

endpoint for accelerated drug approval (Pazdur, 2008). Although the SUMMIT trial uses ORR, the 

authors report changes in tumor volume as a continuous variable.  
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In common with previous basket trials (Cunanan et al., 2017b) SUMMIT (Hyman et al., 2018) 

recorded PFS data but it was not analyzed formally or compared to ORR; this reflects the perceived 

challenge of evaluating 21 tumor types using data from only 141 patients. An additional concern is that 

PFS duration may not be comparable for cancers having different rates of progression. However, it is 

also controversial whether tumor volume changes are predictive of overall survival (OS; the ‘gold 

standard’) (Buyse et al., 2000; El-Maraghi and Eisenhauer, 2008; Fleming and DeMets, 1996; Kaiser, 

2013). For example, in a retrospective analysis of non-small cell lung cancer, PFS was correlated with 

OS (Blumenthal et al., 2015) but ORR was not. The use of PFS in breast cancer trials is also supported 

by a variety of other data (Adunlin et al., 2015). Thus, although it is standard practice to rely on ORR 

not PFS in basket trials, we hypothesized that use of both of types of information might provide new 

therapeutic insights (see Discussion). There is no established method for thresholding PFS data into 

dichotomous responder and non-responder classes. Thus, it is not possible to use a binomial test. We 

instead used permutation testing by using repeated Monte Carlo resampling of the distribution of 

continuous volume changes and PFS from all patients to construct null distributions for each subgroup. 

The null hypothesis in this case is that there is no difference in volume change or PFS for the subgroup 

(defined by tumor type or genotype) relative to all patients following exposure to neratinib. 

When neratinib-treated patients in SUMMIT were classified by tissue of origin (Figure 1A) and 

compared to an appropriately resampled ‘no difference’ null distribution, breast cancers exhibited 

significantly greater volume reduction than any other tumor type (p<10-6; a 45% difference in average 

volume change from all non-breast tumors). This agrees with the conclusion by Hyman et al that breast 

cancers are the most neratinib-responsive of all tumor types tested based on ORR (Hyman et al., 2018). 

Because breast cancers dominate volume-change data we constructed a second set of null distributions 

for volume changes that included only non-breast tumors (hereafter NB; see Methods).  
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When NB distributions were resampled and compared to tumor-specific volume change data, 

lung, cervical, and biliary cancers were found to significantly exceed the ‘no difference by type’ null 

hypothesis (P=0.04, 0.04 and 0.06; significant according to Benjamini-Hochberg procedure; 

Supplementary Table S1A). Whereas cervical and biliary cancers passed the criteria for the first stage of 

a Simon two-stage design, lung cancer failed at the second stage (Table 1). Thus, quantitative criteria 

judge as positive a volume change in lung cancers that was found to be negative by the binary criteria 

used in a two-stage design. This discordance arises because half of lung cancers shrank on therapy but 

only one shrank enough to be classified as a response by RECIST. The permutation test and Simon 

criteria therefore provide different insights into the drug responsiveness of this small patient population. 

 

Analysis of Progression Free Survival 

Comparison of response duration among different types of tumors is potentially complicated by 

differences in tumor kinetics. While slow growth should not in and of itself equate to ‘sensitivity’ to 

therapy, durability of response is clinically important, is commonly an endpoint in cancer trials, and may 

provide orthogonal data to complement measurement of volume change.  We therefore applied 

permutation testing to PFS. The null distribution was drawn from all tumor types (n=141) because no 

tumor type was so responsive as to dominate the distribution (Methods). Significantly smaller hazard 

ratios, which are indicative of longer PFS, were identified by a no difference test in cervical cancers 

(P=0.03; median PFS 20 months) and lung cancers (P=0.003; median PFS 5.4 months) but - strikingly - 

not in breast cancers (P=0.36; median PFS 3.5 months, Supplementary Table S1B). Only five neratinib-

treated cervical cancers are present in the SUMMIT dataset, and the empirical null distributions was 

consequently broad (Figure 1A). Nonetheless, the observed responses were sufficiently strong and 

durable to achieve statistical significance (cervical tumors also met the criteria to begin Stage 2 and so 

additional patients are currently accruing; Table 1). Whereas lung cancers exceed no difference tests for 
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both volume changes and hazard ratios, breast cancers differ from the overall population by volume 

change alone. Lung cancers therefore appear to represent a therapeutic opportunity for neratinib missed 

by dichotomous assessment of response.  

