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Abstract: 

Defining the number, proportion, or lineage of distinct cell types in the developing human 

brain is an important goal of modern brain research. We defined single cell transcriptomic 

profiles for 40,000 cells at mid-gestation to identify cell types in the developing human 

neocortex. We define expression profiles corresponding to all known major cell types at 

this developmental period and identify multiple transcription factors and co-factors 

expressed in specific cell types, providing an unprecedented resource for understanding 

human neocortical development including the first single-cell characterization of human 

subplate neurons. We characterize major developmental trajectories during early 

neurogenesis, showing that cell type differentiation occurs on a continuum that involves 

transitions that tie cell cycle progression with early cell fate decisions. We use these data 

to deconvolute regulatory networks and map neuropsychiatric disease genes to specific 

cell types, implicating dysregulation of specific cell types, as the mechanistic 

underpinnings of several neurodevelopmental disorders. Together these results provide 

an extensive catalog of cell types in human neocortex and extend our understanding of 
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early cortical development, human brain evolution and the cellular basis of 

neuropsychiatric disease. 

 

One Sentence Summary: Comprehensive single cell transcriptomes in developing 

human cortex inform models of cell diversity, differentiation and disease risk.  

 

Main text: 

The human cortex is composed of billions of cells estimated to encompass hundreds or 

thousands of distinct cell types each with unique functions (1, 2). It is reasonable to 

assume that to understand a system as complex as the human cortex, it is necessary to 

understand its components (3, 4).  Ground breaking work in mouse revealed the power of 

single-cell transcriptomics for providing a framework for understanding the complexity and 

heterogeneity of cell types in the brain (5-10).  The availability of high quality tissue and 

advances in single-cell transcriptomic technologies now permit us to catalog the cell type 

diversity of the human cortex in a comprehensive and unbiased manner (11).  Despite the 

enormous progress that has been made in characterizing early cortical development (1, 

12-16), many of the molecular mechanisms underpinning the generation, differentiation, 

and development of the diverse types of cells remain largely unknown (17). Molecular 

taxonomies of cortical cell types from developing human brains enable us to understand 

the mechanisms of neurogenesis and how the remarkable cellular diversity found in the 

human cortex is achieved (18-22). Developing knowledge of neocortical cell types and 

their transcriptional programs during this epoch is a key step in understanding mechanistic 

dysregulation in neurodevelopmental disorders with cell type resolution. Several recent 

studies have taken a first step in this direction, analyzing several hundred, or a few 

thousand cells from developing human brain (18-22). However, advances in technology 

and throughput [e.g. Drop-seq (5)] now allow us to analyze an order of magnitude more 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2018. ; https://doi.org/10.1101/401885doi: bioRxiv preprint 

https://doi.org/10.1101/401885
http://creativecommons.org/licenses/by-nc-nd/4.0/


cells to complement and extend these studies, providing a deeper picture of human 

cortical development.  

 

Here we use single-cell RNA sequencing (scRNA-seq) to define cell types and compile 

cell type transcriptomes in the developing human neocortex. We focus on the cortical 

anlage at mid-gestation (gestation week (GW) 17 to 18) (Fig. 1A) because this period 

contains the major germinal zones and the developing cortical laminae containing 

migrating and newly born neurons, and neurodevelopmental processes occurring during 

this epoch are implicated in neuropsychiatric disease (23, 24). To optimize detection of 

distinct cell types, we separated the cortex into the germinal zones [ventricular zone (VZ) 

and subventricular zone (SVZ)] and developing cortex [subplate (SP) and cortical plate 

(CP)] prior to single-cell isolation. Using Drop-seq (5), we obtained and compared high 

quality profiles for ~40,000 cells from human cortex (Fig. 1A; fig. S1, A and B; and tables 

S1 to S3), and a small subset with microfluidics approaches (Fluidigm) for technical 

comparisons.  

 

We first applied standard unbiased clustering based on stochastic nearest neighbor 

imbedding (tSNE; see materials and methods) and spectral K-nearest neighbor graph 

based clustering (25), identifying 16 transcriptionally distinct cell groups. Cell types 

originated from the expected anatomical source, and clustered by biological cell type 

rather than batch or technical artifacts (Fig. 1, B to G and fig. S1, C and D). We identified 

multiple groups of cells at different stages of neuronal differentiation and maturation, 

corresponding to all known major cell types at this developmental time period including: 

radial glia (RG), intermediate progenitors (IP), migrating, SP and CP excitatory neurons 

(Ex), interneurons (In), microglia (Mic), oligodendrocyte precursors (OPC), and supporting 

cells (endothelial cells, pericytes) (Fig. 1, B to F; fig. S2A; and tables S4 to S6). Clusters 
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contained between 50 and 2,000 cells, with the smallest cluster captured, which belonged 

to microglia, comprised of ~50 cells, with other small clusters for oligodendrocyte 

precursors, endothelia, and pericytes comprised of 306, 237, 114 cells, respectively (Fig. 

