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Summary 

Public transcriptomic and ChIP-Seq datasets have the potential to illuminate facets of 

transcriptional regulation by mammalian cellular signaling pathways not yet explored in the 

research literature. Unfortunately, a variety of obstacles prevent routine re-use of these datasets 

by bench biologists for hypothesis generation and data validation. Here, we designed a web 

knowledgebase, the Signaling Pathways Project (SPP), which incorporates stable community 

classifications of three major categories of cellular signaling pathway node (receptors, enzymes 

and transcription factors) and the bioactive small molecules (BSMs) known to modulate their 

functions. We then subjected over 10,000 publically archived transcriptomic or ChIP-Seq 

experiments to a biocuration pipeline that mapped them to their relevant signaling pathway 

node, BSM or biosample (tissue or cell line of study). To provide for prediction of pathway node-

target transcriptional regulatory relationships, we generated consensus ‘omics signatures, or 

consensomes, based on the significant differential expression or promoter occupancy of 

genomic targets across all underlying transcriptomic (expression array and RNA-Seq) or ChIP-

Seq experiments. To expose the SPP knowledgebase to biology researchers, we designed a 

web browser interface that accommodates a variety of routine data mining strategies depending 

upon the requirements of the end user. Individual dataset pages provide for browsing or filtering, 

and facilitate integration of SPP with the research literature. Results of single gene, Gene 

Ontology or user-uploaded gene list queries are displayed in an interactive user interface 

referred to as the Regulation Report, in which evidence for transcriptional regulation of 

downstream genomic target by cellular signaling pathway nodes is compartmentalized in an 

intuitive manner. Consensome queries allow users to evaluate evidence for targets most 

consistently regulated by a given signaling pathway node family, and allow for detailed 

inspection of the pharmacology underlying node-target regulatory relationships predicted by the 

consensomes. Consensomes were validated using alignment with literature-based knowledge, 
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gene target-level integration of transcriptomic and ChIP-Seq data points, and in bench 

experiments that confirmed previously uncharacterized node-gene target regulatory 

relationships. SPP is freely accessible at https://beta.signalingpathways.org.   
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Availability and Implementation: The Signaling Pathways Project is freely accessible at 

https://beta.signalingpathways.org.  

Social media: @sigpathproject 
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Introduction 

Signaling pathways describe functional interdependencies between distinct classes of 

molecules that collectively determine the response of a given cell to its afferent metabolic and 

endocrine signals [1]. The bulk of readily accessible information on these pathways resides in 

the conventional research literature in the form of peer-reviewed hypothesis-driven research 

articles, and in knowledgebases that curate such information [2]. Many such articles are based 

in part upon discovery-scale datasets documenting, for example the effects of genetic or small 

molecule perturbations on gene expression in transcriptomic datasets, and DNA promoter 

region occupancy in cistromics, or ChIP-Seq, datasets. Conventionally, only a small fraction of 

data points from such datasets are characterized in any level of detail in associated hypothesis-

driven articles. While largely unused initially, the remaining data points in ‘omics datasets 

possess potential collective re-use value for validating experimental data or gathering evidence 

to model cellular signaling pathways. We and others have described the limited findability and 

accessibility, interoperability and re-use (FAIR) status of these datasets [3, 4]. Although some 

barriers to the FAIR status of these datasets are being addressed, and a number of useful’ 

omics dataset-based research resources have been developed [5-14], opportunities exist to 

further develop the infrastructure enabling routine re-use of public ‘omics datasets by bench 

researchers in the field of mammalian cellular signaling.  

We previously described biocuration and web development approaches to enhance the FAIR 

status of public transcriptomic datasets involving genetic or small molecule perturbations of 

members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors [15]. 

Here we describe a distinct and original knowledgebase, the Signaling Pathways Project (SPP), 

which expands these FAIR efforts along three dimensions. Firstly, we have encompassed 

datasets involving genetic and small molecule perturbations of a broad range of cellular 

signaling pathway modules - receptors, enzymes, transcription factors. Secondly, we have 
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integrated ChIP-Seq datasets, which document genomic occupancy by transcription factors, 

enzymes and other factors. Thirdly, we have developed a meta-analysis technique that surveys 

across these datasets to generate consensus ranked signatures, referred to as consensomes, 

which allow for prediction of signaling pathway node-target regulatory relationships. We validate 

the consensomes using alignment with literature knowledge, integration of transcriptomic and 

ChIP-Seq evidence, and using bench experimental use cases that validate signaling pathway 

node-target regulatory relationships predicted by the consensomes. Finally, we have made the 

entire data matrix available for routine data browsing, mining and hypothesis generation by the 

mammalian cell signaling research community at https://beta.signalingpathways.org.   
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Results  

Data model design 

The goal of the Signaling Pathways Project (SPP) is to give bench scientists routine access to 

biocurated public transcriptomic and ChIP-Seq datasets to infer or validate cellular signaling 

pathways operating within their biological system of interest. Although such pathways are 

diverse and dynamic in nature, they typically describe functional interdependencies between 

molecules belonging to three major categories of pathway module: activated transmembrane or 

intracellular receptors, which initiate the signals; intracellular enzymes, which propagate and 

modulate the signals; and transcription factors, which give effect to the signals through 

regulation of gene expression [16]. Accordingly, we first set out to design a knowledgebase that 

would reflect this modular architecture. To ensure that our efforts were broadly aligned with 

established community standards, we started by integrating existing, mature classifications for 

receptors (International Union of Pharmacology, IUPHAR; [17]), enzymes (International Union of 

Biochemistry and Molecular Biology Enzyme Committee [18]) and transcription factors (TFClass 

[19]). Table S1 shows representative examples of the hierarchical relationships within each of 

the signaling pathway module categories. To harmonize and facilitate data mining across 

different signaling pathway modules, top level categories were subdivided firstly into functional 

classes, which in turn were subdivided into gene families, to which individual gene products 

were assigned. Fig. 1 summarizes the major classes and families in each category encoded in 

the data model. Consistent with terminology in use in the cellular signaling field [1, 20], we refer 

to these individual gene products as nodes. Molecular classes that are relevant to, but less 

frequently studied in the context of cellular signaling, such as regulatory RNAs, chromatin 

factors and cytoskeletal components, were assigned to a Co-nodes category. Impacting the 

functions of nodes in all four categories are bioactive small molecules (BSMs), encompassing: 
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physiological ligands for receptors; prescription drugs, targeting almost exclusively nodes in the 

receptor and enzyme categories; synthetic organics, representing experimental compounds and 

environmental toxicants; and natural products (S1 Table). BSM-node mappings were retrieved 

from an existing pharmacology biocuration initiative, the IUPHAR Guide To Pharmacology [17], 

or annotated by SPP biocurators de novo with reference to a specific PubMed identifier (PMID).  

Dataset biocuration 

Having defined relationships within each major signaling pathway module, we next designed a 

dataset biocuration strategy that would classify publically archived transcriptomic and ChIP-Seq 

datasets according to the signaling pathway node(s) whose transcriptional functions they were 

designed to interrogate (Fig. S1). For knowledgebase design purposes, we defined a dataset as 

a collection of individual experiments encompassed by a specific GEO series (GSE, for 

transcriptomic datasets) or SRA Project (SRP, for ChIP-Seq datasets).  

Transcriptomic datasets 

We previously described our efforts to biocurate Gene Expression Omnibus (GEO) 

transcriptomic datasets pertinent to nuclear receptor signaling as part of the Nuclear Receptor 

Signaling Atlas [15]. In order to expand this collection to encompass datasets involving 

perturbation of a broader range of signaling pathway nodes, we carried out a systematic survey 

of Gene Expression Omnibus to identify an initial population of transcriptomic datasets 

constituting a representative cross-section of the various classes of signaling pathway node 

referred to in Fig. 1. To supplement this effort, we also incorporated datasets from the CREEDS 

project [21], a crowd-based initiative that systematically identified and annotated single gene 

and BSM perturbation GEO datasets. From this initial collection of datasets, we next carried out 

a three step QC check to filter for datasets that (i) included all files required to calculate gene 

differential expression values; (ii) contained biological replicates to allow for calculation of 
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associated significance values; and (iii) whose samples clustered appropriately by principal 

component analysis. Typically, 20-25% of archived transcriptomic datasets were discarded at 

this step. The remaining datasets were diverse in design, typically involving genetic (single or 

multi-node node overexpression, knockdown, knockin or knockout) or BSM (physiological 

ligand, drug or synthetic organic or natural substance; single or multi-BSM; time course; agonist, 

antagonist or tissue-selective modulator) manipulation of a signaling node across a broad range 

of human, mouse and rat biosamples. To maximize the amount of biological information 

extracted from each transcriptomic dataset, we calculated differential expression values for all 

possible contrasts, and not just those used by the original investigators in their publications. 

Next, transcriptomic experiments were mapped where appropriate to approved symbols (AGSs) 

for human, mouse and rat genes, representing genetically perturbed signaling nodes, and/or to 

unique identifiers for BSMs, as well as to a previously described biosample controlled 

vocabulary. Gene differential expression values were calculated for each experiment using an 

industry standard Bioconductor pipeline [15]. Finally, experiments were organized into datasets 

for which digital object identifiers (DOIs) were minted as previously described [4].  

ChIP-Seq datasets 

In addition to integration of transcriptomic datasets with each other, their integration with related 

ChIP-Seq datasets was desirable since it would provide for cross validation of predicted node-

target relationships, as well as providing for more detailed mechanistic modeling of such 

relationships than would be possible using either omics platform individually. The ChIP-Atlas 

resource [22] supports re-use of ChIP-Seq datasets by carrying out uniform MACS2 peak-

calling across ChIP-Seq datasets archived in NCBI’s Short Read Archive (SRA). We therefore 

next set out to identify and incorporate ChIP-Atlas-processed SRA ChIP-Seq datasets relevant 

to mammalian signaling pathway nodes. Individual SRA experiments were first mapped to the 

AGS of the immunoprecipitation (IP) node and any other genetically manipulated nodes (e.g. 
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knockdown or knockout background), to any BSMs represented in the experimental design, and 

to the biosample in which the experiment was carried out.  

Generation of consensomes 

An ongoing challenge for the cellular signaling bioinformatics research community is the 

meaningful integration of the universe of ‘omics data points to enable researchers lacking 

computational expertise to develop focused research hypotheses in a routine and efficient 

manner. A particularly desirable goal is unbiased meta-analysis to define community consensus 

reference signatures that allow users to predict regulatory relationships between signaling 

pathway nodes and their downstream targets. Accordingly, we next set out to design a meta-

analysis pipeline that would leverage our biocurational platform to reliably identify signaling 

pathway node - target gene regulatory relationships in a given biosample context. Since this 

analysis was designed to establish a consensus across distinct datasets from different 

laboratories, we referred to it as consensomic analysis, and the resulting node-target rankings 

as consensomes. 

Transcriptomic consensomes 

Large scale meta-analysis pipeline of publically archived transcriptomic datasets is confronted 

primarily by the sheer heterogeneity of genetic and pharmacological perturbation designs 

represented in these datasets. We hypothesized that irrespective of the nature of the 

perturbation impacting a given pathway node, downstream targets with a greater dependence 

on the integrity of that node would be more likely to be differentially expressed in response to its 

perturbation than those with a weaker regulatory relationship with the node. Accordingly, to 

enhance the statistical power of the analysis, we initially binned transcriptomic experiments for 

meta-analysis on the basis of genetic or pharmacological manipulation of a given signaling 

node. To further extend statistical power, experiments involving manipulation of all nodes in a 
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defined gene family were combined for meta-analysis. Next, we further classified experiments 

according to the biosample and species in which they were carried out. Gene target-specific 

nominal p-values and differential expression values were then aggregated over each defined set 

of experiments to yield target-specific summaries for a consensome. A more detailed 

description of the transcriptomic consensome algorithm is contained in File S1.  

A number of factors determine whether a target will be induced or repressed by manipulation of 

a given signaling node in any given experiment. These include: node isoform differential 

expression [23]; cell cycle stage [24]; biosample of study [25]; BSM dose treatment duration; 

and perturbation type (loss or gain of function). To avoid these opposing alterations canceling 

each other out at the target transcript level in the meta-analysis, we converted fold changes to 

positive fold changes (i.e. max (FC, 1/FC)) so that both induction and repression would be 

counted as ‘altered’ in a summary measure of the magnitude of perturbation, which was 

computed as the geometric mean fold change. In addition, for each target, we counted the 

number of experiments with gene-specific nominal p-values ≤0.05, and computed the binomial 

probability, referred to as the consensome p-value (CPV), of observing that many or more 

nominally significant experiments out of the number of experiments in which the target was 

assayed, given a true probability of 0.05. Targets were then ranked in consensomes in 

ascending order of the consensome p-value (CPV), with average rank being reported for tied 

CPVs.  

ChIP-Seq consensomes 

For calculation of ChIP-Seq consensomes, groups of experiments were formed whose IP nodes 

mapped to a defined node family. These classes were further sorted into meta-analysis classes 

based on mapping to the same biosample controlled vocabulary used to annotate the 

transcriptomic datasets [15]. In contrast to the transcriptomic consensomes, which were based 
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upon differential expression (DE) and significance values generated de novo from raw files, 

MACS2 peak calls and associated significance cut-offs were retrieved in pre-processed form 

from ChIP-Atlas [22]. 

Signaling Pathways Project user interface 

To make the results of our biocuration and analysis routinely and freely available to the research 

community, we next developed a web interface for the SPP knowledgebase that would provide 

for browsing of datasets, as well as for mining of the underlying data points. A comprehensive 

walkthrough file containing instructions on the use of the SPP interface is shown in File S2. 

Browsing of SPP datasets 

The full list of SPP datasets can be filtered using any combination of ‘omics type, signaling 

pathway category, class or family, biosample physiological system and organ, or species. 

Individual dataset pages enable integration of SPP with the research literature via DOI-driven 

links from external sites, as well as for citation of datasets to enhance their FAIR status [3, 4]. 

To accommodate users seeking a rapid summary of the targets with the highest differential 

expression (for transcriptomic datasets, example: analysis of the sperm-specific antigen 2 

(Ssfa2)-dependent transcriptome in mouse liver), or highest MACS2 peak value (for ChIP-Seq 

datasets, example: analysis of the CREBBP cistrome in human embryonic kidney 293 cells), the 

most highly ranked targets in a given experiment are displayed. The user can toggle between 

individual experiments using a pull-down menu. 

