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Abstract 

 

Over the past years, NGS has been applied in time critical applications such as pathogen 

diagnostics with promising results. Yet, long turnaround times have to be accepted to generate 

sufficient data, as the analysis can only be performed sequentially after the sequencing has 

finished. Additionally, the interpretation of results can be further complicated by various types of 

contaminations, clinically irrelevant sequences, and the sheer amount and complexity of the 

data. 

We designed and implemented PathoLive, a real-time diagnostics pipeline which allows the 

detection of pathogens from clinical samples up to several days before the sequencing 

procedure is even finished and currently available tools may start to run. We adapted the core 

algorithm of HiLive, a real-time read mapper, and enhanced its accuracy for our use case. 

Furthermore, common contaminations, low-entropy areas, and sequences of widespread, non-

pathogenic organisms are automatically marked beforehand using NGS datasets from healthy 

humans as a baseline. The results are visualized in an interactive taxonomic tree that provides 

an intuitive overview and detailed measures regarding the relevance of each identified potential 

pathogen. 

We applied the pipeline on a human plasma sample that was spiked in vitro with vaccinia virus, 

yellow fever virus, mumps virus, Rift Valley fever virus, adenovirus, and mammalian 

orthoreovirus. The sample was then sequenced on an Illumina HiSeq. All spiked agents were 

detected after the completion of only 12% of the sequencing procedure and were ranked more 

accurately throughout the run than by any of the tested tools on the complete data. We also 

found a large number of other sequences and these were correctly marked as clinically 

irrelevant in the resulting visualization. This tagging allows the user to obtain the correct 

assessment of the situation at first glance. 

PathoLive is available at https://gitlab.com/rki_bioinformatics/PathoLive.  
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1 Introduction 
 

The ability to sequence large amounts of nucleic acids in an unbiased manner through NGS is 

particularly interesting for metagenomics studies. Metagenomic NGS has been proposed as a 

valuable technique for clinical application. Nucleic acids of pathogens can be detected in 

metagenomic clinical samples even in cases where routine procedures fail to identify the 

underlying causes of a patient’s symptoms [1-4]. Most other pathogen detection methods such 

as polymerase chain reaction (PCR), cell culture, or amplicon sequencing, aim to detect 

predefined organisms. On the contrary, NGS facilitates the detection and even characterization 

of pathogens without a priori knowledge about candidate species. NGS, unlike any other 

method, generates sufficient data to detect even lowly abundant pathogens without targeted 

amplification of defined sequences. Thus, it allows for an unbiased diagnostic analysis.  

There is a variety of tool able to address NGS-based pathogen related questions with different 

focuses: either aiming to discover yet unknown genomes [5-22] or to detect known species in a 

sample [23-40]. Among both groups, there are different underlying algorithms, the main 

distinction running between alignment-based [15-17, 19, 23, 25, 26, 28-31, 33, 35-37, 39, 40] 

and alignment-free methods [6, 9, 12, 21, 32, 38]. Many tools of course combine both 

approaches [5, 7, 8, 10, 11, 13, 14, 18, 20, 22, 27, 34]. While being faster in most cases, 

alignment-free methods are limited to the detection of sequences, whereas alignment-based 

methods potentially allow for a more detailed characterization of genomes.  

Existing approaches based on unbiased full genome sequencing of metagenomic samples are 

facing various obstacles, especially concerning the ranking of the results according to their 

clinical relevance and the long overall turnaround time [41-48]. 

A central issue in NGS-based pathogen detection is that the clinically relevant data is very hard 

to identify. Not only is the host genome usually the dominating part in a metagenomic patient 

sample, but additionally there are nucleic acids of various clinically irrelevant species such as 

some endogenous retroviruses (ERV) or non-pathogenic bacteria which commonly colonize a 

person. 

Even viruses may contain sequences of ERVs, as for example gallid herpesvirus type 2 or 

fowlpox virus, potentially confusing the correct assignment of reads [49]. For these reasons, the 

number of reads hinting towards a relevant pathogen can be very limited and even be as low as 

a handful of individual reads. To compensate for the overwhelming amount of background 

sequences without introducing unwanted biases and thus risking a loss of signal, large numbers 

of reads are necessary. Still, there is no guarantee to get a sufficiently high coverage for the 

detection of a targeted pathogen genome.  