1G and table S4).  Clusters were reproducible and robust as ascertained by bootstrapping 

(fig. S2B). Ordering of cells by pseudo-time in an unbiased manner using Monocle 2, a 

computational method that performs lineage trajectory reconstruction based on single-cell 

transcriptomics data, (26, 27) confirmed the predicted developmental trajectory (Fig. 1, H 

and I). For example, it is possible observe the ordered transitions between different neural 

progenitor types and maturing glutamatergic neurons, with RG transitioning to IPs, and 

IPs transitioning to newborn migrating neurons (Fig. 1I).  

 

Recognizing that with scRNA-seq there is an inherent practical tension between 

sequencing depth and the number of cells profiled, we explored the consequences of this 

tradeoff by performing down-sampling of sequencing depth and the number of cells 

analyzed to determine thresholds for cell type detection (fig. S3, A to D). We observed 

that cell type detection, especially for low abundance types appears to be more sensitive 

to the number of cells profiled than sequencing depth (fig. S3, A to D). This is also 

consistent with the observation that among the genes most highly expressed in a given 

cluster, most are specific to a cell type, and not simply highly expressed house-keeping 

genes (fig. S4, A and B). Further, while each individual cell profile is an incomplete 

representation of that cell type (28), we reasoned that we could harness the power of 

sampling single cells at a large scale by pooling transcriptomes within cells of a given type 

to provide more complete cell type transcriptome representations. To evaluate the 

completeness of cell type signatures derived from pooling, we iteratively subsampled cells 

from clusters and compared the stability of gene expression signatures across iterations 

by ranking genes by mean expression level (figs. S4, C and D). Subsamples of 50 cells 
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showed high stability in ranking (see materials and methods) for the top 1,000 genes, 

whereas 500 cells showed very high rank stability for the top 4,000 genes, allowing us to 

empirically assess the completeness of cell type signatures with different sample sizes 

(figs. S4, C and D). At a depth of 40,000 cells, we obtain stable transcriptomes 

representing 3,000-5,000 genes for most of the cell types present (table S5). Comparison 

of these data with a lower throughput, higher sequencing depth method (Fluidigm C1, (19), 

fig. S5), revealed that although Fluidigm C1 detected a greater number of genes on 

average from individual cells, the ability to leverage an order of magnitude more cells with 

Drop-seq provided more stable mRNA transcript profiles for a given cell type (fig. S5, A to 

C). We provide these cell type specific expression profiles with annotated gene expression 

ranking confidence measures for each cell type (table S5). 

 

To further evaluate the quality of scRNA-seq transcriptomic catalogs, we compared 

scRNA-seq datasets produced from different technologies and laboratories to bulk RNA-

seq expression profiles from human fetal cortex (29).  We reasoned that pooling scRNA-

seq expression profiles from many cells from a tissue would reveal the magnitude to which 

single cell protein-coding transcriptomes approximate bulk tissue expression profiles. 

Consistently, gene expression profiles generated using different scRNA-seq 

methodologies strongly correlated with bulk RNA-seq gene expression profiles (Spearman 

0.69-0.83) (fig. S6, A and B).  However, we did observe a group of approximately 400 

protein coding genes that were consistently under-represented in single-cell datasets 

across the methods and laboratories compared to bulk tissue RNA-seq (fig. S6, C and D). 

These genes encoded cell adhesion molecules, were significantly longer, brain enriched, 

and involved in neuronal development (fig. S6, E to H).  The differences between scRNA-

seq methods and bulk tissue RNA-seq may be due to mapping differences between poly-

A primed scRNA-seq datasets and rRNA depleted full length mRNA bulk tissue RNA-seq, 
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or dissociation procedures common to all scRNA-seq methods. However, comparison of 

expression of canonical cell type marker genes showed similar expression levels 

compared to bulk tissue RNA-seq (fig. S6I).  This indicates that despite small biases in 

gene detection shared across scRNA-seq methods, the relative frequencies of major cell 

types were not over- or under-represented in the Drop-seq dataset. In conjunction with the 

high correlation with bulk tissue RNA-seq this demonstrates the reproducibility and 

robustness of the scRNA-seq dataset (fig. S6, A and I).  

