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Abstract

It is well established that organisms undergo epigenetic changes both during develop-
ment and aging. Developmental changes have been extensively studied to characterize the
differentiation of stem cells into diverse lineages. Epigenetic changes during aging have
been characterized by multiple epigenetic clocks, that allow the prediction of chronolog-
ical age based on methylation status. Despite their accuracy and utility, epigenetic age
biomarkers leave many questions about epigenetic aging unanswered. Specifically, they
do not permit the unbiased characterization of non-linear epigenetic aging trends across
entire life spans, a critical question underlying this field of research. Here we a provide
an integrated framework to address this question. Our model, inspired from evolutionary
models, is able to account for acceleration/deceleration in epigenetic changes by fitting
an individuals model age, the epigenetic age, which is related to chronological age in a
non-linear fashion. We have devised a two stage procedure leveraging these model ages to
infer aging trends over the entire lifespan of a population. Application of this procedure
to real data measured across broad age ranges, from before birth to old age, and from two
tissue types, suggests a universal logarithmic trend characterizes epigenetic aging across
entire lifespans. This observation may have important implications for the development
and application of future, more accurate, aging biomarkers.
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1 Introduction

Cell type specific differences in gene expression are partially controlled by chromatin accessibil-
ity and specific covalent modifications. These include modification to histones and DNA [25, 2].
Among these, DNA methylation has been one of the most extensively studied components of
cell type specification [11, 5]. The covalent attachment of a methyl group to cytosine is cat-
alyzed by either de novo or maintenance methyltransferases, and in mammals is primarily
targeted to CpG dinucleotides. Most CpGs in mammalian genomes are methylated, but pock-
ets of hypomethylation exist, largely at promoters and enhancers. It has been shown that
the absence of DNA methylation is closely associated with the presence of H3K4 methylation,
which is also a hallmark of enhancers and promoters [16]. As stem cells differentiate along
myriad lineages, each cell type tends to have distinctive DNA methylation profiles, mostly due
to differential activation of enhancers [8].

Once an organism reaches its adult stage, these cell types and their respective epigenomes,
have been largely determined. While these developmental epigenetic changes are believed to
be rapid and extensive, in the past few years it has become ever more apparent that epigenetic
changes continue to occur as an organism ages [21]. This observation has led to the development
of multiple epigenetic clocks, that is, biomarkers that accurately predict the chronological age
of an individual based on his/her DNA methylation profile [9, 7]. These epigenetic clocks have
been extensively used in aging research and have proven to be more accurate than previous
aging biomarkers, such as the length of telomeres [14]. Using these epigenetic clocks, much
has been learned about the effects of the environment on aging. For example, it is well known
that the restriction of calories in mice slows down aging, increases lifespan as well as the rate
of the epigenetic clock [23]. Similar conclusions have been found in humans, where individuals
with more rapid epigenetic aging tend to suffer from higher all-cause mortality rates [4].

While these epigenetic clocks have proven to be useful for aging research, they are con-
structed using machine learning methods that provide limited insights into the underlying
processes that are driving these changes. For example, the Horvath epigenetic clock biomarker
is constructed by selecting 353 CpG sites using penalized lasso regression, that optimally pre-
dict the chronological age of an individual. This biomarker also sets a hardcoded boundary
of 20 years, where childhood ages are transformed using a logarithmic function up to this
boundary, while adult ages are untransformed. [9]. This biomarker generates very accurate
predictions of chronological age, typically within a couple of years, but leaves many questions
unanswered. Is there truly a change in the rate of epigenetic aging, from logarithm to linear
trends, at 20 years? Does the linear fit of epigenetic age persist indefinitely, even for older indi-
viduals? Do non-linear trends in epigenetic aging vary across populations? As the biomarkers
are species specific, they also do not allow one to directly address whether epigenetic aging
trends vary across species. Moreover, recent studies [15, 3] question the validity of the time
linearity assumption even in human adults, calling to a more global view of the process.

