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Summary 
 
High-throughput methodologies have enabled routine generation of RNA target sets and 
sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are 
needed to capture the landscape of RNA/RBP interactions responsible for cellular regulation. We 
have used the RNA-MaP platform to directly measure equilibrium binding for thousands of 
designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio 
proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements 
revealed widespread residue flipping and instances of positional coupling. Application of our 
thermodynamic model to published in vivo crosslinking data reveals quantitative agreement 
between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically 
driven, continuous Pumilio binding landscape that is negligibly affected by RNA structure or kinetic 
factors, such as displacement by ribosomes. This work provides a quantitative foundation for 
dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.   
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Introduction 
 

A grand challenge in biology is to understand, predict, and ultimately control the gene 
expression programs that allow cells to function. RNA processing is central to regulation of gene 
expression and includes alternative splicing, 5´- and 3´-processing, nuclear export, cytoplasmic 
localization, translation, and decay. Each step is regulated by a suite of RNA-binding proteins 
(RBPs), which constitute >5% of the eukaryotic proteome (Mitchell and Parker, 2014; Muller-
McNicoll and Neugebauer, 2013; Singh et al., 2015). By binding specific sequence or structure 
elements, RBPs can provide coordinated regulation of sets of functionally related RNAs, as shown 
in early studies for the control of iron metabolism transcripts by iron regulatory proteins, the 
regulation of functionally distinct mRNA cohorts by individual PUF proteins, and the coordinated 
binding of synaptic protein transcripts by NOVA (Gerber et al., 2004; Keene and Tenenbaum, 
2002; Rouault, 2006; Ule et al., 2003). 
 

Given the central importance of RBPs in posttranscriptional regulation, defining and 
predicting RBP interactions has been a major research focus (e.g., (Darnell, 2010; Dominguez et 
al., 2018; Hogan et al., 2008; Hogan et al., 2015; Ray et al., 2013; Riordan et al., 2011; Wheeler 
et al., 2018)). Transcriptome-wide RNA target sets have been identified for hundreds of RBPs 
across multiple organisms, facilitating elucidation of RBP roles in numerous regulatory processes 
(e.g., (Darnell, 2010; Gerber et al., 2004; Guenther et al., 2018; Nussbacher and Yeo, 2018; Ule 
et al., 2003; Xue et al., 2009)). While current RNA target databases provide immense value, 
several critical limitations to our current knowledge remain. 

 
First, RBP targets are commonly defined in a binary manner, with RNA molecules 

considered either ‘targets’ or ‘non-targets’ of a given RBP. However, binding is a continuum, 
determined by RBP affinities, RBP and target concentrations, and other cellular factors. 
Therefore, quantitative affinity measurements are needed to define and predict RBP binding 
occupancies across the RNA sequences present in a cell—i.e., the RBP binding landscape—and 
the subsequent regulation. Indeed, for transcription factors, thermodynamic models have been 
shown to be more predictive of binding and effects on gene expression than qualitative, binary 
models (Foat et al., 2006; Gertz et al., 2009; Le et al., 2018; Riley et al., 2015; Segal et al., 2008; 
Weirauch et al., 2013; Zhao and Stormo, 2011). A second limitation is that most current 
approaches are optimized for identifying RBP targets, rather than for quantitative determination 
of RBP affinities or occupancies. Third, current models of RBP specificity are motif-centric and 
thus assume energetic additivity (Schneider and Stephens, 1990; Stormo, 2000). The accuracy 
of such models requires quantitative and comprehensive testing (Zhao and Stormo, 2011).  
 

The above limitations and the importance of regulation by RBPs have sparked a growing 
interest in developing direct, quantitative genomic-scale approaches for measuring RBP/RNA 
interactions and affinities. Methods such as MITOMI, HiTS-EQ, HiTS-RAP, RNA Bind-N-Seq and 
RNA-MaP can provide equilibrium binding constants or apparent affinities (Buenrostro et al., 
2014; Jain et al., 2017; Jankowsky and Harris, 2017; Lambert et al., 2014; Martin et al., 2012; 
Tome et al., 2014). Of these, RNA-MaP and HiTS-RAP, two related techniques that utilize a 
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modified sequencing platform and an array of ~105 unique immobilized RNA species, eliminate 
an intermediate capture step that can alter binding occupancies, thereby allowing highly accurate 
thermodynamic and kinetic binding measurements via fluorescence readout ((Buenrostro et al., 
2014; Tome et al., 2014)& vide infra). Recent studies have demonstrated the utility of RNA-MaP 
for systematic investigation of RNA-protein and RNA-RNA interactions and for generation of 
quantitative energetic models (Buenrostro et al., 2014; Denny et al., 2018; She et al., 2017).  

 
We used the RNA-MaP platform to interrogate the sequence preferences of the human 

PUF family proteins PUM1 and PUM2 across a diverse designed RNA library. PUF family proteins 
(Figure 1A) are universal in eukaryotes and have been implicated in regulation of mRNA turnover, 
transport, translation, and localization (Miller and Olivas, 2011; Quenault et al., 2011). In 
mammals, PUF proteins play important roles in brain and germline development, regulation of 
innate immunity and other processes (Bohn et al., 2018; Chen et al., 2012; Gennarino et al., 2018; 
Gennarino et al., 2015; Kedde et al., 2010; Lee et al., 2016; Liu et al., 2017; Miles et al., 2012; 
Rodrigues et al., 2016; Tichon et al., 2016; Van Etten et al., 2012; Vessey et al., 2010). Extensive 
prior biochemical, structural, evolutionary, and in-vivo studies of PUF proteins provide a powerful 
starting point for our quantitative and systematic dissection of specificity (Figure S1A & references 
therein) and allow us to pose specific biological, engineering, and biophysical questions. 
 

PUF family proteins have a modular structure of eight conserved tandem repeats that 
recognize RNA in a sequence-specific manner (Figure 1A) and were chosen for this investigation 
because this apparent modularity provides a best-case scenario for building a simple predictive 
thermodynamic binding model (Galgano et al., 2008; Gerber et al., 2004; Miller and Olivas, 2011; 
Morris et al., 2008; Wang et al., 2002). However, we show that the simplest energetically additive 
model breaks down and that tight-binding RNA sequences exist that are not represented by 
previously defined motifs. Our large, quantitative data set enabled the generation of a predictive 
model for PUM1 and PUM2 binding that includes residue flipping and coupling terms. The model 
can also be applied to an engineered PUM1 variant, after changing a single parameter to account 
for the local specificity change. Remarkably, our in vitro-derived binding model quantitatively 
explains prior in vivo crosslinking data (Van Nostrand et al., 2016), demonstrating that RNA 
binding sites in vivo exhibit, on average, thermodynamically driven occupancies. Our in vitro vs. 
in vivo analysis further suggests that predicted RNA secondary structures that would inhibit PUM2 
binding do not lead to decreased PUM2 occupancy, and thus these structures are likely strongly 
disfavored in vivo. Our thermodynamic model provides a quantitative foundation for dissecting the 
cellular behavior of RBPs and represents an early step towards a quantitative and predictive 
understanding of the complex networks of RBP/RNA interactions and their regulatory 
consequences. 

Results 
 
Library design 

Starting with the PUM2 consensus motif, which has been determined by pull-down, cross-
linking and in vitro selection experiments (Figures 1A, S1A), we designed an oligonucleotide 
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library to systematically address the factors that determine binding specificity (Figure S1B). To 
control for structural and context effects, each sequence variant was embedded in two to four 
scaffolds (Figure 1B). We systematically varied the sequence of the PUM2 binding site and the 
flanking sequence (Figure S1B). We also included insertions to test the potential for 
noncontiguous binding sites and variants of sequence motifs of related PUF proteins to provide 
additional sequence variation for testing PUM2 binding models (Figure S1B).  

Massively parallel measurements of PUM2 binding affinities 
Using RNA-MaP, we determined PUM2 protein binding affinities for >20,000 distinct 

RNAs and we report on >5000 herein; sequences designed to address distinct questions will be 
reported separately. The DNA library was sequenced on an Illumina MiSeq flow cell, followed by 
in situ transcription in a custom-built imaging and fluidics setup (Figure 1C; (Buenrostro et al., 
2014; Denny et al., 2018; She et al., 2017)). The RNA transcripts were immobilized by stalling the 
RNA polymerase at the end of the DNA template, and RNA-protein association was measured by 
equilibrating the RNA with increasing concentrations of fluorescently labeled protein and imaging 
binding to each cluster (comprising ~1000 copies of an RNA variant) (Buenrostro et al., 
2014)(Figure 1C). The resulting binding curves were used to obtain the dissociation constant (KD) 
and the corresponding ∆G value (= RTlnKD) of the protein for each RNA variant. 
 

Figure 1D shows representative binding curves for a consensus sequence (UGUAUAUA) 
and a variant with several mutations (CGUAUUUA) that exhibit divergent affinities (KD = 0.17 nM 
and >1 µM, respectively). For most protein concentrations, protein binding to the consensus 
sequence followed a canonical binding curve (Figure 1D, UGUAUAUA). At the highest protein 
concentrations there was a modest additional increase in fluorescence that was only observed 
for sequences that significantly bound PUM2 and was well fit by a model in which a second PUM2 
weakly binds to the RNA/PUM2 complex (Figure 1D, UGUAUAUA vs. CGUAUUUA). This effect 
was readily accounted for by including a second ‘non-specific’ binding term (Methods) and led to 
somewhat greater uncertainty in KD values for weakly bound RNAs (Figure S1C). 

 
Because our RNA array contained multiple clusters for each sequence variant, numerous 

binding curves were determined in parallel for each construct. The median number of independent 
clusters per sequence variant was 23 and 42 in experiment replicate 1 and 2, respectively, greatly 
exceeding the redundancy of typical biochemical measurements and providing high precision. 
Molecular variants were included in downstream analysis only when measured in at least five 
clusters per experiment (Figure S1C), with additional quality filters described in Methods. 
Independent binding experiments using distinct RNA chips indicated quantitative agreement (R2 
= 0.96; Figure 1E), with average reproducibility within less than two-fold (RMSE = 0.26 kcal/mol) 
after accounting for a small systematic shift.  

Dissecting and defining PUM2 specificity  
PUM1, PUM2 and related Puf3-type PUF proteins appear to recognize RNA in a modular 

fashion, with each base contacted by one of the eight PUF repeats (Figure 1A; (Wang et al., 
2002)). Thus, independent energetic contributions from consecutive RNA bases bound at each 
of the eight PUF repeats might be expected, as assumed in motif descriptions (Schneider and 
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Stephens, 1990; Stormo, 2000). In this section we test this and other thermodynamic models and 
answer fundamental questions about PUM1 and PUM2 specificity. 
 
Comprehensive analysis of single-mutant variants. We first assessed the binding of all single 
mutants of the 8mer consensus UGUAUAUA RNA in two to four scaffolds (Figure 2A). At all 
positions we see the strongest binding for the consensus residue (circled) and we observe very 
low discrimination at position 5, consistent with prior results ((Dominguez et al., 2018; Galgano et 
al., 2008; Hafner et al., 2010; Lu and Hall, 2011); see also Figure S1A).  
 

To assess the robustness of measured single mutant penalties and to identify additional 
factors influencing PUM2 binding, we compared affinities measured for each RNA variant across 
scaffolds. While the affinities generally agreed across scaffolds, the spread of deviations was 
considerably greater than expected from error (Figure 2B; 25 ˚C, “Observed” vs. dashed line; 
Figure S2A). Significant deviations between scaffolds occurred in 13 of the 25 sequence variants, 
at a 10% false discovery rate (FDR; Figure 2A, “*”). Thus, we considered several potential origins 
of the observed differences between scaffolds. 
 
First, we assessed if RNA secondary structure limits PUM2 access to its site (Figure 2C), to 
differing extents among scaffolds. If structure affected binding, the differences between scaffolds 
should decrease at 37 ˚C. Indeed, smaller differences were observed (Figures 2B, S2A), with only 
two of the 25 sequence variants exhibiting significant deviations between scaffolds at a 10% FDR 
(Figure S2C, “*”). Accounting for structure effects with stabilities predicted by Vienna RNAfold 
(Lorenz et al., 2011) also considerably reduced the between–scaffold deviations (Figure 2B, 
“Observed” vs. “Structure-corrected”; Figure 2D; the transparent regions denote the structure 
correction; Methods), with only five of the initial 13 variants with significant inter-scaffold 
deviations remaining at 25 ˚C, and none at 37 ˚C (asterisks in Figures 2A vs. 2D, S2C). A similar 
decrease in variance was observed after omitting data for RNAs predicted to have significant 
structure (Figure 2B, “Unstructured only”; ∆Gfold > –0.5 kcal/mol). Thus, RNA secondary structure 
can account for most inter-scaffold variation. 

 
To assess if potential sequence preferences outside the canonical 8mer site affect PUM2 

binding, our library included a set of constructs with randomized sequence at the two flanking 
positions upstream (-2, -1) and downstream (+1, +2) of a common consensus sequence (N = 209 
across four scaffolds; Figure S2D). We found modest effects at position +1, with G(+1) bound 
most tightly (Figure S2D), with no significant effects at other flanking positions, and this G(+1) 
effect was confirmed in gel shift experiments (Figure S2E). These results identified a new 
specificity determinant, G at position +1. However, since none of our scaffolds contained a G at 
this position, flanking effects did not impact the observed differences of single mutant 
measurements between scaffolds. 

 
Finally, we investigated the possibility of alternative binding registers, which can diminish 

the observed mutational penalty (Figure S2F). We calculated predicted binding affinities in all 
possible binding registers along the RNA construct (scaffold + designed binding site) using a 
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model that assumes independent effects of individual mutations (see Methods). Eighteen of our 
61 single-mutant measurements across scaffolds in Figure 2A,D had an alternative register with 
a predicted KD within 5-fold of the measured value, which would lower the apparent KD by 20% or 
more (Table S1; Methods). These variants included two of the five mutants that showed significant 
deviations between scaffolds after structure correction: 1A and 2C (Figure 2D, ‘*’). For the 2C 
mutant, three of the four scaffolds have alternative registers with affinities matching the observed 
values (Figure S2G). Thus, in this case it is the seeming outlier (Figure 2D, Scaffold S1b, green) 
that gives the most accurate mutant penalty. This result underscores the value of multiple 
scaffolds and the importance of accounting for alternative binding sites for correctly estimating 
mutational penalties. 

 
To obtain reliable single-mutant penalties despite the alternative register binding, we took 

advantage of the observations that substituting the uridine at position 5 with A or C residues did 
not affect the binding affinity (Figure 2D (Lu and Hall, 2011)) and that none of the single mutants 
in the 5A or 5C backgrounds had stable predicted alternative registers (Figure S3A). We therefore 
used the median single-mutant effect from the 4–10 constructs per mutation obtained across the 
5A, C, or U backgrounds in all scaffolds (Figure S3A), as summarized in Figure 2E. We observed 
excellent agreement between the values derived from 25 and 37 ˚C data, with a constant 
destabilization of binding by (20±10)-fold at the higher temperature (Figure S3A–E). We also 
observed excellent agreement between gel shift measurements of 14 single mutants and the 
array measurements (Figure S3F,G). 
 
Testing an additive model for PUM2 specificity. If binding of RNA residues by consecutive PUF 
repeats contributed independently to PUM2 affinity, we should be able to predict PUM2 affinities 
for our entire library based on additive effects of the measured single mutant penalties (“additive 
consecutive model”; Figure 3A, top). To assess this model, we calculated the predicted affinities 
for our entire library using 36 terms, one for each residue at each of the 9 recognition sites (8 
canonical PUF repeats and the additional G9 site), with the values for these terms determined 
from our single-mutant data (Figure 2E; Table S2). In the predictions, we accounted for all 
possible binding registers by calculating the predicted affinity for each 9mer site in a given library 
variant, followed by calculating the ensemble affinity (Methods). We then compared the predicted 
and measured affinities for all RNAs in our library with little or no structure (∆∆Gfold > -0.5 kcal/mol; 
N = 5206). This set included RNAs designed to have two to four mutations throughout the PUM2 
consensus sequence, as well as longer sequence variants based on consensus motifs of other 
PUF proteins and variants featuring insertions and variation in flanking sequence (Figure S1B). 