 

Having ascertained the quality and robustness of the cell clusters and associated gene 

expression profiles, we reasoned that we could gain insight into cell type specific 

regulatory programs by comparing transcription factor expression across cell types. 

Indeed, we find previously characterized transcription factors and co-factors enriched in 

their corresponding cell types (Figs. 1F and 2A). In addition, we find several transcription 

factors and co-factors (ZFHX4, CARHSP1, ST18, and CSRP2) that have not been 

associated with specific neocortical cell types (Fig. 2A). These transcription factors also 

displayed laminae-specific expression in a bulk tissue laser captured micro-dissected 

(LCM) expression dataset (30), and temporal trajectories similar to canonical cell type 

markers (Fig. 2, A and B and fig. S7, A and B).  

 

The ST18-expressing cluster showed a division in cells expressing deep layer markers 

and cells expressing SP markers (fig. S8, A and B) (31, 32).  However, SP markers 

previously defined in other species were also expressed in subsets of upper layer neurons 

and neural progenitors (fig. S8B) and were not uniquely expressed in the SP in a fetal 

LCM atlas (30) (fig. S8C), possibly due to the temporal specificity of many of these markers 

(31).  To derive a human SP set of markers across mid-gestation, we used the LCM 

dataset to identify SP enriched genes (fig. S8C, see materials and methods).  This new 
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group of SP markers displayed clear expression in a group of cells within the deep layer 

excitatory cluster, overlapping with ST18 (fig. S8B); sub-clustering (see materials and 

methods) separated the deep layer neurons from the SP neurons (fig. S8D).  Genes 

enriched in the SP neuron cluster, or highly correlated with ST18 display SP enrichment 

in the LCM laminae dataset, verifying our capture of SP neurons and identification of many 

additional SP neuron markers (fig. S8, E to H).  This represents the first transcriptomic 

characterization of SP neurons at single-cell resolution, and a valuable resource for 

exploring SP biology. 

 

To validate predictions for these putative novel cell type markers, we performed RNA 

FISH, which confirmed laminae-specific expression of each of the transcription factors and 

co-factors tested: ZFHX4 and CARHSP1 in RG, ST18 in the SP, and CSRP2 in excitatory 

neurons (Fig. 2, C and D). Of particular interest was ZFHX4, which has been previously 

associated with 8q21.11 microdeletion, a syndrome characterized by intellectual disability, 

hypotonia, decreased balance, sensorineural hearing loss, and unusual behavior (33). 

Our data localizes ZFHX4 specifically to RG in the developing human neocortex for the 

first time, implicating specific dysregulation of RG as the mechanism underlying 8q21.11 

microdeletion syndrome. 

 

A first step in understanding the regulatory mechanisms active in the human neocortex is 

assigning the activity of regulatory elements to specific cell types. To deconvolute the cell 

type specificity of regulatory elements in human fetal cortex we leveraged a recently 

generated map of regulatory elements active in developing fetal cortex and their putative 

target genes (29).  Using this map, we identify promoters and enhancers regulating the 

expression of genes enriched in each of the cell clusters defined in this study (see 

materials and methods) (table S7).  Enhancers associated with specific cell types were 
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characterized by remarkable consistency in mean enhancer size, number associated with 

each gene, and distance to the target gene for each cell type (fig. S9, A to F).  In addition, 

there was no correlation between target gene length or GC content and number of 

associated enhancers (fig. S9, G and H).  This represents the first map of active regulatory 

elements regulating cell-type specific genes in the human neocortex and a rich resource 

for understanding human neocortical regulatory mechanisms. 

Neurons are generated from the controlled asymmetric division of neural progenitors, 

which prompted us to analyze the distinct transcriptional states of cycling cells during this 

process (16). Neural progenitors clustered by cell cycle state in addition to cell type (Figs. 

1E and 3A, and fig S10, A to C), with about 30% of progenitors cycling, roughly consistent 

with previous observations (37% based on immunostaining) (34). Remarkably, we also 

observed that many of the cycling progenitors individually expressed markers of several 

distinct major cell types, including RGs, IPs, and neurons (Fig. 3, A to C). Doublets were 

an insufficient explanation for the co-expression of distinct cell type makers for multiple 

reasons, including that the number of cells expressing multiple major cell type markers is 

twice the empirically assessed doublet rate (table S2 and fig. S1B— also see materials 

and methods) and the highly non-random distribution of the cell types expressing markers 

of two cell types (Fig. 3C).  