Mining of SPP datasets in Ominer 

The SPP query interface, Ominer, allows a user to specify single gene target, GO term or a 

custom gene list in the “Gene(s) of Interest” drop-down, and to dial in additional node and 

biosample regulatory parameters in subsequent drop-down menus as required (Fig. 2A). 
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Examples of single gene and GO term queries are shown in Table 1 and Table 2, respectively. 

Results are returned in an interface referred to as the Regulation Report, a detailed graphical 

summary of evidence for transcriptional regulatory relationships between signaling pathway 

nodes and a genomic target(s) of interest (Fig. 2, B & C). To allow users to share links to SPP 

Regulation Reports with colleagues, or to embed them in research manuscripts or grant 

applications, the Reports are accessed by a constructed URL defining all of the individual query 

parameters. The vertical organization of the default Category view in both Regulation Reports 

reflects conventional schematic depictions of cellular signaling pathways, with Receptors on top, 

followed by Enzymes, then Transcription Factors (Fig. 2, B & C). A fourth category, Co-nodes, 

contains factors that are less frequently studied in the context of cellular signaling pathways. 

Consistent with the hierarchy in Table S1, each Regulation Report category is subdivided into 

classes (depicted as Category | Class in the UI, Fig. 2, B & C) which are in turn subdivided into 

families, which in turn contain member nodes, which are themselves mapped to BSMs (Fig. 2, B 

& C).  The transcriptomic Regulation Report displays differential expression levels of a given 

target in experiments involving genetic (rows labelled with italicized node AGS) or BSM (rows 

labelled with bold BSM symbol) BSM manipulations of nodes within a given family (Fig. 2B). The 

cistromics/ChIP-Seq Report displays MACS2 peak values within 10 kb of a given promoter 

transcriptional start site (TSS) in ChIP-Seq experiments named using the convention IP Node 

AGS | BSM Symbol | Other Node AGS (Fig. 2C).  

To accommodate users seeking a perspective on regulation of a target in a specific organ, 

tissue, cell line or species, users can select the “Biosample” and “Species” views from the 

dropdown (Fig. 2B). Each data point in either Regulation Report links to a pop-up window 

containing the essential experimental information (Fig. 2D, upper = transcriptomic, lower = 

cistromic). This in turn links to a window summarizing the pharmacology of any BSMs used in 

the experiment (Fig. 2E), or a Fold Change Details window that places the experiment in the 
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context of the parent dataset (Fig. 2F), linking to the full dataset page and associated journal 

article. The Fold Change Details window also provides for citation of the dataset, an important 

element of enhancing the FAIR status of ‘omics datasets [3]. 

Consensomes: discovering downstream transcriptional targets of signaling pathway 

nodes 

Table 3 shows examples of the consensomes available in the initial version of the SPP 

knowledgebase. Consensomes can be accessed through Ominer, in which the user selects the 

“Consensome” from “Genes of Interest”, then either “Transcriptomic” or “Cistromic (ChIP-Seq)” 

from the “’Omics Category” menu. Subsequent menus allow for selection of specific signaling 

pathway classes or families, physiological system or organ of interest, or species.  To 

accommodate researchers interested in a specific physiological system or organ rather than a 

specific signaling node, consensomes are also calculated across all experiments mapping to a 

given physiological system (metabolic, skeletal) and organ (liver, adipose), providing for 

identification of targets under the control of a broad spectrum of signaling nodes in those organs 

(Table 3). To maximize their distribution and exposure in third party resources, consensomes 

can also be accessed by direct DOI-driven links. 

Consensomes are displayed in an accessible tabular format in which the default ranking is in 

ascending order of CPV, although targets can be ranked by any column desired (Fig. 3). To 

reflect the frequency of differential expression of a target relative to others in a given 

consensome, the percentile ranking of each target within the consensome is displayed. Targets 

in the 90th percentile of a given consensome – the highest confidence predicted targets for a 

given node family - are accessible through the web interface, and the entire list of targets is 

available for download in spreadsheet format for import into custom analysis programs. As 

previously discussed, to suppress the diversity of experimental designs as a confounding 
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variable in consensome analysis, the direction of differential expression is omitted when 

calculating the ranked signatures.  An appreciation of the pharmacology of a specific node-

target gene relationship is essential however to allow researchers to place the ranking in a 

specific biological context and to design subsequent experiments in an informed manner. To 

accommodate this, the target gene symbols in consensomes link to transcriptomic or cistromic 

Regulation Reports filtered by family and/or biosample to display those data points that 

contributed to the calculation of the specific consensome.  

A useful feature of the consensome table is the ability to filter the list by target gene symbol 

using the Search box (Fig. 3). Although this can be used for identifying a single gene of interest, 

it also illuminates potentially biologically significant regulation of targets encoding multiple 

members of a gene family by a given node. For example the significant enrichment in the 90th 

percentile of the human estrogen receptor family (ERs-Hs-All systems) consensome of multiple 

members of the go-ichi-ni-san (HGNC root symbol GINS; [26]), condensin (NCAP; [27]), 

minichromosome maintenance (MCM; [28]) and centromere protein (CENP; [29]) families, 

among others reflects the profound impact of estrogen receptor signaling on DNA replication 

and cell division in its target organs. 

Validation of consensomes 

The design of the transcriptomic consensome analysis was predicated upon three assumptions: 

firstly, that borrowing statistical power by binning experiments according to their perturbation of 

a given signaling node was biologically valid; secondly, that omitting direction of differential 

expression from the analysis would allow for direct interrogation of the strength of the regulatory 

relationship between a node and a target, independent of the nature of the node perturbation 

used in an experiment; and thirdly, that ranking targets according to the frequency of their 

significant differential expression, rather than by fold change, accurately reflected the relative 
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strengths of the regulatory relationship between a given node and its transcriptional targets. We 

next wished to determine whether these assumptions were legitimate, and to establish whether 

the consensomes were indeed reliable consensus regulatory signatures for cellular signaling 

nodes. We designed a consensome validation strategy comprising four components: 

comparison of consensomes with existing canonical (i.e. literature-based) node-target 

relationships; reciprocal validation of node-target relationships between transcriptomic and 

ChIP-Seq consensomes; cross-validation between distinct family & node consensomes within a 

single organ; and experimental bench validation of predicted node-target relationships.  

Three considerations recommended members of the nuclear receptor (NR) superfamily of 

physiological ligand-regulated transcription factors for selection for proof-of-principle validation 

of the consensomes. Firstly, as the largest single class of drug targets, they are the subject of a 

large body of dedicated research literature, affording considerable opportunity for testing the 

consensomes against existing canonical knowledge. Secondly, as ligand-regulated transcription 

factors, members of this superfamily are prominently represented in both publically archived 

transcriptomic and ChIP-Seq experiments, enabling meaningful cross-validation of 

consensomes between these two experimental categories. Finally, by combining two pathway 

node categories (receptor and transcription factor) in a single molecule, they allow for validation 

of two node functions in a single bench experiment.  

Canonical signaling node targets are highly ranked in consensomes 

To compare consensome rankings with canonical node-target relationships, we selected the ten 

top ranked targets in the ER subfamily in human mammary gland (ERs-Hs-MG), the androgen 

receptor in human prostate gland (AR-Hs-Prostate), the glucocorticoid receptor in the human 

metabolic system (GR-Hs-Metabolic), and the peroxisome proliferator-activated receptor 

(PPAR) family in the mouse metabolic system (PPARs-Mm-Metabolic). We then searched the 
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research literature to identify articles in which these genes had been functionally characterized 

as targets of these receptors. As shown in Table S2, the most highly ranked targets for the AR-

Hs-All, ER-Hs-All and PPARs-Mm-Metabolic consensomes were well supported by evidence in 

the research literature, although overlap with literature knowledge was lower for the GR-Hs-

Metabolic consensome (Table S2). 

Reciprocal validation of transcriptomic and ChIP-Seq consensomes  

Although many of the most highly ranked consensome target were validated by prior 

characterization in the research literature some, such as those in the GR-Hs-Metabolic 

consensome, were not. What was unclear at this juncture was whether such genes were 

authentic target genes, and therefore represented gaps in literature knowledge that were filled 

by the consensomes, or they were false positives, and their elevated consensome rankings 

were therefore misleading. To distinguish between these two possibilities, we next wished to 

determine the extent to which NR node-target relationships predicted by the transcriptomic 

consensomes were validated by the publically archived ChIP-Seq datasets involving the 

corresponding receptors. In the canonical model of NR signaling binding of endogenous ligands 

such as 17β-estradiol (17BE2) or dihydrotestosterone (DHT), NRs are released from inhibitory 

heat shock proteins, spontaneously dimerize and translocate to the nucleus where they interact 

with specific promoter enhancer elements to regulate expression of target genes [30]. Of the 40 

genes selected for literature validation (Table S2), 90% (45/50) were in the 90th percentile or 

higher in the corresponding ChIP-Seq consensomes, indicating that they are regulated at least 

in part by direct receptor-enhancer interactions. Interestingly, of the eight transcriptomic 

consensome-predicted node-target relationships for which no supporting literature evidence was 

found, all but one were in the 90th percentile or higher of the corresponding ChIP-Seq 

consensome.  
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Intersections of transcriptomic consensomes for key hepatic signaling nodes are 

enriched for targets encoding critical metabolic pathway enzymes 

Transcriptional regulation of metabolism by cellular signaling pathways is a well-established 

paradigm [31]. Consistent with this, a broad range of hepatic pathways impacting metabolism of 

carbohydrate, lipids, amino acids and other intermediates are under fine transcriptional 

regulation by a variety of nuclear receptors, including NR1H4/FXR [32], NR3C1/GR [33] and 

members of the PPAR [34, 35] families. If our assertion that consensomes reflected the relative 

strengths of node-target regulatory relationships was valid, we anticipated that gene targets with 

elevated rankings across these three hepatic consensomes (and, by implication, strong 

regulatory relationships with these receptors) would be enriched for targets encoding factors 

with prominent roles in hepatic metabolism. To test this hypothesis, we first identified genes in 

the All nodes-Mm-liver TC90 (n = 1999), that is, those genes that were in the top 10% of targets 

that are differentially expressed in expression profiling experiments in a murine hepatic 

biosample, irrespective of the perturbed signaling node. This gene set was then filtered for 

targets that were present in the 90th percentile of all three of the PPARs-Mm-liver, GR-Mm-liver 

and FXR-Mm-liver TC90s (n = 117; Fig. 5A and File S3). Combining a curated database of 

metabolic enzymes ([36] n = 1647) with a literature search, we found that 39 (33%) of the 

intersection targets encoded metabolic enzymes (Fig. 4A and File S3). This represented a 4-fold 

enrichment of such genes compared with 8/95 (8%) in a random sample of the original full All 

nodes-Mm-liver consensome (n=20,000), a proportion comparable to that estimated (7%) for 

metabolic enzymes across the entire protein-encoded genome [36]. Of these 39 enzymes, a 

literature search showed that nearly two-thirds (23/36) regulate a rate limiting or committed step 

in a metabolic pathway (Table 4 and bold in Fig. 4B) and/or are deficient or mutated in a known 

metabolic disorder (Table 4 and marked with an asterisk* in Fig. 4B). Many of these enzymes 

are historically well characterized, including Acaca, which regulates the rate limiting step in fatty 
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acid synthesis [37] and is deficient in acetyl CoA carboxylase syndrome [38], and Hal, which 

regulates the initial step in histidine catabolism and is deficient in hisitidinemia [39]. The critical 

metabolic roles of other enzymes however, such as Nnmt [40] and Parp14 [41], have been only 

much more recently characterized. In addition to enzymes, other nodes that participate in 

pathways with critical roles in hepatocyte homeostasis and development, such as Il6ra ([42], 

Cebpb [43] and members of the Irf transcription family [44] are represented at the intersection of 

the four consensomes (File S3). This analysis demonstrates the ability of organ level 

consensomes to illuminate factors that are downstream targets of multiple signaling nodes and, 

by extension, have pivotal, tightly-regulated roles in the function of a given physiological system 

or organ. 

Bench validation: elevated consensome rankings predict biological node-target 

relationships 

A primary motivation in developing the SPP resource was to assist researchers in filling gaps in 

the literature regarding knowledge of cellular signaling pathways. Indeed, in addition to 

corroborating canonical node-target gene relationships, we found that the node transcriptomic 

consensomes contained targets that had elevated percentile rankings, but were uncharacterized 

in the research literature with respect to regulation by that node. Accordingly, we next set out to 

experimentally validate representative examples of these targets, shown in Table S3, at the 

bench. 

TPD52L1 is a stress fiber-associated factor that supports 17BE2-dependent MCF-7 cell 

proliferation 

We first wished to broadly evaluate the extent to which experimental evidence validated the 

node-target relationships predicted by the consensomes. To do this, we used Q-PCR to 

evaluate 17BE2-dependent regulation of a panel of both characterized and uncharacterized ER 
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targets that were highly ranked in the ER-Hs consensome (Fig. 5A). Reflecting their elevated 

consensome rankings, the expression of all the genes tested were found to be regulated by 

17BE2 in either a dose dependent (GREB1, TPD52L1 and others), or a biphasic (MYC and 

TFF1) manner, activated and suppressed at physiological or supraphysiological levels of 

17BE2, respectively. We next wanted to evaluate the dependence of this regulation on the 

integrity of nodes in the ER family (ESR1 and ESR2) using the selective ER downregulator 

fulvestrant (FULV), which blocks the function of these nodes by disrupting their interaction with 

17BE2 and inducing their proteasomal degradation [45]. Consistent with the strong ER family 

node dependence of their regulation predicted by the ER-Hs-mammary gland transcriptomic 

and ChIP-Seq consensomes, FULV completely abolished 17BE2 induction of all target genes 

tested (Fig. 5A). 

We next selected one of the uncharacterized ER consensome targets for further study. The 

tumor protein D52-like 1 (TPD52L1) gene encodes a little-studied protein that bears sequence 

homology to members of the TPD52 family of coiled-coil motif proteins that are overexpressed 

in a variety of cancers [46]. Despite a ranking in the transcriptomic (ERs-Hs-All-TC CPV = 1E-

130, 99th percentile) and ChIP-Seq (ERs-Hs-All-CC 99th percentile) ER consensomes that was 

comparable to or exceeded that of canonical ER target genes such as GREB1 or MYC, and 

subsequent experimental bench validation of the ER family-TPD52L1 regulatory relationship 

(Fig. 5A), no evidence for regulation of ER by TPD52L1 was found in the research literature. 