To put it more generally, it is a widespread misconception to rely only on quantitative measures 

when ranking the importance of candidate hits. While the amount of nucleic acids of a pathogen 

in a sample may correlate with the phase or intensity of an infection, it may not be sufficient to 

select the most abundant species as the causative pathogen. On the contrary, not the amount 

but the uncommonness of a species in a given sample may give decisive indications on its 

relevance. Based on the premise that a large proportion of the produced reads may stem from 

the host genome, species irrelevant for diagnosis, or common contaminations, even highly 

accurate methods struggle with false positive hits potentially concealing the relevant results. To 
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date, there are several pipelines tackling this problem in different ways. Many pathogen 

detection pipelines propose to define a reference database of host and contaminating 

sequences [10, 12, 27, 36, 38, 40]. While facilitating cleaner results, it may lead to a premature 

rejection of relevant sequences. The definition of precise contamination databases proves 

rather difficult and has not yet been adequately solved. Thus, deletion of relevant hits and 

misinterpretation of irrelevant hits still remains a common problem.  

Generally, handling high numbers of detected species with a low number of reads each makes 

it very difficult to get a clear definition of relevant and irrelevant hits. A presentation of all 

detected hits without any weighting would be hard to interpret, wasting precious time at the end 

of the workflow. Yet, deleting any results to gain a better overview comes at great risk of 

overlooking the true cause of an infection. Not only background and contamination removal 

introduces the risk of losing information that might be relevant in the following diagnostic 

process. Intensity filters, as implemented e.g. in SLIMM [28], disregard sequences with too 

small genome coverages. As the author states, this step eliminates many genomes. This 

problem even intensifies for marker-gene based methods such as MetaPhlAn2 [33], as large 

parts of the sequenced reads cannot be assigned due to the miniaturized reference database. 

While this may lead to a better ratio of seemingly relevant assigned reads to those from the 

background, it comes with the risk of disregarding actually relevant candidates.  

Moreover, sequencing and analyzing the necessary amount of data is very time consuming. An 

Illumina HiSeq run in High Output Mode, potentially necessary to detect lowly abundant viruses, 

takes up to 11 days. Thus, in urgent cases or acute outbreak situations, standard workflows 

take too long to generate results in time to take the necessary measures. There is a plethora of 

infectious diseases which can be lethal, especially if not treated timely. For example, ebola 

patients who die from the disease die after 9.8 ± 0.7 days after the first symptoms occur on 

average [50]. To obtain actionable results within an appropriate time frame to help these 

patients and to prevent further spreading of the disease, it is crucial to reduce the time span of 

the entire workflow from sample receipt to complete diagnosis. 

Efforts to speed up NGS based diagnostics have been made but come with significant 

disadvantages: Quick et al. introduced a fast sequencing protocol for Illumina sequencers that 

allows obtaining results after as little as 6 hours [51]. This speedup is accompanied by lower 

throughput and lower data quality, making it less suitable for whole genome shotgun 

sequencing approaches without a priori knowledge. 

There are several promising approaches of pathogen detection using the MinION handheld 

device for in field studies. While allowing impressive throughput times, these devices yield only 

approximately a million reads with comparably low per-base qualities, limiting their areas of 

application to targeted sequencing so far [51-55]. 

Higher read numbers are indispensable for reliable pathogen detection. Therefore, the 

development of efficient methods to generate, analyze and understand large metagenomics 

datasets in an accurate and quick manner is crucial if NGS is to become a standard tool for 

clinical diagnostics. This enforces NGS-based diagnostics workflows to generate and evaluate 

large numbers of reads to facilitate adequate sequencing depths while at the same time 

reducing the time span between sample receipt and diagnosis.  
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To overcome the named obstacles, we present PathoLive, an NGS based real-time pathogen 

detection tool. We present an innovative approach to handle common contaminations, 

background data and irrelevant species all at once. Tackling the problem of slow overall 

turnaround times, we applied and enhanced our in-house developed real-time read mapper 

HiLive that enables analyzing sequencing data while an Illumina sequencer is still running [56]. 