 
 While the predicted and observed binding energies strongly correlated (R2 = 0.73), 27% 

of the observed values deviated from additive predictions by >1.0 kcal/mol, well beyond our 
experimental error of 0.14 kcal/mol for individual measurements (Figure 3A). The observed 
deviations were also highly asymmetric, with the vast majority of outliers binding tighter than 
predicted (Figure S4A). We therefore explored additional features that might lead to the tendency 
for tighter-than-predicted binding. 
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Residue flipping accounts for most deviations from the additive consecutive model. Several PUF 
proteins are known to bind RNAs with residues “flipped out” to yield longer, nonconsecutive 
binding motifs (Gupta et al., 2008; Miller et al., 2008; Valley et al., 2012; Wang et al., 2009; Wilinski 
et al., 2015), and PUM1, a second human Pumilio protein with >90% sequence identity to PUM2 
in its RNA binding domain, has two X-ray structures with bound RNA sequences each with one 
residue flipped out (Gupta et al., 2008). To assess whether base flipping significantly contributes 
to RNA binding to PUM2, we had included in our library a set of RNAs with C insertions throughout 
the UGUAUAUA consensus sequence (Figure 3B), with C insertions chosen because none of the 
PUM2 repeats preferentially bind C (Figure 2E). 
 
 We considered two models for binding of the C-insertion sequences, a null model 
corresponding to the above additive consecutive model and an extended model that allows for 
residue flipping. This second model uses the same 36 energy terms for recognition of each 
residue, but also includes energetic penalty terms associated with flipping out a residue (here the 
inserted C). Figures 3C and 3D show binding to two RNAs, one that provides evidence for C-
flipping (Figure 3D) and one that does not (Figure 3C). In the absence of base flipping, a C 
insertion would cause one or more mismatches in the PUM2 binding site (“X” in Figure 3C,D), 
and the relative affinities predicted by the additive consecutive model are indicated (∆∆Gpred). For 
the insertion of C between residues 1 and 2 in Figure 3C, the observed and predicted affinities 
for a consecutive binding site are the same (∆∆Gobs – ∆∆Gpred = –0.1 kcal/mol), providing no 
indication of base flipping. In contrast, the C insertion between residues 5 and 6 binds 3.4 kcal/mol 
stronger than predicted by the additive consecutive model, providing evidence for base flipping 
(Figure 3D). The 0.9 kcal/mol observed destabilization relative to the consensus sequence 
suggests an energetic penalty for flipping a C residue at this position of 0.9 kcal/mol. Analogous 
analyses provided evidence for flipping at positions 3/4, 4/5, 5/6, and 6/7 (Figure 3E; green box). 
Thus, our data suggest that PUM2 can bind RNAs with ‘flipped out’ residues in certain positions, 
and we modeled this behavior in an extended “additive nonconsecutive model”. 
 

 The additive nonconsecutive model combines independent energetic contributions from 
each of the 9 PUF repeats with the ability to flip up to two residues, each with an associated 
flipping penalty (Methods). To determine the energetic penalties associated with mutations and 
with base flipping, this model was fit to our 5206 measured binding affinities (Figure 3F). To avoid 
overfitting, the parameter values for bound residues (∆∆Gb

X; Figure 3) were constrained to the 
measured single mutant penalties, with an allowed range to account for uncertainty (Figure 2E 
and Methods). We accounted for all possible binding modes and registers in the global fit 
(Methods, and see Figure 4). The global fit to the additive nonconsecutive model gave excellent 
agreement with the data, with RMSE reduced from 1.03 to 0.36 kcal/mol and R2 increased from 
0.73 to 0.92, relative to the additive consecutive model (Figure 3F vs. 3A). This large improvement 
is not a consequence of allowing the single-mutant values to vary in global fit, as a global fit to 
the additive consecutive model with variable single-mutant values gave considerably smaller 
improvement (Figure S4B,C). Indeed, in the additive nonconsecutive model, 40% of the RNAs 
are predicted to be predominantly bound with one or more flipped residues. While this model gave 
nearly symmetric variation around the identity line (Figure 3A vs. 3F; Figure S4A), there remained 
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a subset of outliers (Figure 3F, dashed orange circle) that led us to carry out additional analyses 
for energetic coupling. 
 
Energetic coupling between neighboring residues. Inspection of the cluster of variants that bound 
tighter than predicted even after accounting for flipping (Figure 3F, dashed outline) revealed an 
enrichment for variants with a G mutation at position 7 accompanied by mutations at position 8, 
suggesting potential coupling between neighboring mutations. For an unbiased assessment of 
coupling, we considered all double mutants and plotted deviations of observed effects from the 
predicted additive effects of individual mutations (Methods; Figure S4D). Coupling between 
positions 7 and 8 was the strongest, and deviations from additive predictions at all other positions 
were <0.5 kcal/mol. Analysis of energetic coupling between positions 7 and 8 revealed that: (1) 
Coupling between positions 7 and 8 occurred with G or C at position 7; (2) For 7G, binding was 
tighter than predicted (i.e., coupling occurred) only when position 6 was the consensus residue 
(A) and a pyrimidine was present at position 5 (Figure S4E); these variants fully explained the 
cluster of outliers observed in Figure 3F (Figure S4E, top). (3) For 7C, the base identity at 
positions 6 and 8 mattered, with deviations from additivity greatest when position 6 was mutated 
(i.e., not A) (Figure S4F). 
 

We also observed small deviations from additivity at positions 8 and 9 (Figure S4D) and 
asked whether the small deviations might be real given the overall weak effect from G at position 
9 (Figure 2E). Physically, an absence of stable binding in the PUM2 site ‘8’ would be expected to 
increase the entropic penalty for forming the site ‘9’ interaction and thus might weaken or eliminate 
this interaction. Indeed, we found that the modest stabilizing effect of 9G relative to other residues 
was only present with the consensus A at position 8 (Figure S4G). We therefore included this 
coupling term in our final model. 

 
Figure 3G shows the global fit to our final model that includes additive terms for bound 

and flipped residues, and the three coupling terms described above (Figure 3G; red boxes in 
Figure S4E–G). The model accounted for 99% of the data within 1 kcal/mol and gave a slight 
overall improvement relative to the additive nonconsecutive model (Figure 3F vs. 3G). 

 
Evaluating the final PUM2 binding model. To assess the robustness of the final model we 
performed a series of control fits and analyses (Methods), demonstrating that the fit model 
parameters were stable to variation in initial parameter values, data resampling, and the use of 
different fitting methods. Training and testing sets gave essentially identical R2 and RMSE values, 
suggesting that the model was not overfit. 
 
 To determine how well the data and model define the individual free energy terms (Table 
1), we individually varied each parameter and determined the sensitivity of the RMSE to this 
variation (Figure S5A–C). As expected, the free energy terms for the consensus residues were 
highly constrained, as these residues were present in the majority of the 5206 RNAs (Figure S5A, 
shaded in blue). Varying the penalties for mismatched bound residues gave shallower changes 
in RMSE, as expected given their lower representation, and, again as expected, this shallowness 
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was most pronounced for the highly destabilizing 5′ mutations that were only weakly represented 
in the preferred binding registers (Figure S5A). 
 

The fit values for six of the 36 parameters for individual bound residues fell at the limit of 
the range to which the parameter values were constrained based on the estimated error in single 
mutant measurements. Removing the constraints for these six parameters gave optimal values 
within 0.0–0.2 kcal/mol of the previously allowed range of values (Figure S5B). The small 
deviations could originate from small RNA structural effects or additional weak couplings. 

 
   About half of the flipping terms in the model (Figure 3G, ∆∆Gf

Y) were well constrained, 
while the other half provided lower limits for the free energy penalties, generally because the 
penalties were sufficiently high that either no binding or binding in an alternative register was 
observed (Figure S5C). In addition, the lack of specificity for the ‘bound’ base at position 5 limits 
the ability to distinguish flipping at position 4/5 versus position 5/6. 
 
Implementation of the predictive model of RNA binding by PUM2. To apply our thermodynamic 
model for PUM2 binding to any given RNA, we considered all possible binding modes to derive a 
binding ensemble, as illustrated in Figure 4. For the 15 nucleotide RNA example in Figure 4, there 
are seven possible consecutive (9mer) registers; six 10mer registers, in which a single base is 
flipped at one of the four possible flipping sites (24 flipped possibilities total); and five 11mer 
registers that can be bound with two residues flipped at one of four sites (20 possibilities) or with 
two single residues flipped at two different sites (30 possibilities). For each of the registers, the 
model calculates individual ∆∆G values by adding the respective individual ∆∆G terms for bound, 
flipped and coupled residues (Figure 4 and Table 1). The final predicted affinity is then computed 
from the ensemble of all possible binding site configurations, assuming one bound protein 
monomer, as specified by the equation in Figure 4. Overall our final binding model is well 
constrained by the large amount of quantitative data used to build and test it, and the model is 
complete in that it predicts PUM2 affinity for any RNA sequence. 

Evaluating specificity across human Pumilio proteins 
Human PUM1 shares 91% sequence identity and 97% sequence similarity in its RNA-

binding domain (RBD) with PUM2, and all of the RNA-interacting amino acids are identical 
between the two proteins (Figure S6A). Prior studies revealed nearly identical RNA sequence 
motifs and considerable overlap in apparent targets, highlighting the question of why humans 
retain two seemingly redundant proteins (Figure S1A)(Bohn et al., 2018; Campbell et al., 2012; 
Dominguez et al., 2018; Galgano et al., 2008; Hafner et al., 2010; Morris et al., 2008). To test 
potential quantitative differences in PUM1 and PUM2 sequence specificity and to assess if our 
PUM2-derived binding model could be extended to predict PUM1 binding, we compared PUM1 
and PUM2 binding across our RNA sequence library. 
  

PUM1 and PUM2 binding showed remarkably high agreement across the 12,285 
sequences for which high-confidence data were obtained (Figure 5A; R2 = 0.95, RMSE = 0.24 
kcal/mol), indistinguishable from the concordance between PUM2 replicates (Figure 1E). 
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Therefore, our model derived from PUM2 data can also be used to predict PUM1 binding (Figure 
5B). Our observation that RNA binding domains of the human Pumilio proteins display identical 
RNA sequence specificities suggests that any functional differences are fully determined by other 
factors. Indeed, there is evidence that PUM1 and PUM2 are differentially expressed and diverge 
in their sequence outside the PUF RBD, allowing for different modification patterns, and 
potentially different protein interaction partners and differential subcellular localization (Bohn et 
al., 2018; Kedde et al., 2010; Lee et al., 2016; Liu et al., 2017; Nagaraj et al., 2011; The UniProt, 
2017; Van Etten et al., 2012). 

Evaluating the precision of Pumilio engineering 
The modular structure of PUF proteins has made them attractive platforms for engineering 

new RNA specificities (Abil et al., 2014; Adamala et al., 2016; Campbell et al., 2012; Campbell et 
al., 2014; Cheong and Hall, 2006; Dong et al., 2011; Filipovska et al., 2011; Porter et al., 2015; 
Wang et al., 2002; Weidmann and Goldstrohm, 2012; Zhao et al., 2018). Given our observation 
of complexity of the PUF protein specificity landscape not captured by a simple linear motif and 
the low-throughout nature of most previous studies, we aimed to comprehensively evaluate the 
precision of PUF protein engineering using a previously designed PUM1 mutant (Cheong and 
Hall, 2006).  
 

We investigated the specificity of a PUM1 mutant designed to alter specificity for position 
6 in the RNA from A to U through a single amino acid substitution in Repeat ‘6’ (Cheong and Hall, 
2006). The C935N mutation changes the characteristic A-specific triad of amino acids (QRxxC) 
to resemble the conserved residues of a U-specific repeat (QYxxN; Figure 5C), and this mutant 
was previously shown to have 6-fold greater affinity for the UGUAUUUA sequence than for the 
wild-type UGUAUAUA consensus (Cheong and Hall, 2006). Analysis of single mutant penalties 
relative to wild-type PUM1 confirmed a change in mutant PUM1 specificity at position 6: while 
wild-type PUM1 bound the 6U RNA 12-fold weaker than it bound the 6A consensus, the 
engineered protein showed a 1.8-fold preference for 6U instead, giving a 22-fold specificity 
change (Figure 5D). The relative affinities were unaffected for the other RNA residues at position 
6 (6C, 6G), and no other single mutants showed a significant difference, supporting a local effect 
from the PUM1 mutation (Figure 5D). 

 
If the programmed affinity change is fully local, then our model, based on wild-type 

PUM1/2, should accurately predict binding, except for sequences containing a U at bound position 
6. Applying the original PUM1/2 model to mutant PUM1 binding led to accurate predictions for 
most variants, but 18% of variants bound considerably (>1 kcal/mol) more tightly than predicted 
(Figure 5E). Changing a single term in our binding model to account for the altered 6U penalty for 
mutant PUM1 (–0.35 kcal/mol instead of +1.49 kcal/mol) gave accurate predictions for these 
outliers (Figure 5F), consistent with a localized effect of the PUM1 mutation on binding of RNA 
variants that contain U at position 6. The modified thermodynamic model predicted affinities for 
99% of variants within 1 kcal/mol of their observed binding free energy and had an RMSE of 0.32 
kcal/mol, similar to that for wild-type PUM1 (Figures 5F,B). Thus, our quantitative model can be 
readily modified and applied to new PUF proteins.  
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Assessing the thermodynamic model for PUM2 RNA occupancies in vivo 
The occupancy of PUM2 at RNA sites in vivo could simply reflect the relative 

thermodynamic affinity for sites within each RNA, and because of the large excess of consensus 
RNA binding sites over PUM1/2 proteins in human cells (Lee et al., 2016), a strictly 
thermodynamic binding model would predict a linear relationship between site affinity and PUM2 
occupancy. Alternatively, if RNA chaperones or helicases were to displace PUM2 faster than its 
intrinsic dissociation rate, binding sites with different affinities but the same association rate 
constants would have the same occupancies (Figure S7A,B). To assess the extent to which in 
vivo binding is driven thermodynamically, we compared predictions from our thermodynamic 
binding model to published in vivo UV crosslinking measurements for PUM2 from the ENCODE 
project (Consortium, 2012; Van Nostrand et al., 2016). 
 

We evaluated PUM2 binding data, obtained by enhanced UV crosslinking and 
immunoprecipitation (eCLIP), in bins of predicted affinity, because quantification of individual RNA 
sites is currently limited by low sequencing depths and may be further subject to experimental 
biases (Darnell, 2010; Sugimoto et al., 2012; Wheeler et al., 2018). Putative PUM2 binding sites 
within expressed mRNAs were identified as sites with predicted binding affinities within 4.0 
kcal/mol (~1000-fold) of the consensus sequence (Methods). eCLIP signal was summed across 
an 80nt window surrounding each site and divided by the relative expression of its transcript. 
Strikingly, we observed quantitative agreement between relative affinities predicted by our 
thermodynamic model and the median eCLIP enrichment signal across the predicted affinity bins 
(Figure 6A, points vs. dashed line). Close agreement was observed for predicted sites both with 
and without flipped residues (Figure S7D). Thus, the in vivo binding data are consistent with 
thermodynamically driven occupancy, and the binding sequences and modes identified by RNA-
MaP are bound in vivo at the levels expected based on their affinities.  
 

Because Pumilio proteins have generally been identified to act via 3´ untranslated regions 
(UTRs), we wondered whether there might be lower average occupancy in coding sequences 
(CDS) and in 5´ UTRs. One of several possible factors that could lead to such disparities would 
be PUM2 dissociation stimulated by ribosomes translating through these binding sites, as this 
would decrease CDS but not 3´ UTR occupancies. Nevertheless, comparison of the occupancy 
around PUM2 sites in 3´ UTRs and CDSs showed indistinguishable eCLIP enrichments (Figure 
6B; 5′–UTR sites were not included because of the small number of predicted sites in this region). 
This comparison suggests that the inherent thermodynamic stability of a site is the overarching 
driver of in vivo occupancy, rather than the location of the site within the mRNA. 
 