Interestingly, peak cell cycle expression of both TPD52L1 [47] and ESR1 occur at the G2-M 

transition, which is also a point at which ESR1 is known to exert control of cell cycle progression 

[48]. Based upon these observations, we selected TPD52L1 for further validation and 

characterization in the context of ER signaling. Immunofluorescene analysis of TPD52L1 in 

MCF-7 cells demonstrated specific 17BE2-dependent association of TPD52L1 with numerous 

structures, including nucleus, plasma membrane, cytoplasm and stress fiber-like structures (Fig. 
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5B), which play an important role in mitosis orientation, a critical process in cell division [49]. 

Having established a potential function for TPD52L1 in regulation of the cell cycle, we 

hypothesized that its depletion in cells might block this function and retard cell growth. 

Consistent with this, and in support of previously-reported associations of its family member 

TPD52 with increased proliferation and invasive capacity [50, 51], we found that siRNA-

mediated knockdown of TPD52L1 by 80% (data not shown) resulted in a significant decrease in 

17BE2-induced proliferation of MCF-7 cells (Fig. 5C). Interestingly, the TPD52L1 transcriptomic 

Regulation Report showed disruption of TPD52L1 expression in response to manipulation of 

kinases in the checkpoint (CHEK1, CHEK2), cyclin-dependent kinase (CDK9) and MAPK 

superfamily (ATR, ATM and RAF1) are consistent with known roles for these enzymes in 

regulation of the G2/M checkpoint [52-56] . In concert, these observations constitute 

experimental validation of the biological relationship between ER signaling and TP52L1 

predicted by the ER family-Hs-mammary gland transcriptomic and ChIP-Seq consensomes. 

MBOAT2 connects phospholipid metabolism to AR regulation of prostate cell growth 

The next bench validation use case illustrates the value of integration of ChIP-Seq data points in 

gathering evidence to establish the plausibility of a node-target relationship implied by the 

consensomes. The MBOAT2 gene encodes an enzyme, membrane-bound O-acyl transferase 2, 

that catalyzes cycles of glycerophospholipid deacylation and reacylation to modulate plasma 

membrane phospholipid asymmetry and diversity [57]. We noted that the ranking of MBOAT2 in 

both the AR-Hs-All TC (CPV = 2.2E-35, 99th percentile) and ChIP-Seq (99th percentile) 

consensomes was comparable to that of the canonic and intensively studied AR target genes 

such as KLK3 and TMPRSS2. In contrast to the large volume of literature these targets 

however, with the exception of a mention in a couple of androgen expression profiling studies 

[58, 59], the role of MBOAT2 in the context of AR signaling was entirely unstudied. Our attention 

was drawn to MBOAT2 as a candidate for bench validation as an AR downstream target by a 
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number of different lines of evidence. Firstly, in addition to numerous AR binding data points, 

the MBOAT2 cistromic/ChIP-Seq Regulation Report contained evidence for binding sites within 

10 kb of the MBOAT2 TSS for the transcription factors GATA1, FOXA1, MYC and NANOG, all 

of which have known roles in AR crosstalk [60]. Encouraged by the cistromic/ChIP-Seq 

evidence corroborating its elevated ranking in the AR-Hs-All TC, we selected MBOAT2 for 

further validation and characterization. We first wished to test whether MBOAT2 was an AR-

regulated gene in cultured prostate cancer cell lines. As shown in Fig. 5D, MBOAT2 was 

induced in LNCaP prostate epithelial cells in response to treatment with the physiological AR 

agonist dihydrotestosterone (DHT). We next determined the effect of depletion of MBOAT2 on 

LNCaP cell viability and found that relative to control siRNA treatment, siMBOAT2 significantly 

increased LNCaP cell numbers at growth day 5 in in R1881-treated celIs, but not untreated cells 

(Fig. 5E). 

This result was unexpected to us given the prevailing perception of AR as a driver of prostate 

tumor growth, but can be rationalized in the context of suppression of growth and support of 

differentiation by AR in normal prostate luminal epithelium [61]. This process is known to involve 

induction of the NKX3.1 (AGS: ZBTB16) homeobox transcription factor [62, 63] - itself the 

highest ranked gene in the AR-Hs-All transcriptomic consensome - and it can be speculated 

that induction of MBOAT2 by AR represents an additional component of this process. Such an 

assertion is supported by the recent characterization of the role of MBOAT2 in chondrogenic 

differentiation of ATDC5 cells [64], and by the fact that the AR agonist testosterone stimulates 

the chondrogenic potential of chondrogenic progenitor cells [65].  

GR and ERR exert co-ordinate regulation of glycogen metabolism via regulation of 

protein phosphatase subunit expression 
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The first two experimental validation studies focused on distinct single node-target regulatory 

relationships. We next wished to validate the use of consensome intersection analysis to 

highlight convergence of multiple signaling nodes on targets involved in a common downstream 

biological process. Interconversion of glucose and glycogen in metabolic organs is under the 

tandem control of glycogen synthase and glycogen phosphorylase, which respectively promote 

and restrict the incorporation of glucose into glycogen in response to hormonal and stress 

regulatory cues [66]. The activity of glycogen synthase is in turn under the control of protein 

phosphatase 1 (PP1), which converts it from its inactive phosphorylated form to its active 

dephosphorylated form [67], and 5’AMP-activated protein kinase (AMPK), which catalyzes the 

reverse reaction [68] (Fig. 6A). Although historical evidence indicates that glucocorticoids 

promote glycogen storage in the liver through upregulation of glycogen synthase phosphatase 

activity [69], the underlying mechanism has to date been unclear. Similarly, although members 

of the ERR subfamily have been shown to promote reprogramming of carbohydrate metabolism 

in exercising skeletal muscle [70], a direct role for ERRs in controlling glycogen turnover in 

muscle had not been investigated. Two key regulatory subunit genes relevant to PP1 and 

AMPK are Ppp1r3c, encoding PTG in the PP1 holoenzyme [71, 72], and Prkab2, encoding 

AMPKβ2 in the AMPK holoenzyme [73, 74]. Based on the significant rankings of PP1R3C in the 

GR human (CPV = 3.2E-08) and mouse (CPV = 3.4E-10) transcriptomic consensomes, and 

both PPP1R3C (CPV = 2.7E-06) and PRKAB2 (E=6.3E-05) in the ERR-Hs-All transcriptomic 

consensome, we hypothesized that the mechanism by which these receptors controlled 

carbohydrate metabolism in liver and skeletal muscle might encompass regulation of expression 

of these two genomic targets.  

Based upon Ominer Regulation Report evidence for binding of GR to the Ppp1r3c promoter in 

mouse liver, we undertook sequence analysis of the murine Ppp1r3c promoter and identified 

two prominent peaks 5’ to the first exon of Ppp1r3c, the more proximal peak of which contained 
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a potential glucocorticoid response element (GRE, Fig. 6B; based on the GRE consensus [75]). 

To determine whether Ppp1r3c was upregulated in isolated cells, we treated a hepatoma cell 

line with the synthetic glucocorticoid dexamethasone (DEX) for 48 h and observed upregulation 

of Ppp1r3c mRNA (Fig. 6C).  As positive controls, we also noted observed hepatic induction of 

the genes encoding pyruvate carboxylase (Pcx) [76] and Fgf21 [77], established GR targets that 

have significant rankings in the GR-Mm-All transcriptomic consensome.  

We next wished to determine whether the same Ppp1r3c PP1 regulatory subunit gene targeted 

by GR, as well as the AMPK subunit gene Prkab2, were directly regulated by ERRs. Evidence 

in the SPP cistromic Regulation Reports for Ppp1r3c and Prkab2 and from IVG analysis of 

additional datasets (Fig. 6D) supported the presence of one or more Esrra binding sites within 

10 kb of the Ppp1r3c and Prkab2 TSSs. To investigate the effect of small molecule manipulation 

of Esrra on endogenous expression of Prkab2 or Ppp1r3c, we treated C2C12 myotubes (day 3 

MT) for 24 h with BSM inhibitors of Esrra (Fig. 6E). Prkab2 was repressed by the Esrra inverse 

agonist XCT790 [78] (Fig. 5E, right panel) whereas Ppp1r3c transcript expression was 

unaffected in response to this treatment (Fig. 5E, left panel). We next evaluated the effects on 

endogenous Ppp1r3c and Prkab2 expression of genetic manipulation of ERR signaling using 

adenoviral overexpression of Esrra (Fig. 6F).  Interestingly, whereas Ppp1r3c was upregulated 

in response to Esrra gain of function (Fig. 6F, left panel), expression of Prkab2 was not 

significantly impacted (Fig. 6F, right panel).  The differential regulation of the two targets in 

these experiments suggests that Esrra may be more important for maintaining basal expression 

of Prkab2 and mediating regulation of Ppp1r3c expression in response to physiologic stimuli.  

We next assessed whether the expression of Prkab2 was altered in Esrra-deficient skeletal 

muscle [79]. Consistent with its elevated ERR consensome ranking, basal expression of Prkab2 

transcript was reduced by 40% in Esrra-depleted skeletal muscle compared to wild-type tissue 

(Fig. 6G). 
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To test if ERRs directly regulate the Prkab2 target, the -2820 to +27 region (relative to the TSS 

+1) was cloned upstream of a luciferase reporter gene. Based on JASPAR transcription factor 

binding site prediction software [80], we determined that this region contained a number of high 

scoring ERR family consensus binding sites (data not shown). Several of the predicted ERRE 

sites were in close proximity to consensus sites for Gabpa, Creb, and Stat3, which are often 

clustered with ERREs and are known to facilitate functional interactions between ERR family 

members and these transcription factors [81]. Consistent with this, the PRKAB2 ChIP-Seq 

Regulation Report contains evidence for binding of CREB and Stat factors to the PRKAB2 

promoter. In transcriptional assays performed in C2C12 myoblasts we observed a similar 

magnitude of activation of the Prkab2 promoter-reporter in response to co-transfected Esrra or 

Esrrg (Fig. 6H). We then assessed whether the regulation of Prkab2 by Esrr was impacted by 

insulin-like growth factor 1 (IGF1), which signals through AKT and MAPK to promote myocyte 

glucose uptake and glycogen storage [82-84]. Treatment of myoblasts for 24 h with IGF1 

stimulated Prkab.2.82.Luc activity and further enhanced the activation by both ERR isoforms 

(Fig. 6H). Collectively, these results validate consensome predictions that genomic targets 

encoding AMPK and PP1 regulatory subunits are under direct transcriptional regulation by 

ERRs, supporting further studies into a physiological role for ERRs in regulation of glycogen 

metabolism in skeletal muscle.   
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Discussion 

Receptors, enzymes and transcription factors connect metabolic signals to their biological 

endpoints through a series of interdependent interactions that are commonly referred to as 

“signaling pathways”. These three categories of pathway node act as points of convergence and 

integration on the one hand, and divergence and distribution on the other, to ensure an 

appropriate response of any given cell to its afferent metabolic cues [1]. The vast majority of 

information on signaling pathways that is readily available to researchers is canonical in nature 

and derived from the published literature. Although transcriptomic and ChIP-Seq datasets 

involving manipulation of these nodes have the potential to provide for the generation of focused 

hypotheses to resolve mechanistic blind spots in such knowledge, deficits in their management 

have complicated such re-use [4]. To address this problem, we designed here a 

knowledgebase, the SPP, which allows bench researchers to routinely evaluate transcriptomic 

or ChIP-Seq dataset evidence for regulatory relationships between cellular signaling pathway 

nodes and their downstream targets. To enhance discovery using SPP, we surveyed across 

these datasets in an unbiased and systematic manner, to generate consensus node-target 

signatures that would allow researchers to infer and model candidate signaling pathways 

operating in their biological system of interest. The SPP resource is predicated on the idea that 

receptors, enzymes, transcription factors and other regulatory nodes are molecular free agents 

whose function is not necessarily tied to any single context and, by extension, have the 

theoretical potential to associate in any modular combination in a given cellular context. 

The direction and magnitude of regulation of a genomic target by a signaling node are highly 

contextual considerations that change dynamically in response to a broad spectrum of 

variables. The principle of the transcriptomic consensomic approach is predicated upon initially 

suppressing such parameters in favor of a ranking that emphasizes the relative responsiveness 

of a given gene to regulation by a specific signaling node in a given biosample context. Once a 
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specific consensome has been retrieved, the user can then evaluate evidence across all the 

underlying data points to develop a well-informed hypothesis that can be mechanistically 

validated or refined at the bench. We hypothesized that the CPV correlated with the strength of 

the mechanistic connection between a node and a given target in a given organ context. Put 

another way, the more exquisitely interdependent a node-target relationship, the more 

frequently perturbation of the former would impact the latter. We intend the term “consensome” 

to be interpreted as a general term to refer to establishing consensus across a set of 

experiments related by perturbation of a given cellular signaling node. The actual method used 

to establish such consensus is determined by a variety of factors, such as the type of ‘omics 

platform, or more practical considerations such as the format of the available data. Indeed, 

within this study itself we employed different approaches to generating the transcriptomic and 

ChIP-Seq consensomes that were influenced by the format of the available data.  

The SPP resource is characterized by a unique combination of features. The Regulation Report 

organizes query results according to community classifications of the major categories of 

signaling pathway module, allowing researchers to readily place the results in context. In 

addition, previous transcriptomic meta-analysis approaches in the field of cellular signaling are 

perturbation-centric, and applied to experiments involving a single unique perturbant [85, 86]. 

Consensomic analysis differs from these approaches in that it is node-centric: that is, it is 

predicated upon the functional relatedness of any genetic or small molecule manipulation of a 

given pathway node, and allows experiments to be grouped for meta-analysis accordingly. In 

doing so, it lends the meta-analysis greater statistical power, and calls potential node-target 

relationships with a higher degree of confidence than would otherwise be possible. A third 

unique aspect is that other primary analysis and meta-analysis studies describing integration of 

transcriptomic and ChIP-Seq datasets, although insightful, are limited in scope and exist only as 

stand-alone literature studies. Ours is the first meta-analysis to be sustainably integrated into an 
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actively-biocurated public web resource in a manner supporting routine use by researchers 

lacking formal informatics training. Moreover, the continuous incorporation of newly biocurated 

datasets and reversioning of consensomes over time will have the effect of iteratively 

suppressing inter-dataset noise and enhancing the resolution of the true biological signal of a 

given pathway node in a given biosample. Finally, SPP is to our knowledge the first public 

resource to provide for gene level integration of transcriptomic and ChIP-Seq datasets mapped 

to common signaling pathway nodes. Given the highly contextual and nuanced nature of 

transcription factor-promoter relationships therefore, we anticipate that the ability to dissect 

experimental factors underlying the consensomes in side-by-side transcriptomic and 

cistromic/ChIP-Seq Regulation Reports will be of considerable value to users in modeling the 

specific regulatory mechanisms underlying node-target relationships. 