 

Therefore, as an alternative explanation, we hypothesized that we were identifying an 

intermediate or transition state: mitotically active cells in the early stages of neurogenesis, 

i.e. RG producing IP, RG producing neurons, and IP producing neurons. Consistent with 

this hypothesis, mixed marker cells progressing through different stages of the cell cycle 

consistently displayed transcriptomes comprised of multiple major cell types (Fig. 3D and 

fig. S11, A and B). By S-phase, RG+IP+ and IP+Neuron+ cells more closely resembled 
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their presumed endpoint cell type, IP and neuron, respectively (Fig. 3D and fig S11B).  The 

transcriptomic signature of RG+Neuron+ S-phase and G2/M phase cells was closer to 

RG, potentially reflecting the greater dissimilarity between RG and neurons (Fig. 3D and 

fig. S11, A and B).  In addition, the mixed marker cells share a high percentage of the end 

point cell type signature, but the magnitude of expression of the cell type relevant 

signature genes is smaller than in cells in the fully differentiated cell clusters (Fig. 3E and 

fig. S11, C to F).  Mixed marker cells not in S, G2, or M phase may represent cells starting 

to cycle and differentiate, consistent with findings in mice that some radial glial precursors 

also express neuronal marker genes of both deep and superficial layers, representing 

transcriptionally primed cells (35). Alternatively, these mixed marker cells may be newborn 

cells that still retain some transcripts of the mother cell type, as has been previously 

suggested in mice  (18, 35).   

 

To independently validate the existence of cells in these transition states, we performed 

RNA FISH, observing S-phase neural progenitors in the VZ expressing both PAX6 and 

STMN2, indicating an induction of a neuronal program in a single cell before its neurogenic 

division (Fig. 3F). Quantification of 872 cells across the germinative layers indicated that 

6.1% (VZ), 5.8% (iSVZ) and 8.2% (oSVZ) of these cells co-express markers of RG and 

neurons, confirming our scRNA-seq data (see materials and methods). Given that mixed 

marker cells are indicative of a single cell transition state during early neurogenesis, we 

were able to quantify the relative proportions of progenitors undergoing distinct 

differentiation divisions (Fig. 3G), finding that RG produce roughly equal numbers of RG, 

IP, and neurons, but that IP produce approximately two times as many neuronal progeny 

as IP progeny. Taken together, these results indicate that during early neurogenesis: 1) 

Cell fate decisions occur prior to S-phase; 2) Differentiating “parent” cells not only express 

the few key transcription factors that drive cell fates, but express broad, mixed cell type 
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transcriptomes; 3) Neural cell-type differentiation occurs on a continuum and involves 

transcriptomic transitions tied to cell cycle progression (Fig. 3H).  An early cell fate 

decision point tied to cell cycle is consistent with previous work indicating cell fate 

decisions in neurogenesis are made in G1 (36, 37).  However, previous models of 

asymmetric neurogenic divisions suggest that only a few key transcription factors of the 

“daughter” lineage are expressed in the asymmetrically dividing cell, whereas we observe 

early induction of more extensive cell type transcriptional programs (36, 37).  Cells are 

producing transcriptomes representing two cell types from a single nucleus, prior to 

cytokinesis, demonstrating the usefulness of single-cell transcriptomics for furthering our 

understanding the transcriptional dynamics involved in early neural development (38, 39). 

 

We next reasoned that we could begin to leverage these single cell data to uncover some 

of the cellular and molecular mechanisms driving human cortical evolution by determining 

whether specific cell types were enriched with genes showing human-specific expression 

trajectories (hSET) in bulk tissue (40) (see materials and methods). We observed the 

strongest enrichment of hSET genes in outer radial glia (oRG) and callosal neurons, an 

upper layer excitatory subtype (fig. S12A). This is notable, since both of these cell types 

represent core processes involved in both neocortical expansion (16) and the elaboration 

of extensive cortical connectivity in humans (41).  Among the approximately 600 genes 

with oRG-enriched expression, we identified LYN, a Src tyrosine kinase previously 

implicated in neuronal polarization and AMPA signaling (42, 43), which had not been 

previously associated with this cell type.  LYN also displayed VZ and oSVZ enrichment in 

a fetal LCM atlas (30) (fig. S12B). We used RNA FISH to further validate these 

observations in developing human brains, showing that LYN localized to the germinal 

zones and was specifically expressed in the VZ and oSVZ, as measured by RNA FISH 

(fig. S12C).  
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Using a similar logic, we reasoned that we could use this deep molecular atlas of 

developing human brain cell types to identify the developmental stages and cell types 

where mutations causing high risk for neuropsychiatric disease act, so as to provide a 