We observed a strong enrichment of PUM2 consensus sites in 3´ UTR sequences relative 
to CDS and the 5´ UTR, with ~90% of the strongest binding sites (∆∆G < 0.5 kcal/mol) located 
within 3´ UTRs, despite 3′ UTRs constituting on average only 35% of the mRNA length (Figure 
6C, Figure S7E (Consortium, 2012)). Enrichment was evident, though diminished, for sites with 
weaker predicted affinities, for ∆∆G values up to ~3 kcal/mol. This enrichment is consistent with 
the established functional roles for PUM2 via 3´ UTR binding ((Bohn et al., 2018; Kedde et al., 
2010; Miles et al., 2012; Rodrigues et al., 2016; Wickens et al., 2002)). 
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Our in vitro thermodynamic measurements indicated that RNA secondary structure 

formation can strongly limit the accessibility of PUM2 binding sites, and thus decreases PUM2 
binding (Figure 2C,D; I.J., W.R.B. et al., in prep.). In contrast, when we compared the in vivo 
eCLIP signal around consensus sites with varying predicted structure content, the eCLIP signal 
was largely unaffected, with no change in occupancy for predicted structural stability of up to ~4 
kcal/mol (Figure 6D; 37 ˚C). This result was independent of the number of flanking nucleotides 
included in the structure prediction, from 20 nt to 160 nt. A rare subset (<2%) of sites had very 
high predicted structure stability (∆∆Gfold > 8.6 kcal/mol; 160 nt window) and showed slightly 
diminished eCLIP signal, suggesting that highly stable structures may lead to decreased binding. 
However, RNA structure effects on the vast majority of PUM2 sites appear to be negligible in vivo. 

 

Discussion 
 

RNA/protein interactions are integral to regulation of gene expression (Singh et al., 2015). 
To define and predict the complex networks of RNA/protein interactions, quantitative descriptions 
of RNA/RBP thermodynamics are needed. As an early but critical step toward this goal, we have 
built a predictive model for RNA binding by the important human RBPs PUM1 and PUM2. Our 
direct thermodynamic binding measurements for thousands of RNAs and the corresponding 
model provide testable predictions of in vivo RNA interactions, a platform for analyzing specificity 
of related RBPs, and novel biological and biophysical insights. 
 
Applications to cellular interactions and RNA properties. Our thermodynamic model provides a 
quantitative foundation for testing cellular factors that influence RNA behavior, as they can be 
read out as deviations from the thermodynamically predicted behavior. 
 

Comparison of predictions from our binding model to published in vivo cross-linking data 
(Van Nostrand et al., 2016) supports the simple notion that thermodynamics is a prime driver in 
determining RNA occupancy for PUM2. While it would be surprising if thermodynamic affinities 
did not, at some level, influence RNA binding in vivo, other models are possible. For example, 
rapid Pumilio protein dissociation by the action of RNA helicases would level occupancies for all 
sites above a certain threshold affinity (Figure S7B), and translation by ribosomes that displaces 
PUM2 proteins faster than equilibration of PUM2 binding would yield CDS occupancies lower than 
3´ UTR occupancies. However, a close correspondence between thermodynamic predictions and 
extents of crosslinking in vivo provides evidence against these alternate models (Figure 6A, B). 
Ribosomes traverse CDS sites, and presumably displace bound factors, about once every 10 
seconds (~0.1 s-1 (Halstead et al., 2015; Schwanhausser et al., 2013)). This rate sets an upper 
limit for the equilibration time for PUM2 binding—it must occur faster than ribosomal displacement 
for us to observe no difference in occupancy in CDSs compared to 3´ UTRs. This rough lower 
limit estimate is similar to the rate constant for dissociation of PUM2 from the consensus sequence 
in vitro (~0.1 s-1; 37 ˚C; unpublished results). This calculation suggests that PUM2 dissociates 
from consensus sites on the timescale of translation, and faster for nonconsensus sites, in the 
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absence of ribosome displacement or other stimulating factors, consistent with our observations. 
More direct assessments of the interplay between thermodynamic and dynamic factors in vivo will 
be of great interest, given the potential for transcript-specific effects and the need to determine 
whether cellular conditions and factors alter binding and dissociation rates. 
 

PUM2 binding to ssRNA and the expectation, supported by in vitro data, that RNA 
structure inhibits binding (Figure 2C, D; I.J., W.R.B. et al., in prep.) provided us with an opportunity 
to assess the stability of predicted RNA structures in cells. Recent studies have suggested that 
RNA structure is destabilized in the cellular milieu (Ding et al., 2014; Guo and Bartel, 2016; 
Rouskin et al., 2014; Spitale et al., 2015), but given the fundamental importance of determining 
the physical state and dynamic behavior of molecules in cells, additional approaches and data to 
address this question are called for. Using published eCLIP data (Van Nostrand et al., 2016), we 
observed that binding sites predicted to be minimally accessible (<0.1%; ∆∆Gfold ≳ 4 kcal/mol) 
gave enrichments that were essentially indistinguishable from sites predicted to lack structure 
(Figure 6D). These results provide independent support for structure disruption in vivo, which 
could result from a high density of bound RBPs that outcompetes RNA structure formation and/or 
the action of RNA chaperones. Moving forward, coupling of in vitro thermodynamic measurements 
with quantitative in vivo analysis will aid in determination of cellular factors responsible for 
destabilizing RNA structure and the degree to which structure varies across RNAs. 
 

While the eCLIP data (Van Nostrand et al., 2016) enabled us to perform initial tests of 
thermodynamic predictions for PUM2 in vivo, future tests will be needed to assess factors that 
lead to occupancy variation at the level of individual RNAs and to confidently distinguish variation 
caused by biological factors vs. technical artifacts (Wheeler et al., 2018). Improvements in 
individual-RNA signal intensity and quantitative controls will allow dissection of these factors.  
 
An algorithm for predicting Pumilio occupancies. Our comprehensive thermodynamic PUM2 
binding model, along with estimated in vivo PUM2 and RNA levels, allows prediction of PUM2 
occupancy across the entire transcriptome. We supply a computational algorithm to carry out 
these predictions, and depict the output of this tool for one transcript in Figure 6E,F. Our algorithm 
can be used to predict occupancies for individual sites and to design tests for affinity, local 
structure, and other factors that might affect RBP binding in vivo. The model can be extended to 
predict global changes in occupancies in response to changes in protein levels, affinities, or 
specificities. 
 
 Our PUM2 binding model was readily extended to PUM1, which has identical specificity, 
and readily adapted for an engineered PUM1 variant, by adjusting a single term to reflect the 
changed specificity (Figures 5C–F; (Cheong and Hall, 2006)). Similarly, the model, with additional 
terms and adjustments, should account for specificity of the spectrum of Pumilio proteins, and the 
approach executed herein should be extensible to provide quantitative affinity for many additional 
RBPs. 
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Specificity and cellular RNA/protein binding landscapes. Determining quantitative RBP binding 
landscapes and how these landscapes change with changes in RBP and RNA levels, 
modifications, and other cellular factors is a critical component of a complete description of the 
RBP/RNA interactome. The shape of the binding landscape––i.e., RBP occupancies across RNA 
sequences present in a cell––has implications for regulation, evolution, and engineering. We 
illustrate some of these implications, including non-obvious consequences of binding specificity. 
 

Figure 6G shows predicted PUM2 binding across all possible RNA binding sites in the 
human protein-coding transcriptome (Methods); RNA sequences are defined by the number of 
nonconsensus residues relative to the UGUA[ACU]AUAN consensus and by the presence or 
absence of flipped residues. Despite the stronger binding of PUM2 to consensus than other 
sequences, our thermodynamic model predicts that less than a third of cellular PUM2 is bound to 
consensus sites (Figure 6G; Methods). Instead, the majority of the protein is distributed across 
the much more common nonconsensus sites that contain up to 4 nonconsensus residues and/or 
flipped residues that still have moderate affinities (Figure 6G,H). The varied, moderate, 
nonconsensus residue penalties of PUM2 allow for a smooth gradient of binding occupancies 
(Figure 6I; see also Figure 3G and Figure 6A; Table 1). Thus, we speculate that regulatory 
response strengths to PUM2 (e.g., in RNA decay) can be finely tuned at the level of RBP binding, 
by utilizing different RNA sequences along a gradient of affinities. 

 
A less obvious influence of RBP specificity on regulation arises because the binding to 

nonconsensus RNA sites reduces the pool of protein available to bind to consensus sites. 
Because binding occurs across a large number of sites, and because of the much greater number 
of potential binding sites than the number of PUM2 molecules in cells, only a small fraction of 
each consensus site (UGUA[ACU]AUAN) is predicted to be occupied by protein (~3%; Figure 6I). 
Thus, even in the presence of total protein concentration in excess of the consensus affinity 
([PUM2] = 10 nM vs. KD = 3 nM at 37 ˚C), binding is decidedly subsaturating. This subsaturating 
binding renders per-site occupancies highly sensitive to changes in PUM2 levels or affinity, 
analogously to cellular enzymes that operate in a subsaturating regime ([Substrate] ~ KM) to 
enable greater sensitivity to cellular changes in substrate concentration (Berg JM, 2002). In 
contrast, in a hypothetical extreme scenario in which PUM2 bound only a single 9mer consensus 
sequence with infinite specificity (UGUAUAUAG; n ≈ 4000), these consensus sites would remain 
fully occupied across a range of PUM2 concentrations (with PUM2 in excess of these sites), 
making them effectively insensitive to changes in total or active PUM2.  

 
Additional advantages from a near-continuous landscape of occupancies may arise 

because natural selection can ‘choose’ between sequences with very similar binding to co-
optimize for other properties, such as binding to other RBPs, RNA structure, and tuning of 
translation. Also, by having different sequences with similar affinities, mRNA targets could be sub-
divided into groups that are subject to distinct control (e.g., by covalent modification of one but 
not the other RNA sequence), thereby creating a more precise and interconnected regulatory 
network.  
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Finally, the near-continuous landscape of PUM2 occupancies across mRNA sequences 
would be expected to render it highly evolvable. The presence of a large number of sites bound 
with moderate affinities, and the often subtle effects of individual substitutions should allow 
evolution to tune regulation of existing sites as RNA sequences undergo mutation and will 
increase the ability to co-opt new RNAs for regulation. Indeed, PUM2 orthologs are present 
throughout Eukaryotes that recognize different sets of RNAs; these transitions that occurred 
multiple times in evolution may have been facilitated by PUM2’s moderate specificity (Gerber et 
al., 2006; Hogan et al., 2015; Jiang et al., 2010). 
 
Biophysical insights into Pumilio•RNA interactions. Quantitative high-throughput thermodynamic 
data can also help the development of testable physical models. Our data revealed that the A-
recognition modules at positions 4, 6, and 8 give highly similar specificities, whereas the U-
recognition modules at positions 1, 3, 5, and 7 vary dramatically in their specificities, from no 
discrimination against A and C at position 5 to ~102 fold specificity at positions 1 and 3 (Figure 
2E, Figure S4H–J). The differential specificity across the U-recognition modules could arise, at 
least in part, from differences in orientations and constraints imposed by the different neighboring 
positions, which can allow more or less optimal positioning at each U-recognition module. 
Similarly, the slightly weaker discrimination at position ‘8’, at the end of the Pumilio modules, 
relative to the internal A-recognition modules, may arise because there are fewer conformational 
restraints 3´ of this position, allowing noncognate bases to more readily find alternative bound 
conformations. These observations are of practical importance for engineering Pumilio proteins 
and of broader importance for understanding and modeling RNA recognition by proteins. 
 

The absence of measurable coupling between most neighboring residues suggests that 
the orientation of entry of the RNA into a site is not generally affected by the identity of the 
neighboring residue. The simplest model is that cognate and noncognate residues are bound with 
similar backbone configurations (or ranges of backbone conformations), and this interpretation is 
consistent with crystallographic observations that both cognate and noncognate bases dock into 
Pumilio binding sites and that backbone trajectories leading into and out of Pumilio repeat sites 
are similar with cognate and noncognate bases (Gupta et al., 2008; Lu and Hall, 2011; Wang et 
al., 2009). More generally, the observed energetic independence between most adjacent RNA 
residues suggests that there is sufficient room in the binding sites and/or sufficient degrees of 
freedom in the RNA backbone to allow the backbone to ‘forget’ its specific interactions at the 
adjacent sites. Nevertheless, a subset of positions give coupling, and coupling is likely more 
prevalent for at least a subset of other RBPs.  

 
Whereas neighboring bound residues largely do not affect each other, larger energetic 

effects are observed in cases of inserted residues that can flip away from the recognition sites, 
(Figure 3E and Table 1). A residue that follows a flipped residue will experience a larger loss in 
conformational entropy upon docking than a residue that follows and is positionally restricted by 
a preceding docked residue. Nevertheless, the specificity for neighbors is the same whether or 
not there is an intervening flipped residue—i.e., the same free energy terms can be used for each 
bound residue (∆∆Gb

X, Table 1A) whether or not there is a flipped residue and associated flipping 
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penalty (∆∆Gf
Y; Table 1B). The observed energetic constancy suggests that flipped residues do 

not significantly alter the docked states for neighboring cognate and noncognate residues and 
that there are no alternative bound states for the neighboring residues that are both reachable 
and more favorable energetically than the standard docked state.  
 

These brief considerations of the interrelationship between binding thermodynamics and 
conformational properties underscore complexities in understanding and modeling RNA/RBP 
interactions. Relative to the conformationally more constrained dsDNA and studies of DNA/protein 
interactions, broader ensembles are expected for ssRNA, both free and bound to RBPs, 
highlighting the enormous challenge faced in modeling RNA/RBP binding affinities and 
specificities. Considering the large number of proteins that bind RNA, the ability to ultimately 
define binding landscapes for all RBPs will likely require computational approaches, and 
developing models that can accurately predict thermodynamics we believe will require guidance 
and testing with large accurate thermodynamic datasets, such as those obtained herein. 
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Table 1. Thermodynamic Parameter Values for Additive Nonconsecutive Coupling Model 

A. Term I ∆∆Gb
X  (kcal/mol)    

Bound residue 
 position b = 

X =    

A C G U    

1 3.08 2.91 3.04 0.00    

2 1.93 3.14 0.00 3.14    

3 2.39 2.49 2.92 0.00    

4 0.00 1.92 1.71 1.46    

5 –0.03 0.17 0.79 0.00    

6 0.00 1.83 1.82 1.49    

7 1.55 1.78 1.59 0.00    

8 0.00 1.57 1.52 1.01    

9 0.30 0.29 –0.07 0.00    

B. Term II ∆∆Gf
Y  (kcal/mol) 

Flipped residue  
position f = 

Y = 

A C G U NN* �  

3/4 >2** 1.79 >1.5 1.41 >2.5 0  

4/5 >2 >3 >2.5 >2.5 >2.5 0  

5/6 1.22 1.05 1.57 0.81 2.18 0  

6/7 >2 1.77 >2 2.02 2.04 0  

C. Term III ∆∆Gc
Z
   (kcal/mol)***    

Coupled residue 
positions c = 

Z =    

5 6 7 8 6 7 8 8 9 
All other 

   

C/U A G C/G/U C/G/U C C/G/U C/G/U X    

5–8 –1.53  – – 0    

6–8 – –0.91  – 0    

8–9 – –  –∆∆G9
X  **** 0    

 
* Two-nucleotide flip of any sequence. 
** “>” Indicates a lower limit (see Figure S5C). 
*** Coupling terms are defined as combinations of residues that meet all of the indicated conditions at the 
indicated sets of positions. E.g., the coupling term ∆∆GZ

6 –8 has the value of –0.91 kcal/mol if position 7 
residue is a C and position 6 and 8 residues are not A (C/G/U); for all other combinations of sequences, 
the value of the coupling term is 0 (“–“). See Methods and https://github.com/pufmodel for full description 
of the model. 
**** Coupling term indicates that the position 9 binding term (∆∆G9

X  ; Table 1A) is only implemented when 
position 8 is the consensus residue A. 
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Figures  

 
 
