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Abstract

RNA-seq is a powerful tool for both discovery and experimentation. Most RNA-seq 
studies rely on library normalization to compare samples or to reliably estimate 
quantitative gene expression levels. Over the years a number of RNA-seq normalization 
methods have been proposed. Review studies testing these methods have provided 
evidence that commonly used methods perform well in simple normalization tasks, but 
their performance in challenging normalization tasks has yet to be evaluated. Here I test 
RNA-seq normalization methods using two challenging normalization scenarios. My 
assessment reveals surprising shortcomings of some commonly used methods and 
identifies an underappreciated method as the most promising normalization strategy for 
common, yet challenging RNA-seq experiments.
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Introduction

High-throughput RNA sequencing (RNA-seq) has proven a powerful tool for discovery 
and experimentation since its first introduction over a decade ago. It was realized early on
that quantitative normalization of sequencing results is crucial for any downstream 
analysis [1]; normalization is used to handle differences in transcriptome composition, 
sequencing depth and other technical artifacts, for instance from combining data from 
different sources. Optimally, RNA-seq normalization methods should be able to deal with
these issues and allow combining data from samples that differ for any biological or 
technical reasons. In response to these needs, a number of normalization methods have 
been proposed. While there seems to be consensus that gene length and library size 
should be accounted for, methods differ in the type of data features to normalize against 
and how to do so.

Previous assessments of RNA-seq normalization methods have usually found that 
common, widely used methods perform well [2–6]. I show here that this is not the case 
when challenging normalization tasks are considered, suggesting that previous tests may 
have been overly simplistic. Some evaluations also lacked a gold standard or an optimal 
solution (but see [2]), in contrast to the results presented below.

The methods evaluated here fall roughly into three groups. Methods that estimate a 
scaling factor for normalizing libraries (TMM [1] (used in edgeR [7]), DESeq [8] and 
upper quartile normalization [9]); methods that normalize by gene length and library size 
(RPKM/FPKM [10], TPM [11]); and a method that aligns z-transformed libraries 
according to the shape of their overall distribution (zFPKM [12]).

Results and Discussion

I evaluated the performance of RNA-seq normalization methods according to two 
commonly encountered scenarios that present challenges for normalization. In the first 
scenario, I used RNA-seq data from a developmental time course study of Xenopus 
tropicalis embryos [13] that contains spike-in RNA standards [14]. For each 
normalization method, I asked how well standard RNA levels compared across the 
dataset. I used the inverse of the coefficient of variation of standard RNA levels across 
time as a measure of method precision.
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The distribution of normalization
precision over 45 RNA standards for
the different normalization methods is
shown in Figure 1A. Precision values
for different standards differed
considerably for all methods. Most
surprisingly, neither method
performed markedly better than un-
normalized, raw read counts. Only the
median precision of zFPKM and upper
quartile normalization were above the
75% quantile of the precision of raw
read counts; all other methods’
medians fell within the interquartile
range. Although its total precision
range was the largest, zFPKM had the
highest overall precision (median =
0.73 ± 0.11 [sample standard
deviation]). Upper quartile was the
only normalization method with its
entire interquartile range above that of
raw read counts, showing a very low
variation in precision between RNAs
(despite a long tail). Nominally, TMM
was the only additional method with a
higher median precision than raw read
counts. I also note that standard RNAs
added at higher concentration levels
consistently resulted in higher
precision values than those present at
low levels (Supplementary Figure S1).

Over developmental time, the
transcriptome of the embryo grows
ever more complex such that the
number of expressed genes increases. Normalization procedures based on the number of 
genes expressed or transcripts produced may lead to the appearance of stably expressed 
genes getting more lowly expressed over time while in truth only its relative, but not total
abundance decreases. I reasoned that a correlation between stably represented standard 
RNAs and developmental time would indicate that a normalization method is not able to 
account for this increasing complexity, a feature that had already been noted in the 
original study producing the data [13]. I thus calculated Spearman’s rank correlation to 
estimate this effect. Similar to above, only zFPKM and upper quartile normalization 
showed reasonably low absolute correlation levels, while all other methods showed 
correlations of roughly the same strength as raw read counts (Figure 1B). In fact, FPKM 
and TPM even showed stronger correlations with developmental time than raw read 
counts.

The theory behind some of the normalization methods provides an explanation for this 
result. As Wagner and colleagues argue [11], the idea behind many popular normalization

Figure 1. Evaluation of RNA-seq normalization 
methods using ERCC spike-in RNA 
measurements across developmental time. (A) 
Precision was measured as the inverse of the 
coefficient of variation of RNA levels for 45 
spike-ins. Note that spike-ins with high 
representation in samples tended to have higher 
precision levels (Supplementary Figure S1). (B) 
Spearman’s rank correlation between spike-in 
RNA levels and developmental time. As the 
developing embryo grows more complex, so 
does its transcriptome (see [13]). A strong 
correlation indicates a normalization method’s 
incapability to account for this fact.
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methods is to compare methods relative to a so-called relative molar RNA concentration 
(RMC), the idea that the relative concentration of RNAs is on average constant between 
samples. In samples from a developing embryo however, this assumption does not hold, 
as explained above; in turn, RMC decreases over time. Transcriptomes of different 
complexity may be compared frequently, for instance when comparing distantly related 
organisms or different tissues. Given the surprising finding that commonly used 
normalization methods showed a strong bias when faced with such a scenario, it seems 
wise to argue against the use of these methods under such scenarios.