reference for understanding disease mechanisms and circuits.  We first examined 

enrichment of high confidence autism spectrum disorder (ASD) risk genes, defined by 

harboring high risk likely protein-disrupting mutations (44) (Fig. 4A and fig. S13). The 

majority of ASD-risk genes were expressed in developing glutamatergic neurons, both 

deep and upper layer (Fig. 4A), consistent with previous studies (45, 46). However, at the 

individual gene level, there is substantial variability, and several genes are expressed in 

inhibitory neurons as well as excitatory neurons or progenitors (Fig. 4A and fig. S13).  For 

example, MYT1L and AKAP9 display pan neuronal expression, whereas GRIN2B is 

glutamatergic subtype specific, and ILF2 is expressed in cycling progenitors (Fig. 4A and 

fig. S13).  In adult, expression again concentrated in glutamatergic neurons, with some 

genes exhibiting more pan-neuronal expression patterns.   

 

In addition, our expanded atlas of cell types identified several genes that showed 

remarkably distinct patterns of extra-neuronal expression, including SLC6A1, which was 

enriched in pericytes, and TRIO, SETD5, TCF7L2, and KAT2B, which were enriched in 

oligodendrocyte precursors (Fig. 4A and fig. S13). These data implicate these cell types 

involved in maintenance of the blood brain barrier and the peri-neural environment for the 

first time in ASD risk.  We then expanded this analysis to high confidence intellectual 

disability (ID) and epilepsy risk genes, (Fig. 4, B and C, and figs. S14 to S16).  The 

majority of epilepsy-risk genes are also expressed in glutamatergic neurons in fetal and 

adult cortex (Fig. 4C and figs. S14 and S15).  ID risk genes were also enriched in 

glutamatergic neurons, but interestingly also showed enrichment in RG, which was not 
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observed with ASD or epilepsy. The impact on early progenitor types in ID relative to ASD 

and epilepsy is consistent with the more severe disease phenotype in ID (Fig. 4B and fig. 

S16).  Taken together, these results demonstrate cell type specific expression of ASD, 

epilepsy, and ID risk genes by mid fetal development and provide a framework for the 

cellular and developmental context in which individual ASD, epilepsy, and ID genes should 

optimally be studied. 

 

The majority of neuropsychiatric disease risk loci are found in the non-coding genome, 

where functional interpretation is hampered by limited knowledge of the genomic location 

and spatiotemporal activity of regulatory elements. Leveraging our cell type specific map 

of regulatory elements active in the human neocortex (Fig. 4D and table S7, see materials 

and methods), (29) we used a partitioned heritability approach based on LD score 

regression (47) to identify cell types enriched for variants influencing brain volume, 

cognition, or causing risk for neuropsychiatric disease (48-63). We found that variants 

influencing adult intracranial volume were specifically enriched in the regulatory elements 

of cycling progenitors (PgS, PgG2M), pinpointing a specific cell type and state likely 

associated with neural progenitor expansion (Fig. 4E and fig. S17). Importantly, by 

connecting causal genetic drivers to specific genes within a specific cell type, this not only 

identifies putative cell-type specific mechanisms involved in cortical expansion, but 

provides further support for the radial unit hypothesis of cortical expansion on the human 

lineage (16, 64).  

 

In contrast, common genetic variants influencing general cognition (IQ) were enriched in 

cycling neural progenitors, cortical plate glutamatergic neurons, SST inhibitory neurons, 

and intriguingly in pericytes (Fig. 4E and fig. S17). A less powered IQ genome-wide 

association study (GWAS) also found enrichment in maturing cortical plate glutamatergic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2018. ; https://doi.org/10.1101/401885doi: bioRxiv preprint 

https://doi.org/10.1101/401885
http://creativecommons.org/licenses/by-nc-nd/4.0/


neurons, but not in other cell types (Fig. 4E and fig. S17). Variants causing risk for 

schizophrenia were enriched in multiple cell types, including neural progenitors, 

glutamatergic neurons, interneurons, oligodendrocyte precursors and microglia (Fig. 4E 

and fig. S17). A recent study, using a partitioned heritability approach, found enrichment 

for schizophrenia variants in adult cortical glutamatergic neurons and cortical 

interneurons, consistent with bulk tissue analysis (65), but was unable to assess 

enrichment in human fetal cortical cell types given a lack of available data (66). Thus, our 

results now also implicate neural progenitors, oligodendrocyte precursors and fetal 

microglia in schizophrenia, highlighting the importance of generating single-cell resources 

from multiple time periods and brain regions. We did not observe enrichment of IBD or 

finger whorl variants (Fig. 4E and fig. S17) in the regulatory elements of any of the cortical 

derived cell types, supporting the cell type specificity of gene regulation. These results 

highlight how combining DNA accessibility profiling and single-cell sequencing can 

facilitate interpretation of the function of variants influencing brain structure and function.  