Figure 1. Quantitative High-Throughput Measurements of RNA Binding to PUM2 
(A) Top: Crystal structure of the RNA-binding domain of human PUM2 bound to UGUAAAUA 
RNA (PDB: 3Q0Q; (Lu and Hall, 2011)). For simplicity, the eight RNA binding sites (‘R1’–‘R8’) are 
numbered in the 5′ to 3′ order of bound RNA residues––i.e., the reverse of the order in protein 
primary sequence. Center: Representative PUM2 sequence motif, indicating sequence 
preferences at each position, as determined by in vivo crosslinking (based on (Hafner et al., 2010); 
see also Figure S1A). Bottom: Schematic representation of PUM2 residues involved in base-
specific interactions. The first two residues shown in each repeat form hydrogen bonds and van 
der Waals interactions with the RNA base, while the third residue stacks with the base (Wang et 
al., 2002). 
(B) Scaffolds for studying RNA sequence specificity. Yellow circles indicate the variable region; 
see Figure S1B for a full description of the sequence variants within this region. 
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(C) Left: Schematic representation of an RNA-MaP experiment (Buenrostro et al., 2014) 
(Methods); see also Figure S1D for DNA library construction and design. Right: Representative 
images of a subset of RNA clusters after incubation with increasing PUM2 concentrations. 
Asterisk at ‘102 nM’ indicates adjusted contrast relative to other images, due to increased 
background fluorescence. 
(D) Representative binding curves for the consensus sequence (UGUAUAUA, S2b scaffold) and 
a double mutant (CGUAUUUA, S1b scaffold). The number of clusters containing the indicated 
sequence (n) is noted. Circles indicate the fluorescence in the protein channel normalized by the 
fluorescence in the RNA channel. Medians and 95% confidence intervals (CIs) across the clusters 
are shown. Blue lines indicate the fits to the binding model, which includes a non-specific term for 
PUM2 binding to the PUM2/RNA complex, and the gray area indicates the 95% confidence 
interval (CI) of the fit (KD(consensus) = 0.17 nM, CI95% = (0.10; 0.35); KD(mutant) > 1 µM). 
(E) Comparison of technical replicates performed on two different flow cells. Data with at least 
five clusters per experiment and with ∆G error less than 1 kcal/mol (95% CI) are shown. 
Transparent tiles correspond to ∆G values outside the reliable affinity range (see Methods); ‘n’ 
corresponds to the number of variants within the high-confidence affinity range, with the total 
number indicated in parentheses. The black dashed line corresponds to a slope of 1, and the red 
line is offset by the mean difference between replicates 1 and 2 (0.32 kcal/mol) that accounts for 
small differences in protein activity and/or dilution. The RMSE was calculated after accounting for 
this offset (RMSE = 0.42 kcal/mol without accounting for the offset). 
See also Figure S1.  
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Figure 2. Analysis of Single-Mutant Variant Binding to PUM2 
(A) Top: Color coding for the scaffolds in Figure 1B; the arrow points to affinities for each position 
1 sequence variant. Bottom: KD values of PUM2 for single mutants at each position of the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/403006doi: bioRxiv preprint 

https://doi.org/10.1101/403006
http://creativecommons.org/licenses/by-nc-nd/4.0/


v8.0 

22 

UGUAUAUA consensus sequence. Bars indicate weighted means of two replicate measurements 
and error bars indicate weighted replicate errors. The dashed line indicates the average affinity 
for the consensus sequence across the four scaffolds, and the consensus residue at each position 
is circled. Asterisks indicate variants with significant differences between scaffolds (10% FDR). 
(B) Scaffold variance before and after accounting for RNA secondary structure and after excluding 
sequences with predicted structure. The bars indicate standard deviations of the distribution of 
differences between each measured value (part A) and the scaffold mean for the respective 
variant; see also Figure S2A and Methods. Dashed lines indicate the standard deviation of 
measurement error. The experimental standard deviation was higher at 37 than 25 ˚C because 
of weaker binding and the absence of an independent duplicate experiment. 
(C) Model for RNA structure effects on PUM2 binding. Occluded RNA molecules increase the 
observed dissociation constant (weaken binding) by stabilizing the unbound state (see also Figure 
S2B & Methods). 
(D) Single mutant affinities after accounting for structure effects predicted by Vienna RNAfold 
(solid bars; (Lorenz et al., 2011)); the transparent region indicates the structure correction. 
Asterisks indicate variants with significant scaffold differences after accounting for structure 
effects. 
(E) Summary of single mutation penalties. Left: Median effects of each single mutation (residues 
1–8) across scaffolds and across 5A/C/U backgrounds at 25 ˚C, after excluding variants with 
alternative binding registers and after accounting for structure. Error bars indicate 95% CIs of the 
median. Mutational effects were calculated relative to the weighted mean affinity for the 
UGUA[A/C/U]AUA consensus across scaffolds. Right: Position 9 specificity, shown relative to the 
most tightly bound residue (G; see Figure S2D). 
See also Figures S2, S3. 
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Figure 3. Development of a Predictive Model for PUM2 Specificity 
(A) Schematic representation and test of the additive consecutive model. b is the position of bound 
base and X is the base at position b. ∆∆Gb

X values correspond to the measured single mutation 
penalties at 25 ˚C (Figure 2E; Table S2). Bottom: predicted versus observed ∆∆G values relative 
to the UGUAUAUAU consensus sequence for all unstructured variants in our library. Predicted 
∆∆G values account for the ensemble of all possible registers along the RNA sequence 
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(Methods). Transparent symbols indicate variants that were bound more weakly than the 
threshold for high-confidence affinity determination (∆G > –8.8 kcal/mol); these variants were 
excluded from determining the R2 and RMSE values and from global fitting in parts F and G. 
Points are colored based on the deviation from their predicted affinity, divided by the uncertainty 

of the measurement (z-score; z = 
|∆Gobs-∆Gpred|

s∆G
). Yellow indicates most significant deviations, and 

the z-scores were capped at z = 3 for visualization (see also Table S3 for the z-score distribution). 
The black dashed line is the unity line and the dashed grey lines denote 1 kcal/mol deviation from 
the predicted value. For direct comparison with parts B and C, data for all unstructured variants 
(n = 5206) are shown; excluding the single mutants (n = 113) did not significantly alter the fit 
values (RMSE = 1.04 kcal/mol; R2 = 0.73).  
(B) C-insertion library for base-flipping analysis. 
(C) Example of an insertion that gives binding consistent with the additive consecutive model. ‘X’ 
indicates a mismatch. ∆∆Gpred corresponds to prediction from additive consecutive model (Figure 
3A). With flipping, ∆∆Gpred indicates the prediction accounting for bound positions only, which is 0 
as the consensus residues are in each site. 
(D) Example of an insertion that gives binding tighter than predicted by the additive consecutive 
binding model and provides evidence for base flipping. 
(E) Summary of observed and predicted ∆∆G values for each of the C insertions in part A. Red 
bars indicate the difference between binding predicted in the best consecutive register for the 
indicated insertion construct and the observed value. Green box indicates positions at which the 
observed ∆∆G values are smaller than predicted (negative red bars), suggesting binding with 
base flipping. Arrows at the other positions indicate that the observed affinities are lower limits for 
base flipping penalties. 
(F) Additive nonconsecutive model. Y indicates the residue(s) flipped at position f. Numbering of 
flipped residues is based on the flanking bound residues; 3/4–6/7 (Figure 3B,E). Model 
parameters were derived by global fitting and are indicated in Table S4. The dashed orange 
outline indicates a cluster of outliers with residue coupling (see text). 
(G) Final model including binding, flipping, and coupling terms. c indicates the positions of coupled 
residues and Z is the identity of coupled residues. Final model parameters are provided in Table 
1.  
See also Figures S4, S5. 
 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/403006doi: bioRxiv preprint 

https://doi.org/10.1101/403006
http://creativecommons.org/licenses/by-nc-nd/4.0/


v8.0 

25 

 
 
Figure 4. Thermodynamic Model for PUM2 Binding Integrating Binding Modes and 
Registers 
An RNA sequence of length n can be bound in a series of 9–11mer registers (r), within which the 
RNA residues are variably distributed between bound and flipped positions. Representative 
subsets of binding registers and base arrangements are shown for each of the four binding modes 
included in the model: consecutive, 1-nt and 2-nt flips (at a single position), and two flips at 
different positions. The equations indicate integration of predicted ∆∆G values for all possible 
binding sites to obtain the final affinity. The ∆∆G values for individual binding site configurations 
are given in Table 1. ∆GWT is the affinity for the consensus sequence.   
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Figure 5. Comparison of RNA Binding Specificities of PUM2 and Wild-Type and Engineered 
PUM1 Proteins 
(A) Correlation between PUM1 and PUM2 affinities across the library. The red line has a slope of 
1 with an offset of 1.07 kcal/mol, corresponding to weaker observed binding for PUM1 than PUM2; 
the RMSE indicates the error after subtracting the constant offset. 
(B) Predicting PUM1 binding with the PUM2-based model. Inset shows the distribution of 
deviations from predicted values. 
(C) Schematic representation of the single amino-acid change in PUM1 repeat ‘R6’.  
(D) Differences between the single-mutant specificities of wild-type and mutant PUM1. 
Differences of median single mutant penalties are shown, and the error bars indicate propagated 
95% CIs. “N.A.” indicates lack of detectable binding. 
(E) Predicted mutant PUM1 affinities (based on the PUM2 model) versus observed affinities; the 
∆∆G values are relative to the UGUAUAUAU consensus. 
(F) Predicted versus observed mutant PUM1 affinities with the altered penalty for 6U (∆∆G = –
0.35 kcal/mol instead of +1.49 kcal/mol).  
See also Figure S6. 
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Figure 6. Testing the Thermodynamic Model in Vivo 
(A) Scatterplot comparing thermodynamic affinity predictions with eCLIP enrichment in K562 cells 
(Van Nostrand et al., 2016). Median eCLIP enrichments across sites within bins of predicted 
relative affinities are shown, and error bars indicate 95% CIs on the median. Only sites lacking 
adjacent UGUA-containing sites (within 100 nt) are shown, due to inflation of eCLIP signal 
observed in the presence of nearby sites (Figure S7C). Black dashed line indicates the predicted 
change in eCLIP signal with increasing predicted ∆∆G values, relative to the eCLIP signal in the 
lowest ∆∆G bin. eCLIP (closed circles) and input (open circles) correspond to crosslinked samples 
that were or were not treated with anti-PUM2 antibody, respectively (Van Nostrand et al., 2016). 
The grey dashed line indicates the eCLIP enrichment for sites with predicted ∆∆G values greater 
than 4.5 kcal/mol (expressed transcripts); since eCLIP signal and input were each normalized to 
this value, this expected enrichment is equal to 1. 
(B) Comparing eCLIP enrichment for sites within 3´ UTR (orange) or CDS (grey) of expressed 
genes in K562 cells. Only sites that are at least 100nt from the nearest UGUA are included. Black 
and grey lines are as in A.  
(C) Fractions of sites within bins of predicted ∆∆G values that are annotated as 3´ UTR, CDS, or 
5´ UTR. 
(D) Comparing the median eCLIP enrichment of consensus sites in bins of predicted secondary 
structure stabilities for structures blocking the PUM2 consensus site (Figure 2C; Methods). Colors 
indicate the number of flanking nucleotides (nt) included in the stability calculations. Dashed line 
indicates the predicted change in eCLIP signal for increasing secondary structure stability. 
Medians and 95% CIs for bins with at least 20 sites are shown. 
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(E) Predicting PUM1/2 binding occupancies of cellular RNAs. Schematic representation of the 
output of an occupancy prediction algorithm. 
(F) Example of thermodynamic occupancy predictions for the 3´ UTR region of the human cyclin 
dependent kinase inhibitor 1b CDKN1B mRNA, a known PUM1/2 target (Kedde et al., 2010). The 
fractional occupancies on the Y axis account for cellular PUM2 and RNA abundances (Methods). 
(G) PUM2 binding landscape across the human transcriptome, predicted by our thermodynamic 
model using in vivo PUM2 and mRNA levels (see Methods). Bars indicate the number of bound 
PUM2 molecules across RNA binding sites with 0–8 nonconsensus residues without flipped 
residues (blue) or with up to two flipped residues (green). The consensus was defined as 
UGUA[ACU]AUAN. 
(H) Total counts of 9–11mers with the indicated numbers of nonconsensus residues and/or flips 
in the human protein-coding transcriptome. 
(I) The fraction of each RNA site (from part A) that is bound by PUM2. Boxes indicate the 
interquartile range, and the spread arises because different nonconsensus residues give different 
amounts of destabilization. 
See also Figure S7. 
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Supplemental Figures 
 

 
 
Figure S1. RNA Array Library Design, Preparation and Experiments, Related to Figure 1 
and Methods 
(A) Previously identified sequence motifs of human PUM1, PUM2 and orthologous PUF proteins 
(Bohn et al., 2018; Campbell et al., 2012; Campbell et al., 2014; Chen et al., 2012; Dominguez et 
al., 2018; Elemento et al., 2007; Fazlollahi et al., 2014; Foat et al., 2005; Francischini and 
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Quaggio, 2009; Galgano et al., 2008; Gerber et al., 2004; Gerber et al., 2006; Hafner et al., 2010; 
Hogan et al., 2015; Jiang et al., 2010; Kershaw et al., 2015; Klass, 2013; Lapointe et al., 2015; 
Leibovich and Yakhini, 2012; Morris et al., 2008; Opperman et al., 2005; Rabani et al., 2008; Ray 
et al., 2013; Riordan et al., 2011; Sun et al., 2016; Wilinski et al., 2017; Zhang and Muench, 2015; 
Zhang et al., 2017).  
(B) RNA libraries used in this study. Three broad categories of PUM2 binding site variants were 
designed: (I) mutations in the core binding site; (II) flanking sequence variants; (III) insertions. 
Each variant was represented in 2–4 scaffolds (S1a–S2b; Figure 1B). Within each category, the 
design was based on the previously established consensus motif of PUM2 and its orthologs; 
substantial additional sequence variation was achieved by applying the same types of 
perturbations to the consensus motifs of related PUF proteins, S. cerevisiae Puf4 and Puf5 
((Gerber et al., 2004; Hogan et al., 2008; Hogan et al., 2015; Riordan et al., 2011; Wilinski et al., 
2015)). To prevent a preponderance of weak binders, in the mutation library (I) no more than two 
mutations were allowed in the highly conserved UGUA core of the PUF motifs, with the exception 
of negative controls in which UGUA was mutated to ACAC. Numbers of designed variants in each 
category are indicated.  
(C) Affinity and number of clusters per variant affect measurement certainty. Box plots show 
measurement uncertainties from PUM2 replicate 1, with the box indicating the interquartile range, 
the whiskers indicating the minimum and maximum values and the points indicating outliers. Only 
variants with ≥5 clusters and ∆G values below –8.8 kcal/mol were included in subsequent 
analyses (see Methods).  
(D) Preparation of DNA array library. See Methods for detailed sequence information and 
description of individual steps.  
(E, F) Distribution of initial fit parameters for variant-independent parameters fmin, fmax, and ∆GNS. 
(E) Histogram of the initial per-variant values for fmin (blue) and fmax (green) for variants that 
reached near-saturation of binding (>95% bound at highest concentration based on initial per-
variant KD) and that met other criteria for high-confidence binders during initial fitting, as defined 
in Methods. 
(F) Histogram of the initial per-variant values for ∆GNS (= RT lnKD,NS; Methods). Values for PUM2 
replicate 1 are shown. 
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Figure S2. Analysis of Single-Mutant Variant Binding to PUM2, Related to Figure 2  
(A) Assessing significance of scaffold differences. For each binding site variant (single mutants 
and UGUAUAUA consensus), we determined the deviations of individual scaffold affinities from 
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the scaffold mean for that variant. The distribution of these deviations was then compared to the 
distribution expected from experimental error (black line). The panels show distributions at 25 ˚C 
(blue) and 37 ˚C (red), before (left) and after (right) accounting for structure effects, as predicted 
by RNAfold ((Lorenz et al., 2011); see Methods). A summary of the standard deviations of the 
displayed distributions is shown in Figure 2B.  
(B) Model for accounting for RNA structure effects on PUM2 binding. U: unfolded RNA; P: protein; 
A: accessible RNA (i.e., structured RNA with the PUM2 binding site accessible); O: occluded RNA 
(i.e., PUM2 binding site occluded by base-pairing). A and O represent ensembles of the 
respective states; see Figure 2C). KA: PUM2 association constant for the unstructured binding 
site (assumed to be the same for binding to U and A, but no protein binding occurs to O); 
Kfold,accessible: equilibrium constant for RNA folding from the unfolded state to the ensemble of 
structures in which the PUM2 binding site is accessible (determined by constraining the binding 
site to the single-stranded state in Vienna RNAfold; Kfold,accessible = e-∆Gaccessible/RT); Kfold,occluded: 
equilibrium constant for RNA folding from the unfolded state to the ensemble of structures in which 
the PUM2 binding site is occluded by structure.  
(C) PUM2 affinities for UGUAUAUA single mutants at 37 ˚C. Solid bars indicate mutant affinities 
after accounting for structure effects, and transparent regions indicate predicted structure effects. 
Asterisks indicate mutants for which affinities measured in different scaffolds were significantly 
different (10% FDR) prior to accounting for structure effects (differences between total bar 
heights). No significant differences remained after accounting for structure effects using RNAfold.  
(D) Flanking sequence effects on PUM2 binding. Top: Library design. Two bases upstream and 
downstream from the UGUAUAUA consensus were randomized (N=A/C/G/U; n = 256) and the 
resulting sequences were embedded in 2–4 scaffolds each. Bottom: Effects of each base at the 
indicated positions relative to the average affinity. The effects were determined by calculating the 
average affinity of variants containing the indicated base (regardless of the identities of other 
flanking bases) and subtracting the mean of all four bases. Error bars indicate 95% CI of the 
mean. Only variants with predicted structural effects <–0.5 kcal/mol were included, and the 
numbers of variants containing each base are indicated above the bars. Blue and orange bars 
indicate the sequence effects at 25 ˚C and 37 ˚C, respectively. The observed sequence effects at 
positions -2, -1 and +2 are small and are further dampened at 37 ˚C, suggesting that residual 
structural effects are responsible for the small observed effect. The strongest effect was observed 
at position +1, and the observed preference for G was maintained at 37 ˚C, indicating a weak, 
base-specific interaction.  
(E) Gel-shift measurements of sequence effects at position +1. Top: Oligonucleotide design; N = 
A/C/G/U. Bottom: Effects of each base relative to the mean affinity for all four variants. Averages 
and standard errors from two replicate experiments are shown.  
(F) Assessment of alternative binding registers. Example of preferential binding in an alternative 
register accompanying a destabilizing mutation in the designed binding site. Affinity effects are 
shown as ∆∆G values, relative to the average affinity for the UGUAUAUA consensus across 
scaffolds. The predicted ∆∆G for the alternative register corresponds to the sum of the ∆∆G values 
for the two nonconsensus residues, 2A and 8U (red outlines), assuming energetic independence. 
Given that the observed ∆∆G (∆∆Gobs) matches the prediction for the alternative register, the 
measurement only establishes a lower limit for the penalty of the intended, 2C, mutation.  
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(G) Observed and predicted ∆∆G values for the best alternative register (∆∆Gshifted
pred ) in each of the 