For the second normalization scenario, I downloaded RNA-seq data from liver tissue 
from four different species (human, macaque, mouse and chicken) that was generated in 
three different laboratories. One lab produced data for all four species using 76-bp, 
single-end sequencing [15]; one group produced data for the three mammalian species 
using 100-bp, paired-end sequencing [16]; and one group produced data for chicken only,
also using 100-bp, paired-end sequencing (Chickspress database [17]).

This scenario presents a different, yet also difficult, challenge as the first scenario. A 
useful normalization method should be able to normalize libraries such that biological 
variation is preserved while technical artifacts such as those from experimentation in 
different labs are removed. Thus, after mapping, I collected 1:1:1:1-orthologous genes, 
normalized data and performed principal component analysis (PCA) to visualize if 
biological or technical
factors were emphasized
after normalization.

In a plot of PC1 and PC2,
normalization with three
(DESeq, TMM and upper
quartile) of the methods
resulted in a pattern
overtly identical to that of
un-normalized, raw read
counts (Figure 2). Instead
of clustering by phylogeny
or sample sex
(Supplementary Figure
S2), these PCAs show
clustering according to
source lab. PCA on data
normalized with the other
three methods (TPM,
FPKM, zFPKM) clustered
data recognizably
according to phylogenetic
patterns in the data, albeit
to different degree. PCA
on data from all three
methods split chicken from
mammalian samples on
PC1, following the deepest
phylogenetic split. PC2

Figure 2. PCAs for un-normalized raw counts, TPM, FPKM, 
zFPKM, TMM, DESeq, and upper quartile normalizations. 
Source organism is color coded, source lab is indicated by 
symbol. See Supplemental Information for PCA with sample 
sex indicated (Figure S2) and for plots of PC3 (Figures S3 
and S4).
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showed less resolution regarding further variation, except for data normalized with 
zFPKM. PCA on the latter split mouse from primates on PC2 (Figure 2) and macaque 
from human on PC3 (Supplementary Figures S3, S4).

The three normalization methods that use scaling factor normalization performed poorly 
on this task by emphasizing technical artifacts. The inclusion of gene length 
normalization improves the behavior substantially, but only the method using z-
transformation performs arguably optimal. It would certainly be possible (and advisable) 
to use an approach like z-transformation on data normalized using other methods. Having
this feature built-in as a standard speaks for using zFPKM as a go-to method in RNA-seq 
normalization.

Summary

In this review, I showed that commonly used RNA-seq normalization methods do not 
perform well in two challenging, yet common, experimental tasks. This is also true for 
two normalization procedures that are part of widely used methods for testing differential
gene expression, although this may be addressed by downstream computation within the 
methods. I further show that two methods that are commonly used for comparison and 
visualization do not perform well with transcriptomes of different complexity. Finally, a 
rather unknown method, zFPKM [12], performed better than other methods in both 
normalization scenarios.

Methods

For scenario 1, I acquired RNA-seq libraries that were sampled at even hours during the 
first 24 hours (accession numbers below). I used HISAT2 [18] with standard options to 
map data to the Xenopus tropicalis genome RefSeq v. 9.1 with the ERCC reference 
transcripts [14] added. I used StringTie [19] to summarize mapped reads against RefSeq 
xenTro v. 9.1 Gnomon gene predictions, including annotations for the ERCC reference 
transcripts. StringTie reports TPM, FPKM, and raw count values (the latter as 
“coverage,” which are raw counts normalized by gene length). zFPKM values were 
calculated from FPKM values according to [12] using an R script. Values for TMM, 
DESeq, and upper quartile normalization methods were calculated from raw counts using
the calcNormFactors() function in the edgeR package [7].

I evaluated normalization methods according to the consistency of ERCC standard RNA 
levels across time. Standard RNAs that were deemed not expressed by zFPKM (log2 
zFPKM < -3) were ignored for all methods. First, I calculated precision as the inverse of 
the coefficient of variation of standard RNA levels across time. Second, I used 
Spearman’s rank correlation of standard levels against time as a measure for a trend 
through time.

For scenario 2, I downloaded a number of RNA-seq libraries for liver tissue from four 
different vertebrates (Supplementary Table S1). I mapped data to the ENSEMBL (v. 92) 
reference genomes (v. 39) for the respective species and summarized mapped reads 
against ENSEMBL reference annotations. I used biomaRt [20] to map 1:1:1:1 
orthologous genes to human and performed PCA. Statistical analyses were performed 
using R v. 3.5.0. For availability of scripts, see below.

Availability of data and material
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Sequencing data is available on the SRA under the accessions PRJNA275011, 
PRJNA143627, PRJEB11781 and PRJNA204941. All scripts are available at 
https://bitbucket.org/severinevo/normalise/.
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