2 Methods 
 

2.1 Implementation 

 

In order to generate a quick, easy and robust pathogen diagnostics workflow, we implemented 

PathoLive. Our workflow follows a different paradigm than other frameworks to tackle the 

existing problems, as shown in Figure 1: (i) prepare informative, well defined reference 

databases, (ii) automatically define contaminating or non-pathogenic sequences beforehand, 

(iii) adapt HiLive, a real-time read mapper, to yield robust results even before the sequencer 

finishes, (iv) identify the hazardousness of candidate pathogens and present results in an 

intuitive, comprehensible manner. The details on the modules for each of these steps are 

provided in the following sections. 

 

i.    Prepare reference databases to be more efficient in runtime 

 

In order to save computational effort during the post-processing of the live-mapped reads, 

reference databases including the full taxonomic lineage of organisms are prepared before the 

first execution of PathoLive. For this purpose user selectable databases, for example the 

RefSeq Genomic Database [57], are downloaded from the File Transfer Protocol (FTP) servers 

of the National Center for Biotechnology Information (NCBI) and annotated accordingly with 

taxonomic information from the NCBI Taxonomy Database . The obtained data are then 

merged. While preserving the original NCBI annotation of each sequence, additional information 

is appended to the sequence header. This information consists of each taxonomic identifier 

(TaxID), rank and name of each taxon in the lineage of the source organism of the sequence.  

Afterwards, user definable subdatabases of taxonomic clades relevant for a distinct pathogen 

search are automatically created. For the experiments in this manuscript, we focused on 

viruses. The database updater used for this purpose is available at 

https://gitlab.com/rki_bioinformatics/database-updater. 
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Figure 1: Workflow of PathoLive including four main modules: (i) Reference information from NCBI RefSeq is 
automatically downloaded and tagged with taxonomic information; (ii) NGS datasets from the 1000 Genomes 
Project are downloaded, trimmed and searched for sequences from the pathogen database from step (i), 
marking abundant stretches as clinically irrelevant; (iii) Reads from the clinical sample are mapped to the 
pathogen database obtained from (i) in real-time, producing intermediate alignment files in the bam-format at 
predefined time points; (iv) results are visualized in an easily understandable manner, providing all available 
information while pointing to the most relevant results. Only the steps highlighted in green are calculated in 
execution time, steps in white are precomputation. Graphical results are presented only minutes after the 
sequencer finishes a cycle if desired. 
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ii.     Mark clinically irrelevant hits 

 

A main obstacle in NGS based diagnostics is the large amount of background noise 

contained in the data. In this context, this refers to various sources of contamination 

including artificial sequences, ambiguous references and clinically irrelevant species, 

which hinder a quick evaluation of a dataset. Defining an exhaustive set of possible 

contaminations is a yet unachieved goal. Furthermore, deleting those sequences 

defined as irrelevant from the set of references carries the risk of losing ambiguous but 

relevant results. Since in this step raw sequencing data from a human host is examined, 

the logical conclusion is to contrast it to comparable raw datasets instead of processed 

genomes.  We implemented a method to define and mark all kinds of undesired signals 

on the basis of comparable datasets from freely available resources. For this purpose, 

raw data from 236 randomly selected datasets from the 1000 Genomes Project Phase 3 

[58] (s. Supplementary material) were downloaded, assuming that a large majority of 

the participants in the 1000 Genomes Project was not acutely ill with an infectious 

disease. These reads are quality trimmed using Trimmomatic [59] and mapped to the 

selected pathogen reference database using Bowtie2 [60]. Whenever a stretch of a 

sequence is covered once or more in a dataset from the 1000 Genomes Project, the 

overall background coverage of these bases is increased by one. Coverage maps of all 

references from the pathogen database hit at least by one dataset are stored in the 

serialized pickle file format. Stretches of DNA found in this data are marked as clinically 

irrelevant and visualized as such in further steps of the workflow. The coverage maps of 

the background abundances are thereto plotted in red against the coverage maps of the 

reads from the patient dataset in green on the same reference (s. Figure 2). This 

enables highlighting presumably relevant results without discarding other candidate 

pathogens, giving the researcher the best options to interpret the results in-depth but 

still in an efficient manner. The code for the generation of these databases is part of 

PathoLive. 
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iii.     Adapt HiLive, Enhance to get results before sequencing finished 

 

Due to the runtime requirements already mentioned, we aimed at breaking the sequential 

paradigm of wet and dry lab applications by parallelizing data generation and analysis. We used 

the real-time read mapper HiLive which yields results by the end of the sequencing run. To 

alleviate the high computational requirements to align all reads in parallel as they are 

sequenced, HiLive makes use of a highly efficient k-mer seed-and-extend approach. Therefore, 

errorless k-mers are looked up in a hash index. Each entry in the index contains matching 

positions for a k-mer in the database of reference genomes. Based on these k-mer positions, 

the q-gram lemma is applied to decide whether a certain k-mer position will be used to create, 

extend or discard an alignment candidate, referred to as seed [56]. Thereby, the user can 

decide how many errors to tolerate in an alignment. The algorithm results in a set of alignments 

for each read, including information about the matching genome and position but potentially 

missing detailed alignment information for regions with an accumulation of errors [56].  