To address some of these questions, we have previously proposed a common framework by
borrowing from the field of evolution. The universal pacemaker (UPM) of genome evolution was
devised in the setting of molecular evolution in order to relax the time-linear evolution (i.e. rate
constancy ) imposed by the molecular clock hypothesis [20, 24, 17], to account for correlation
between rate changes in the genes of an evolving organism. The UPM is a statistical framework
under which the relative evolutionary rates of all genes remain nearly constant whereas the
absolute rates can change arbitrarily. In [19] we first proposed the adaptation of the UPM to
the epigenetic setting, named the epigenetic pacemaker (EPM), and showed its application to
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simulation and small scale biological data. To the best of our knowledge, the EPM is the first
model based framework for epigenetic aging, where the rates of change with time of individual
CpG sites are parametrized, along with the epigenetic age of the individual. In [18] we devised
a fast, conditional expectation maximization (CEM) algorithm that is capable of processing
inputs of several thousands of sites and individuals.

In this work we set out to address some of the questions mentioned above, regarding the
non-linear trends of epigenetic aging across populations. First we show that the EPM, which
lacks any predefined regimes of age intervals, can be used to model and identify epigenetic
aging trends over the entire lifespan of a population. We first apply our approach to a syn-
thetic model simulating a non-linear aging process and show that our framework is capable of
capturing the trend built into this model. Next we apply our model to publicly available sets
of DNA methylation collected across broad age ranges and diverse tissues. Our results suggest
unambiguously that a logarithmic trend across the entire lifespan is a better description of
epigenetic aging than linear or polynomial trends.

2 Methods

2.1 The Evolutionary Models

Our basic objects are a set of m individuals and n methylation sites in a genome (or simply
sites). Each individual has an age, forming the set t of time periods {tj} corresponding to each
individual j’s age. Henceforth we will interchangeably refer to individuals with their age. Each
individual has a set of sites si undergoing methylation changes at some characteristic rate ri.
Each site si starts at some methylation start level s0i . All individuals have all the sites si. As ri
and s0i are characteristic of the site si, by the model they are the same at all individuals. The
latter fact, links the same sites across different individuals, but also within individuals by the
fact that sites generally maintain the same characteristic rates across the whole population.
Henceforth, we will index sites with i and individuals with j.

Now, let si,j measure the methylation level at site si in individual j after time (i.e. age)
tj . Hence, under the molecular clock model (i.e. when rate is constant over time), we expect:
sij = s0i + ritj . However, in reality we have a noise effect εi,j that is added and therefore the
observed value ŝij is ŝij = s0i + ritj + εi,j .
Our goal is to find, given the input matrix Ŝ = [ŝi,j ], the maximum likelihood (ML) values for
the variables ri and s0i for 1 ≤ i ≤ n. For this purpose, we assume a statistical model for εi,j by
assuming that it is normally distributed, εi,j ∼ N(0, σ2). In [19] we showed that minimizing
the following function, denoted RSS, is equivalent to maximizing the model’s likelihood

RSS =
∑
i≤n

∑
j≤m

(ŝi,j − (s0i + ritj))
2. (1)

We also showed that there is an efficient and precise linear algebra solution to this problem,
that we describe in more detail in the supplementary text.

In contrast to the MC, under the EPM model, sites may arbitrarily and independently of
their counterparts in other individuals, change their rate at any point in life. However, when
this happens, all sites of that individual change their rate proportionally such that the ratio
ri/ri′ is constant between any two sites i, i′ at any individual j and at all times. In [19] we
showed that this is equivalent to extending individual j’s age by the same proportion of the
rate change. The new age is denoted as the epigenetic age. Therefore here we do not just use
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the given chronological age but estimate the age of each individual. Hence under the EPM
we must find the optimal values of s0i , ri, and tj (where tj represents a weighted average of
the rate changes an individual has undergone through life). The solution to this optimization
problem is described in detail in our previous publications [19, 18]. We note that the deviation
between the chronological age and the estimated epigenetic age is an age difference which,
when positive, is denoted as age acceleration, and deceleration - otherwise.