four scaffolds for the 2C variant (other variants with predicted alternative registers are listed in 
Table S1). The close agreement of alternative register predictions with observed affinities in the 
S1a, S2a, and S2b scaffolds suggests predominant binding in the shifted register, whereas the 
0.75 kcal/mol difference in the S1b scaffold suggests preferential binding in the intended register, 
such that the observed value of 3.78 kcal/mol reflects the real effect of the 2C mutation.  
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Figure S3. Determination of Single Mutant Penalties, Related to Figure 2 
(A, B) Single mutation effects on PUM2 binding across backgrounds of different position 5 
identities (5 = A/C/U) at 25 ˚C (A) and 37 ˚C (B). Symbols indicate the ∆∆G values for each 
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mutation relative to the weighted mean of UGUA[A/C/U]AUA affinities across scaffolds (color-
coded). As shown in Figure 2D and previously (Lu and Hall, 2011), residues A, C and U are bound 
with identical affinities at position 5, and other positions show high consistency of mutational 
penalties measured in 5A/C/U backgrounds, consistent with energetic additivity with respect to 
position 5. Thus, mutational penalties from all three backgrounds were used for determination of 
single mutant penalties, with median ∆∆G values indicated by horizontal lines. Circles indicate 
unstructured variants, while squares denote variants with predicted structure effects greater than 
0.5 kcal/mol, and the displayed values correspond to structure-corrected affinities. Open symbols 
indicate variants that have predicted alternative registers within 1 kcal/mol from the observed ∆∆G 
value; these variants were not included in determining the median. None of the variants in the 
5A/C backgrounds were predicted to have alternative binding registers. 
(C–E) Scatterplots of RNA single mutant affinities for PUM2 at 25 ˚C and 37 ˚C. (C) Observed ∆G 
values for single mutants in position 5A/C/U backgrounds (n = 161). Open symbols indicate 
variants with affinities outside the reliable affinity threshold (-8.8 kcal/mol; not included in RMSE 
and R2 determination). The grey dashed line indicates the mean offset between values measured 
at 25 ˚C and 37 ˚C, corresponding to a (20±10)-fold decrease in affinity at 37 ˚C. (D) ∆G values 
after accounting for predicted structure (RNAfold). The poorer correlation than observed in part C 
is likely due to limited accuracy of structure predictions (I.J., W.R.B. et al., in prep). (E) Correlation 
of observed ∆G values at 25 ˚C and 37 ˚C for variants with no predicted structure (∆Gfold > –0.5 
kcal/mol; n = 107). The correlation approaches that of replicate measurements (Figure 1E; RMSE 
= 0.26 kcal/mol; R2 = 0.96).  
(F, G) Comparison of single mutant affinities measured by RNA-MaP and gel-shift (25 ˚C). 1C: 
purple, 2A: yellow, 2C: green, 3A: white, 3G: red, 4G: orange, 4U: blue, 5G: wheat, 7C: brown, 
7G: magenta, 9A: lime, 9C: cyan, 9U: grey. RNA-MaP values are medians and 95% CIs of 
individual mutation penalties in 5A/C/U backgrounds at 25 ˚C (F) and 37 ˚C (G) (Figure S3A,B 
and Figure 2E; the RNA-MaP medians were determined after accounting for secondary structure 
and shifting). The gel-shift values for RNAs with mutations in positions 1–8 were determined by 
competition measurements of 8mer oligonucleotides, with mutations introduced in the 
UGUAUAUA background, and the ∆∆G values were calculated relative to this UGUAUAUA 
consensus. Position 9 mutants are based on direct measurements of CUUGUAUAUAN 
oligonucleotides, relative to the most tightly bound residue (G; Figure S2D). The better agreement 
of gel-shift values with 37 ˚C RNA-MaP values is consistent with small structural effects on RNA-
MaP-derived values.  
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Figure S4. Developing a Predictive Model for PUM2 Specificity, Related to Figure 3 
(A) Distribution of differences between model predictions and observed affinities through PUM2-
binding model development. Blue: additive consecutive model (Figure 3A); orange: final model 
including flipping and coupling terms (Figure 3G); grey: the distribution of standard errors of 
measured ∆∆G values. Coupling did not noticeably affect the distribution, so the additive 
nonconsecutive model without coupling (Figure 3F) is not displayed.  
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(B) Global fit to the additive consecutive model. Parameter constraints were identical to those 
used for fitting the additive nonconsecutive model (Figure 3F) and corresponded to the 95% 
confidence intervals from single mutant measurements (Figure 2E) or ±0.4 kcal/mol, whichever 
was greater. Scatter plot of the predicted versus observed ∆∆G values is shown. The points are 
colored based on their z-scores for the deviation from predicted value (see Figure 3A). The black 
dashed line indicates perfect agreement with prediction, and dashed grey lines denote 1 kcal/mol 
deviation from predictions. While the additive consecutive model performed considerably better 
with globally fit parameters than with experimentally determined single mutant penalties (Figure 
3A), there was substantial asymmetry and ten percent of variants had predicted affinities >1 
kcal/mol from the observed value (versus 0.00% expected from measurement error); see part C.  
(C) Blue: distribution of differences between values predicted by the additive consecutive model 
(using parameter values determined by global fit; part B) vs. observed values; grey: distribution 
of standard errors of measured affinities, as in part A.  
(D) Double mutant coupling at 25 ˚C. Colors indicate the difference of observed ∆∆G values 
(∆∆Gobs) from the sum of ∆∆G values for the individual mutations (∆∆Gpred = ∆∆G1 + ∆∆G2). Double 
mutants were defined as all sequences differing from the UGUA[A/C/U]AUAU reference 
sequence at two positions and predicted to be in the most favorable register with no flips 
(Methods); only variants with predicted structure effects of <0.5 kcal/mol were included. Numbers 
of variants containing each combination of mutations are shown inside the respective boxes; only 
mutants represented by more than one variant in our library are shown. White boxes indicate 
absence of the respective mutants in the best register in our unstructured library: these absences 
are primarily due to the highly destabilizing effects of mutations in the 5′ half of the motif, which in 
combination with a second mutation lead to binding outside our reliably measurable range and/or 
to shifting of the preferred binding site to an alternative binding register; low representation of 5G-
containing mutants is due to predicted structure.  
(E) Coupling between the 7G mutation and adjacent positions, assessed as the extent to which 
affinities for variants with the indicated residue combinations (inset) deviate from predicted values. 
The predictions are based on the additive nonconsecutive model (Figure 3F). All sequences 
containing the indicated combination of residues (inset) in the predicted best consecutive register 
were considered. Black residues in the inset table indicate consensus residues. The top panel 
shows the variants overlaid on the scatterplot of predicted and observed values for the entire 
library (same as Figure 3F). The bottom panel shows the distributions of differences from 
predicted values for each group of variants. The coupling term that was incorporated in the final 
model is highlighted by solid red circles (top) and red outline (bottom). To avoid overfitting, only 
most pronounced instances of apparent coupling were included in the final model.  
(F) Coupling between the 7C mutation and flanking residues, as in E.  
(G) Coupling between positions 8 and 9. As in E and F, coupling was assessed as the extent to 
which affinities for variants with the indicated residues deviated from predicted values. The panel 
illustrates the loss of the small stabilizing effect of 9G when position 8 is mutated (i.e., not A). 
(H) Relative affinities for bound residues 1–9 (corresponding to PUM2 repeats 1′–9′) determined 
by global fit to the final model (additive nonconsecutive with coupling; Table 1A, Figure 3G). Error 
bars indicate 95% confidence intervals of the median, determined by bootstrapping analysis 
(Methods).  
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(I) Relative affinities of A-specific PUM2 repeats.  
(J) Relative affinities of PUM2 repeats with conserved U-specific residues.  
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Figure S5. RMSE Dependence on Individual Fit Parameters in the Additive Nonconsecutive 
Model Including Coupling Terms, Related to Figure 3 
(A) Bound residue terms (‘b’ in Figure 3G, Table 1A). The sensitivity of the global fit to each model 
parameter was individually assessed by varying the ∆∆G value across the indicated range, with 
the values of other parameters kept constant. ∆∆G values were constrained to measured single 
mutant penalties (median ± 0.4 kcal/mol) or to the 95% confidence intervals of the measured 
median if they exceeded 0.4 kcal/mol (Figure 2E and Table S2). Vertical black lines indicate the 
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fit values. Asterisks indicate parameters for which the fit value was at the limit of the allowed range 
(see part B). The number of constructs containing each parameter in the best register (and any 
additional registers within 0.4 kcal/mol from the best one) is indicated. The slight offset from 0 
observed for the consensus residues appears to be due to residual RNA structure (Methods).  
(B) Six binding terms for which the best fit value was at the limit of the allowed range (asterisks in 
part A) were refit without constraints on their ∆∆G value. The gray area indicates the original 
constraints. The solid lines indicate the original fit value, and the dashed line indicates the fit value 
after removing the constraints. In all cases, removing the constraints resulted in fit values within 
0.2 kcal/mol of the original fit value.  
(C) Flipping terms (‘f’ in Figure 3G, Table 1B). As in part A, the sensitivity of the global fit RMSE 
to each term was assessed by varying the ∆∆G value across the indicated range, while the values 
of other parameters were kept constant. Black lines indicate the fit values; gray lines indicate 
lower limits for terms whose upper limits were undefined because these parameters were never 
featured in the most stable binding register (largely as a result of energetic redundancy between 
flipped positions). ‘NN’ indicates 2-nt flips of any sequence.  
(D) Coupling terms. RMSE sensitivity was assessed as in parts A–C. The 8/9 coupling term is not 
separately shown, as its value is determined by the position 9 binding terms (A; Table 1). 
 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/403006doi: bioRxiv preprint 

https://doi.org/10.1101/403006
http://creativecommons.org/licenses/by-nc-nd/4.0/


v8.0 

42 

 
 
Figure S6. Comparison of PUM2 and Wild-Type and Engineered PUM1 Proteins, Related to 
Figure 5 
(A) Structure alignment of the conserved RNA-binding domains of PUM1 (green; PDB ID: 3Q0L) 
and PUM2 (blue; 3Q0Q)(Lu and Hall, 2011). Residues that differ between the two proteins (n = 
29/322; 9.0% of RBD residues) are highlighted in orange and are all positioned away from the 
RNA-contacting residues, which are shown in stick representation. The structural alignment was 
performed in PyMol (The PyMOL Molecular Graphics System, Version 1.8.6.2 Schrödinger, 
LLC.).  
(B) Sequence alignment of the RNA-binding domains of PUM1 and PUM2. Residues that form 
sequence-specific RNA interactions in each repeat are boxed in red. The sequence alignment 
was performed using T-Coffee and visualized using BOXSHADE (Notredame et al., 2000). 
(C) Scatterplot of the affinities of wild type and mutant PUM1. Black line indicates identical binding 
and red line indicates mean offset. 
(D) Comparison of mutant PUM1 and wild type PUM2, lines same as in part C. 
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Figure S7. Assessment of PUM2/RNA Interactions in Vivo, Related to Figure 6 
(A,B) Schematic representation of models for RNA occupancy in vivo in which active RBP (‘P’) 
displacement in vivo (e.g., by ATP-dependent RNA chaperones) yields identical occupancies for 
targets with different affinities. (A) Equilibrium model: Two targets with different affinities are 
shown, in blue and purple. The association rate constants (kon) for RBP binding to the two RNAs 
are identical, and the affinity difference is reflected in the greater dissociation rate constant (koff) 
for the second target (as is common and is observed for PUM2; data not shown). The occupancy 
(right) is greater for the first target due to its lower KD value (KD = koff/kon). (B) Kinetic model: If the 
rate constant of active displacement (kdisplace) is greater than either of the intrinsic dissociation rate 
constants, the occupancies are equal and independent of the affinity for the RNA targets 
(assuming equal kon values).  
(C) Scatterplot comparing the median eCLIP enrichment across sites in bins of predicted relative 
affinity. Colors indicate sites with a nearby UGUA sequence within 50 nt, between 50–100 nt, or 
greater than 100 nt from the predicted site. The black dashed line indicates the expected change 
in the eCLIP signal for different predicted ∆∆G values, relative to the eCLIP signal in the lowest 
∆∆G bin. Grey dotted line indicates expected background enrichment (= 1). Error bars indicate 
the 95% confidence intervals on the median.  
(D) Scatterplots comparing the median eCLIP enrichment across sites in bins of predicted ∆∆G, 
using either the full thermodynamic model (left) or a model that does not take into account flipped 
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residues (right). Colors indicate sites predicted to have flipped residues (green) or not (blue). Only 
bins with at least 25 sites are shown to reduce noise.  
(E) Bars indicate the fold difference (log2) of the observed fraction of sites with the given 
annotation (5´ UTR, CDS, 3´ UTR) versus the expected fraction (based on the fraction of sites 
with ∆∆G > 4.5 kcal/mol).  
(F) Average number of eCLIP read stops per nucleotide (nt) around 3,703 PUM2 consensus 
binding sites (∆∆Gpred < 0.5 kcal/mol) within annotated 3´ UTR, CDS, or 5´ UTR of expressed 
genes in K562 cells. The grey area indicates the interval relative to the binding site over which 
any eCLIP read stop was included in the calculation of eCLIP enrichment (80 nt window, offset 
by 15 nt relative to the center of the binding site). 
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Methods 
 

Library design 
Summary of library designs and complete sequence information is provided in Supplemental file 

1.  
 