For the purpose of pathogen detection, we extended the current version (HiLive v0.3) by several 

features, resulting in a new version (HiLive v1.1). Instead of only obtaining results by the end of 

the sequencing run, HiLive now also contains the option to provide intermediate results at any 

point of a sequencing run with negligible delay. For the first time, this functionality allows not 

only to obtain mapping results at the same time the sequencing finishes but already during 

sequencing. The output of the mapping results was parallelized to handle even huge amounts 

of seeds that usually arise during intermediate steps. Additionally, we modified existing and 

created new output filters to reduce the number of random hits in the resulting alignment files. A 

separated executable can be used to create the output with different filter settings without re-

executing the complete alignment algorithm. To further improve sensitivity, especially for the 

Figure 2: Two examples of fore- and background coverage plots. The upper, green bars show the coverage of a given genome in the 
foreground dataset, namely the reads sequenced from the patient sample. The lower, red part indicates in how many datasets 
from the 1000 Genomes Project a sequence is abundant. Bases covered in background datasets are regarded as less informative. 
Left: Fully covered genome of human mastadenovirus B, showing no hits resulting from data from the 1000 Genomes Project. 
Right: Coverage of human endogenous retrovirus (HERV) K113, partly covered in the patient dataset and completely covered in 
~110 datasets from the 1000 Genomes Project. Based on these illustrations, Human mastadenovirus B can be considered a 
relevant hit while HERV K113 is rightly found in the dataset, but not considered a clinically relevant candidate due to its common 
abundance in non-ill humans. 
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mapping results in early sequencing cycles, we adapted the core algorithm to support arbitrary 

gapped k-mers. This means that single or consecutive mismatches are tolerated within a single 

k-mer. As shown by Kucherov et al. [61], this concept results in significantly higher accuracy 

especially after few cycles of a sequencing run, even though the q-gram lemma does not hold 

for gapped k-mers. For our study, we used SpEEd to select an optimal k-mer gap pattern for 

seeds of weight 15 and an expected similarity of 0.95 on 40 basepairs, resulting in the pattern 

11111100111101 [62]. 

PathoLive is implemented in a modular manner. Instead of the real-time read mapping using 

HiLive, any other read mapper providing sequence alignment/map (sam) or binary sequence 

alignment/map (bam) files can be used for the mapping step of the workflow.  

 

iv.    Visualization and hazardousness classification 

 

A key hurdle in a rapid diagnostics workflow, which is often underestimated, is the presentation 

of results in an intuitive way. Many promising efforts have been made by different tools, e.g. 

providing coverage plots [40, 63] or interactive taxonomy explorers [16, 38]. While being hard to 

measure and thus often ignored, the time it takes for groups of experts to assess the results and 

come to a correct conclusion should be considered. 

Our browser-based, interactive visualization is implemented in JavaScript using the visualization 

library D3 [64]. For an example of the visualization, see Figure 4. While providing all available 

information on demand, the structure of a taxonomic tree allows an intuitive overview at first 

glance. Detailed measures are available on genus, family, species and sequence level. We 

provide three scores for each node of the tree:  

 

(a) Total Hits: the total number of hits to all underlying sequences in this branch,  

 

𝑇𝑜𝑡𝑎𝑙 𝐻𝑖𝑡𝑠 = # 𝑅𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑐𝑙𝑎𝑑𝑒 

 

(b) Unambiguous Bases: the total number of bases covered in the patient dataset but not in any 

background dataset 

 

𝑈𝑛𝑎𝑚𝑏𝑖𝑔𝑖𝑜𝑢𝑠 𝐵𝑎𝑠𝑒𝑠 = #𝐵𝑎𝑠𝑒𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑏𝑦 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑎𝑡𝑎 

 

(c) Weighted Score: the ratio of Unambiguous Bases to the number of bases covered by 

background reads 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =  
𝑈𝑛𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝐵𝑎𝑠𝑒𝑠

𝑚𝑎𝑥(# 𝐵𝑎𝑠𝑒𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑎𝑡𝑎,1)
× log (𝑇𝑜𝑡𝑎𝑙 𝐻𝑖𝑡𝑠) . 