To compare between the two models - MC and EPM, we note the following. The MC
model is restricted to linearity with time by estimating a constant rate of methylation at each
site, and using the given chronological age of each individual. The competing, relaxed, model
(EPM) has no such restriction, and we estimate an ”epigenetic” age for each individual. By
definition, the ML solution under the relaxed model cannot be worse than the constrained
model. For that specific case, when one hypothesis generalizes another, there is a special test,
the likelihood ratio test (LRT), in which the specific hypothesis serves as the null hypothesis
and the goal is to reject it in favor of the alternative one. In the supplementary text we provide
a more detailed explanation of this test and its application in our case.

2.2 Selecting Informative Methylation Loci

DNA methylation platforms usually measure several hundreds of thousands of sites. It has been
observed that many of these sites are invariant and do not change with age. It is desireable
to retrict te analysis only to the most informative sites. Nevertheless, among the sites that do
change it is necessary to set a criterion for site selection as it is inefficient to analyze all of the
sites. There are several alternatives that we now describe.

The first and most basic and intuitive criterion for site selection is site variance - simply
choose the sites that exhibit the largest variability. Figure 1(L) depicts the resulted analysis
based on this criterion. This criterion is crude in the sense that it entirely ignores the rela-
tionship between time (age) and methylation. Therefore the next criterion to be examined is
the covariance between age and methylation status at the site. The covariance metric selects
sites that have a large change in methylation with age. We note that this criterion will not
necessarily yield a significant linear fit between age and methylation status, the sites may still
have a significant scatter, as is shown in Figure 1(M).
Therefore the third criterion is the (absolute) Pearson correlation coefficient (PCC) defined as
ρX,Y = Cov(X,Y )/σX/σy. In contrast to the covariance, PCC selects sites that have a tight
fit to a linear relationship between methylation and age, although some of them show small
changes in methylation across the range. Figure 1(R) shows the results based on sites selected
by the PCC criterion. It is noticeable that using this criterion a much tighter relationship
between epigenetic and chronological age is obtained. Hence we use PCC to select the sites
to be modeled for all our data sets as it provided the clearest trends between epigenetic and
chronological age.
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Figure 1: Site Selection Criterion . Scatter plots of inferred epigenetic age (e-age, y-axis)
as a function of the chronological age (c-age, x-axis) as a result of applying the EPM algorithm
to blood samples from data set GSE60132 (see more details in the Results sec.). Each point
represents an individual. 1000 best sites were selected by the following three criteria. Left:
Sites are selected based on their variance, regardless of correlation to age. Middle: Sites
are selected based on their covariance with age. Right: Sites are selected by the (absolute)
Pearson correlation coefficient.

2.3 Determining the trend line of epigenetic age

To determine the trend line between epigenetic and chronological age we employed both coarse
and fine grained procedures based on the individual e-age inferred initially by the pacemaker
criterion. Recall though that a first stage test is whether the pacemaker criterion, stating
that rates and starting states are statistically correlated across individuals, and sites at any
individual are also correlated, holds. This, is done by comparing to the molecular clock to the
pacemaker model, as was described in the model description. Indeed, in the supplementary
text we show the results of this test, along with the specific values obtained. The values depict
that the pacemaker alternative is always superior with p-value smaller than 10−6.
We start by describing the two-stage procedure for determining the type of trend in the pop-
ulation. The mutual independence of the stages, along with lack of any prior assumption of
any trend in the population, guarantees that the trend inferred is objective and unbiased.
The EPM procedure is applied to the data in order to find optimal values for rates, starting
states, and epigenetic age for all sites and individuals. Note that except for that pacemaker
principle, that enforces uniformity of site rate and starting state across all individuals, there is
no mechanism imposing correlation between any two individuals. Therefore, the EPM assigns
every individual the optimal epigenetic age.
Once the EPM procedure is done, each individual is assigned its own epigenetic age. At the
second stage, we seek a function that best fits the relationship between epigenetic and chrono-
logical age across the entire age range. Our prime criterion for goodness of fit for a trend of
this relationship between epigenetic and chronological age, is the R2 coefficient from the trend
line. In all our data sets we parametrized three functional forms for the trend line: linear,
quadratic and exponential, and we used Excel to fit the best coefficients for each type. In the
Results section we provide a more detailed description on this process.