Library preparation 
Ordering. DNA constructs consisting of the PUF library and short constant regions for subsequent 

PCR assembly (Figure S1D & Table S5; 5´–TGTATGGAAGACGTTCCTGGATCC–[Variable 

region]–AGATCGGAAGAGCGGTTCAG–3´) were ordered from CustomArray, Inc. as part of a 

90,000 oligo pool of 130 nt sequences. Each of the 34,927 unique sequences in the library 

(including variants not discussed herein) was included at least in duplicate to increase the 

probability of error-free generation. In cases where the designed sequence was shorter than 130 

nt, the construct was “padded” at the 3′ end with a random sequence that was eliminated during 

PCR assembly. Primers and DNA oligonucleotides used in the RNA-MaP protocol were ordered 

from Integrated DNA Technologies (IDT). 

 

Emulsion PCR. The oligonucleotide pool was amplified using emulsion PCR (ePCR) (Williams et 

al., 2006), allowing us to decrease length and other biases during PCR amplification of our highly 

diverse library (lengths of 64–130 nt, variable structure content). We closely followed a 

MYcroarray adaptation of the ePCR protocol from (Williams et al., 2006), as detailed below. Flat-

bottom glass vials (1 mL) were cleaned with sterile water, dried, covered with parafilm, and frozen 

in a petri dish filled with sterile water. The oil phase was prepared from 4% (v/v) ABIL EM-90, 

0.05% (v/v) Triton X-100 and 96% (v/v) mineral oil. The 50 µL aqueous phase consisted of 1.45 

ng/µL of the CustomArray oligo pool, 0.2 mM of dNTP, 1x Phire II buffer, 1 µL of Phire Hot Start 

II DNA Polymerase (Thermo Fisher Scientific), 0.5 mg/mL BSA, and 2 µM of each of RNAPstall 

and Read2 primers (Table S6 and Figure S1D). A 300 µL aliquot of the vortexed, pre-chilled oil 

phase was added to the glass vial embedded in the ice-filled petri dish and stirred on a stir plate 

with a sterile magnetic bar at 1000 rpm for 5 min. The aqueous phase was then added in five 10 

µL aliquots and stirred for another 10 min. The emulsion was divided between seven PCR tubes 

and amplified using the following settings:  

98 ˚C for 30 s 

  40 cycles of: 

98 ˚C for 10 s 

65 ˚C for 10 s 

72 ˚C for 30 s 

72 ˚C for 5 min. 

Completed PCR reactions were pooled in a 1.7 mL Eppendorf tube, and 1 µL of gel loading dye 

was added to visualize the aqueous phase. Mineral oil (100 µL) was added and the mix was 

vortexed for 30 s, followed by centrifugation for 10 min at 13,000g. The oil was discarded and 1 

mL diethyl ether was added, the mixture was vortexed in fume hood for 3 min and centrifuged for 

1 min at 13,000 g. Diethyl ether was discarded, 1 mL ethyl acetate was added, and the mixture 

was vortexed in fume hood for 3 min and centrifuged for 1 min at 13,000 g. Ethyl acetate was 
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removed and the diethyl ether extraction step was repeated, followed by discarding the diethyl 

ether. The tube was incubated for 5 min at 37 ˚C with an open cap to allow residual diethyl ether 

to evaporate. Water (40 µL) and Agencourt AMPure XP beads (Beckman Coulter; 72 µL) were 

added and incubated for 15 min at room temperature; the supernatant was removed, the beads 

were washed with 70% ethanol (2 x 100 µL), dried, and the DNA was eluted in 10.5 µL water. 

 

Size fractionation. To further prevent bias toward short oligonucleotides during the subsequent 

PCR assembly steps, the ePCR-amplified library was fractionated by length on an 8% 

polyacrylamide gel. Following SYBR Green staining (1x; Lonza), the library-containing lane was 

covered with aluminum foil to prevent UV-induced damage (Grundemann and Schomig, 1996; 

Sinha and Hader, 2002), and divided into 6 fractions based on UV visualization of marker lanes. 

The cut-out bands were frozen on dry ice and eluted overnight in TE buffer (10 mM Tris•HCl, pH 

8.0, 1 mM Na2EDTA) on a rotating platform at 8 ˚C. The DNA was purified using the Qiagen Gel 

Extraction Kit (using a protocol adapted for PAGE purification: 

https://www.qiagen.com/kr/resources/resourcedetail?id=1426dbb4-da09-487c-ae01-

c587c2be14c3&lang=en, with Qiagen MinElute columns). To remove residual co-purified short 

fragments, each fraction was re-purified on an 8% denaturing gel (8 M urea). For denaturing 

PAGE, the samples and a Low-MW DNA ladder (New England Biolabs; NEB) were heated in 

loading buffer (84% (v/v) formamide, 50 mM Na2EDTA, 0.04% Xylene cyanol, 0.04% 

Bromophenol blue; 2.8 µL loading buffer per 5 µL sample) at 90 ˚C for 3 min immediately before 

loading. The gel was stained with SYBR Gold, the library-containing lanes were covered with 

aluminum foil and fractions were cut out based on UV visualization of marker lanes. (Additional 

lanes with 83 nt and 129 nt DNA oligonucleotides were used to facilitate alignment of the NEB 

low-MW marker with desired lengths.) The DNA was extracted from the gel as above. Purified 

fractions were re-amplified using the Read 2 and RNAPstall_adapt primers (primer sequences 

and PCR settings are indicated in Tables S6 & S7) and were purified using Qiagen MinElute PCR 

Purification Kit. In all cases here and below, the number of PCR cycles was determined by 

quantitative PCR (qPCR), using the same primer and template concentrations as in preparative 

PCR, but in the presence of 0.2–0.5x SYBR Green. To prevent accumulation of by-products, cycle 

numbers corresponding to about one-third saturation (Ct value) were used in preparative PCR 

reactions. Each library fraction was amplified for two to three different numbers of cycles around 

the Ct value, and only reactions lacking high-molecular weight byproducts were propagated to the 

next step.  

 

PCR assembly. Each purified length fraction was assembled into the final RNA array construct 

with the C_read1_bc_RNAP, D_read2, C_adapter and D_adapter primers, as illustrated in Figure 

S1D (see Tables S6 & S7 for primers and conditions). The C_read1_bc_RNAP primer contained 

a randomized 15 nt ‘barcode’ region that served as a unique molecular identifier (UMI) and 

allowed high-confidence sequence mapping during subsequent steps (Buenrostro et al., 2014). 

The PCR products were purified using QIAquick PCR purification kit (Qiagen). 

 

Bottlenecking. To ensure that multiple copies of each UMI were present on the RNA array, the 

library was bottlenecked to ~700,000 total molecules (Buenrostro et al., 2014; Denny et al., 2018; 

Kivioja et al., 2012). UMI redundancy allows distinguishing between sequencing errors and real 
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sequence differences, as errors are unlikely to co-occur in both the UMI and the variable region 

(see Computational analyses below). To bottleneck, the PCR products were quantified by qPCR 

relative to the PhiX standard (Illumina). As noted above, the six ‘sublibraries’, corresponding to 

the different oligonucleotide lengths in our library, were kept separate during all pre-sequencing 

PCR steps to minimize bias in the final library assayed by RNA-MaP. Dilutions of 1000-fold and 

10,000-fold for each fraction were prepared in 0.1% Tween 20. The PhiX standard (Illumina) was 

diluted to 200 pM and seven serial dilutions were prepared in 0.1% Tween 20. The DNA was then 

added to a PCR master mix containing 500 nM OligoC and OligoD primers, 200 µM dNTP mix, 

0.5x SYBR Green, 3% DMSO, 0.02 U/µL Phusion DNA Polymerase (Thermo Fisher Scientific), 

and 1x Phusion buffer. The cycling conditions were: 98 ˚C for 30 s, followed by 35 cycles of 98 

˚C for 10 s, 63 ˚C for 30 s, and 72 ˚C for 30 s. The library concentrations were determined based 

on the PhiX standard curve of CT values over concentration (determined in duplicate). The 

volumes corresponding to a total of 700,000 molecules across all sublibraries were calculated, 

and each sublibrary was amplified with OligoC and OligoD primers. The PCR reactions were 

purified with QIAquick PCR cleanup kit (Qiagen), concentrations of 1000-fold dilutions were 

quantified by qPCR and the different fractions were combined for sequencing. Due to a short 

OligoD byproduct detected as dominant species in the initial sequencing of our library, the 

bottlenecked library fractions were re-purified on a denaturing 8% acrylamide gel and amplified 

using Phusion Hot Start II DNA Polymerase (Thermo Fisher Scientific) instead of regular Phusion, 

which eliminated the primer byproduct. This library was sequenced and used in all RNA-MaP 

experiments reported herein. 

 

RNA array preparation 
The bottlenecked, qPCR–quantified library fractions were combined and sequenced using MiSeq 

Reagent Kit v3 (150-cycle). To ensure appropriate density of RNA clusters in the RNA-MaP 

experiments, our library constituted 9–15% of the total 6–9.6 fmol DNA. The remaining DNA 

consisted of 84–90% PhiX DNA and 1% of a fiduciary marker oligonucleotide (Table S8) that was 

used for image alignment in binding experiments. The final numbers of transcribable clusters were 

3.6×10
5
 and 6.5×10

5 
on the sequencing chips used in this study. 

 
Protein expression and purification 
The RNA-binding domains of H. sapiens PUM1 (828-1176; isoform 2), PUM2 (706-1059; isoform 

1), and mutant PUM1 (MUT3-1 in (Cheong and Hall, 2006)) (828-1176) were cloned into a custom 

pET28a-based expression vector in frame with an N-terminal His-tag and a SNAP tag (New 

England Biolabs) at either the N- (PUM2) or C-terminus (hPUM1 and hPUM1 MUT3-1; primers 

and plasmid sequences available upon request). Constructs were sequenced and transformed 

into E. coli protein expression strains BL21 (DE3) or RIPL BL21 CodonPlus (Agilent) cells. Protein 

expression was induced at an OD600 of between 0.6–0.8 with 0.5–1 mM IPTG at 18–20 ˚C for 

18–20 h. Cell pellets were lysed four times using an Emulsiflex (Avestin) in Buffer A containing 

20 mM Na-HEPES, pH 7.4, 500 mM potassium acetate (KOAc), 5% glycerol, 0.2% Tween-20, 10 

mM imidazole, 2 mM DTT, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 2X Complete Mini 

protease inhibitor cocktail (Roche). The lysate was centrifuged at 20,000 g for 20 min to remove 

membranes and unlysed cells. Nucleic acids in the lysate were precipitated with dropwise addition 

of Polyethylene Imine (Sigma) to a final concentration of 0.21% (v:v) with constant stirring at 4 ˚C 
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and pelleted by centrifugation at 20,000g for 20 min. Cleared lysates were then loaded on a 

Nickel-chelating HisTrap HP column (GE), washed extensively, and His-tagged proteins were 

eluted over a 10–500 mM imidazole gradient. Protein fractions were pooled and desalted into 

Buffer B (20 mM Na-HEPES, pH 7.4, 50 mM KOAc, 5% glycerol, 0.1% Tween-20, 2 mM DTT) 

using a HiPrep 26/10 desalting column. The His-tag was removed by incubation with TEV 

protease for 13–16 h at 4 ˚C, and the protein solution was loaded for a second time on the HisTrap 

HP column. The flow-through containing cleaved protein was collected and subsequently desalted 

into Buffer B. The protein was then loaded on a Heparin or HiQ column and eluted over a linear 

gradient of KOAc from 50 to 1000 mM. Fractions were pooled and desalted into Buffer C 

containing 20 mM Na-HEPES, pH 7.4, 100 mM KOAc, 5% glycerol, 0.1% Tween-20 and 2 mM 

DTT, concentrated using Millipore 10K filters and diluted two-fold with Buffer C containing 80% 

glycerol for final storage at –20 ˚C.  

Cy3B-labeling of SNAP-tagged proteins 

Cy3B-labeled SNAP tag substrate was prepared by coupling Cy3B NHS ester (GE Healthcare, 

0.75 µmol) with 1.5-fold excess (1.13 µmol) of amine-terminated benzylguanine (NH2-BG; New 

England BioLabs) in the presence of 1.13 µmol triethylamine in dimethylformamide. The reaction 

(103 µL) was incubated overnight on a rotating platform at 30 ˚C. The Cy3B-BG product was 

purified by reverse phase HPLC on an Agilent ZORBAX Eclipse Plus 95Å column and dried by 

speed-vac evaporation (46% yield).  

 

SNAP-tagged PUF proteins were labeled by incubating 5–10 µM of purified protein with 20 µM of 

Cy3B-BG in Buffer C. The tube was covered with aluminum foil and rotated at 4 ˚C for 12–14 h. 

Unincorporated dye was removed with Zeba Spin Desalting Columns (Thermo Fisher Scientific) 

equilibrated with Buffer C; the protein was concentrated using Millipore 10K filters and diluted two-

fold with Buffer C containing 80% glycerol for final storage at –20 ˚C. The labeling efficiencies 

(based on total protein concentration and Cy3B absorbance at 559 nm; Cy3B extinction 

coefficient: 130,000 M
-1

cm
-1

) were 60% (PUM2-SNAP), 53% (SNAP-PUM1) and 36% (mutant 

SNAP-PUM1). 

 

RNA-MaP measurements 
Imaging station setup. The RNA-MaP imaging platform was built out of a repurposed Illumina 

GAIIx instrument with custom-designed additions as described in (Buenrostro et al., 2014) (Denny 

et al., 2018; She et al., 2017). Briefly, the custom additions included a fluidics adapter interface 

to pump reagents to the MiSeq flow cell, a Peltier-based temperature-controlled platform to house 

the flow cell, an autosampler with 96-well cooling block for RNA-MaP reagents, and a dual–color 

laser excitation system. Two lasers were employed: a 660 nm ‘red’ laser with a 664 nm long pass 

filter and a 530 nm ‘green’ laser with a 590 nm band pass filter. Matlab scripts developed in-house 

were used to control the fluidics, temperature, position, and imaging of the flow cell. Flow cell 

images were acquired with 400 ms exposures at 200 mW laser power. Camera focal distances 

were determined through iterative rounds of imaging of the flow cell and adjustment of the 

camera’s z-position. 
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RNA transcription in the flow cell. Using the imaging station fluidics system, the flow cell was 

washed with 5 mM Na2EDTA in formamide to remove hybridized DNA (250 µL flowed at 100 

µL/min, 55 ˚C), followed by Reducing buffer (100 mM Tris•HCl, 125 mM NaCl, 0.05% Tween 20, 

100 mM Tris[2-Carboxyethyl]phosphine-HCl (TCEP), pH 7.4) to remove any residual fluorescence 

from the sequencing reaction (390 µL, 10 min at 60 °C). A fluorescent probe complementary to 

the RNA Polymerase stall sequence (Fluorescent_stall´; sequences of oligonucleotides used in 

the RNA-MaP protocol are indicated in Table S8) was then annealed to the library and imaged to 

determine the efficiency of the cleaning steps (500 nM Fluorescent_stall´ in Annealing buffer: 1x 

SSC buffer, 7 mM MgCl2, 0.01% Tween 20; 11 min at 37 ˚C). After imaging, the fluorescent probe 

was removed by washing with 250 µL of 100% formamide (55 ˚C). The flow cell was washed with 

Wash buffer between steps (290 µL; 10 mM Tris•HCl, pH 8.0, 5 mM Na2EDTA, pH 8.0, 0.05% 

Tween 20). Henceforth, wash steps were performed with a 250 µL volume of the specified buffer, 

unless otherwise noted. 