 

The weighted score introduces an intensified metric of how often a sequence is found in non-ill 

persons, therefore allowing drawing stricter conclusions from the background data. Not only 

exactly overlapping mappings of fore- and background are regarded, but the overall abundance 

of a sequence within the background data is considered.  
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The values of these scores are reflected in the thickness of the branches, which draws the 

visual focus to higher rated branches. By default, the visualization uses the weighted score, but 

users can switch between all three scores.  

In order to enable users to make early decisions regarding the handling of a sample as well as 

to further enhance the intuitive understanding of the results, the hazardousness of detected 

pathogens is color-coded based on a Biosafety level (BSL) score list [65]. The BSL score gives 

information on the biological risk emanating from an organism. Therefore, it qualifies as a 

measure of hazardousness in this use case. The BSL-score is color-coded in green (no 

information/BSL1), blue (BSL2), yellow (BSL3) or red (BSL4), and the maximum 

hazardousness-level of a branch is propagated to the parent nodes. Phages are displayed in 

grey, as they cannot infect humans directly, but may imply information on the presence of 

bacteria. 

Details about the sums of all three available scores of all underlying species are provided on 

mouse-over (Figure 4). When expanding a branch down to sequence level, additional plots of 

the foreground coverage calculated in step (iii) as well as the abundance of bases in the 

background datasets calculated in step (ii) are shown when hovering the mouse over the node 

(Figure 2). These plots thus provide an intuitive visualization of the significance of a hit. The hits 

of a species in the patient dataset are shown in green while very common genomes or parts of 

their sequences are drawn in red on a correlating coverage plot. This way, it is easy to evaluate 

if a sequence is commonly found in non-ill humans and therefore can be considered less 

relevant, or if a detected sequence is very unique and could therefore lead to more certain 

conclusions.   

2.2 Validation 

 

We compared the results of PathoLive to two existing solutions, Clinical Pathoscope [36] and 

Bracken [66]. We selected Clinical Pathoscope for its very sophisticated read reassignment 

method, which promises a highly reliable rating of candidate hits. It also is perfectly tailored to 

this use case. Other promising pipelines such as SURPI [40] or Taxonomer [38] were not locally 

installable and had to be disregarded. Bracken was included in the benchmark as one of the 

fastest and best known classification tools which makes it one of the primary go-to methods for 

many users. The experiment is based on a real sequencing run on an Illumina HiSeq 1500 in 

High Output Mode. We designed an in-house generated sample in order to have a solid ground 

truth. We ran all tools using 40 cores, starting each at the earliest possible time point when the 

data was available from the sequencer in the expected input format. For the non-real-time tools, 

the BaseCalling was executed via Illumina’s standard tool bcl2fastq and the runtime was 

regarded in the overall turnaround time. Clinical Pathoscope and Bracken were both run with 

default parameters, apart from the multithreading. The reference databases for PathoLive was 

built from the viral part of the NCBI RefSeq [67] downloaded on 2016-07-06. For Clinical 

Pathoscope we downloaded the associated database from http://www.bu.edu/jlab/wp-

assets/databases.tar.gz on 2017-12-09 and used the provided viral database as foreground and 

the human database as background. The results of Bracken were generated based on the viral 
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part of the NCBI RefSeq [67] downloaded on 2017-12-18. The Bracken database was 

generated with default parameters and an expected read length of 100 bp.  

Sample preparation 

Viral RNA metagenomics studies were performed with a human plasma mix of eight different 

RNA and DNA viruses as well-defined surrogate for clinical liquid specimen. The informed 

consent of the patient has been obtained. This 200µL mix contained orthopoxvirus (Vaccinia 

virus VR-1536), flavivirus (yellow fever virus 17D vaccine), paramyxovirus (mumps virus 

vaccine), bunyavirus (rift valley fever virus MP12-vaccine), reovirus (T3/Bat/Germany/342/08) 

and adenovirus (human adenovirus 4) from cell culture supernatant at different concentrations. 