We now describe a second approach that we devised and utilized. In age ranges where the
trend is not conspicuous, that is, near linear, such that it cannot be distinguished convincingly
using the above functional forms, we note the following. For a person j with age tj and inferred
e-age pj we define ρj = tj/pj . Now, assume the increase in e-age is decreasing with time, then
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we observe that if we order the ρjs by increasing tj , we obtain a monotonic increasing series
(of ρj). We denote that series [ρj ]. However, due to biological and statistical noise we never
expect to find strict monotonicity at [ρj ] and we are bound to test only a trend of monotonicity.
Now, we note that by the definition of ρj also the variance of ρj is changing in time. However,
we note the following. For any two indices j1 and j2 such that j1 < j2, if [ρj ] is monotonically
decreasing, then ρj1 < ρj2 . Moreover, suppose we randomize the order of [ρj ]. Then for any two
indices j1 and j2 the probability P[ρj1 > ρj2 ] = 1/2 and hence the expected number of j1 < j2
such that ρj1 < ρj2 is

(
n
2

)
/2. Now, since the variables ρj might be dependent, we cannot use

standard bounds on deviations to calculate the probability of seeing that many pairs j1 < j2
such that ρj1 < ρj2 by chance. This forces the use of a non parametric test of the hypothesis.
For this purpose we can use the Mann-Kendall test for monotonic trend [13, 12, 6]. According
to this method, given a random vector v, all pairs of indices (i, j) such that i < j are checked
whether vi < vj . Let p be the number of pairs (i, j) for i < j, such that vi < vj and let q be
the number of such pairs such that vi > vj . Now let S = p− q, representing first the direction
of trend with S > 0 when the series is increasing, and vice versa for S < 0. However, S also
indicates on the intensity of the trend, and we note that under h0 (no monotonicity), we have
E(S) = 0. Now we also need to compute the variance of S, Var(S) = n

18(n− 1)(2n+ 5). The
statistic z defined z = S−1√

Var(S)
follows approximately the standard normal distribution, hence

allowing us to obtain conveniently a p-value for the trend indicated by S.

3 Results

3.1 Identifying Trends in a Cohort

Methylation trends of the relationship between epigenetic and chronological time in a cohort
provide useful information of how a group, as opposed to an individual, ages epigeneticlly with
time. The Horvath model [9] has a rigid assumption of linearity of e-age in time for adults by
using a linear combination of an individual’s methylation states of several hundreds of sites.
For kids (age less than 20), the model corrects for non linearity using a logarithmic, yet fixed,
function. The EPM model has no such assumption and therefore has the freedom to assign
each individual its own e-age, as long as it complies with the EPM universality law, that is,
that this age affects all the individual’s sites. We now demonstrate on synthetic data, the
ability of our procedure to infer correct times (e-ages) and in particular trends throughout a
whole population. For this purpose we have devised the following age related function that
appears to encompass the characteristics of e-aging as they emerge from existing knowledge,
in particular by the Horvath model:

p = ctr ∗ h

htr
(2)

where p holds the e-age, c is the chronological age (c-age) of a person, h is some upper limit on
a person’s age, and tr is a trend parameter to the function. The trend function has few desired
characteristics. First, it satisfies a monotonic decrease in rate through time (c-age) and that
decrease is proportional to the trend parameter. Also, at c-age that equals the upper limit h,
the epigenetic and chronological ages coincide: c = p. Finally, for tr = 1 the trend function
is linear with p = c for every c, as h

htr = 1. Figure 2(L) illustrates pictorially the behaviour
of the trend function for several values of trend tr = 1, 0.8, 0.5, 0.1 and for upper limit age
h = 100. Indeed we see that all trend lines depart from the origin and converge towards the
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point c = h. We also see that the larger tr is (with maximum tr = 1), the more straight the
trend line is, and in particular, for tr = 1 a straight line with slope 1 is exhibited.