  

To prepare double-stranded DNA (dsDNA), 5′–biotinylated primer (Biotin_D_Read2, 500 nM) was 

annealed to the library in Hybridization buffer (5x SSC buffer, 5 mM Na2EDTA, 0.05% Tween 20) 

for 15 min at 60 °C followed by a 10 min incubation at 40 °C. The fluorescent oligonucleotide 

complementary to the fiducial marker (Fiducial_flow) was also included in the hybridization 

mixture at 250 nM. After washing the flow cell with Annealing buffer, an additional 500 nM of 

Biotin_D_Read2 (and 250 nM Fiducial_flow) was annealed to the library in Annealing buffer at 37 

°C for 8 min. The flow cell was then washed with Klenow buffer (1x NEB buffer 2 (NEB B7002S), 

250 µM each dNTP, 0.01% Tween 20). Double-stranded DNA was generated by pumping 130 µL 

of 0.1 U/μl Klenow fragment (3′-5′ exo(–); NEB M0212L) into the flow cell in three stages 

separated by 10 min intervals each. The flow cell was maintained at 37 °C for this period. 

Unextended single-stranded DNA templates were subsequently blocked by annealing a non-

fluorescent version of the stall probe (Dark_stall′) in a process identical to the one described 

above. 

  

After dsDNA generation, 1 µM streptavidin in Annealing buffer was pumped into the flow cell and 

allowed to bind to the biotinylated primer for 5 min at 37 °C. Excess streptavidin was then washed 

out of the flow cell with Annealing buffer. Unbound biotin binding sites in the streptavidin tetramer 

were saturated by incubating the flow cell for 5 min with 5 µM free biotin in Annealing buffer. 

Excess unbound biotin was washed out with Annealing buffer. 

  

RNA transcription proceeded in two stages, initiation/stall and extension. In the initiation/stall 

phase, 130 µL of 0.06 U/µL E. coli RNA polymerase holoenzyme (RNAP; NEB M0551S) was 

allowed to initiate transcription for 20 min at 37 °C on the dsDNA templates in Initiation buffer, 

which lacked CTP (20 mM Tris•HCl pH 8.0, 7 mM MgCl2, 20 mM NaCl, 0.1% BME, 0.1 mM 

Na2EDTA, 1.5% glycerol, 0.02 mg/mL BSA, 0.01% Tween 20, and 2.5 μM each of ATP, GTP, 

and UTP). Upon encountering the first cytosine (C27), the polymerase stalls, thereby sterically 

preventing the loading of additional enzymes on the same template (Buenrostro et al., 2014). 

Excess RNAP was washed out of the flow cell with Initiation buffer. Subsequently, Extension 

buffer was added, which contained all 4 ribonucleotides (20 mM Tris•HCl pH 8.0, 7 mM MgCl2, 

20 mM NaCl, 0.1% BME, 0.1 mM EDTA, 1.5% glycerol, 0.02 mg/mL BSA, 0.01% Tween 20, and 
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1 mM each of ATP, GTP, UTP and CTP). The Extension buffer also contained 500 nM each of 

Fluorescent_stall′ and Dark_read2 oligonucleotides, which were intended to block the regions 

flanking the variable region in the nascent RNA transcript (Fig. 1C) and prevent undesired 

intramolecular interactions and also allow visualization of the transcript. Transcription was allowed 

to proceed for 10 min at 37 °C. RNA polymerase eventually is stalled at the streptavidin roadblock 

at the end of the DNA template, exposing the nascent RNA molecules for binding experiments 

(Fig. 1C). 

  

To ensure complete blocking of RNA regions flanking the variable sequence, transcription was 

followed by further hybridization of Fluorescent_stall′ and Dark_read2 oligonucleotides (500 nM) 

for 10 min at 37 °C in Annealing buffer. Finally, the flow cell was washed with Binding buffer (20 

mM Na-HEPES, pH 7.4, 100 mM KOAc, 0.1% Tween-20, 5% glycerol, 0.1 mg/ml BSA, 2 mM 

MgCl2 and 2 mM DTT), the temperature was lowered to 25 °C (except for 37 ˚C experiments), 

and the flow cell was imaged to quantify the fluorescence from the RNA-annealed 

Fluorescent_stall′ probe. 

 

RNA-MaP equilibrium binding experiments. To determine PUM1/2 binding affinities, the RNA 

library was sequentially equilibrated with increasing concentrations of Cy3B-labeled PUM 

proteins, and the amount of Cy3B fluorescence colocalized with each RNA cluster was 

determined at each concentration. Two-fold serial protein dilutions (15–17) were prepared in 1x 

Binding buffer and were stored in light-protected tubes on ice or in the 4 ˚C autosampler chilling 

block until the incubation. Protein solution (460 µL) was pumped into the flow cell at each 

concentration and incubated for times ranging from 33 min for the lowest concentrations to 19 

min for the highest protein concentrations (25 ˚C; 15–23 min at 37 ˚C). These incubation times 

were established to be sufficient for equilibration by association and dissociation time courses 

(halftime ≤ 5.3 min; see also (Vaidyanathan et al., 2017)). The incubation temperature was 25 or 

37 ˚C, as indicated for the individual experiments.  

 

Computational analyses 
Processing sequencing data. Illumina MiSeq sequencing data were computationally processed 

to extract the tile identifier and the x- and y-locations of each sequenced cluster from the fastq file 

output (Denny et al., 2018; She et al., 2017). Sequence clusters were divided into three 

categories: (1) clusters encoding our RNA library, (2) clusters containing the fiducial sequence, 

and (3) inert “background” sequence clusters lacking the RNAP initiation site or the fiducial 

sequence. This assessment was based on alignment of the read1 sequence to (1) the RNA 

polymerase initiation site and stall sequence 

“TTTATGCTATAATTATTTCATGTAGTAAGGAGGTTGTATGGAAGACGTTCCTGGATCC”, or to 

(2) the fiducial sequence “CTTGGGTCCACAGGACACTCGTTGCTTTCC”, or (3) neither, 

respectively.  

 

While every cluster was fit during the 2D Gaussian fitting (described below), only clusters 

containing the fiducial sequence were used during the cross-correlation of the images to the 

sequencing data. KD fitting was only performed on RNA-encoding clusters (described below). 
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Fitting images. To attribute fluorescent binding events to individual sequence variants, the images 

taken during the RNA array experiment were mapped to the sequencing data output from the 

Illumina MiSeq. Each image had a set of fiducial clusters, which were visualized with a 

fluorescently labeled complementary oligo (see RNA transcription in the flow cell above). The x- 

and y-locations of each fiducial cluster were cross-correlated with each fluorescent image in an 

iterative fashion to determine a smooth function of x and y that represents the location-dependent 

offset between the image and the sequencing data locations. This “registration offset map” 

enabled correlation between image and sequencing locations at sub-pixel resolution, as 

described in (She et al., 2017). Once this map was determined, each image was fit to the sum of 

2D Gaussians, with each Gaussian centered at each of the cluster locations from the registered 

sequencing data output. The quantified fluorescence of each cluster was thus the integrated 

fluorescence within the fit 2D Gaussian (f = 2πaσ2
 where f is the integrated fluorescence and a 

and σ are the fit amplitude and standard deviation, respectively).  

 

Identifying library variants from sequencing data. Incorporation of a 15-nt unique molecular 

identifier (UMI) in our library allowed us to minimize the effect of sequencing errors when 

associating each sequenced cluster with its underlying sequence variant, as described in 

(Buenrostro et al., 2014). Prior to sequencing, the library was bottlenecked and reamplified (see 

Library preparation above), resulting in increased representation of each UMI that survived the 

bottlenecking. We assumed that all sequences associated with the same UMI came from the 

same molecular variant, so that any variation between these sequences was the result of 

sequencing error. To resolve sequencing errors, a consensus sequence of the associated library 

variant was determined for each UMI with a per-base voting strategy. Only UMIs with a significant 

fraction of variants matching the consensus sequence were used, as evaluated by a binomial null 

model. For each UMI, a p-value was calculated based on the number of associated sequences 

that matched the consensus sequence and the total number of sequences, assuming a rate of 

success under the null model of 25%. UMIs with a higher rate of matching than expected by 

chance under the null model (i.e., with p-value < 0.01) were defined as successfully associating 

with a consensus sequence. Clusters were then associated to a designed library variant based 

on the cluster’s UMI. 

 

Fluorescence normalization. To account for inter-cluster variation in maximum fluorescence, we 

normalized the amount of protein bound at a given cluster by the total amount of transcribed RNA 

in that cluster. This normalization was performed by dividing the integrated fluorescence of the 

cluster in the green channel (i.e., the channel imaging the bound protein) by the integrated 

fluorescence of the same cluster in the red channel (i.e., the channel imaging the fluorescent oligo 

annealed to the transcribed RNA). To prevent dividing by small numbers and inflating the 

normalized signal towards infinity, values of the red channel fluorescence below the threshold of 

the first percentile of the distribution of the red channel fluorescence across clusters were set to 

the value of the threshold. 
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Determining the free energy of binding. The normalized fluorescence values of bound protein 

across different solution protein concentrations were used to determine the equilibrium 

dissociation constant (KD) between the protein and each RNA variant. The fitting procedure was 

split into several steps to allow robust fitting across a range of affinities, and the binding model 

accounted for observed non-specific binding events. In brief, the normalized fluorescence values 

for each individual cluster were fit to a binding curve to obtain best-fit values for KD and other fit 

parameters (see Single cluster fitting below). These best-fit values for individual clusters were 

used to determine distributions for fit parameters that we expect to be variant-independent —i.e., 

KD,NS, fmin, and fmax, which are each defined below. The distributions of these common values 

across library variants were used to refine the KD value for each RNA variant. 

Single cluster fitting. Initially, fluorescent values for each cluster were fit to a binding curve. This 

binding model incorporated a nonspecific binding term, as follows: 

 

  

 R + P ⇌ R•P ⇌	R•P•P   (Eq. 1), 

 

where R is RNA, P is protein, KD is the dissociation constant (KD = e∆G/RT) and KD,NS is the non-

specific dissociation constant for a second protein monomer that binds to the RNA/protein 

complex (KD,NS = e
∆GNS/RT

). 

 

The normalized fluorescence of a cluster at protein concentration [P] can be defined as: 

 

 f = fmin + fmax
[P]

[P]+KD
!1+

[P]
[P]+KD,NS

"  (Eq. 2), 

where fmin is the background fluorescence in the absence of bound protein, fmax is the 

fluorescence signal at saturation, and [P] is the concentration of the protein in solution (here, [P] 

» [P]total). This model was used to account for an observed increase in fluorescence at high 

concentrations of protein after apparent saturation (Figure 1D). We did not observe a 

corresponding increase in fluorescence for non-binding variants, and the extent of ‘non-specific’ 

binding increased with greater specific binding affinity. Together, these observations support the 

model that a second protein monomer binds to the RNA-protein complex on chip (as opposed to 

non-specific binding to the DNA or unbound RNA, which would be independent of bound protein).  

 

Least squares fitting was performed using the Python package lmfit (v 0.8.3). The initial estimates 

and constraints are as follows: fmin was initialized to the median fluorescence across clusters in 

the images with no protein applied, and was constrained to be not less than zero during the fitting; 

fmax was initialized at the maximum fluorescence observed at any concentration of protein for that 

cluster, and was similarly constrained to not be less than zero; KD was initialized at the highest 

concentration of the protein; and KD,NS value was initialized at five-fold the highest concentration 

of the protein. 

 

KD 

KD,NS 

+P 
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Finding common values for KD,NS, fmin, and fmax across variants. Allowing all four free parameters 

(fmin, fmax, KD, and KD,NS) to float during the fitting process led to some spurious effects. In particular, 

variants with low affinity that do not achieve saturation within the probed protein concentration 

range can be fit approximately equally well with different values for fmax and KD,NS, ultimately 

leading to uncertainty in the fit value for KD. For example, a variant that does not achieve 

saturation may be fit equally well with lower values for KD and fmax, higher values for KD and fmax, 

or a higher value for the KD,NS and lower value for KD. On the other hand, the library contains 

numerous tightly bound variants which have achieved saturation and from which we can extract 

most likely values for the sequence-independent parameters fmin, fmax, and KD,NS. These values 

are largely constant across different molecular variants that did achieve near-saturation (Figure 

S1E,F), allowing us to reasonably assume that the same values are applicable to all molecular 

variants, i.e., even those that did not achieve saturation, and applying these well-defined 

estimates for fmin, fmax, and KD,NS allows more confident fitting of the KD values. To limit noise, the 

estimates for fmin, fmax, and KD,NS were determined based on the per-variant values of each fit 

parameter, where per-variant values are the median of the single-cluster values associated with 

the same molecular variant. 

 

Estimating fmin. The value for fmin was largely consistent across variants (Figure S1E); thus, the 

estimate for this fit parameter was simply the median value across variants. 

 

Estimating the distribution of fmax. To define the distribution of fmax values across molecular 

variants, a subset of variants with low and precisely measured KD values was used, based on the 

single cluster fits. Variants used to define this distribution had KD values less than 5% of the 

highest concentration of protein. In addition, the precision of the per-variant values of KD was 

evaluated based on the proportion of the variant’s single cluster fits having a goodness-of-fit (R
2
) 

greater than 0.5, the standard error on ∆G (∆G = RTln(KD)) less than 1 kcal/mol, and the standard 

error on the fit fmax less than fmax. If a significant fraction of the clusters associated with this variant 

passed these filters, then the variant was considered to have a “precise” measurement of KD. 

Significance was assessed based on rejecting the null hypothesis that 25% of clusters would pass 

all these filters by chance alone (binomial p-value < 0.01. For variants that did not achieve 

saturation the fmax was undefined, so the distribution of fmax values across the tightly bound 

molecular variants was used to find error estimates on the KD values that reflect this uncertainty.  

 

The fmax distribution across these variants was fit to a gamma distribution with fixed mean for the 

entire experiment, but whose standard deviation was dependent on the number of clusters per 

molecular variant (i.e., standard deviation should be proportional to 1/√n, where n is the number 

of clusters per variant). This distribution reflects the fact that as the number of clusters increases, 

we can obtain more precise estimates of fmax and thus KD. The mean fmax value was obtained by 

fitting the per-variant fmax values to a gamma distribution, and obtaining the mean of the 

distribution, '!"#$%". To obtain the standard deviation of the fmax distribution at each value of n 

(where n is the number of clusters per variant), the distribution of per-variant fmax values of variants 

with n clusters was fit to the gamma function ((*), for every normalized fluorescence value *: 

 ((* − -&, /&, 0&) = 2	()*!+!
3
%!),

4*5 2− ()*!
+!

3 /6(/&)  (Eq. 3),  
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where -& is a free parameter, /& ⋅ 0& ≡ '!"#$%", and the resulting standard deviation is 9& 	 =

;/&0&-. Allowing k to float resulted in better estimates of the standard deviation when distributions 

were more asymmetric, as often occurred for variants with small n. The value of -& was initialized 

at 0, and 9& was initialized at the standard deviation of the fmax values. 

 

The values for 9& may be subject to noise, given that some values of n had many more variants 

associated with that number of clusters than others did. To smooth these values, the 9& values 

were used to fit the expected analytical function that defines the relationship between number of 

measurements and standard error, 9(=) 	= ."
√& + 90, where 90 and 9, are free parameters. 9, is 

the standard deviation on the estimate of fmax with only one measurement, and 90 represents the 

standard deviation of fmax among different molecular variants if all variants were measured an 

infinite number of times. We expect this term to be nonzero in the case that the fmax depends on 

the molecular variant: e.g., if certain variants are trapped in stable secondary structures that do 

not unfold on the time scale of the binding experiment. 

 

The estimator for fmax for each molecular variant with n clusters per variant is then the gamma 

distribution: 

((*, /&, 0&) = 2 (+!3
%!),

4*5 2− (
+!
3 /6(/&)  (Eq. 4), 

where /& 	= 21#$%&'$.(&) 3
-
and 0& 	=

.(&)(
1#$%&'$

, which depends only on µglobal and 9(=), and the number of 

clusters per variant n. 