The sample also contains dependoparvovirus as proven via PCR.  

The sample was filtered through a 0.45 µM Filter and nucleic acids were extracted using the 

QIAamp Ultrasense Kit (Qiagen) following the manufacturers’ instructions. The extract was 

treated with Turbo DNA (Life Technologies, Darmstadt, Germany). cDNA and double-stranded 

cDNA (ds-cDNA) synthesis were performed as previously described [68]. The ds-cDNA was 

purified with the RNeasy MinElute Cleanup Kit (Qiagen). The purification method takes ~6h to 

complete. 

The Library preparation was performed with the Nextera XT DNA Sample Preparation Kit 

following the manufacturers’ instructions (Illumina). NGS libraries were quantified using the 

KAPA Library Quantification Kits for Illumina sequencing (Kapa Biosystems). If the starting 

amount of 1 ng of nucleic acid was not reached the entire sample volume was added to the 

library. 

3 Results 
 

The human plasma sample spiked with a viral mixture was subjected to sequencing on an 

Illumina HiSeq 1500 in High Output mode on one lane. PathoLive was executed from the 

beginning of the sequencing run using 40 threads. Intermediary results were taken after 40, 60, 

80 and 100 cycles or after 36, 55, 74 and 93 hours, respectively. Raw reads usable for the 

testing of other tools were available only after 95 hours as they had to be translated into the 

human readable fastq-format first. As a ground truth, we selected all sequences associated to 

the species described as abundant above. Turnaround time, runtime and results are shown in   
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Table 1. The area under the curve (auc) of the receiver operating characteristic (ROC) was 

calculated using the 16 highest ranking species, as given by the tested tools. The scores of all 

sequences attributed to a species were summed up. The top 16 of the identified species are 

considered because hits appearing after twice the number of true positives cannot be expected 

to be regarded by a user in this experiment. Furthermore, none of the tested tools found more 

true positives within the next 50 hits. For PathoLive, the weighted score is used, for Clinical 

Pathoscope we used the “final guess” metric and for Bracken, the species with most estimated 

reads were ranked highest. The corresponding ROC-plot is shown in Figure 6. 
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Table 1 Results of PathoLive, Clinical Pathoscope and Bracken on an Illumina HiSeq High Output run of a 
human plasma sample spiked with different viruses. Input data denotes the number of cycles the sequencer 
finished before results were generated. The turnaround time specifies the complete runtime of the 
sequencing from start of the sequencer to result presentation, whereas tool runtime is the time the tools take 
to generate results after all necessary input data has been provided. ROC-auc denotes the area under the 
ROC-curve as a combined measure of sensitivity and specificity. Best values are printed bold. PathoLive 
performs best according to all measures throughout the complete run. 

 PathoLive Pathoscope Bracken 

Input data [cycles] 40 60 80 100 100 100 

Turnaround time [h] 36 55 74 93 95 95 

Tool runtime [m] 22 25 18 4 25 13 

ROC-auc 0.94 0.92 0.92 0.90 0.88 0.45 
 

 
Figure 3 ROC-plot of benchmarked tools on a spiked dataset. Lines have slight offsets in x- and y-
dimensions for reasons of distinguishability. We compared PathoLive to Clinical Pathoscope and Bracken on 
a real human sample containing 7 viruses. PathoLive performs best regarding the ROC-auc at all sampled 
times (cycle 40, 60, 80 and 100) when compared to the results of the other tools after the sequencing run 
completed read 1 (cycle 100). 

 

We were able to detect all abundant spiked species in the library after only 40 cycles of the 

sequencing run. While the overall number of false positive hits decreases with the sequencing 

time, the weighted score and the number of unambiguous bases yield accurate results 

throughout all reports. Reported phages are included in these numbers, although they are 

optically grayed out in the visualization, as they cannot infect vertebrates directly. 