Our resource has a number of limitations, some of these are generic in nature and not specific 

to SPP. For example, SPP is based upon transcriptomic and ChIP-Seq data since these are by 

far the most informatically mature and numerous of the various types of archived ‘omics data. 

Although archived proteomic and metabolomic datasets would improve the resource, those that 

involve manipulation of mammalian cellular signaling nodes not yet reached a volume where 

their integration would repay the biocurational effort involved in their integration. Moreover, in an 

ideal world, there would exist an even distribution among archived ‘omics datasets of node 

manipulations in organ biosamples. Financial realities dictate however that research is directed 

towards nodes that show the greatest apparent promise for improving human health, resulting in 

the skewing of research funding towards those molecules, and leaving other families of 

signaling nodes either poorly characterized or entirely unstudied. Other limitations of the 

consensomes relate to the design of available archived experiments. For example, certain 

targets may be regulated by a given node only under specific circumstances (e.g. acute BSM 

administration) and if such experiments do not exist or are unavailable, these targets would not 
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rank highly in the corresponding node consensome. Moreover, a low ranking for a target in a 

consensome does not necessarily imply the complete absence of a regulatory relationship, and 

may reflect the requirement for a quite specific cellular context for such regulation to take place. 

Finally, since SPP is based upon transcriptional methodologies, effects exerted by signaling 

pathway nodes at the protein level, such as enhanced stabilization or degradation of protein, or 

modulation of the rate of translation, will not be reflected at the mRNA level.  

To maximize statistical power, consensomes in the initial version of SPP encompass datasets 

involving genetic and pharmacological manipulation of nodes within a given family, and many 

are possible only by incorporating datasets in biosamples representing numerous distinct 

organs. Future rates of dataset generation and archiving permitting, node- and organ-specific 

consensomes of reasonable statistical power will become possible, allowing for more detailed 

dissection of node- and tissue-specific patterns of transcriptional regulation. Validation of the 

consensomes relied heavily on use of evidence in the literature. In an ideal future, ‘omics 

datasets and the literature would exist in a mutually enhancing relationship, the former providing 

researchers with insights that are limited in resolution but broad in scope, the latter providing the 

focused mechanistic and functional detail required to properly interpret and contextualize the 

node-target relationships. Paramount to such a scenario is equal ease of access to both the 

literature and ‘omics datasets, such that hypotheses can be generated from ‘omics datasets as 

readily and intuitively as abstracts can be accessed through literature search engines. 

Moreover, in an era of tightening research budgets, there is a pressing responsibility on the 

biomedical research community to re-purpose existing assets to allow bench researchers to 

routinely generate future research hypotheses. An important next step therefore will be to 

establish interoperability between SPP and knowledgebases such as Reactome [2] that are 

based upon expert manual curation of the research literature. The high degree of orthogonality 
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between such initiatives will afford users a more complete perspective on cellular signaling 

pathways than is currently possible.  
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Figure Titles and Legends 

Fig. 1. Major signaling pathway module category classifications in the Signaling Pathway 

Project knowledgebase. Stable community-endorsed classifications for cellular receptors 

(International Union of Pharmacology, IUPHAR), enzymes (International Union of Biochemistry 

and Molecular Biology, IUBMB) and transcription factors (TFClass [19]) make up the foundation 

of the Signaling Pathways Project data model. 5OHTRs, 5 hydroxytryptamine receptors; LDL, 

low density lipoprotein; NRs, nuclear receptors. For purposes of clarity, omitted from the 

transcription factors sunburst are factors with > 3 adjacent zinc fingers (482 genes), Hox-related 

factors (180 genes), multiple dispersed zinc finger factors (140 genes) and other factors with up 

to three adjacent zinc fingers (24 genes).  

Fig. 2. Key elements of the SPP query and reporting interface. A. Ominer query form. B. 

The transcriptomic Regulation Report. The default display for single gene queries is by 

Category, which can be adjusted to cluster data points by biosample or species. The default 

display for multi-gene queries is by Target. C. The cistromic Regulation Report. IP antigens are 

identified using case-sensitive AGSs to denote experiments in different species. D. Fold Change 

information windows for transcriptomic (upper) and cistromic (lower) Regulation Reports display 

essential information on the data point. E. The Bioactive Small Molecule window displays the 

pharmacology of any BSMs used in the experiment. F. The Fold Change Detail window places 

the data point in the context of the wider experiment and dataset, and provides for citation of the 

dataset. 

Fig. 3. Consensome user interface. The example shows genomic targets most frequently 

significantly differentially expressed in response to genetic or pharmacological manipulation of 

the human insulin receptor in a transcriptomic experiment. Targets are ranked by default by the 

consensome P value (CPV), which equates to the probability that the observed frequency of 
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differential expression occurs by chance. Target symbols link to a SPP Regulation Report 

filtered by the consensome category and biosample parameters to show the underlying data 

points. 

Fig. 4. Consensome intersection analysis: targets encoding key hepatic metabolic 

enzymes are redundantly transcriptionally regulated by multiple signaling nodes. A. 

Schematic representing consensome intersection analysis of the 90th percentiles of the hepatic 

transcriptomic consensomes for All nodes (All nodes-Mm-liver-TC90), FXR (FXR-Mm-liver-

TC90), GR (GR-Mm-liver-TC90) and PPARs (PPARs-Mm-liver-TC90). B. The intersection of the 

FXR, GR and PPAR mouse hepatic transcriptomic consensome 90th percentiles is enriched for 

genes encoding enzymes that regulate critical checkpoints in the metabolism of carbohydrates, 

lipids & cholesterol, amino acids, proteoglycans, heme and other biomolecules. Bold indicates 

pathway first, rate limiting or branchpoint steps. Asterices indicate gene products deficient or 

mutated in a known metabolic disorder. See Table 4 for references. Abbreviations: AcCoA, 

acetyl-CoA; ApoB, apolipoprotein B; FFAs, free fatty acids; G3P, glycerol-3-phosphate; LPA, 

lysophosphatidic acid; UDP-Glc, uridine diphosphate glucose.

Fig. 5. Validation of ER regulation of TPD52L1 (A-C) and AR regulation of MBOAT2 (D, E) 

A) Q-PCR analysis of dose dependent induction by 17BE2 in MCF-7 cells of targets with 

elevated rankings in the ER-Hs-MG transcriptomic consensome.  Cells were treated for 18 h 

with varying concentrations of 17BE2 alone or 1 nM 17BE2 in combination with 100 nM FULV. 

Each number is representative of –log[17BE2] such that the number 9 is equivalent to 1 nM 

17BE2. Data are representative of three independent experiments. B) MCF-7 cells were 

immunolabeled with TPD52L1 antibody (green) and imaged by deconvolution widefield 

microscopy. Images shown are max intensity projections, where DAPI (blue) stains DNA.  Scale 

bar is 10μm. (in the inset, 5μm). M, membrane; N, nucleus; P, perinuclear junctions; SF, stress 

fibers.  C. Depletion of TPD52L1 restricts MCF-7 cell viability. D. Induction of MBOAT2 in 
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LNCaP prostate epithelial cells upon treatment with 0.1 nM R1881. E. AR-stimulated viability of 

LNCaP cells is enhanced by depletion of MBOAT2. Cells were harvested on Day 5. Gene 

expression of KLK3 and FKBP5, known canonical AR target genes, was slightly reduced or 

unaffected, respectively, by MBOAT2 siRNA knockdown (data not shown). Statistical 

significance was determined using PRISM by One-way ANOVA with Tukey’s multiple 

comparison test. * p < 1E-04. 

Fig. 6. GR and ERR control glycogen synthase activity via regulation of genes encoding 

PP1 and AMPK regulatory subunits. A. Schematic depiction of tandem regulation of glycogen 

synthase phosphorylation status and activity by PP1 and AMPK. B. GR/NR3C1 ChIPseq data 

from inguinal adipose tissue (iWAT) showing two prominent peaks 5’ to the first exon of 

PPP1R3C (gene is transcribed right to left in this image) and potential GRE within the first 

GR/NR3C1 peak. C. qPCR of glycogenic genes including Ppp1r3c, Ppp1r3b and the 

established GR/NR3C1 targets pyruvate carboxylase (Pcx) and Fgf21. D. ESRRA binds to 

chromatin in the vicinity of the PRKAB2 gene. E. Activity of the human PRKAB2 promoter-

reporter in C2C12 myoblasts (MB) or day 4 myotubes (MT) cotransfected with vector, 

ERRα/Esrra, ERRγ/Esrrg, or PGC1α/ Ppargc1a, as indicated. F. Activity of the PRKAB2 

promoter in MB cultured in 0.1% FBS overnight -/+ 10nM IGF1 treatment for 24 hours. Data are 

reported as mean luciferase/renilla values normalized to control (± S.E.M.) for three trials. 

Asterisks indicate significant differences between transfection conditions (*) or IGF1 treatment 

(**), (p < 0.05, n=3). G. Expression of endogenous Prkab2 transcript was measured by 

quantitative real-time PCR in day 3 C2C12 myotubes (MT) treated with vehicle, 5 μM XCT790 

(IC50~0.5 mM) or 0.1 µM DY40 (IC50~10 nM) for 24 h. Prkab2 transcript levels were 

normalized to 36B4 expression and results are expressed as the mean ± S.E.M. Asterices * 

indicate significant difference vehicle vs. treatment groups, (p ≤ 0.05, n=3). H. Quantitative real-

time PCR analysis of basal Prkab2 expression in vastus lateralis muscles of male wild-type 
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(WT) or ERRα-/- mice (ERRα-/-). Prkab2 transcript was normalized to 36B4 expression and 

results are expressed as the mean (± S.E.M). Asterisk * indicates significant difference between 

groups (p < 0.05, n=4). 
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Table 1: Examples of Single Gene queries in the Signaling Pathways Project knowledgebase. The Ominer query form 

accommodates any level of detail required, from broad discovery queries across multiple nodes and organs to specific regulatory 

contexts at lower differential expression cut-offs. 

    
 Signaling Pathway Module  Biosample  

‘Omics Category Category Class Family  System Organ Target 

Transcriptomic All    All  PDK4 

 All    Metabolic Liver ALDH3A2 

 Receptor Catalytic Insulin receptor  All  PFKFB3 

 Enzymes Kinases Cyclin-dependent  All  DHRS1 

ChIP-Seq All    All  LHPP 

 All    Male Repro Prostate TMPRSS2 

 Enzymes Acetyltransferase CBP/p300  All  MAMDC2 

 Transcription factors BZIP C/EBP family  Immune Leukocytes TRIB1 

 

Table 2: Examples of GO Term queries in the SPP knowledgebase.  

 
 Signaling Pathway Module  

‘Omics Category Category Class Family GO Term 

Transcriptomic Receptors Catalytic All Fatty acid beta oxidation 

 Receptors G-protein coupled All Glycolytic process 

 Enzymes Kinases Cyclin-dependent Adipose tissue development 

 Enzymes Acetyltransferases All Inflammatory response 

Cistromic (ChIP-Seq) Receptors Nuclear PPAR Cellular response to fatty acid 

 Enzymes E3 Ubiquitin ligases All Carbohydrate biosynthetic process 

 Transcription factors BHLH All Gluconeogenesis 

 Transcription factors BZIP All Urea cycle 
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https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=PDK4&foldChangeMin=2&foldChangeMax=30&significance=0.05&species=all&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=ALDH3A2&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=all&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=PFKFB3&foldChangeMin=1&foldChangeMax=30&significance=0.05&signalingPathway=8066&pathwayType=family&species=Human&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=DHRS1&foldChangeMin=1&foldChangeMax=30&significance=0.05&signalingPathway=3524&pathwayType=family&species=Human&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=LHPP&species=all&reportsBy=pathways&omicsCategory=cistromics&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=TMPRSS2&ps=9&organ=16&species=all&reportsBy=pathways&omicsCategory=cistromics&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=MAMDC2&signalingPathway=3491&pathwayType=family&species=Human&reportsBy=pathways&omicsCategory=cistromics&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=TRIB1&ps=6&organ=42&signalingPathway=4305&pathwayType=family&species=Human&reportsBy=pathways&omicsCategory=cistromics&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=goTerm&findMax=y&gene=fatty+acid+beta-oxidation&foldChangeMin=2&foldChangeMax=30&significance=0.05&signalingPathway=103&pathwayType=cclass&species=Human&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=goTerm&findMax=y&gene=glycolytic+process&foldChangeMin=2&foldChangeMax=30&significance=0.05&signalingPathway=102&pathwayType=cclass&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=goTerm&findMax=y&gene=adipose+tissue+development&foldChangeMin=2&foldChangeMax=30&significance=0.05&signalingPathway=3524&pathwayType=family&species=Human&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=goTerm&findMax=y&gene=inflammatory+response&foldChangeMin=2&foldChangeMax=30&significance=0.05&signalingPathway=3005&pathwayType=cclass&species=Human&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=goTerm&findMax=y&gene=cellular+response+to+fatty+acid&signalingPathway=8015&pathwayType=family&species=Human&reportsBy=pathways&omicsCategory=cistromics&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=goTerm&findMax=y&gene=carbohydrate+biosynthetic+process&signalingPathway=3014&pathwayType=cclass&species=House+Mouse&reportsBy=pathways&omicsCategory=cistromics&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=goTerm&findMax=y&gene=gluconeogenesis&signalingPathway=4030&pathwayType=cclass&species=House+Mouse&reportsBy=pathways&omicsCategory=cistromics&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=goTerm&findMax=y&gene=urea+cycle&signalingPathway=4009&pathwayType=cclass&species=House+Mouse&reportsBy=pathways&omicsCategory=cistromics&countMax=3000
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Table 3: Examples of consensomes in the SPP knowledgebase. Consensomes are calculated either at the signaling pathway 

node family level, or across all experiments in a given organ biosample, to indicate frequently regulated targets in a given organ. 