Our approach identifies differences in PFS that are statistically significant, but interpreting 

whether this is clinically meaningful requires attention to absolute duration in context of the kinetics of 

that specific tumor type. In this case, as noted by Hyman, a therapeutic response exceeding 12 months in 

non-small cell lung cancer is clinically meaningful (Hyman et al., 2018).  Moreover, in the case of 

neratinib-treated lung and cervical cancers, significant differences from the null distribution were 

observed for both volume change and PFS data, increasing confidence in the conclusions (see also 

Discussion). 

 

Analysis of biomarkers 

Differences in neratinib sensitivity have been observed in cell lines with different mutations in 

ERBB receptors (Nagano et al., 2018) but the impact of such differences has not been reported for 

patients. Basket trials provide the opportunity to investigate this issue. SUMMIT enrolled patients on the 

basis of qualifying mutations in ERBB2 or ERBB3, which were classified as ‘hotspot’ if they occurred 

in recurrently mutated regions of either gene, or ‘non-hotspot’ if they lay in rarely mutated regions 

(Hyman et al., 2018). However, conducting independent two-stage trials in multiple tissue types results 

in evaluating responsiveness and cohort expansion on the basis of tumor tissue of origin alone without 

considering the influence of genotype. We therefore applied permutation testing to ERBB genotypes and 

neratinib responses. We found that tumors with ERBB2 hotspot mutations exceeded the no-difference 

null model as judged by changes in tumor volume or PFS (Figure 1B) (P=0.0005 for PFS and P=0.03 

for volume changes), which agrees with Hyman’s conclusion that ERBB2 hotspot tumors are responsive 

to therapy. When ERBB2 hotspot mutations were further divided into functional classes (e.g. S310; 
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Exon 20 insertions; V777; L755; and “other hotspot mutations”), Exon 20 insertions significantly 

exceeded the no difference null for PFS (P=0.01), which could be attributed almost exclusively to lung 

tumors (Hyman et al., 2018) (6 lung tumors were among the 7 most durable responses observed for all 

cancer types having Exon 20 insertions). No other significant signals were detected among subgroups 

when scoring for mutation class.  

 

Permutation testing provides statistical support for the use of imatinib only in select cancer types. 

As a second application of our approach we examined the phase II open label Imatinib Target 

Exploration Consortium Study B2225 which tested Imatinib in 186 patients having 40 different 

malignancies (Heinrich et al., 2008).  Objective responses were observed in six types of malignancy, of 

which five were described as “notable” but not subjected to formal statistical analysis. By testing against 

a no difference null we found that three malignancies had a significantly higher ORR to imatinib than all 

other tumors tested (dermatofibrosarcoma protuberans, myeloproliferative disorders, hypereosinophilic 

syndrome; Supplementary Table S4A). These malignancies were represented by 7 to 14 patients each, 

out of 186, confirming that statistically significant drug activity can be detected in small subgroups 

within a basket trial. Imatinib was approved for use in dermatofibrosarcoma protuberans by the FDA in 

2006, and, following a phase 2 study published in 2010 (NCT00122473) it was incorporated into the 

National Comprehensive Cancer Network’s treatment guidelines for this malignancy (Navarrete-

Dechent et al., 2019). The use of imatinib in hypereosinophilic syndrome is supported by case studies 

(Gleich et al., 2002; Pardanani and Tefferi, 2004) and our analysis demonstrates additional support in a 

Phase II basket trial (Heinrich et al., 2008). 