In order to simulate realistic e-ages, we allow for each individual, some stochastic deviation
of her/his e-age from the (or population’s) trend line, and that deviation depends on some
variance σp. To show that, we set a specific tr and σp. Figure 2(M) shows simulated e-ages
around the trend function with specific trend tr = 0.5 and σp = .8. For illustration, the
straight 45◦ line, representing the c-age, appears in green the figure.

Finally, for every such e-age produced, our simulation procedure generates the methylation
status ŝij for every site i and and individual j, according to the model: ŝij = s0i + ritj + εi,j .
Figure 2(R) shows the result of applying the EPM-CEM procedure to such synthetic data.
Green dots represent the inferred e-age by the algorithm and should be compared to the real
(model) e-age (blue, same as in the middle box). We can see that EPM-CEM is capable of
capturing the trend imposed by the simulation however it lags below the trend line by a gap
that is linearly (inversely) correlated with age (red-green dots). This gap, returned by the
procedure is due to the degeneracy of the likelihood surface that allows for multiple points in
the surface to attain the same likelihood and in particular the maximum likelihood.

Figure 2: The trend function . Left: The trend function - Trend lines for four tr values
tr = 0.1, 0.5, 0.8, 1 in blue, red, green, and olive green colors respectively. Middle: Simulated
actual noisy PM - Actual noisy e-ages (blue dots) values around the trend line (red) with
specific tr = 0.5 and σp = .8. The (green) 45◦ line represents the c-age of each individual.
right: The values inferred by the EPM-CEM algorithm - green dots represent the inferred
e-age by the algorithm. It should be compared to the real e-age (blue). While there is a gap,
linear with time, between actual and inferred e-ages, the trend is captured.

3.2 Analysis of Human Data

We have shown above the ability of our technique to identify the correct trend in aging in
simulated data, and we now move to analyze human methylation data from various types of
data sets. The general procedure we have taken to identify and assess a trend is as follows.
We applied the EPM approach to the real methylation data, all taken from the Gene Ex-
pression Omnibus (GEO) repository, using the procedure in the simulation section above 3.1.
The EPM, allows us to determine whether the MC hypothesis is rejected by the pacemaker,
and also infers for each individual its epigenetic age. We remark that for all the real datasets
we analyzed here, the pacemaker hypothesis was found superior to the linear approach with
p-values always smaller than 10−6. As these information is not essential to the main subject
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of this study, it appears in details in the supplementary text.
Similarly to the simulation study, in a subsequent stage to the EPM, we plot for each individual
its two ages. Here however, as these points were not synthetically generated by a function, we
attempt to fit a trend function best describing these points. We focus on two families of func-
tions - linear and logarithmic, as they are very general with a single explaining variable. These
families are indeed the most common for trend approximation. However, to obtain additional
insights on the functional form of the trend, we also accompany the logarithmic and the linear
approximations with a quadratic best approximation line. In the results below, we demonstrate
how we exploit the added information provided by the quadratic approximation. We note that
any linear line is a special case of a quadratic family, simply with quadratic coefficient equals
zero, and hence by definition its fit is always inferior to the quadratic approximation.
Our analysis is divided to age range based analysis, and also to tissue based analysis. All data
sets required a preprocessing step of selecting the most informative (1000) sites, and based on
our conclusions above, we used the Pearson correlation coefficient (PCC) criterion.