As an example report, a screenshot of the resulting interactive tree of results after 80 cycles is 

shown in Figure 4. 
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Figure 4 Example of the interactive taxonomic tree of results. It shows the visualized results of the described 
plasma sample at cycle 80 based on the weighted score. Thickness of the branches denotes the sum of 
scores of underlying sequences. The color codes for the maximum of the underlying BLS-levels (red=4, 
yellow=3, blue=2, green=1 or undefined; phages are shown in grey). On mouse-over, detailed information 
(here on genus Mastadenovirus) is displayed. The selected score (here: weighted score) is highlighted in 
grey. The visualization clearly emphasizes all spiked pathogens through the thickness of their clades, while 
other species are shown only in smaller clades and therefore ranked lower. 
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4 Discussion 
 

NGS has been shown to be state of the art for pathogen detection, reaching out into clinical 

usage as well. Although Third Generation Sequencing approaches are also becoming more and 

more influential, the sequencing depth necessary for open-view diagnostics is only achievable 

via NGS. This does of course come at cost of higher overall throughput times. PathoLive is, to 

our knowledge, the first NGS-based diagnostics tool using a real-time approach, facilitating to 

gain insights into a clinical sample before the sequencer has finished. Real-time output before 

the sequencing process of the first read has finished lacks information about multiplex-indices, 

though. Therefore, multiplexed sequencing runs can only be assessed after sequencing of the 

multiplex-indices. For paired-end sequencing runs, this still means analyses are still possible far 

before the sequencer ends, and single-end sequencing runs can produce results at the very 

moment the indices have been sequenced. A solution for this problem would be to sequence 

the indices before the first read, which attracts some problems for the sequencer regarding 

cluster identification, but is currently worked on. The algorithmic functionality for this is already 

available.  

We furthermore changed the basis for the selection of clinically relevant pathogens away from 

pure abundance or coverage-based measures towards a metric that takes information on the 

singularity of a detected pathogen into account. Still, we decided not to completely trust the 

algorithmic evaluation alone, but provide all available information to the user in an intuitive 

interactive taxonomic tree. While we assume that this form of presentation allows users to come 

to the right conclusions very quickly, more sophisticated methods for the abundance estimation 

especially on strain level exist. Implementing an additional abundance estimation approach 

comparable to the read reassignment of Clinical Pathoscope [36] or the abundance estimation 

of Bracken [66] could enable more accurate results, albeit this would not be applicable trivially 

to the overall conception of PathoLive.  

The sensitivity and specificity of PathoLive varies with the time of a sequencing run. In the 

beginning, when only little sequence information is available, every matching k-mer must be 

regarded as a candidate hit, leading to comparably high false positive rates. At the end of a 

sequencing run on the contrary, the number of sequence mismatches in the longer alignments 

may lead to the erroneous exclusion of hits. To cope with that, we recommend running 

PathoLive allowing high numbers of errors to ensure sensitive results at the end of a run and to 

report only reads with a low error-per-base ratio to exclude random hits at the beginning. This 

may however lead to the effect observed in our validation experiment, where the results vary 

over the runtime with the optimal outcome being measured at cycle 80.  

Besides these challenges which are unique to PathoLive, we do of course struggle with the 

same problems as comparable tools. Firstly, the definition of meaningful reference databases is 

difficult. No reference database can ever be exhaustive, since not all existing organisms have 

been sequenced yet. Besides that, there may be erroneous information in the reference 

databases due to sequencing artifacts, contaminations or false taxonomic assignment.  
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The definition of the hazardousness was especially complicated, as to our knowledge no 

established solution for the automated assignment of this information exists. Therefore, the 

basis for our BSL-levelling approach might not be exhaustive, leading to underestimated danger 

levels of certain pathogens. 

Furthermore, in-house contaminations, some of which are known to be carried over from run to 

run on the sequencer while others may come from the lab, could interfere with the result 

interpretation of a sequencing run. Especially since no indices are sequenced for the first results 

of PathoLive, comparably large numbers of carry-over contaminations might lead to false 

conclusions. Candidate lab contaminations should therefore be thoroughly kept in mind when 

interpreting results. 

Using in-house generated spiked human plasma samples, we were able to show the superiority 

of PathoLive not only concerning its unprecedented runtime but also the selection of relevant 

pathogens. While being very fast and accurate, a limitation of PathoLive lies in the discovery of 

yet unknown pathogens. This is due to the limited sensitivity of alignment-based methods in 

general, which hampers the correct assignment of highly deviant sequences. As this would 

imply tedious manual curation, it is not the core task of this tool.  

We hope to provide a helpful tool for accurate and yet rapid detection of pathogens in clinical 

NGS datasets, overcoming many limitations of existing approaches. 
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