 

Permutation testing provides statistical support for tumor-agnostic use of larotrectinib and 

pembrolizumab in biomarker positive populations 
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Basket trials of the immune checkpoint inhibitor pembrolizumab (Le et al., 2017) and kinase 

inhibitor larotrectinib (Drilon et al., 2018; Lassen et al., 2018) contrast with  trials of neratinib and 

imatinib because response rates are much higher: both drugs were found to be effective in multiple types 

of tumors positive for a specific genetic biomarker.  In a basket trial of 86 patients and 12 tumor types, 

tumors with mismatch repair (MMR)-deficiency were found to be highly responsive to PD-1 blockade 

by pembrolizumab regardless of tissue of origin (Le et al., 2017). Similarly, high rates of larotrectinib 

response were observed among 122 patients having 15 different types of tumors expressing TRK fusion 

proteins (Drilon et al., 2018; Lassen et al., 2018). When data from each of these trials were compared to 

a no difference null (testing in for both superiority and inferiority), no significant differences were 

observed for any tumor type represented by three or more patients (this corresponded to eight tumor 

types for larotrectinib and seven types for pembrolizumab). The sole exception was infantile 

fibrosarcomas, which were more responsive to larotrectinib than other TRK-fusion tumors (Figures 2A, 

2B, Supplementary Tables S4B, S4C). Thus, a comparison among tumor types provides additional 

statistical support for the conclusion that larotrectinib and pembroluzimab exhibit tumor-agnostic 

activity in tumors having specific genetic features. 

 

Comparison of Type 1 and Type 2 errors of permutation tests and binomial tests in basket trials. 

When some but not all tumor subtypes respond to therapy, the responsive subtypes may 

potentially be identified by either of permutation tests (which evaluate a ‘no difference by tumor type’ 

null using continuous measures of responses) and binominal tests as those in the Simon two-stage design 

(which evaluate a ‘low efficacy’ null independently for each tumor type using dichotomous measures of 

responses). To compare rates of type I error (a false positive corresponding to misclassification of a non-

responsive tumor type as responsive) and type II error (a false negative, corresponding to 

misclassification of a responsive tumor type as non-responsive) between these approaches, we simulated 
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basket trials in which a varying proportion of tumor subtypes responded to therapy (Supplementary 

Methods S6). As expected, by permutation testing on continuous volume change data, the rate of type I 

error declined as the treatment effect increased (i.e. the decrease in tumor volume was greater).  In small 

cohorts typical of the first stage of a two-stage trial (N=7 patients per tumor type), permutation tests had 

substantially smaller type I error than binomial tests. This is potentially important because a key aim of 

two stage trial designs is to minimize patients exposed to futile treatments (Figure 3A). In larger cohorts 

typical of Stage Two (N=25 patients per tumor type), permutation tests had greater power for all effect 

sizes than a binomial test, as well as smaller type I error for treatment effects stronger than 20% 

difference in tumor volume (Figure 3B). Thus permutation testing appears to be the more powerful 

approach, in agreement with recent theoretical analysis (Arfé et al., 2019). Historically, an important 

advantage of binomial tests was that they could be computed rapidly and exactly with simple algorithms 

and slow computers. Permutation testing with re-sampling (necessary when N is too large for an exact 

enumeration) is more computationally intensive; this was an issue in 1980s when basket trials were first 

proposed, but it is no longer relevant.  

 

DISCUSSION 

A primary motivation for performing a basket trial is to determine which of several tumor types 

or genotypes are sufficiently responsive to an investigational therapy to warrant further study in a Phase 

III pivotal trial. Because Phase II trials rarely involve a no-treatment control population, contemporary 

designs for basket trials use a pre-specified cutoff to evaluate whether or not a drug is effective. 

Currently this involves a dichotomous assessment of tumor volume changes to determine if the overall 

response rate exceeds a threshold set by a binomial test. In this paper we demonstrate an alternative 

approach involving a permutation test in which both continuous volume changes and survival data (PFS) 

are formally compared against empirical null distributions constructed using data from all patients in the 
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trial. Responses in subgroups are then compared to the null distribution to test the hypothesis of no 

difference in efficacy by subtype (most commonly tumor tissue of origin or mutation class or genotype) 

as a means to identify subtypes that are most responsive. 

Constructing subtype-specific null distributions involves repeated Monte Carlo resampling of an 

all-patient distribution, drawing the same number of samples as the number of patients in the subtype. 