3.2.1 Epigenetic Aging in Adults

Our first data set is from GSE40279, consisting of 656 blood samples from adults [7]. Their
ages range from 19 years to 101. The results are depicted in Figure 3. In the top two graphs
we show scatter plots with the three trend lines where the one with the best fit appears in the
left and the two suboptimal ones in the right scatter plot. For each trend line, we also depict
its exact formula and the R2. It is quite evident that the linear trend is superior here to the
other two, with negligible increase in R2 for the quadratic trend. Therefore, in order to check
if there is still a trend of non linearity, we applied the Mann-Kendall test as described in the
Methods section. The lower part of Figure 3 shows the values of ρi ordered by chronological
age. We set to test if there is an increasing trend in this series. The value obtained for S
was 1619 implying that we have an increasing trend in ρ and therefore epigenetic aging rate
is decreasing in time. However, under this size of data, we also have a huge variance with
V ar(S) = 31438253.33 yielding z-score of 0.28856 which is not significant.

Our second data set is the GSE87571, also from human blood taken from 366 individuals
of ages from 14 to 94 years old. The results of applying the EPM-ECM to this data are
depicted in Figure 4. The top two graphs show the scatter plot of e-age versus c-age with the
three trend types - linear, quadratic, and logarithmic. The linear trend line in the left is only
slightly inferior to the quadratic with R2 = 0.612 versus R2 = 0.613 and therefore we consider
it to be the best approximation. Nevertheless, the advantage in R2 of the linear trend over the
logarithmic trend is only .5% and indeed here we already see a bend in the points corresponding
to younger ages. In general, the entire collection of points here allude to a concave shape, i.e. a
decreasing function, as can be seen by the negative coefficient (−0.0045) of the quadratic term
in the quadratic trend line. This should be contrasted to the convex trend of the quadratic
trend in the previous case (data set GSE40279 - Human Blood Data, Fig 3) where the first
coefficient equals 0.0024.
To verify this decreasing trend, as in the previous data set, we apply the test of monotonicity
- the Mann-Kendall Test - to this data. The value obtained for S was 4225 implying that we
have an increasing trend in ρ and therefore epigenetic aging is decreasing in time also for this
data set. The variance here is V ar(S) = 5469768 yielding a z-score of 1.806 and a p-value
smaller than 0.04 and is therefore significant.
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Figure 3: GSE40279 - Human Blood Data Results I. (Top) E-age vs C-age in adults.
Age is plotted in years. The left graph shows the best approximation to the data. The linear
line is slightly and insignificantly inferior to the quadratic approximation and therefore is the
best fit. (Bottom) Mann-Kendall Test for monotonicity Trend: c-age vs e-age ratio ordered
from left to right according to c-age. If rate of aging is decreasing, we expect to see monotonic
increase in the function. Indeed the function is increasing but not in a significant manner.
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Figure 4: GSE87571 - Human Blood Data Results II. (Top) E-age vs C-age in adults.
Age is plotted in years. The left graph shows the best approximation to the data. The linear
line is slightly and insignificantly inferior to the quadratic approximation and therefore is the
best fit. (Bottom) Mann-Kendall Test for monotonicity Trend: c-age vs e-age ratio ordered
from left to right according to c-age. If rate of epigenetic aging is decreasing with time,
we expect to see a monotonic increase in the

c-age
e-age-ratio function. Indeed the function is

significantly increasing.
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3.2.2 Epigenetic Aging in Children

After analyzing the data collected from adults, we turned to analyze data from children. We
analyze the GSE36064 data set of blood samples taken from 78 children of ages ranging from
one year to 16. The ages here, as well as in the figure describing it, are represented in months.
The results are shown in Figure 5. Here, the linear trend is clearly inferior to the quadratic
and the logarithmic trends. We find that the logarithmic trend is the best approximation and
show it in the left side of Figure 5.

y	=	67.672ln(x)	- 194.82
R²	=	0.92635
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Figure 5: GSE36064 - Children Blood Data Results . E-age vs C-age in young humans.
Age is plotted in months. The left graph shows the best approximation to the data. The
logarithmic approximation provides the best explanation.