 

This resource of transcriptomic profiles of 40,000 single cells in human fetal cortex 

demonstrates the utility of single-cell analysis for characterizing human neurogenesis, 

identifying novel cell type regulatory mechanisms, and for understanding the cellular basis 

of brain phenotypes with neurodevelopmental origins.  By expanding the publicly available 

number of human fetal brain single-cell transcriptomes by an order of magnitude, these 

data provide more complete cell type mRNA transcript profiles, and permit discovery and 

characterization of rare cell types and states (18-22).  These data implicate early decision 

points in cell fate trajectories that are pre S-phase, leading to transcriptomically mixed cell 

states, and highlighting the importance of sampling single cells at a massive scale to 

capture rare types and states.  The transition state dynamics during early neurogenesis 
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show that cell type differentiation is on a gradual continuum and involves transcriptomic 

transitions tied to cell cycle progression.   

 

We also identify novel cell type enrichment of regulatory genes and elements and highlight 

how this can be used to identify critical cell types in monogenic disorders (e.g. ZFHX4 and 

8q21.11 deletion), as well as in ASD, expanding the implicated cell landscape in this 

disorder to include inhibitory neurons and non-neural cells in addition to glutamatergic 

neurons. The importance of cell type specific gene regulation underscores the importance 

of expanding single-cell taxonomies in the future to include single-cell epigenetic analysis 

to supplement the rich information contained in scRNA-seq catalogs as recently 

demonstrated (67). Lastly, we show that genes with human specific expression patterns 

act preferentially in oRG and upper cortical layer neurons, which is consistent with the 

expansion of these zones during brain evolution. These data provide a molecular context 

for cortical expansion and increased cortical-cortical connectivity in humans, and extend 

our understanding of developmental dynamics and the origin of neuropsychiatric disease 

risk in human neocortex. 
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Fig. 1. A catalog of cell types in developing human neocortex. 

(A) Diagram of experimental design illustrating anatomical dissection of regions.  VZ: 

ventricular zone; iSVZ: inner subventricular zone; oSVZ: outer subventricular zone; IZ: 

intermediate zone; SP: subplate; CPi: inner cortical plate; CPo: outer cortical plate; RG: 

radial glia; IP: intermediate progenitor; MN: newborn migrating excitatory neuron; EN: 

excitatory neuron; IN: interneuron; O: oligodendrocyte precursor; E: endothelial cell; P: 

pericyte; M: microglia. (B) Scatter plot visualization of cells after principal components 

analysis and t-stochastic neighbor embedding (tSNE), colored by Seurat clustering, and 

annotated by major cell types.  (C) Heatmap of gene expression for each cell. Cells are 

grouped by Seurat clustering, and the mean expression profile of enriched genes for each 

cluster was used to hierarchically cluster the Seurat clusters.  The top 20 most enriched 

genes are shown per cluster, and anatomical marker genes in the top 20 most enriched 

genes [for each cluster] are noted in parentheses.  Color bar matches Seurat clusters in 

B. (D and E) tSNE of cells colored by anatomical source (D), or mean expression of groups 

of canonical marker genes of major cell types (E).  (F) Heatmap of expression profiles of 

canonical cell type marker genes. Cells are grouped by Seurat clustering. Color bar 

matches Seurat clusters in B. (G) Cluster metrics. Ratio of cells derived from GZ or CP. 

Percent of total cell population. Percent of cells derived from each donor. Bar colors 

indicate grouping of cells by major cell type, e.g. CALB2 and SST interneurons are both 

blue.  (H) Pseudo-time analysis using Monocle 2.0 of cells expected to be part of the 

neurogenesis-differentiation axis, colored by Monocle state or pseudo-time. Each point 

represents a cell. Monocle 2.0 is a computational method aimed at performing lineage 

trajectory reconstruction based on single-cell transcriptomics data.  Pseudo-time 

represents an ordering of cells based upon the inferred trajectory, or in other words the 

predicted lineage trajectory.  (I) Pseudo-time trajectory colored by Seurat clusters. 
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Fig. 2. Novel cell type enrichment of transcription factors and co-factors. 