The resulting null distributions appropriately anticipate the greater variability observed in small cohorts, 

thereby adjusting the threshold for identifying a statistically significant increase or decreases in response 

based on a pre-specified type 1 error rate. For example, the SUMMIT trial reported PFS data for five 

cervical cancer patients. In this case, the null distribution was calculated by repeatedly sampling five 

response durations from the set of duration data for all patients, generating a relatively wide subtype-

specific null distribution. Despite this, the observed hazard ratio in cervical cancers was significantly 

smaller than the no difference null distribution (P=0.03) implying an above-average response. 

Conclusions drawn from testing for no difference in continuous volume change can differ from binomial 

testing based on ORR. For example, lung cancers exposed to neratinib exceed the no difference null with 

respect to both volume changes (P=0.04; sampling from all non-breast tumors) and PFS (P=0.003, 

sampling from all tumors) even though lung cancers failed the second stage of a Simon design. In 

contrast, breast cancers exhibited highly significant changes in tumor volume by both Simon and no 

difference criteria, but failed the no difference test with respect to PFS. We therefore propose that 

neratinib be studied further in ERBB-mutant lung tumors and that early evidence be sought in expansion 

cohorts of whether neratinib is providing a clinically meaningful survival benefit in breast cancer 

patients. 

Basket trials of larotrectinib in TRK fusion-positive cancers and pembrolizumab in MMR-

deficient cancers are characterized by high response rates (Drilon et al., 2018; Lassen et al., 2018; Le et 

al., 2017). By permutation testing, no subgroup was identified in either trial that was significantly less 
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drug-responsive than the average of all tumors. Thus, a formal no difference test supports the recent 

tumor-agnostic FDA approvals of larotrectinib and pembrolizumab for cancers with specific genetic 

features. 

Comparison of subgroups in basket trial 

  It is not conventional to directly compare responses across arms of a basket trial and FDA 

guidance discourages this, probably because of the dangers of multiple hypothesis testing (Pazdur, 2008; 

Research, 2019).  The specific concern is that, in trials with a large number of arms, testing all arms 

against each other involves a potentially uncontrolled multi-hypothesis test. However, in the procedure 

described here, all null distributions are sampled from the same all-patient distribution and the 

Benjamini-Hochberg procedure is used to appropriately correct the significance threshold used to test 

hypotheses. In some cases one tumor subtype can dominate responses for the entire trial, obscuring 

smaller but potentially significant differences in other subtypes. In SUMMIT this was observed for 

volume changes in neratinib-treated breast cancers (P<10-6 relative to the no difference null). To enable 

detection of next-most different volume responses, we removed breast cancers from the all-patient 

distribution. We performed this procedure only for a single outlier subgroup because repeated 

adjustment of the null distribution heightens the risk of false discovery from multi-hypothesis testing 

(Bishop and Thompson, 2016) (see Methods). 

A second concern arises when comparing subgroups directly: because tumors respond differently 

to therapy, the magnitude of volume changes and the frequency of confounding factors such pseudo-

progression (an increase in the size of a primary tumor for reasons other than disease progression, such 

as immune infiltration, followed by tumor regression) (Ma et al., 2019) also differ.  However, in scoring 

ORR in the Simon design, a very similar issue arises: the same threshold for volume change is used to 

establish a meaningful response in all subgroups. Thus the need for a common interpretation of 

subgroups is not specific to our Monte Carlo resampling methodology and any other method (Bayesian, 
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frequentist) of assessing drug efficacy (Berry, 2015). It is also noteworthy that the 30% reduction in 

volume conventionally used to threshold ORR subdivides a unimodal distribution of tumor volume 

changes. It is justifiable based on the complexities of tumor volume assessment (Sharma et al., 2012) but 

is nonetheless arbitrary.   

A third concern involves our use of PFS data to compare subgroups; this arises because different 

cancers naturally progress at different rates (Friberg and Mattson, 1997). Empirical data demonstrate, 

however, that rates of progression for solid tumors in the SUMMIT trial are similar to each other: 

tumors that did not shrink on therapy progressed rapidly irrespective of tumor type, (85% of non-

shrinking tumors progressed in ≤ 3 months). Moreover, it is well established that overall survival, the 

gold standard for measuring response to anti-cancer drugs, correlates more strongly with duration of 

PFS than with tumor volume changes (Fleming and DeMets, 1996; Kaiser, 2013; Seymour et al., 2010; 

Zabor et al., 2016). Significant reductions in tumor volume do not necessarily predict durable PFS, and 

durable PFS can be achieved with modest changes in tumor volume. Radiological measurement of 

tumor volume is also complicated by various technical and biological factors. Thus, past experience and 

theoretical considerations suggest that PFS and tumor volume can both provide valuable data in a 

permutation testing framework.  