3.2.3 Combined Age Analysis

In the previous data sets we restricted the analysis to specific age ranges, such as children or
adults. In the next two data sets we analyze blood samples from individuals with age ranges
from childhood to old age. The first data set - GSE60132 - was taken from peripheral blood
samples of 192 individuals of Northern European ancestry [1]. Ages range from 6 to 85 years.
The results are shown in Figure 6. As can be noticed, the logarithmic trend line provides
better R2 than the linear trend line, 0.9125 versus 0.8998, and even better than the quadratic
trend line (R2 = 0.9119). The concavity of the spread of the points is fairly noticeable and
this is confirmed by the negative first coefficient of the quadratic trend function - −0.0078.
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Figure 6: GSE60132 - Human, All Ages, Blood Data Results I. E-age vs C-age in wide
age range . Age is plotted in years. The left graph shows the best trend line approximation
to the data, which is the logarithmic trend function. At the right, the inferior trends - the
quadratic and linear. The quadratic line is slightly and insignificantly inferior to the logarithmic
approximation, buy also portrays a concave line due to negative first coefficient −0.0078.

The Next data set - GSE64495 - is also from blood samples of 113 individuals [22]. Here,
while there is a scarcity of samples from the age range 12-35, the entire age range of the
study begins at even younger ages than the previous data set: 2.3 years versus 6. Our results
for this dataset are depicted in Figure 7. Here the advantage of the logarithmic trend line
over the linear is the most significant among the adults containing data sets analyzed so far,
R2 = 0.97534 versus R2 = 0.8664, and is even significant over the quadratic - R2 = .9035. The
decrease in the rate is evident as well as the fit to the logarithmic trend line.
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Figure 7: GSE64495 - Human, All Ages, Blood Data Results II. E-age vs C-age in
kids and adults. Age is plotted in years. The left graph shows the best approximation to the
data, obtained by the logarithmic trend line with R2 = 0.9236. On the right, the inferior trend
lines, the linear line with R2 = 0.8664 and the quadratic line with R2 = 0.9035.
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3.3 Brain Development and Aging

Our last data set is from GSE74193, consisting of 675 samples from brain tissues from before
birth to old age [10]. The advantage of this data set is two-fold. First, the broad range of ages -
from half a year before birth to 85 years, which represents a broader age range than that found
in the the previous data sets, and allows us to track epigenetic aging across the entire span
of life, starting from before birth. Second, all the samples from the previously analyzed data
sets came from blood. This data set, from brain tissues, allows us to contrast our results from
blood tissues to another tissue type. Our results are depicted in Figure 8. The logarithmic
approximation, appears on the left graph, not only provides a significantly better fit to the
data, with R2 = 0.97534 versus R2 = 0.86448 and R2 = 0.70708 for the quadratic trend line
and the linear trend line respectively. Moreover, the high R2 provides an almost perfect fit to
the data.

y	=	17.71ln(x)	- 16.94
R²	=	0.97534
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Figure 8: GSE74193 -Brain development Data Results . E-age vs C-age in young
humans. Age is plotted in years. The left graph shows the best approximation to the data.
The logarithmic approximation provides the best explanation.

4 Discussion

During the past few years several studies have shown that DNA methylation patterns continue
to change as individuals age. These observations have been leveraged to construct epigenetic
clocks that predict the age of an individual based on their methylation profile. While these
tools have proven to be very useful for aging studies, they are based on a priori assumptions
about the relationships between epigenetic and chronological age. For example, the Hannum
age clock assumes that epigenetic age and chronological are linearly related, and using multi-
variate penalized regression identifies 71 CpG sites whose methylation values can be combined
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using a weighted sum to predict the actual age of the individual. The Horvath clock uses a
more complex set of assumptions to derive its predictions of chronological age: it applies a
logarithmic transformation to ages below 20 and a linear relationship for ages greater than
20. He then identifies 353 CpG sites using elastic net regression to very accurately predict
the transformed age. These biomarkers have been widely used to study aging, as is evident
by the hundreds of studies that have utilized them. However, because of their underlying as-
sumptions, they are not ideal tools to infer trends in epigenetic aging rates across life spans in
an unbiased fashion. However, correctly modeling potential nonlinearities in epigenetic aging
is critical to advance the field and generate an even more robust understanding of epigenetic
aging and its impact on human health and mortality.