(A) Heatmap of expression of transcription factors, co-factors, and chromatin remodelers 

enriched in RG, excitatory neurons, and deep layer excitatory neurons.  Cells are grouped 

by cluster. Red indicates factors previously unknown to be enriched in the neocortical cell 

types of interest. (B) Expression of factors of interest in bulk tissue LCM laminae from 

developing cortex.  (C) RNA FISH of fetal cortex probed with the newly identified cell-

enriched transcription factors CARHSP1 and ZFHX4 (RG in the VZ and SVZ), ST18 (SP 

neurons), and CSRP2 (glutamatergic neurons in the CP). Quantification of normalized 

fluorescence intensity per layer for each set of probes (see materials and methods). Scale 

bar = 250µm (left) or 100µm (inset).  (D) Schematic of cell type specific expression of 

factors of interest. RG: radial glia; MP: mitotic progenitor; IP: intermediate progenitor; EN: 

excitatory neuron; IN: interneuron; O: oligodendrocyte precursor; E: endothelial cell; P: 

pericyte; M: microglia; VZ: ventricular zone; iSVZ: inner subventricular zone; oSVZ: outer 

subventricular zone; IZ: intermediate zone; SP: subplate; CPi: inner cortical plate; CPo: 

outer cortical plate 
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Fig. 3. Dissecting the acquisition of a neuronal program. 

(A) tSNE colored by mean expression of cell cycle phase markers.  (B) tSNE colored by 

co-expression of groups of canonical cell type markers.  Yellow indicates co-expression. 

(C) Percent of cells in each Seurat cluster displaying co-expression of major cell type 

markers.  (D) Mixed transcriptomic signatures of mixed marker cells in S-phase 

corresponding to expression of markers from multiple cell types. For the RG to IP 

comparison, RG and IP eigengenes were derived from differentially expressed genes 

between RG and IP cells, and similarly for the RG to Neuron comparison and IP to Neuron 

comparison.  Boxplots: box indicates first and third quartiles; the whiskers extend from the 

box to the highest or lowest value that is within 1.5 * inter-quartile range of the box; and 

the line is the median.  (E) Shared gene signatures between major cell types and mixed 

cell types.  (F) RNA FISH of fetal cortex probed with the S-phase marker PCNA (green), 

the RG marker PAX6 (red), the neuron marker STMN2 (magenta), and stained with DAPI 

(blue). Panels on the right show high magnification single-plane confocal images of 

individual cells expressing all three markers. Scale bar = 100µm (left) or 10µm (right). (G) 

Quantification of relative amounts of mitotic progenitors undergoing different differentiation 

events. (H) Diagram of mixed cell type transcriptomic states that is characteristic of 

neurogenic differentiation trajectories in human neocortex. RG: radial glia; MP: mitotic 

progenitor; IP: intermediate progenitor; EN: excitatory neuron; IN: interneuron; O: 

oligodendrocyte precursor; E: endothelial cell; P: pericyte; M: microglia. 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2018. ; https://doi.org/10.1101/401885doi: bioRxiv preprint 

https://doi.org/10.1101/401885
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

E

C

0 0 0 0 0 0
3.

2
3.

6
3

2.
2

3
2.

6
0

0 0 0

0

3

6

9

Figure 4

PHIP
CTNNB1

SYNCRIP
ZNF292
TUBA1A

MYT1L
SCN2A
HIVEP2

STXBP1
SETBP1

CDH2
SETD5

MAP3K1
GRB14
AP3B1

SLC6A1
DDX3X

ID
 ri

sk
 g

en
es

SLC1A2
ALDH7A1
HNRNPU

KCNQ3
SPTAN1
FOXG1
MEF2C
SCN9A

GRIN2B
SCN3A

GABBR2
GABRB3

SERPINI1
SCN2A
GNAO1

GABRB2
FGF12

PPP3CA
KCNMA1

PLCB1
FRRS1L
STXBP1

NTRK2
YWHAG

GABRG2
CNTNAP2
CACNA1A

GABRA1
DNM1

DNM1L
PRICKLE1

ARX
SCN1A

SCARB2
SLC2A1

SMARCA2
SLC6A1

ST3GAL5
CSTB

ASAH1

Ep
ile

ps
y 

ris
k 

ge
ne

s

RG MP IP EN IN O M E P 
ASD

Epilepsy ID

vR
G

oR
G

PgS

PgG
2M IP ExN ExM

ExC
al

ExD
p1
ExD

p2
InS

ST

InC
ALB

2
OPC

End Per Mic

 -L
og

10
 p

-v
al

ue

0.
3

0.
3 1.

7
1.

4
1.

2
1.

3 1.
8

3.
6 3.

2
3.

3
1.

8
0.