Historically, a final limitation in the use of PFS data in basket trials is that there exists no agreed 

upon threshold in duration that can define a meaningful (or ‘objective’) response; in contrast tumor 

volume changes are usually thresholded at a common value for determination of ORR. In the absence of 

a PFS threshold and a dichotomous score a binomial test cannot be used. However, permutation testing 

using an all-patient null distribution overcomes this issue.  

In conclusion, we describe a simple permutation test for small patient populations that makes it 

possible to obtain appropriately scaled null distributions and derive empirical P values for drug response 

as measured by both volume change and PFS. The methodology is expected to be of value in basket 
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trials and other Phase II studies that lack control arms and involve multiple patient subgroups generally 

thought to be too small for formal comparison (Hyman et al., 2018). Moreover, among all tests which 

control the Type I error rate at a fixed α level, the permutation test has been proven mathematically to be 

the testing procedure that maximizes finite-sample power for a late stage study conditional on early-

stage data (Arfé et al., 2019). Thus, use of permutation testing in basket trials is expected to be of greater 

predictive value for subsequent Phase III studies. Nonetheless, all comparisons of trial subgroups must 

be interpreted in the context of known differences in tumor growth rates that may affect tumor volume 

changes and duration of PFS. 

The continuing growth of genomic-driven oncology will increasingly enable refined subdivision 

of patient populations whether in a basket trial or by stratifying patients in conventional Phase II and 

Phase III studies (Hyman et al., 2018). The promise of such subdivision is better precision in oncology, 

but the risk is smaller subsamples and reduced statistical significance; thus new approaches are required. 

Our reformulation of null hypotheses, generation of null distributions by permutation, and derivation of 

empiric P values for comparing responses across subgroups in basket trials has the potential to better 

identify therapeutic opportunities for targeted drugs. The approach is grounded less in novel statistical 

theory (permutation tests are well established) but rather in accumulating empirical evidence from 

completed basket trials. This study does not in our view necessitate changes in trial designs, rather, we 

suggest that an appropriately conservative approach is to continue the use of established methods such 

as the Simon or Bayesian Simon designs for enrollment decisions and evaluations of absolute efficacy, 

and to apply permutation testing for subsequent analysis of differences in efficacy among subgroups.  
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FIGURES AND LEGENDS
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Figure 1. Analysis of neratinib response by tumor tissue of origin and mutation. 

Red line: observed response. Blue histogram: responses simulated according to the null hypotheses of no 

difference in response between tumors types (A) or mutation types (B). As explained in the main text, 

breast tumor volume changes are compared with null distributions drawn by Monte Carlo resampling 

from all tumors; for this reason, the null distribution for breast tumor volume changes has a different 

mean. For all other tumor volume changes, the null distributions are drawn from all non-breast tumors 

due to breast tumors being a strong outlier (p < 10-6 ; see Methods). ‘Hazard ratio for progression’ null 

distributions are drawn from all tumors. Observed responses that significantly exceed the null 

hypothesis, according to Benjamini-Hochberg procedure for multiple hypothesis testing, are indicated 

with +;  N.S. denotes not significant; +++ denotes p < 10-6 (Supplementary Tables S1, S2, S3, S4). 
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Figure 2. Analysis of larotrectinib and pembrolizumab responses by tumor tissue of origin. 