To address this question, we have developed an unbiased approach to measure the trends
in epigenetic aging within a cohort of individuals of varied ages. Our approach is distinct from
the Hannum and Horvath epigenetic clocks in that it is not designed to optimally predict the
age of an individual, but rather to model the non-linear trends in epigenetic aging over time
without making any a priori assumptions about what these may be. The method is inspired
by evolutionary models that attempt to model mutation rate changes over time. This lead
to the development of our epigenetic universal pacemaker model, which we have presented in
previous studies [19, 18].

To attempt to identify rates of epigenetic aging over the entire life span of humans we apply
the epigenetic pacemaker to multiple datasets that measure DNA methylation in large cohorts
of individuals of varying ages. In the first few cohorts the methylation is profiled from blood,
while in the last cohort the methylation is measured in brain tissue. In all cases methylation
is profiled using an Illumina microarray that measures the methylation across approximately
450,000 sites. While all cohorts sample individuals from early adulthood to old age, the second
set also include samples from individuals from early childhood to adulthood, and in the last
case of the brain study, also samples from fetuses obtained before birth.

By applying our epigenetic pacemaker model to this data we observe consistent and robust
trends across these datasets. The first is that from early adulthood (around age 20) to old age
(well into the 90s), DNA methylation changes in a roughly linear fashion, yet with a slight but
significant tendency for rate decrease. However, in contrast to the adults, we find that DNA
methylation changes are strongly nonlinear from late fetal stages to adolescents. In both the
blood and brain datasets that measure these stages we observe that the epigenetic age inferred
by our model is related to the chronological age by a logarithmic transformation across the
entire span of life, from before birth to old age. Thus, DNA methylation changes are very
rapid initially, and then gradually decrease with age. This implies that the rate of change of
epigenetic ages (i.e. the slope of our trend line) is roughly the inverse of the chronological age.
The fact that we consistently observed these trends across multiple datasets, and two different
tissues, suggests that the logarithmic relationship between epigenetic and chronological age
may be a universal property of human aging.

This universal logarithmic trend may help explain some interesting observations that have
been reported in the literature regarding epigenetic aging. For example, one recent study found
that the Horvath epigenetic clock ”systematically underestimates ages in tissues from older
people,” and that ”a decrease in slope of the predicted ages were observed at approximately
60 years, indicating that some loci in the model may change differently with age, and that
age acceleration measures will themselves be age-dependent”[3]. A second study also found
that ”epigenetic age increases at a slower rate than chronological age across the life course,
especially in the oldest population”[15]. These results suggest that the underlying assumptions
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about the relationships between epigenetic age and chronological age impact the performance
of the Hannum and Horvath epigenetic clocks, and that deviations are most notable in old
age. We speculate that if the logarithmic epigenetic aging trend that we observe is in fact
universal, that this could lead to improved biomarkers that show more robust performance at
the extremes of the age distributions, leading to more accurate associations between epigenetic
aging and human health and longevity.

Moreover, we believe that the observation that epigenetic aging is logarithmic over the
entire life span opens up new avenues for epigenetic research in the future. What mechanisms
lead to the gradual reduction in epigenetic rates from late fetal stages to centenarians? Is the
logarithmic trend related to prior observations that epigenetic aging is a measure of epigenetic
entropy? The answers to these questions will undoubtedly influence our understanding of
human aging and longevity and will most likely apply to a broad range of organisms. By
quantitatively demonstrating these trends in an unbiased fashion, we believe we have laid a
solid foundation for the development of improved aging biomarkers and the investigation of the
underlying mechanisms of epigenetic aging, and ultimately to the answers to these important
questions that are fundamental to the biology of development and aging.
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