3 0.
5 0.
1

0.
3 0.
5

0

5

10

15

20

25

2.
3

1.
7

1.
1 1.

4
1.

7
3.

2 2.
5

2.
2

2.
7

2.
2

2.
8

2
2.

3
1.

7
1.

3
-0

.3

0

1

2

3

4

 -L
og

10
 p

-v
al

ue

ILF2
ANK2

BCL11A
MYT1L
AKAP9
FOXP1

GRIN2B
TBR1

CTTNBP2
GABRB3

DIP2A
NRXN1
SCN2A

CUL3
ASH1L

ETFB
ARID1B

TRIO
SETD5

TCF7L2
KAT2B

NCKAP1
SLC6A1

PTEN
KDM6B

vR
G

oR
G

PgS

PgG
2M IP ExN ExM

ExC
al

ExD
p1
ExD

p2
InS

ST

InC
ALB

2
OPC

End Per Mic

D

RG MP IP EN IN O M E P 

AS
D 

ris
k 

ge
ne

s

vR
G

oR
G

PgS

PgG
2M IP ExN ExM

ExC
al

ExD
p1
ExD

p2
InS

ST

InC
ALB

2
OPC

End Per Mic

RG MP IP EN IN O M E P 

ASD

Epilepsy ID

ASD

Epilepsy ID

 -L
og

10
 p

-v
al

ue

Partitioned heritability of cell−specific regulatory elements
in developing human cortex

0 10 20 30 40 50 60
Enrichment

vR
G

oR
G

PgS PgG
2M

IP ExN ExM ExC
al

ExD
p1

ExD
p2

InS
ST

InC
ALB

2

OPC
End Per Mic

32
(1.5)

38
(1.7)

11
(1.9)

10
(1.5)

27
(2.7)

16
(2.1)

23
(4.2)

14
(2.3)

26
(1.9)

8.5
(1.5)

24
(2)

28
(1.5)

8.8
(1.5)

11
(2.1)

13
(2.4)

14
(1.5)

11
(1.5)

18
(2.4)

12
(1.5)

11
(2.5)

9.5
(1.8)

19
(1.4)

13
(2.3)

10
(1.4)

12
(2)

52
(1.8)

18
(2.2)

24
(1.9)

25
(2.3)

16
(2.1)

17
(3.4)

11
(1.5)

28
(1.4)

7.7
(1.3)

O
th

er
ND

Ne
ur

op
sy

ch
iat

ric
Co

g
Vo

lICV
Edu

IQ
ADHD

ASD
BD

Schizophrenia
DS

MDD
Neuroticism

SWB
Epilepsy

Insomnia
AD
PD

IBD
Whorls_index

Whorls_thumb

1.5

0.0

-1.5

Expression

RG MP IP EN IN O M E P 

AAA
AAA
AAA
AAA

Cell type
enriched gene (scRNAseq)

Chromatin accessibility 
correlation (ATAC-seq)

Promoter
RE

Significant GWAS SNP

Human 
mid-gestation cortex 

ATAC-Seq

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2018. ; https://doi.org/10.1101/401885doi: bioRxiv preprint 

https://doi.org/10.1101/401885
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4. Cellular determinants of disease. 

(A to C) Cell type enrichment of ASD, ID, or epilepsy risk genes respectively. Heatmap: 

Expression of ASD risk genes is enriched in fetal glutamatergic neurons with some genes 

specifically expressed in other cell types. Red: gene is discussed in text.  Bar graphs: 

numbers indicate log2 odds ratio, the red line indicates significance.  Heatmaps: cells are 

ordered by cluster.  RG: radial glia; MP: mitotic progenitor; IP: intermediate progenitor; 

EN: excitatory neuron; IN: interneuron; O: oligodendrocyte precursor; E: endothelial cell; 

P: pericyte; M: microglia. (D) Schematic showing the approach to identify regulatory 

elements (RE) for specific cell types and assess enrichment for specific brain traits. REs 

of genes enriched in specific cell types are identified by chromatin accessibility correlation 

between the promoter of the gene and other accessible peaks within 1Mb. The set of 

promoter and distal RE peaks are then tested for enrichment in SNPs associated with 

brain traits and neuropsychiatric disease using partitioned heritability by LD score 

regression. (E) Heatmap showing significant partitioned heritability enrichment for specific 

brain traits and neuropsychiatric disorders in different cell populations identified in 

developing human cortex. The color indicates the partitioned heritability enrichment and 

numbers are the FDR-corrected P-values. Only significant enrichments are shown in the 

heatmap, complete results are found in fig. S17. References for each GWAS are found in 

table S8. 
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