Red line: observed average response. Blue histogram: responses simulated according to the null 

hypothesis of no difference in response between tumors types. Observed responses that significantly 

exceed the null hypothesis, according to Benjamini-Hochberg procedure for multiple hypothesis testing, 

are indicated with +; N.S. denotes not significant (Supplementary Table S4). 
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Figure 3. Comparison of Type 1 and Type 2 errors of permutation tests and binomial tests in 

basket trials. Basket trials were simulated in which three of ten tumor types respond to therapy, and 

sensitivity and specificity (Type 1 and Type 2 errors) were compared between: (blue) permutation tests, 

comparing all tumor types to find those significantly more responsive than average, and (orange) 

binomial tests of objective response rate, such as are used in Two-Stage trial designs (see Supplementary 

Method). Simulations were repeated across a range of treatment effect sizes (difference in mean volume 

change between responsive and non-responsive tumors) for 7 patients per tumor type (A, typical of the 

first stage of a two-stage trial), and 18 patients per tumor type (B, typical of the second stage). B, inset: 

zoom on the type 1 error rate (<4%). 
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TABLES AND LEGENDS 

Table 1. Conclusions from analysis of neratinib in ERBB-mutant tumors in context of trial status. 

Tumor type 

Number 

of 

patients 

Status in Simon 

Optimal 

2-stage design 

Responses significantly 

different from other 

tumors1? 

Stage 1 Stage 2 Volume PFS 

Ovarian 4 Ongoing  - - 

Gastroesophageal 5 Ongoing  - - 

Colorectal 12 Failed  - - 

Bladder  16 Failed  - - 

Endometrial 7 Failed  - - 

Biliary 9 Passed  Ongoing Superior - 

Cervical 5 Passed Ongoing Superior Superior 

Lung 26 Passed Failed Superior Superior 

Breast 25 Passed Passed Superior - 
 

1 Dash denotes no significant difference by Benjamini-Hochberg procedure. 

METHODS 

To test the null hypothesis that patient subgroups are equally responsive to a therapy, outcome 

data as reported in a basket trial (comprising either change in tumor volume, or duration of PFS) were 

pooled for all patients who received the drug, regardless of tumor type. We derive a null distribution for 

each subgroup by permutation of responses among tumor subgroups.  

Exact permutation tests compute all possible combinations of categorical variables, but this is 

computationally intractable for continuous variables (e.g. there are 1023 ways to choose 25 samples from 

100 patients). We therefore used Monte Carlo permutation tests, in which a large but non-exhaustive set 

of permutations is randomly generated. Monte Carlo permutation yields type 1 error rates (false positive 

rate) equal to those of an exact permutation test for probabilities P >> 1/N where N is the number of 
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random permutations; we used N=107 and therefore can accurately report P values as small as 0.0001 

(106 simulations were performed for the neratinib PFS analysis due to the computational time required 

to calculate hazard ratio, and since neratinib PFS analyses produced no P values smaller than 10–4, 

sufficient precision was provided by 106 simulations). Monte Carlo permutation of trial outcomes 

involves randomly drawing from a pool of all patient responses, with the number of samples drawn 

equal to the number of patients found in the cohort being tested (e.g. 26 patients for lung and 5 patients 

for cervical cancer). A response metric (volume change or PFS) for the sampled set is then calculated 

and the procedure repeated N=107 times to compose a reliable null distribution for the cohort. For the 

analysis of changes in tumor volume, the response metric was the average volume change for a cohort; 

for the analysis of PFS, the response metric was the hazard ratio (computed using the Cox proportional 

hazards model) of the Kaplan-Meier survival function for a subset of patients as compared to the 

survival function for all patients. An empiric P value was then determined by the location of the 

observed response metric (which was the test statistic) on that null distribution. In common with an 

exact permutation test, the rate of type I error is the significance level. The Benjamini-Hochberg 

procedure (Benjamini and Hochberg, 1995) was used to control the False Discovery Rate (FDR) 

associated with multiple hypothesis testing (multiple hypothesis correction is generally absent from 

analyses of basket trials). Consistent with practice in genomics, we used an FDR of 25%, which we 

observed by simulations to yield a type I error rate ≈ 3% (see results); this is smaller than the 10% rate 

of type 1 error commonly chosen for Simon two-stage designs. 