    
        
 Signaling Pathway Module  Biosample  

‘Omics 

Category 

Category Class Family  System Organ Species 

Transcriptomic Receptors G protein-coupled Adrenergic 

receptors 

 All  Mouse 

  Catalytic Chemokine 

receptors 

 All  Mouse 

   Toll-like 

receptors 

 All  Mouse 

   Insulin receptor  All  Human 

   Leptin receptor  All  Mouse 

  Nuclear PPARs  All  Mouse 

   Glucocorticoid 

receptor 

 All  Mouse 

 Enzymes Kinases Cyclin-dependent  All  Human 

 All    Metabolic Liver Mouse 

 All    Metabolic Adipose Mouse 

ChIP-Seq Enzymes Acetyltransferases CBP/p300  All  Human, Mouse 

   NCOA family  All  Human, Mouse 

 Transcription 

factors 

BZIP C/EBP family  All  Human, Mouse 

  E2F/FOX E2F family  All  Human, Mouse 

   FOXO family  All  Human, Mouse 
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Table 4. Rate limiting, committed step and metabolic disease deficiency-associated hepatic metabolic enzymes in the 

intersection of the 90th percentiles of the All nodes, GR, FXR and PPAR family liver transcriptomic consensomes  

Target Gene product Hepatic metabolic pathway Known human deficiency disease 

Lipid metabolism   

Acaa1a* 3-ketoacyl-CoA thiolase A, 
peroxisomal 

Beta-oxidation of fatty acids ACAA1, Pseudo-Zellweger [87] 

Acaca* Acetyl-CoA carboxylase 
alpha     

Rate limiting in long chain fatty acid synthesis [37] ACACA [38] 

Acly  ATP citrate lyase        Rate limiting in de novo lipogenesis [88]  

Acsl5  

Acyl-CoA synthetase long 
chain family member 5   

Branch point enzyme in fatty acid metabolism [89] - 

Agpat6 Acylglycerolphosphate 
acyltransferase 4 

Rate limiting in de novo triacylglycerol biosynthesis [90]  

Arsa* Arylsulfatase A  Sulfatide biosynthesis Metachromatic leukodystrophy [91] 

Fads2* Fatty acid desaturase 2  Rate limiting in biosynthesis of unsaturated fatty acids Δ6-fatty acid desaturase [92] 

Gpam Glycerol-3-phosphate 
acyltransferase, 
mitochondrial      

Initial and committed step in glycerolipid biosynthesis [93]  

Hadh* Hydroxyacyl-coenzyme A 
dehydrogenase 

Catalyzes the mitochondrial oxidation of straight-chain 3-
hydroxyacyl-CoAs as part of the beta-oxidation pathway 

Hyperinsulinemic hypoglycemia [94] 

Mgll Monoglyceride lipase     Rate limiting in monoacylglycerol catabolism [95]  

St3gal5* ST3 beta-galactoside alpha-
2,3-sialyltransferase 5       

Ganglioside biosynthesis Salt & Pepper Syndrome [96] 

Carbohydrate metabolism   

Entpd5 Ectonucleoside triphosphate 
diphosphohydrolase 5         

Promotes glycolysis & Warburg effect [97] -  

Got1 Aspartate aminotransferase, 
cytoplasmic  

Transamination of aspartate & oxaloacetate in gluconeogenesis - 

Parp14 Poly [ADP-ribose] 
polymerase 14 

Promotes Warburg effect [41]  

Pklr* 
pyruvate kinase L/R 

Catalyzes the transphosphorylation of phohsphoenolpyruvate into 
pyruvate and ATP, the rate-limiting step of glycolysis 

Chronic hereditary nonspherocytic 
hemolytic anemia 

Ppp1r3c* Protein phosphatase 1 
regulatory subunit 3C      Regulatory subunits of PP1, a direct regulator of glycogen synthase, 

rate limiting step in glycogen synthesis [98] 

Lafora disease [99] 

Ppp1r14b* Protein phosphatase 1 
regulatory subunit 14B      
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https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=ACAA1A&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=ACACA&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=ACLY&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=ACSL5&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=AGPAT6&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=ARSA&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=FADS2&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=GPAM&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=HADH&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=MGLL&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=ST3GAL5&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=ENTPD5&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=GOT1&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=PARP14&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=PKLR&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=PPP1R3C&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://beta.signalingpathways.org/ominer/query.jsf?geneSearchType=gene&findMax=y&gene=PPP1R14B&foldChangeMin=1&foldChangeMax=30&significance=0.05&ps=2&organ=11&species=House+Mouse&reportsBy=pathways&omicsCategory=tm&countMax=3000
https://doi.org/10.1101/401729
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Amino acid metabolism   

Gpt2* 
 

Glutamate pyruvate 
transaminase2 

Reversible transamination of alanine and α-ketoglutarate to form 
pyruvate and glutamate 

Autosomal receessive mental 
retardation 

Hal* Histidine ammonia-lyase  Initial reaction in histidine catabolism Histidemia [39] 

Tdo2* Tryptophan 2,3-dioxygenase       
Initial and rate limiting step in the kynurenine tryptophan catabolism 
pathway [100] 

Hypertryptophanemia [101] 

Cholesterol metabolism   

Acat2* Acetyl-CoA acetyltransferase 
2   

Rate limiting in cholesterol esterification [102] ACAT2 [103] 

Dhcr7* 7-dehydrocholesterol 
reductase   

Terminal enzyme in Kandutsch-Russell cholesterol synthesis [104] Smith-Lemli-Opitz syndrome [105] 

Other metabolic pathways   

Adh4 Alcohol dehydrogenase Rate limiting step in alcohol metabolism [106]  

Alad* Aminolevulinate dehydratase      Porphobilinogen biosynthesis Acute hepatic porphyria [107] 

Aldh1a1* Aldehyde dehydrogenase 1 
family member A1        

Irreversible conversion of RALD to ATRA [108] Gorlin syndrome [109] 

Gamt* Guanidinoacetate N-
methyltransferase     

Creatine biosynthesis Creatine [110] 

Hsd3b2* 3beta-hydroxysteroid 
dehydrogenase/delta(5)-
delta(4)isomerase type II 

Rate limiting in aldosterone production [111]  

Nnmt Nicotinamide N-
methyltransferase         

Methylation of N-adenosyl,ethionine; central role in hepatic glucose 
and lipid metabolism [40] 
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Materials and Methods 

Statistical analysis 

Full descriptions of the statistical analyses for each experiment are included in the descriptions 

of those experiments below and in the Figure Legends. A full description of the statistical basis 

of the consensomes is included in File S1. 

Data availability 

All SPP datasets and consensomes are freely available on the SPP knowledgebase under a 

Creative Commons Attribution 3.0 license, which provides for sharing, adaptation and both non-

commercial and commercial re-use, as long as the resource is cited. 

Signaling Pathways Project web application  

The Signaling Pathways Project knowledgebase is a gene-centric Java Enterprise Edition 6, 

web-based application around which other gene, mRNA, protein and BSM data from external 

databases are collected. All software is freely available at www.github.com/BCM-DLDCC/nursa. 

After undergoing semiautomated processed and biocuration as described above, the data and 

annotations are stored in SPP’s Oracle 12c database. RESTful web services expose SPP data, 

which are served to responsively designed views in the user interface, were created using a Flat 

UI Toolkit with a combination of JavaScript, D3.JS, AJAX, HTML5, and CSS3. JavaServer 

Faces and PrimeFaces are the primary technologies behind the user interface. SPP has been 

optimized for Firefox 24+, Chrome 30+, Safari 5.1.9+, and Internet Explorer 9+, with validations 

performed in BrowserStack and load testing in LoadUIWeb. XML describing each dataset and 

experiment is generated and submitted to CrossRef to mint DOIs. Programmatic access through 

API Application programming interface (API) documentation is available on the Signaling 

Pathways Project knowledgebase at www.signalingpathways.org/spp/rs/index.jsf . 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

http://www.signalingpathways.org/spp/rs/index.jsf
https://doi.org/10.1101/401729


 

41 
 

Node and biosample category mapping 

Node mappings were adapted from existing, mature classifications for receptors (International 

Union of Pharmacology, IUPHAR; [17]), enzymes (International Union of Biochemistry and 

Molecular Biology Enzyme Committee [18]) and transcription factors (TFClass [19]). To resolve 

differences between these classifications with respect to the number of hierarchical tiers, and to 

facilitate the design of the data models, each was reduced to a four-levels Category, Class, 

Family and Node as shown in Table S1. Biosample category mappings were carried as 

previously described [15]. To enhance the interoperability of SPP with other databases and 

pathway resources, small molecule-receptor mappings were based upon those maintained by 

the International Union of Pharmacology Guide to Pharmacology [17], a pharmacology 

community biocuration authority. 

Consensomes 

For cistromic consensomes, MACS2 peak calls from the ChIP-Atlas resource [22] for all 

nodes in a defined SPP family were averaged and the targets ranked based upon this 

value. For transcriptomic consensomes, differential expression values and associated 

significance measures were generated from appropriate experimental contrasts in GEO Series 

as previously described [112]. Consensomes were generated on a computer cluster and stored 

in the SPP Oracle 12c database   

Maintenance and versioning of consensomes 

SPP is continually expanding its base of data points by adding newly biocurated datasets to the 

resource. Accordingly, a quarterly process identifies all node/family and biosample category 

combinations represented by datasets added in the previous quarter and calculates new 

versions of the corresponding consensomes. A statement above the scatterplot and contained 
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in the associated spreadsheet identifies the specific combination of pathway node, biosample 

(physiological system and organ) and species represented by the consensome, the version and 

date stamp, and the total number of data points, experiments and datasets on which it is based. 

Bench validation and characterization experiments 

Validation and characterization of TPD52L1 in the ER human mammary gland 

consensome 

ER-Hs-mammary gland transcriptomic consensome Q-PCR MCF-7 cells were maintained in 

DMEM and Ham/F12 Nutrient Mixture (DMEM/F12) supplemented with 8% Fetal Bovine Serum 

(FBS), Sodium Pyruvate (NaPyr) and non-essential amino acids (NEAA) and passaged every 2-

3 days. For experiments, cells were plated in media lacking phenol red with 8% charcoal-

stripped FBS (CFS; Gemini). Cells were plated for 48 hours and then treated for 18 hours with 

17BE2 (Sigma), or FULV (Tocris). Total RNA was isolated using the Aurum Total RNA Mini-Kit 

according to the manufacturer's instructions (Bio-Rad). Total RNA (0.5μg) was reverse-

transcribed to cDNA using the iScript cDNA synthesis Kit (Bio-Rad). qPCR was performed using 

1.625 μL of Bio-Rad SYBR green supermix, 0.125 μL of a 10 μM dilution of each forward and 

reverse primer, 0.25 μL of water and 1.25 μL of diluted cDNA for a total reaction volume of 3.25 

μL. PCR amplification was carried out using the CFX384 qPCR system. Fold induction was 

calculated using the 2−ΔΔCt method [113], and normalized to 36B4. All data shown is 

representative of at least three independent experiments. Primer sequences are shown in Table 

S4. 

Subcellular distribution. MCF-7 cells were kept in 5% CD-CS for 48 hrs prior treatment with 

17BE2 10nM for 24 h. A previously published immunofluorescence protocol was followed [114]. 

Briefly, cells were fixed in 4% formaldehyde in PEM buffer (80 mM potassium PIPES [pH 6.8], 5 

mM EGTA, and 2 mM MgCl2), quenched with 0.1 M ammonium chloride for 10 min, and 
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permeabilized with 0.5% Triton X-100 for 30 min.  Cells were incubated at room temperature in 

5% Blotto for 1 h, and then specific antibodies were added overnight at 4oC prior to 30 min of 

secondary antibody (AlexaFluor488 conjugated; Molecular Probes, 1:1000) and DAPI staining. 

Primary antibody (rabbit polyclonal, Proteintech 14732-1-AP) was diluted at 1:50. A secondary 

antibody only control showed no appreciable signal (data not shown). Imaging was performed 

on a GE Healthcare DVLive image restoration deconvolution microscope using an Olympus 

PlanApo 40x/0.95NA with z-stacks (0.25μm steps covering 12μm) and deconvolved. Images 

shown are from a maximum intensity projection.   

Cell proliferation assay.  

MCF-7 cells (from BCM Tissue Culture Core via ATCC) were plated at 3x105 cells per well of a 

six well plate in phenol red-free DMEM supplemented with 5% charcoal-stripped FBS. Cells 

were transfected with 50 nM of a siGENOME SMARTpool targeting human TPD52L1 

(Dharmacon, M-019567-02) or 50 nM of a siGENOME non-targeting pool #2 (Dharmacon, D-

001206-14-05) using RNAiMAX (Invitrogen). After two days of knockdown, the cells were split to 

a 96-well plate in the same media and subsequently treated with (-/+) 10 nM water-soluble 

17BE2 (Sigma) for 24 hours. After control or TPD52L1 siRNA transfections and (-/+) 17BE2 

treatments, cell viabilities were measured by a CellTiter-Glo® Luminescent assay (Promega). 

Total RNA was isolated with an RNeasy kit (Qiagen). cDNA was made using 1 μg total RNA and 

Superscript III reverse transcriptase (Invitrogen) in 20 μl reactions total. To measure the relative 

mRNA levels, real-time reverse transcription- quantitative PCR (RT-qPCR) was performed in an 

Applied Biosystems Step One Plus real-time PCR system (Applied Biosystems, Foster City, CA) 

using 2 μl cDNA diluted 1:10, 900 nM primers, and 0.1 nM Universal Probe designed by the 

Roche Assay Design Center. Human TPD52L1 primers and probe were forward, 5’-

CAACTGTCACAAGCCTCAAGA-3’; reverse, 5’-AGCCTCCTGCCAAGCTCt-3’; Roche probe 

#73; human β-actin primers and probe were previously described [115]. Average threshold cycle 
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(Ct) values of human β-actin mRNA were subtracted from corresponding average Ct values of 

TPD52L1 mRNA to obtain ΔCt values. Relative mRNA levels were expressed as 2−ΔΔCt 

compared to the non-targeting siRNA control [116]. Statistical significance was determined 

using the Student’s t-Test, and p values < 0.05 were considered significant. 

Validation and characterization of MBOAT2 in the AR Hs prostate consensomes 

Cell Culture siRNA Transient Transfections and R1881 Treatments 

LNCaP cells (ATCC; Baylor College of Medicine Tissue Culture Core) were plated in 12-well 

dishes (for gene expression analyses) or 6-well dishes (for cell viability assays) at 1x106 and 

2x106, respectively, in charcoal stripped RPMI 1640 media (supplemented with 10% stripped-

stripped fetal calf serum, penicillin/streptomycin) and transfected in triplicate with 50 nM of an 

MBOAT2 targeting siRNA or a non-targeting siRNA using TransIT-TKO transfection reagent for 

5 days. For gene expression analyses, 1 nM R1881 was added to cells on day 4. For cell 

viability assays, 0.1 nM R1881 was added to cells on day 2. All samples were then harvested on 

day 5.  

Gene Expression Analyses by RT-qPCR 

On day 5, the RNA from the 12-well plate LNCaP cell samples was harvested using Tri-reagent, 

following the manufacturer’s instructions. The RNA concentrations were quantitated by 

Nanodrop (ThermoFisher Nanodrop Lite). 1 ug of each RNA sample was used to make cDNAs 

by First-Strand cDNA Synthesis using SuperScript II Reverse Transcriptase, following the 

manufacturer’s protocol. cDNAs were then diluted with 180 µl of DEPC-treated water.  To 

analyze gene expression, 2 µl of cDNAs were used in the RT-qPCR reactions along with 

Taqman Universal MM II, 200 nM primers (using Roche Diagnostics Universal ProbeLibrary 

System Assay Design ACTB: forward 5’-CCAACCGCGAGAAGATGA-3’, reverse 5’-

CCAGAGGCGTACAGGGATAG-3’, probe #64; MBOAT2, forward 5’-
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TCAGACAGCTCTTTGGCTCA-3’, reverse 5’-ACACCCCTGTTAGAAACGTTAGAT-3’, probe 

#53; KLK3, forward 5’-CCTGTCCGTGACGTGGAT-3’, reverse 5’-

CAGGGTTGGGAATGCTTCT-3’, probe #75; and FKBP5, forward 5’-

ACAATGAAGAAAGCCCCACA-3’, reverse 5’-CACCATTCCCCACTCTTTTG-3’, probe #55,) , 

on a StepOnePlus machine (Applied Biosystems). Expression levels of MBOAT2, KLK3, and 

FKBP5 were normalized to ACTB and determined by the ΔCt method. PRISM software was 

used for statistical analyses.  

Cell Viability Assay 

On day 5, the 6-well plate LNCaP cells were briefly trypsinized and collected.  Cell viability was 

then determined using CellTiter-Glo Luminescent Cell Viability Assay, following the 

manufacturer’s instruction, and a Berthold 96 well plate reading luminometer.  PRISM software 

was used for the statistical analyses. 

Validation and characterization of Ppp1r3c in the GR mouse metabolic consensome 

Hepa1c cells were grown in DMEM with 10% fetal bovine serum and penicillin, streptomycin 

and gentamycin (Life Technologies) and treated with vehicle (ethanol) or 250 nM DEX (Sigma) 

for 48h.  Cells were lysed in TriZOL and total RNA was purified by a PureLink RNA Kit.  250 μg 

of RNA was reverse transcribed into cDNA using a High Capacity cDNA Reverse Transcription 

Kit (Life Technologies).  Genes were quantified using SYBR Green following the manufacturer’s 

instructions on an QuantStudio 5 qPCR instrument (Applied Biosystems).  Gene expression was 

normalized to an internal control (Rplp0; after evaluating several normalization genes to ensure 

they were unchanged by treatment). Each experiment was standardized to its own vehicle 

treatment.  Primer sequences used are described in Table S4. 

Validation and characterization of Prkab2 in the ERR mouse metabolic consensome 
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Animals. All animal protocols were approved by the Institutional Animal Care and Use 

Committee at City of Hope. The ERRα/Esrra-/- mice have been described and were maintained 

as a hybrid strain (C57BL/6/SvJ129) [117, 118]. For baseline comparisons, littermate wild-type 

and ERRα/Esrra-/- mice were generated from heterozygous breeders to control for strain 

background. Skeletal muscle (quadriceps) was isolated from 12 week old mice fed wild-type and 

ERRα/Esrra-/- mice during the daytime (1000 to 1200 h), flash frozen and stored at -80oC until 

RNA isolation was performed.   

Cell culture and reagents. C2C12 (ATCC, cell line CRL-1772, Manassas, VA) myoblasts (MB) 

were cultured in growth media (DMEM (Corning Cellgro, Manassas, VA) containing 10% FBS 

and differentiated in DMEM containing 2% horse serum (Atlanta Biologicals, Lawrenceville, GA) 

when MB reached confluence.  All experiments were performed in cells below passage number 

35.  C2C12 myocytes were treated with 5μM XCT790 (Sigma-Aldrich, St. Louis, MO), 0.1 μM 

DY40 [119] or DMSO in growth media or differentiation media prepared with charcoal-stripped 

serum.  

Plasmids and transcriptional activity assays. The Prkab2.-2.82.Luc promoter-reporter contains 

the region of the mouse Prkab2 gene encompassing -2815 to +27 bp relative to the predicted 

TSS.  The region was amplified from C57B6/J mouse genomic DNA using primers, 5-

CTCGGTACCTGAGCACATTAAACCAGTAGTCC-3; 5-

GAGAAGCTTTACAAGGCCCGCGACGAGGTAC-3’ (KpnI and HindIII sites in the forward and 

reverse primers, respectively, denoted in italics) and cloned directly into KpnI/HindIII sites of the 

pGL3-Basic vector.  The entire cloned region was sequenced and confirmed against the 

corresponding region of the reference Prkab2 gene sequence in NCBI (release 106). The 

pcDNA3.1-Flag- -HA-ERRα and pcDNA-myc/his-PGC-1α have been previously 

described [120]. Transient transfection in C2C12 myocytes using the calcium phosphate method 

and the plasmid concentrations used have been described [79].  Luciferase activity was 
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assayed in MB 48h post-transfection or in day 4 MT after changing confluent cells to 2% 

HS/DMEM.  To assess IGF1 activation, MB were changed to SFM -/+ 10nM recombinant IGF1 

one day following transfection and activities were measured after 24 h treatment.  Luciferase 

activity was assayed using Dual-Glo reagents (Promega, Madison, WI) on a Tecan M200 plate 

reader (Männedorf, Switzerland).  Firefly luciferase activity was normalized to that of renilla 

luciferase, which was expressed downstream of the minimal thymidine kinase promoter from the 

pRL-TK-Renilla plasmid.   

Quantitative real-time PCR. Real-time PCR was performed to quantify relative transcript levels 

in RNA collected from skeletal muscle isolated from mice or from day 3 MT using TRIzol 

reagent (Life Technologies, Carlsbad, CA), as described [79].  RNA (1 μg) was reverse 

transcribed in 20 μl reactions using the BioRad iScript cDNA Synthesis Kit (BioRad 

Laboratories) with 1:1 mixture of oligo-dT and random hexamers for 30 min at 42oC.  Resulting 

cDNA is used in PCR reactions (15 μl) performed in 96-well format in triplicate contained 1X 

SYBR green reagent (BioRad iQ SYBR Green Supermix), 0.4 μM gene specific primers and 0.5 

μl of first strand reaction product (diluted 1:2) as previously described [79].  Cycling and 

detection was performed using BioRad IQ5 Real Time PCR system.  Experimental transcript 

levels were normalized to 36B4 (Rplp0) ribosomal RNA analyzed in separate reactions.  The 

following mouse-specific primer sets were used to detect specific gene expression: AMPKα2 

(Prkab2) forward, 5- ACCATCTCTATGCACTGTCCA -3; reverse, 5-

CAGCGTGGTGACATACTTCTT-3; 36B4 (Rplp0) forward, 5-ATCCCTGACGCACCGCCGTGA -

3; reverse, 5-TGCATCTGCTTGGAGCCCACGTT-3.  

Statistical analysis.  All cell experiments were performed in three independent trials with 3 

replicates per trial.  Data are presented as mean (± S.E.M.) relative activity or expression 

normalized to control (empty vector or vehicle treated condition).  Differences between mean 

values for luciferase activities and real-time PCR analysis were analyzed by a one-way ANOVA 
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followed by Fisher’s LSD post test or by unpaired Student’s t test using PRISM software 

(GraphPad Software, San Diego, CA).  A p-value of ≤0.05 was considered significantly different. 

 

 

  

Nucleus 

Membrane 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


 

49 
 

REFERENCES 
 
1. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into 
insulin action. Nature reviews Molecular cell biology. 2006;7(2):85-96. doi: 10.1038/nrm1837. 
PubMed PMID: 16493415. 
2. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The 
Reactome pathway Knowledgebase. Nucleic acids research. 2016;44(D1):D481-7. Epub 
2015/12/15. doi: 10.1093/nar/gkv1351. PubMed PMID: 26656494; PubMed Central PMCID: 
PMCPmc4702931. 
3. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The 
FAIR Guiding Principles for scientific data management and stewardship. Scientific data. 
2016;3:160018. Epub 2016/03/16. doi: 10.1038/sdata.2016.18. PubMed PMID: 26978244; 
PubMed Central PMCID: PMCPMC4792175. 
4. Darlington YF, Naumov A, McOwiti A, Kankanamge WH, Becnel LB, McKenna NJ. 
Improving the discoverability, accessibility, and citability of omics datasets: a case report. 
Journal of the American Medical Informatics Association : JAMIA. 2017;24(2):388-93. doi: 
10.1093/jamia/ocw096. PubMed PMID: 27413121. 
5. McArdle S, Buscher K, Ehinger E, Pramod AB, Riley N, Ley K. PRESTO, a new tool for 
integrating large-scale -omics data and discovering disease-specific signatures. BioRXiv. 2018. 
doi: 10.1101/302604 %J bioRxiv. 
6. Parikh JR, Klinger B, Xia Y, Marto JA, Bluthgen N. Discovering causal signaling 
pathways through gene-expression patterns. Nucleic acids research. 2010;38(Web Server 
issue):W109-17. Epub 2010/05/25. doi: 10.1093/nar/gkq424. PubMed PMID: 20494976; 
PubMed Central PMCID: PMCPMC2896193. 
7. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A Next 
Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell. 
2017;171(6):1437-52.e17. Epub 2017/12/02. doi: 10.1016/j.cell.2017.10.049. PubMed PMID: 
29195078; PubMed Central PMCID: PMCPMC5990023. 
8. Cheneby J, Gheorghe M, Artufel M, Mathelier A, Ballester B. ReMap 2018: an updated 
atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments. 
Nucleic acids research. 2018;46(D1):D267-d75. Epub 2017/11/11. doi: 10.1093/nar/gkx1092. 
PubMed PMID: 29126285; PubMed Central PMCID: PMCPMC5753247. 
9. Wang Z, Monteiro CD, Jagodnik KM, Fernandez NF, Gundersen GW, Rouillard AD, et 
al. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. 
Nature communications. 2016;7:12846. Epub 2016/09/27. doi: 10.1038/ncomms12846. PubMed 
PMID: 27667448; PubMed Central PMCID: PMCPMC5052684. 
10. Cantini L, Calzone L, Martignetti L, Rydenfelt M, Bluthgen N, Barillot E, et al. 
Classification of gene signatures for their information value and functional redundancy. NPJ 
systems biology and applications. 2018;4:2. Epub 2017/12/22. doi: 10.1038/s41540-017-0038-
8. PubMed PMID: 29263798; PubMed Central PMCID: PMCPMC5736638. 
11. Schubert M, Klinger B, Klunemann M, Sieber A, Uhlitz F, Sauer S, et al. Perturbation-
response genes reveal signaling footprints in cancer gene expression. Nature communications. 
2018;9(1):20. Epub 2018/01/04. doi: 10.1038/s41467-017-02391-6. PubMed PMID: 29295995; 
PubMed Central PMCID: PMCPMC5750219. 
12. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, et al. The 
Comparative Toxicogenomics Database: update 2017. Nucleic acids research. 
2017;45(D1):D972-d8. Epub 2016/09/22. doi: 10.1093/nar/gkw838. PubMed PMID: 27651457; 
PubMed Central PMCID: PMCPMC5210612. 
13. Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures database 
for gene set analysis. Bioinformatics (Oxford, England). 2015;31(18):3069-71. Epub 2015/05/21. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


 

50 
 

doi: 10.1093/bioinformatics/btv313. PubMed PMID: 25990557; PubMed Central PMCID: 
PMCPMC4668778. 
14. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The 
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell systems. 
2015;1(6):417-25. Epub 2016/01/16. doi: 10.1016/j.cels.2015.12.004. PubMed PMID: 
26771021; PubMed Central PMCID: PMCPMC4707969. 
15. Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, et al. 
Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in 
Transcriptomine. Science signaling. 2017;10(476). doi: 10.1126/scisignal.aah6275. PubMed 
PMID: 28442630. 
16. Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annual 
review of cell and developmental biology. 1997;13:513-609. doi: 
10.1146/annurev.cellbio.13.1.513. PubMed PMID: 9442882. 
17. Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SP, et al. The 
IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions 
between 1300 protein targets and 6000 ligands. Nucleic acids research. 2016;44(D1):D1054-68. 
doi: 10.1093/nar/gkv1037. PubMed PMID: 26464438; PubMed Central PMCID: PMC4702778. 
18. Webb EC. Enzyme nomenclature 1992: recommendations of the Nomenclature 
Committee of the International Union of Biochemistry and Molecular Biology on the 
nomenclature and classification of enzymes. . San Diego: Academic Press; 1992. 
19. Wingender E, Schoeps T, Donitz J. TFClass: an expandable hierarchical classification of 
human transcription factors. Nucleic acids research. 2013;41(Database issue):D165-70. doi: 
10.1093/nar/gks1123. PubMed PMID: 23180794; PubMed Central PMCID: PMC3531165. 
20. Minard AY, Tan SX, Yang P, Fazakerley DJ, Domanova W, Parker BL, et al. mTORC1 Is 
a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell reports. 
2016;17(1):29-36. doi: 10.1016/j.celrep.2016.08.086. PubMed PMID: 27681418. 
21. Wang Z, Monteiro CD, Jagodnik KM, Fernandez NF, Gundersen GW, Rouillard AD, et 
al. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. 
2016;7:12846. doi: 10.1038/ncomms12846. PubMed PMID: 27667448. 
22. Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, et al. Integrative analysis 
of transcription factor occupancy at enhancers and disease risk loci in noncoding genomic 
regions. bioRxiv. 2018. 
23. Foulkes NS, Sassone-Corsi P. More is better: activators and repressors from the same 
gene. Cell. 1992;68(3):411-4. Epub 1992/02/07. PubMed PMID: 1739963. 
24. Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S 
phases. Nature reviews Molecular cell biology. 2013;14(8):518-28. Epub 2013/07/24. doi: 
10.1038/nrm3629. PubMed PMID: 23877564; PubMed Central PMCID: PMCPmc4569015. 
25. Okabe Y, Medzhitov R. Tissue-specific signals control reversible program of localization 
and functional polarization of macrophages. Cell. 2014;157(4):832-44. Epub 2014/05/06. doi: 
10.1016/j.cell.2014.04.016. PubMed PMID: 24792964; PubMed Central PMCID: 
PMCPMC4137874. 
26. MacNeill SA. Structure and function of the GINS complex, a key component of the 
eukaryotic replisome. The Biochemical journal. 2010;425(3):489-500. Epub 2010/01/15. doi: 
10.1042/bj20091531. PubMed PMID: 20070258. 
27. Hirano T. Condensin-Based Chromosome Organization from Bacteria to Vertebrates. 
Cell. 2016;164(5):847-57. Epub 2016/02/27. doi: 10.1016/j.cell.2016.01.033. PubMed PMID: 
26919425. 
28. Chong JP, Mahbubani HM, Khoo CY, Blow JJ. Purification of an MCM-containing 
complex as a component of the DNA replication licensing system. Nature. 1995;375(6530):418-
21. Epub 1995/06/01. doi: 10.1038/375418a0. PubMed PMID: 7760937. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