 In the case of the SUMMIT trial permutation testing was separately applied to reported tumor 

volume changes and to durations of PFS; in the case of the larotrectinib and pembrolizumab trials 

(Drilon et al., 2018; Lassen et al., 2018; Le et al., 2017) it was applied only to tumor volume changes 

(PFS outcomes by tumor type are not available). For imatinib, permutation tests were applied to 

objective response rates (Heinrich et al., 2008).  For the SUMMIT trial, volume (but not PFS) changes 
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in breast tumors were far stronger than for any other tumor type: none of 107 simulations of the null 

hypothesis matched the observed average tumor volume change of breast tumors (we report this as P < 

10-6). The magnitude of difference between breast tumors and all tumors (45% difference in average 

volume change) is so large that the inclusion of breast tumors in the null distribution makes it impossible 

to detect any difference among other tumor types. Because breast tumors represent an outlier with regard 

to volume changes in response to neratinib treatment, we considered it inappropriate to include breast 

tumor volume changes in the between-tumor comparison of all other tumor types. We therefore 

constructed a “no breast tumor” (NB) null distribution using volume data for all non-breast cancers 

(n=116). This reformulation of the null distribution was applied only for this case of a P<10-6 outlier, 

and we advocate for a similarly stringent approach to any future application that may remove subtypes 

from the null distribution. We did not encounter any other tumor subtype in any basket trial for which 

reformulation of the null distribution was appropriate 

Responses in any one tumor type could not be meaningfully inferior to the poor response across 

all patients to neratinib (median volume change ≈ 0%; median PFS ≈ 2 months; objective response rate 

12%). We therefore tested only for superiority of each tumor type or mutation class relative to all types; 

the same was true of imatinib (objective response rate 13% over all patients), and basket trials in general 

use one-sided tests for efficacy. In the cases of larotrectinib and pembrolizumab, overall response rates 

were high, and we tested for both superiority and inferiority relative to the average of all tumors in those 

trials. 

Finally, basket trials were simulated in which only some tumor types respond to therapy, in order 

to compare type I and type II error rates between permutation tests (comparing efficacy across tumor 

types) and binomial tests (evaluating objective response rate in individual tumor types, according to a 

Simon Two-Stage trial design). A ‘non-responsive’ distribution of tumor volume changes was 

empirically defined based on the observed volume changes in non-responsive tumor types in the 
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SUMMIT trial: volume changes were drawn from a normal distribution with mean response μ = +20%, 

and standard deviation σ = ±30%; these parameters resulted in fewer than 5% of tumors exhibiting 

volume change ≤ -30%, defined as ‘objective response’ for these simulations. Basket trials were 

simulated in which ten tumor types were studied, of which seven types were ‘non-responsive’ (μ = 20%, 

σ = ±30%), and three types were ‘responsive’ (μ = α + 20%, σ = ±30%; where α is the ‘treatment effect’, 

the average difference in volume change compared to non-responsive tumors). 1000 basket trials were 

simulated for each value of ‘treatment effect’ between -60% and 0%, first with 7 patients per tumor 

type, and next with 18 patients per tumor type, matching the intended number of patients in Stages One 

and Two of the two-stage design of the SUMMIT trial. Each simulated trial’s results were analyzed by 

both permutation testing, and by the binomial test used in the Two-Stage design (pass requires ≥ 1 

objective response at Stage One, and ≥ 4 objective responses at Stage Two). Type 1 error rates were 

calculated as the fraction of truly non-responsive tumor types that were misclassified as responsive, and 

Type 2 error rates were calculated as the fraction of truly responsive tumor types that were misclassified 

as non-responsive. 
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SUPPLEMENTARY INFORMATION 

A. 

 

B. 

 

Supplementary Table S1. Benjamini-Hochberg critical values for analysis of neratinib tumor 

volume responses (A) and  hazard ratios (B) by tumor tissue of origin.  Related to Figure 1. 
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A.  

 

 
B. 

 

 
Supplementary Table S2. Benjamini-Hochberg critical values for analysis of neratinib tumor 

volume responses (A) and hazard ratios for progression (B)  by general mutation type.  Related to 

Figure 2. 
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B. 

 
 

Supplementary Table S3. Benjamini-Hochberg critical values for analysis of neratinib tumor 

volume responses (A)  and hazard ratios for progression (B)  by specific mutation type. Related to 

Figure 1. 
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C.  

 

Supplementary Table S4. Benjamini-Hochberg critical values for analysis of imatinib (A), 

larotrectinib (B), and pembrolizumab (C) tumor volume responses by tumor type. Related to 

Figure 2.  
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