 

51 
 

29. Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC. The centromere: hub 
of chromosomal activities. Science. 1995;270(5242):1591-4. Epub 1995/12/08. PubMed PMID: 
7502067. 
30. Tsai MJ, O'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor 
superfamily members. Annual review of biochemistry. 1994;63:451-86. doi: 
10.1146/annurev.bi.63.070194.002315. PubMed PMID: 7979245. 
31. Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and 
signalling. Nature reviews Molecular cell biology. 2012;13(4):270-6. Epub 2012/03/08. doi: 
10.1038/nrm3305. PubMed PMID: 22395772. 
32. Teodoro JS, Rolo AP, Palmeira CM. Hepatic FXR: key regulator of whole-body energy 
metabolism. Trends in endocrinology and metabolism: TEM. 2011;22(11):458-66. doi: 
10.1016/j.tem.2011.07.002. PubMed PMID: 21862343. 
33. Bollen M, Keppens S, Stalmans W. Specific features of glycogen metabolism in the liver. 
The Biochemical journal. 1998;336 ( Pt 1):19-31. PubMed PMID: 9806880; PubMed Central 
PMCID: PMC1219837. 
34. Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. 
Physiological reviews. 2006;86(2):465-514. doi: 10.1152/physrev.00025.2005. PubMed PMID: 
16601267. 
35. Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its 
impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal 
of hepatology. 2015;62(3):720-33. doi: 10.1016/j.jhep.2014.10.039. PubMed PMID: 25450203. 
36. Corcoran CC, Grady CR, Pisitkun T, Parulekar J, Knepper MA. From 20th century 
metabolic wall charts to 21st century systems biology: database of mammalian metabolic 
enzymes. American journal of physiology Renal physiology. 2017;312(3):F533-f42. Epub 
2016/12/16. doi: 10.1152/ajprenal.00601.2016. PubMed PMID: 27974320; PubMed Central 
PMCID: PMCPmc5374312. 
37. Lopez-Casillas F, Bai DH, Luo XC, Kong IS, Hermodson MA, Kim KH. Structure of the 
coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. 
Proceedings of the National Academy of Sciences of the United States of America. 
1988;85(16):5784-8. Epub 1988/08/01. PubMed PMID: 2901088; PubMed Central PMCID: 
PMCPmc281849. 
38. Blom W, de Muinck Keizer SM, Scholte HR. Acetyl-CoA carboxylase deficiency: an 
inborn error of de novo fatty acid synthesis. The New England journal of medicine. 
1981;305(8):465-6. doi: 10.1056/NEJM198108203050820. PubMed PMID: 6114432. 
39. Virmani K, Widhalm K. Histidinemia: a biochemical variant or a disease? Journal of the 
American College of Nutrition. 1993;12(2):115-24. PubMed PMID: 8463510. 
40. Hong S, Moreno-Navarrete JM, Wei X, Kikukawa Y, Tzameli I, Prasad D, et al. 
Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein 
stabilization. Nature medicine. 2015;21(8):887-94. doi: 10.1038/nm.3882 

http://www.nature.com/nm/journal/v21/n8/abs/nm.3882.html#supplementary-information. 
41. Iansante V, Choy PM, Fung SW, Liu Y, Chai JG, Dyson J, et al. PARP14 promotes the 
Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 
phosphorylation and activation. 2015;6:7882. doi: 10.1038/ncomms8882. PubMed PMID: 
26258887. 
42. Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: From physiopathology to 
therapy. Journal of hepatology. 2016;64(6):1403-15. Epub 2016/02/13. doi: 
10.1016/j.jhep.2016.02.004. PubMed PMID: 26867490. 
43. Diehl AM. Roles of CCAAT/enhancer-binding proteins in regulation of liver regenerative 
growth. The Journal of biological chemistry. 1998;273(47):30843-6. Epub 1998/11/13. PubMed 
PMID: 9812973. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

http://www.nature.com/nm/journal/v21/n8/abs/nm.3882.html#supplementary-information
https://doi.org/10.1101/401729


 

52 
 

44. Zhao GN, Jiang DS, Li H. Interferon regulatory factors: at the crossroads of immunity, 
metabolism, and disease. Biochimica et biophysica acta. 2015;1852(2):365-78. Epub 
2014/05/09. doi: 10.1016/j.bbadis.2014.04.030. PubMed PMID: 24807060. 
45. Wijayaratne AL, McDonnell DP. The human estrogen receptor-alpha is a ubiquitinated 
protein whose stability is affected differentially by agonists, antagonists, and selective estrogen 
receptor modulators. The Journal of biological chemistry. 2001;276(38):35684-92. doi: 
10.1074/jbc.M101097200. PubMed PMID: 11473106. 
46. Shehata M, Weidenhofer J, Thamotharampillai K, Hardy JR, Byrne JA. Tumor protein 
D52 overexpression and gene amplification in cancers from a mosaic of microarrays. Critical 
reviews in oncogenesis. 2008;14(1):33-55. PubMed PMID: 19105569. 
47. Boutros R, Byrne JA. D53 (TPD52L1) is a cell cycle-regulated protein maximally 
expressed at the G2-M transition in breast cancer cells. Experimental cell research. 
2005;310(1):152-65. doi: 10.1016/j.yexcr.2005.07.009. PubMed PMID: 16112108. 
48. JavanMoghadam S, Weihua Z, Hunt KK, Keyomarsi K. Estrogen receptor alpha is cell 
cycle-regulated and regulates the cell cycle in a ligand-dependent fashion. Cell cycle. 
2016;15(12):1579-90. doi: 10.1080/15384101.2016.1166327. PubMed PMID: 27049344; 
PubMed Central PMCID: PMC4934046. 
49. Toyoshima F, Nishida E. Integrin-mediated adhesion orients the spindle parallel to the 
substratum in an EB1- and myosin X-dependent manner. The EMBO journal. 2007;26(6):1487-
98. Epub 2007/02/24. doi: 10.1038/sj.emboj.7601599. PubMed PMID: 17318179; PubMed 
Central PMCID: PMCPmc1829369. 
50. Shehata M, Bieche I, Boutros R, Weidenhofer J, Fanayan S, Spalding L, et al. 
Nonredundant functions for tumor protein D52-like proteins support specific targeting of TPD52. 
Clinical cancer research : an official journal of the American Association for Cancer Research. 
2008;14(16):5050-60. doi: 10.1158/1078-0432.CCR-07-4994. PubMed PMID: 18698023. 
51. Lewis JD, Payton LA, Whitford JG, Byrne JA, Smith DI, Yang L, et al. Induction of 
tumorigenesis and metastasis by the murine orthologue of tumor protein D52. Molecular cancer 
research : MCR. 2007;5(2):133-44. doi: 10.1158/1541-7786.MCR-06-0245. PubMed PMID: 
17314271. 
52. Hayne C, Tzivion G, Luo Z. Raf-1/MEK/MAPK pathway is necessary for the G2/M 
transition induced by nocodazole. The Journal of biological chemistry. 2000;275(41):31876-82. 
doi: 10.1074/jbc.M002766200. PubMed PMID: 10884385. 
53. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes 
& development. 2001;15(17):2177-96. doi: 10.1101/gad.914401. PubMed PMID: 11544175. 
54. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential 
kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes & 
development. 2000;14(12):1448-59. PubMed PMID: 10859164; PubMed Central PMCID: 
PMC316686. 
55. Zhang H, Park SH, Pantazides BG, Karpiuk O, Warren MD, Hardy CW, et al. SIRT2 
directs the replication stress response through CDK9 deacetylation. Proceedings of the National 
Academy of Sciences of the United States of America. 2013;110(33):13546-51. doi: 
10.1073/pnas.1301463110. PubMed PMID: 23898190; PubMed Central PMCID: PMC3746840. 
56. Abbott DW, Holt JT. Mitogen-activated protein kinase kinase 2 activation is essential for 
progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. The 
Journal of biological chemistry. 1999;274(5):2732-42. PubMed PMID: 9915804. 
57. Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R, Shimizu T. Discovery of 
a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. 
Proceedings of the National Academy of Sciences of the United States of America. 
2008;105(8):2830-5. doi: 10.1073/pnas.0712245105. PubMed PMID: 18287005; PubMed 
Central PMCID: PMC2268545. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


 

53 
 

58. Han W, Gao S, Barrett D, Ahmed M, Han D, Macoska JA, et al. Reactivation of 
androgen receptor-regulated lipid biosynthesis drives the progression of castration-resistant 
prostate cancer. Oncogene. 2018;37(6):710-21. Epub 2017/10/24. doi: 10.1038/onc.2017.385. 
PubMed PMID: 29059155; PubMed Central PMCID: PMCPMC5805650. 
59. Tsai HC, Boucher DL, Martinez A, Tepper CG, Kung HJ. Modeling truncated AR 
expression in a natural androgen responsive environment and identification of RHOB as a direct 
transcriptional target. PloS one. 2012;7(11):e49887. doi: 10.1371/journal.pone.0049887. 
PubMed PMID: 23209612; PubMed Central PMCID: PMC3510170. 
60. Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor 
with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant 
Prostate Cancer. Cancers. 2017;9(3). doi: 10.3390/cancers9030022. PubMed PMID: 28264478; 
PubMed Central PMCID: PMC5366817. 
61. Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, et al. The 
endocrinology and developmental biology of the prostate. Endocrine reviews. 1987;8(3):338-62. 
doi: 10.1210/edrv-8-3-338. PubMed PMID: 3308446. 
62. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, et al. A novel 
human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a 
region frequently deleted in prostate cancer. Genomics. 1997;43(1):69-77. doi: 
10.1006/geno.1997.4715. PubMed PMID: 9226374. 
63. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, et al. Roles for 
Nkx3.1 in prostate development and cancer. Genes & development. 1999;13(8):966-77. 
PubMed PMID: 10215624; PubMed Central PMCID: PMC316645. 
64. Tabe S, Hikiji H, Ariyoshi W, Hashidate-Yoshida T, Shindou H, Shimizu T, et al. 
Lysophosphatidylcholine acyltransferase 4 is involved in chondrogenic differentiation of ATDC5 
cells. Scientific reports. 2017;7(1):16701. doi: 10.1038/s41598-017-16902-4. PubMed PMID: 
29196633; PubMed Central PMCID: PMC5711957. 
65. Koelling S, Miosge N. Sex differences of chondrogenic progenitor cells in late stages of 
osteoarthritis. Arthritis and rheumatism. 2010;62(4):1077-87. doi: 10.1002/art.27311. PubMed 
PMID: 20131243. 
66. Dashty M. A quick look at biochemistry: carbohydrate metabolism. Clinical biochemistry. 
2013;46(15):1339-52. Epub 2013/05/18. doi: 10.1016/j.clinbiochem.2013.04.027. PubMed 
PMID: 23680095. 
67. Fong NM, Jensen TC, Shah AS, Parekh NN, Saltiel AR, Brady MJ. Identification of 
binding sites on protein targeting to glycogen for enzymes of glycogen metabolism. The Journal 
of biological chemistry. 2000;275(45):35034-9. Epub 2000/08/11. doi: 10.1074/jbc.M005541200. 
PubMed PMID: 10938087. 
68. Jeon SM. Regulation and function of AMPK in physiology and diseases. Experimental & 
molecular medicine. 2016;48(7):e245. Epub 2016/07/16. doi: 10.1038/emm.2016.81. PubMed 
PMID: 27416781; PubMed Central PMCID: PMCPmc4973318. 
69. Vanstapel F, Dopere F, Stalmans W. The role of glycogen synthase phosphatase in the 
glucocorticoid-induced deposition of glycogen in foetal rat liver. The Biochemical journal. 
1980;192(2):607-12. PubMed PMID: 6263259; PubMed Central PMCID: PMC1162376. 
70. Huss JM, Garbacz WG, Xie W. Constitutive activities of estrogen-related receptors: 
Transcriptional regulation of metabolism by the ERR pathways in health and disease. 
Biochimica et biophysica acta. 2015;1852(9):1912-27. doi: 10.1016/j.bbadis.2015.06.016. 
PubMed PMID: 26115970. 
71. Printen JA, Brady MJ, Saltiel AR. PTG, a protein phosphatase 1-binding protein with a 
role in glycogen metabolism. Science. 1997;275(5305):1475-8. Epub 1997/03/07. PubMed 
PMID: 9045612. 
72. O'Doherty RM, Jensen PB, Anderson P, Jones JG, Berman HK, Kearney D, et al. 
Activation of direct and indirect pathways of glycogen synthesis by hepatic overexpression of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


 

54 
 

protein targeting to glycogen. The Journal of clinical investigation. 2000;105(4):479-88. Epub 
2000/02/23. doi: 10.1172/jci8673. PubMed PMID: 10683377; PubMed Central PMCID: 
PMCPmc289167. 
73. Dasgupta B, Ju JS, Sasaki Y, Liu X, Jung SR, Higashida K, et al. The AMPK beta2 
subunit is required for energy homeostasis during metabolic stress. Molecular and cellular 
biology. 2012;32(14):2837-48. doi: 10.1128/MCB.05853-11. PubMed PMID: 22586267; PubMed 
Central PMCID: PMC3416196. 
74. Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and 
physiological activities. Experimental & molecular medicine. 2016;48:e224. doi: 
10.1038/emm.2016.16. PubMed PMID: 27034026; PubMed Central PMCID: PMC4855276. 
75. Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, et al. Genomic 
determination of the glucocorticoid response reveals unexpected mechanisms of gene 
regulation. Genome research. 2009;19(12):2163-71. doi: 10.1101/gr.097022.109. PubMed 
PMID: 19801529; PubMed Central PMCID: PMC2792167. 
76. Reshef L, Ballard FJ, Hanson RW. The role of the adrenals in the regulation of 
phosphoenolpyruvate carboxykinase of rat adipose tissue. The Journal of biological chemistry. 
1969;244(20):5577-81. PubMed PMID: 5348601. 
77. Patel R, Bookout AL, Magomedova L, Owen BM, Consiglio GP, Shimizu M, et al. 
Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Molecular 
endocrinology. 2015;29(2):213-23. doi: 10.1210/me.2014-1259. PubMed PMID: 25495872; 
PubMed Central PMCID: PMC4318881. 
78. Willy PJ, Murray IR, Qian J, Busch BB, Stevens WC, Jr., Martin R, et al. Regulation of 
PPARgamma coactivator 1alpha (PGC-1alpha) signaling by an estrogen-related receptor alpha 
(ERRalpha) ligand. Proceedings of the National Academy of Sciences of the United States of 
America. 2004;101(24):8912-7. doi: 10.1073/pnas.0401420101. PubMed PMID: 15184675; 
PubMed Central PMCID: PMC428446. 
79. Murray J, Huss JM. Estrogen-related receptor alpha regulates skeletal myocyte 
differentiation via modulation of the ERK MAP kinase pathway. American journal of physiology 
Cell physiology. 2011;301(3):C630-45. doi: 10.1152/ajpcell.00033.2011. PubMed PMID: 
21562305; PubMed Central PMCID: PMC3174569. 
80. Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, et al. JASPAR 2016: a 
major expansion and update of the open-access database of transcription factor binding 
profiles. Nucleic acids research. 2016;44(D1):D110-5. doi: 10.1093/nar/gkv1176. PubMed 
PMID: 26531826; PubMed Central PMCID: PMC4702842. 
81. Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, et al. Genome-wide 
orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell 
metabolism. 2007;5(5):345-56. doi: 10.1016/j.cmet.2007.03.007. PubMed PMID: 17488637. 
82. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. 
Journal of molecular endocrinology. 2011;47(1):R1-10. Epub 2011/04/19. doi: 10.1530/jme-11-
0022. PubMed PMID: 21498522. 
83. Ciaraldi TP, Carter L, Rehman N, Mohideen P, Mudaliar S, Henry RR. Insulin and 
insulin-like growth factor-1 action on human skeletal muscle: preferential effects of insulin-like 
growth factor-1 in type 2 diabetic subjects. Metabolism: clinical and experimental. 
2002;51(9):1171-9. Epub 2002/08/30. PubMed PMID: 12200763. 
84. Annunziata M, Granata R, Ghigo E. The IGF system. Acta diabetologica. 2011;48(1):1-9. 
doi: 10.1007/s00592-010-0227-z. PubMed PMID: 21042815. 
85. Jagannathan V, Robinson-Rechavi M. Meta-analysis of estrogen response in MCF-7 
distinguishes early target genes involved in signaling and cell proliferation from later target 
genes involved in cell cycle and DNA repair. BMC systems biology. 2011;5:138. doi: 
10.1186/1752-0509-5-138. PubMed PMID: 21878096; PubMed Central PMCID: PMC3225231. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


 

55 
 

86. Stanislawska-Sachadyn A, Sachadyn P, Limon J. Transcriptomic Effects of Estrogen 
Starvation and Induction in the MCF7 Cells. The Meta-analysis of Microarray Results. Current 
pharmaceutical biotechnology. 2015;17(2):161-72. PubMed PMID: 26511976. 
87. Goldfischer S, Collins J, Rapin I, Neumann P, Neglia W, Spiro AJ, et al. Pseudo-
Zellweger syndrome: deficiencies in several peroxisomal oxidative activities. The Journal of 
pediatrics. 1986;108(1):25-32. PubMed PMID: 2868085. 
88. Zhou Y, Bollu LR, Tozzi F, Ye X, Bhattacharya R, Gao G, et al. ATP citrate lyase 
mediates resistance of colorectal cancer cells to SN38. Molecular cancer therapeutics. 
2013;12(12):2782-91. doi: 10.1158/1535-7163.MCT-13-0098. PubMed PMID: 24132143; 
PubMed Central PMCID: PMC4302275. 
89. Bu SY, Mashek DG. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid 
channeling between anabolic and catabolic pathways. Journal of lipid research. 
2010;51(11):3270-80. doi: 10.1194/jlr.M009407. PubMed PMID: 20798351; PubMed Central 
PMCID: PMC2952567. 
90. Wendel AA, Lewin TM, Coleman RA. Glycerol-3-phosphate acyltransferases: rate 
limiting enzymes of triacylglycerol biosynthesis. Biochimica et biophysica acta. 
2009;1791(6):501-6. Epub 2008/11/29. doi: 10.1016/j.bbalip.2008.10.010. PubMed PMID: 
19038363; PubMed Central PMCID: PMCPmc2737689. 
91. Gieselmann V, Polten A, Kreysing J, von Figura K. Arylsulfatase A pseudodeficiency: 
loss of a polyadenylylation signal and N-glycosylation site. Proceedings of the National 
Academy of Sciences of the United States of America. 1989;86(23):9436-40. PubMed PMID: 
2574462; PubMed Central PMCID: PMC298511. 
92. Stoffel W, Hammels I, Jenke B, Binczek E, Schmidt-Soltau I, Brodesser S, et al. Obesity 
resistance and deregulation of lipogenesis in Delta6-fatty acid desaturase (FADS2) deficiency. 
EMBO reports. 2014;15(1):110-20. doi: 10.1002/embr.201338041. PubMed PMID: 24378641; 
PubMed Central PMCID: PMC4303455. 
93. Roy R, Ordovas L, Taourit S, Zaragoza P, Eggen A, Rodellar C. Genomic structure and 
an alternative transcript of bovine mitochondrial glycerol-3-phosphate acyltransferase gene 
(GPAM). Cytogenetic and genome research. 2006;112(1-2):82-9. Epub 2005/11/09. doi: 
10.1159/000087517. PubMed PMID: 16276094. 
94. Molven A, Matre GE, Duran M, Wanders RJ, Rishaug U, Njolstad PR, et al. Familial 
hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty 
acid oxidation. Diabetes. 2004;53(1):221-7. Epub 2003/12/25. PubMed PMID: 14693719. 
95. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. 
FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell metabolism. 
2012;15(3):279-91. Epub 2012/03/13. doi: 10.1016/j.cmet.2011.12.018. PubMed PMID: 
22405066; PubMed Central PMCID: PMCPmc3314979. 
96. Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, et al. A mutation in a 
ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a 
neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Human 
molecular genetics. 2014;23(2):418-33. Epub 2013/09/13. doi: 10.1093/hmg/ddt434. PubMed 
PMID: 24026681; PubMed Central PMCID: PMCPmc3869362. 
97. Fang M, Shen Z, Huang S, Zhao L, Chen S, Mak TW, et al. The ER UDPase ENTPD5 
promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. 
Cell. 2010;143(5):711-24. Epub 2010/11/16. doi: 10.1016/j.cell.2010.10.010. PubMed PMID: 
21074248. 
98. Margolis RN, Cardell RR, Curnow RT. Association of glycogen synthase phosphatase 
and phosphorylase phosphatase activities with membranes of hepatic smooth endoplasmic 
reticulum. The Journal of cell biology. 1979;83(2 Pt 1):348-56. PubMed PMID: 227915; PubMed 
Central PMCID: PMC2111548. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


 

56 
 

99. Guerrero R, Vernia S, Sanz R, Abreu-Rodriguez I, Almaraz C, Garcia-Hoyos M, et al. A 
PTG variant contributes to a milder phenotype in Lafora disease. PloS one. 2011;6(6):e21294. 
doi: 10.1371/journal.pone.0021294. PubMed PMID: 21738631; PubMed Central PMCID: 
PMC3127956. 
100. Efimov I, Basran J, Thackray SJ, Handa S, Mowat CG, Raven EL. Structure and 
reaction mechanism in the heme dioxygenases. Biochemistry. 2011;50(14):2717-24. Epub 
2011/03/03. doi: 10.1021/bi101732n. PubMed PMID: 21361337; PubMed Central PMCID: 
PMCPmc3092302. 
101. Ferreira P, Shin I, Sosova I, Dornevil K, Jain S, Dewey D, et al. Hypertryptophanemia 
due to tryptophan 2,3-dioxygenase deficiency. Molecular genetics and metabolism. 
2017;120(4):317-24. Epub 2017/03/13. doi: 10.1016/j.ymgme.2017.02.009. PubMed PMID: 
28285122; PubMed Central PMCID: PMCPmc5421356. 
102. Brown JM, Bell TA, 3rd, Alger HM, Sawyer JK, Smith TL, Kelley K, et al. Targeted 
depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal 
neutral sterol loss. The Journal of biological chemistry. 2008;283(16):10522-34. Epub 
2008/02/19. doi: 10.1074/jbc.M707659200. PubMed PMID: 18281279; PubMed Central PMCID: 
PMCPmc2447638. 
103. Bennett MJ, Hosking GP, Smith MF, Gray RG, Middleton B. Biochemical investigations 
on a patient with a defect in cytosolic acetoacetyl-CoA thiolase, associated with mental 
retardation. Journal of inherited metabolic disease. 1984;7(3):125-8. PubMed PMID: 6150136. 
104. Kandutsch AA, Russell AE. Preputial gland tumor sterols. 3. A metabolic pathway from 
lanosterol to cholesterol. The Journal of biological chemistry. 1960;235:2256-61. Epub 
1960/08/01. PubMed PMID: 14404284. 
105. Tint GS, Irons M, Elias ER, Batta AK, Frieden R, Chen TS, et al. Defective cholesterol 
biosynthesis associated with the Smith-Lemli-Opitz syndrome. The New England journal of 
medicine. 1994;330(2):107-13. doi: 10.1056/NEJM199401133300205. PubMed PMID: 8259166. 
106. Plapp BV. Rate-limiting steps in ethanol metabolism and approaches to changing these 
rates biochemically. Advances in experimental medicine and biology. 1975;56:77-109. Epub 
1975/01/01. PubMed PMID: 167557. 
107. Jaffe EK, Stith L. ALAD porphyria is a conformational disease. American journal of 
human genetics. 2007;80(2):329-37. doi: 10.1086/511444. PubMed PMID: 17236137; PubMed 
Central PMCID: PMC1785348. 
108. Ross AC. Overview of retinoid metabolism. The Journal of nutrition. 1993;123(2 
Suppl):346-50. Epub 1993/02/01. PubMed PMID: 8429385. 
109. Weber TJ, Magnaldo T, Xiong Y. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a 
Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis. Proteomes. 
2014;2(3):451-67. doi: 10.3390/proteomes2030451. PubMed PMID: 28250390; PubMed Central 
PMCID: PMC5302750. 
110. Stockler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K. Guanidinoacetate 
methyltransferase deficiency: the first inborn error of creatine metabolism in man. American 
journal of human genetics. 1996;58(5):914-22. PubMed PMID: 8651275; PubMed Central 
PMCID: PMC1914613. 
111. Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH. Molecular biology of 
the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocrine 
reviews. 2005;26(4):525-82. doi: 10.1210/er.2002-0050. PubMed PMID: 15632317. 
112. Ochsner SA, Watkins CM, McOwiti A, Xu X, Darlington YF, Dehart MD, et al. 
Transcriptomine, a web resource for nuclear receptor signaling transcriptomes. Physiological 
genomics. 2012;44(17):853-63. doi: 10.1152/physiolgenomics.00033.2012. PubMed PMID: 
22786849; PubMed Central PMCID: PMC3472459. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


 

57 
 

113. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time 
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. doi: 
10.1006/meth.2001.1262. PubMed PMID: 11846609. 
114. Stossi F, Dandekar RD, Bolt MJ, Newberg JY, Mancini MG, Kaushik AK, et al. High 
throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-
regulator. Oncotarget. 2016;7(13):16962-74. doi: 10.18632/oncotarget.7655. PubMed PMID: 
26918604; PubMed Central PMCID: PMC4941363. 
115. Foulds CE, Tsimelzon A, Long W, Le A, Tsai SY, Tsai MJ, et al. Research resource: 
expression profiling reveals unexpected targets and functions of the human steroid receptor 
RNA activator (SRA) gene. Molecular endocrinology. 2010;24(5):1090-105. Epub 2010/03/12. 
doi: 10.1210/me.2009-0427. PubMed PMID: 20219889; PubMed Central PMCID: 
PMCPmc2870939. 
116. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) 
method. Nature protocols. 2008;3(6):1101-8. Epub 2008/06/13. PubMed PMID: 18546601. 
117. Huss JM, Imahashi K, Dufour CR, Weinheimer CJ, Courtois M, Kovacs A, et al. The 
nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac 
pressure overload. Cell metabolism. 2007;6(1):25-37. doi: 10.1016/j.cmet.2007.06.005. PubMed 
PMID: 17618854. 
118. Luo J, Sladek R, Carrier J, Bader JA, Richard D, Giguere V. Reduced fat mass in mice 
lacking orphan nuclear receptor estrogen-related receptor alpha. Molecular and cellular biology. 
2003;23(22):7947-56. PubMed PMID: 14585956; PubMed Central PMCID: PMC262360. 
119. Yu DD, Huss JM, Li H, Forman BM. Identification of novel inverse agonists of estrogen-
related receptors ERRgamma and ERRbeta. Bioorganic & medicinal chemistry. 
2017;25(5):1585-99. doi: 10.1016/j.bmc.2017.01.019. PubMed PMID: 28189393. 
120. Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-
1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related 
receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-
1alpha. The Journal of biological chemistry. 2002;277(43):40265-74. doi: 
10.1074/jbc.M206324200. PubMed PMID: 12181319. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 27, 2018. ; https://doi.org/10.1101/401729doi: bioRxiv preprint 

https://doi.org/10.1101/401729