  

Estimating KD,NS. The value for KD,NS was determined by taking the median value across the 

subset of variants with low and precisely measured KD values, based on the single cluster fits, as 

described above for determining the distribution of fmax values. The ∆GNS terms (= RTlog(KD,NS)) 

for each protein were similar, with the following values: PUM2: –8.98 and –8.87 kcal/mol for 

replicates 1 and 2, respectively (25 ˚C), –8.65 kcal/mol (37 ˚C); WT PUM1: –8.46 kcal/mol; mutant 

PUM1: –8.19 kcal/mol. 

 
Applying common values for KD,NS, fmin, and fmax to refine estimates for KD. Binding isotherms were 

refined for all variants using the variant-independent values for fmin, KD,NS, and, for the cases in 

which the variant did not achieve near-saturation, fmax. To perform this refinement, clusters 

associated with each variant were resampled to obtain median fluorescence values across 

resampled clusters. This vector of median fluorescence values was fit to a binding isotherm with 

the values for fmin and KD,NS fixed to the variant-independent values obtained above. For the cases 

where the variant did not reach near-saturation the value for fmax was also fixed. Not achieving 

near-saturation was defined as the median fluorescence value at the highest concentration of 

protein being less than the lower bound of the 95% confidence interval on fmax. In this case, the 

value for fmax was sampled from the variant-independent distribution of fmax,n (with n equal to the 

number of clusters associated with this variant) (Eq. 4). To obtain uncertainty estimates on the fit 

fmax and KD values, this resampling procedure was repeated 100 times. In the case that the variant 

did not achieve saturation, a different value for fmax was sampled for each iteration.  
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The 95% confidence intervals on KD were obtained using these 100 values. The median fit KD 

obtained from the initial single cluster fits was used as the initial value in the least squares fitting 

of each fitting iteration. For variants where fmax was allowed to float, the median fit fmax was used 

as the initial value. 

 

Fitting background clusters to determine maximum measurable ∆G. To obtain a reasonable 

estimation of the highest KD that can be measured by this method, we applied this fitting procedure 

to a set of “background” variants––i.e., variants on the chip lacking an RNAP initiation site. To 

normalize the bound fluorescence in the green channel to a similar scale as those clusters that 

do transcribe RNA, the fluorescence values were divided by the median fluorescence value in the 

red channel across clusters that do have RNAP initiation sites. Background clusters were 

randomly assigned to a “variant ID”, such that the set of “background variants” had a similar 

number of associated clusters as our library members. Finally, fitting was carried out as described 

in “Applying common values for KD,NS, fmin, and fmax to refine estimates for KD”, with the variant-

independent values for fmin, fmax, and KD,NS applied. The reliable ∆G threshold determined by this 

analysis for PUM2 was approximately –8.5 kcal/mol (Figure S1F), and only variants with ∆G 

values less than this threshold (corrected for active protein fraction) were included in the high-

confidence affinity data reported herein. 

 
Data filtering  
Variants were included in our analyses if they met the following criteria (unless otherwise 

indicated): (1) observed ∆G values lower than –8.5 kcal/mol; this range was established as clearly 

distinguishable from background of non-transcribed clusters (see “Fitting background clusters to 

determine maximum measurable ∆G” above); (2) five or more clusters in at least one replicate 

experiment, to allow robust cluster statistics; in cases where one of the replicates contained fewer 

than five clusters, only the ∆G value from the replicate with 5 or more clusters was used; (3) 95% 

bootstrap confidence interval of the ∆G value (or weighted mean of replicate ∆G values) less than 

1 kcal/mol; all 95% CI values were corrected to account for inter-experimental error, as described 

in (Denny et al., 2018). 

 

Given the overall weaker binding of mutant PUM1 (Figure S6C,D), and to allow more 

comprehensive comparisons of single mutant binding by wild-type and mutant protein (Figure 

5D), we relaxed the affinity filter for mutant PUM1 data. Rather than applying a ∆G < -8.5 

threshold, we included variants with at least 15% of RNA bound by PUM1 mutant at the highest 

probed protein concentration. 

 
Assessing reproducibility and combining experimental replicates  
Two replicate experiments of PUM2 binding were combined by calculating the error-weighted 

mean:  

∆Gcomb = (
∆G1
s1

2  + 
∆G2
s2

2 ) (
1
s1

2 + 
,
s((

)
-1

   (Eq. 5),  

where the ∆G1 and ∆G2 are ∆G values from each replicate and  s1 and s2 are 95% confidence 

intervals of the respective ∆G values. Weighted propagated error was calculated as: 
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  scomb = (; 1
s1

2 +	
1
s2

2)
-1

     (Eq. 6).  

 

The observed small systematic offset (Figure 1E) was subtracted from Replicate 2 values before 

averaging to prevent distortions in cases where a variant was only present in one replicate. The 

offset (0.28 kcal/mol) was derived from mean replicate difference between highest affinity variants 

(∆G < –9.8 kcal/mol). 

 

Assessing the significance of scaffold differences 
The significance of single mutant scaffold differences before and after accounting for structure 

was assessed via a false discovery rate (FDR) approach. For each single mutant and consensus 

sequence, the deviation of the ∆G value (weighted replicate average, Eq. 5) from the scaffold 

average (∆Gavg) was determined and converted into a z-score: 

 

 z = 

∆G	–	∆Gavg

s∆G
     (Eq. 7), 

 
where σ is the weighted replicate error (Eq. 6). The distribution of resulting z-scores was then 

compared to a null distribution, where the z-scores are normally distributed around a zero mean 

with a standard deviation of 1. For each z-score, the number of false discoveries was determined 

from the probability of obtaining a value more extreme than this z-score given the null distribution 

(two tailed; value = 2*CDF(–|z|)), multiplied by the total number of variants. The total number of 

discoveries corresponded to the sum of the number of false discoveries (above) and the number 

of actual z-scores whose absolute values were greater than or equal to that z-score threshold. 

Scaffold differences were considered significant if the respective z-score had FDR ≤ 10%. 

Asterisks in Figures 2A, D and in Figure S2C indicate mutants where at least one scaffold showed 

a significant deviation from the scaffold mean. 

 

To assess the contributions of RNA secondary structure to the scaffold variance, the above 

analysis was repeated using structure-corrected affinities (see Accounting for RNA structure 

below; ‘Structure-corrected’ in Figures 2B, S2A), as well as affinities of variants that lacked 

significant predicted structure (∆Gfold > –0.5 kcal/mol; 44 of 65 total variants, including the 

UGUAUAUA consensus). 

 

 
Accounting for RNA structure  
We used Vienna RNAfold (v. 2.1.9) (Lorenz et al., 2011) to predict ensemble stabilities for RNA 

structures in which the protein binding site is accessible vs. occluded due to base pairing (Figure 

2C). The effect of accessibility on protein binding was defined as follows (see model in Figure 

S3B): 

 

 KD
obs	= KD x 

1 + Kfold
1 +  Kfold,accessible

    (Eq. 8), 
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where KD
obs

 is the measured dissociation constant, KD is the intrinsic dissociation constant (for 

accessible RNA), Kfold is the folding equilibrium constant that represents the ensemble of RNAs 

that are structured (accessible + occluded) and Kfold,accessible is the folding equilibrium constant 

representing RNA structures in which the protein binding site is accessible. Accessible binding 

sites were defined as lacking base-pairing in the 8mer core binding site (for the purpose of 

structure predictions) (Figure 2C). Folding equilibrium constants were based on ensemble 

stabilities predicted by RNAfold (RNAfold -p0 -T 25 C or RNAfold -p0 -T 37 C); stabilities 

of accessible RNA structures were predicted by including the constraint flag (RNAfold -p0 -T 
25 C -C) and constraining the 8mer binding site to a single-stranded state, e.g.: 

 

 UCUCUUUGUAUAUAUCUCUU 
 ......xxxxxxxx......, 
 
where ‘x’ indicates unpaired residues. Structure effects were considered if they exceeded 0.5 

kcal/mol, except as noted. 

 

Assessing alternative binding registers in single mutant variants 
To determine potential alternative binding registers in our single mutant constructs, we 

computationally scanned the full RNA sequence (including scaffold and variable region) with the 

additive consecutive model, wherein the predicted relative affinity (expressed as ∆∆G) at each 

8mer site corresponds to the sum of effects of each individual residue:  

 
∆∆G

pred
=∑ ∆∆G

X

b
8
b=1    (Eq. 9); 

 
b is the position in the 8mer RNA binding sequence and X is the identity of the residue at position 

b. The ∆∆Gb
X
 values were derived from weighted scaffold averages for each single mutant relative 

to the weighted average of consensus affinities, after accounting for structure effects as described 

in Accounting for RNA structure. In calculating the predicted affinities for each register, 

structure effects were estimated by individually constraining the respective 8mer site to the single-

stranded state.  

 

Figure S2F,G and Table S1 show the results of the initial assessment of register shifting, based 

on scaffold averages of mutant effects in the 5U background. No additional variants with shifted 

registers within less than 1 kcal/mol from the designed register were identified when the analysis 

was repeated for single mutants across 5A/C/U backgrounds, using mutant effects averaged 

across scaffolds and 5A/C/U backgrounds in Eq. 9 (Figure S3A,B).  

 
Development, testing and evaluation of thermodynamic binding models 
To ensure the highest accuracy of model testing and global fitting, we filtered the library to only 

include variants without significant predicted secondary structure (∆Gfold > –0.5 kcal/mol). For 

variants in the S1a and S1b scaffolds, we considered the ensemble structure of the entire RNA 

construct; for S2a and S2b scaffolds, only the stability of structures within the hairpin loop was 

considered, due to the high stability of the stem. The ensemble stability of structures involving the 
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loop region was determined as the difference between RNAfold-predicted stabilities with and 

without the loop region constrained to the single-stranded state (∆Gfold,loop = ∆Gfold – ∆Gfold,ss). Only 

the loop sequences were used for binding predictions in global fitting.  

 

To reduce potential systematic bias in the ∆∆G values (∆∆G = ∆G – ∆GWT) that may affect the fit, 

we did the following. The ∆∆G values (observed and predicted) were defined relative to the 

UGUAUAUAU reference sequence rather than the slightly more stable UGUAUAUAG sequence 

(Figures 2E, S2D), because UGUAUAUAU was more highly represented in our library and was 

predicted to have less residual structure (n = 183 for ∆Gfold > –0.2 kcal/mol). To determine the 

median consensus affinity, we applied the more stringent structure cutoff of –0.2 kcal/mol (vs. -0.5 

kcal/mol) due to the greater, asymmetric spread of values observed when the –0.5 kcal/mol 

threshold was used, consistent with residual structure effects.  

 

Importantly, in testing and globally fitting the models below, we accounted for all possible binding 

modes and registers, because the strongest binding can arise from a site downstream of or 

partially overlapping with the original designed site, and these altered registers become more 

probable the larger the destabilization from mutations within the original consensus site (see 

Figure 4). The presence of multiple binding modes of similar affinity will also increase the overall 

observed affinity.  
 

Testing the additive consecutive model. Additive consecutive model predictions were calculated 

using the equation in Figure 3A for every 9mer register in each oligonucleotide in the library, 

based on measured single mutant penalties (Table S2). The ensemble affinity for a given 

oligonucleotide was determined as illustrated in Figure 4 (‘Consecutive’; top left): 

  

∆∆Gensemble = –RTln(∑ e

–∆∆Gr
RTn –	8

r	=	1 )  (Eq. 10), 

 

where n is the length of the oligonucleotide variant, r is the index of an individual 9mer register, 

∆∆Gr is the predicted penalty for binding in register r, R is the gas constant and T is temperature 

(25 ˚C). 

 

Global fitting to the additive consecutive model (Figure S4B,C) was performed as described in 

the Global fitting section below, using terms for bound residues only.  

 
Base flipping analysis. For the initial assessment of the additive nonconsecutive model that 

permits base-flipping, we focused on oligonucleotides in our library that contained C-insertions at 

various positions of the consensus sequence (UGUAUAUAU). For comparisons to the additive 

consecutive model predictions in Figure 3C–E, we used variants without predicted register shifts 

to favorable sites involving flanking sequences, as this allowed for the most accurate estimation 

of the lower limit of the flipping penalty at the indicated site. The construct sequences used are 

indicated in Table S4. 
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Global fitting. To fit the final model (additive nonconsecutive with coupling; Figure 3G), the ΔΔG 

values for all registers with no flips, all registers with single flips, all registers with double flips, and 

all registers with two single nucleotide flips were included when computing the partition function 

for binding (see Figure 4). Registers with more than two flipped residues were not included in the 

partition function calculation because their predicted affinity was low enough that it minimally 

affected the overall binding affinity of the ensemble of bound states. The ΔΔG values for individual 

registers were used to compute the partition function and the overall ΔΔG for the ensemble of 

bound states for each RNA variant (∆∆G(ensemble) = –RTln(∑4–∆∆Gi/RT
), where i is the register 

number (Figure 4)). This ensemble ∆∆G was compared to the experimentally observed ΔΔG 

values during fitting. The model assumed a single protein bound to each RNA variant, which was 

supported by the tight distribution of fmax values and our ability to detect binding of multiple bound 

protein monomers based on proportional increase in fluorescence (Figure S1E; W.R.B. et al., in 

preparation). The additive consecutive and additive nonconsecutive models (Figure 3A,F) were 

fit analogously, but with the flipping and coupling terms (additive consecutive model) or coupling 

terms (additive nonconsecutive) excluded from the model. 

 

During fitting, the only values that were not allowed to vary were the bound parameters for the 

consensus ‘UGUAUAUAU’ residues, which were set to a penalty of 0 kcal/mol. The other bound 

parameters for non-consensus residues were allowed to vary within the higher of the 95% 

confidence interval determined from the individual single mutant measurements or ±0.4 kcal/mol 

from the median ΔΔG values from the individual single mutant measurements (Figure 2E, Table 

S2). Single and double flip parameters were essentially unconstrained during fitting and were 

allowed to vary between 0 and 7 kcal/mol. The two coupling terms were constrained to between 

–4 and 0 kcal/mol. The coupling terms were included in both consecutive and flipped registers, 

with the condition that no flips interrupted the series of flipped residues. The script used for global 

fitting can be found on https://github.com/pufmodel. 

 

All models were initially trained on a randomly selected subset of half the data and tested on the 

remainder of the data to prevent overfitting. In all cases, the model performed nearly identically 

on the training and test sets. To compute the final parameters, the model was fit with all 

sequences meeting the structure cutoff. All models described in the text were fit by minimizing 

the sum of the squared error between the predicted and measured ΔΔG values for each 

sequence. To help ensure that the fit was finding a global minimum, both the BFGS and differential 

evolution algorithms implemented in the lmfit module in Python were used for fitting. Additionally, 

fits with flipping parameters were initialized to different values between 1 and 4 kcal/mol and led 

to the same fit parameters, providing additional support for convergence to a global minimum. 

 

We assessed the stability of the final fit parameters (additive nonconsecutive + coupling model; 

Table 1, Figure 3C) by performing multiple fits with bootstrapping and a parameter sensitivity 

analysis. Bootstrapping was performed as follows: the 5206 sequences were sampled with 

replacement and the model parameters were fit to each resampled dataset. The 95% confidence 

intervals from the bootstrapping analysis are reported in Table S9. To examine how well bounded 

the model parameters were, we computed the sensitivity of the RMSE of predicted vs. observed 

affinities to variations in each individual parameter while holding all others constant at their fit 
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values. Each value varied within the constraints that were applied during fitting. For some flipping 

parameters, the same RMSE value resulted from all parameter values greater than a given value, 

implying that for these parameters the penalty must be larger than a certain value so that it will 

not occur in the most stable register in any of our constructs, but because the parameter is so 

destabilizing we can only say that it must be at least as perturbative as the minimum value 

resulting in a constant RMSE. As a result, we reported the lower bound for these parameters 

(Table 1B).  

 
Coupling analysis. To assess positional coupling, we tested double mutants of the 

UGUA[A/C/U]AUAU reference sequence for systematic deviations from predictions by the 

additive consecutive model. To obtain the library variants for this analysis, we filtered our mutant 

library for all sequences that featured a single dominant consecutive register (i.e., with less than 

twofold, or 0.4 kcal/mol, further stabilization provided by other consecutive or flipped registers, as 

predicted by the additive nonconsecutive model in Figure 3F). Variants deviating from the 

consensus sequence at two positions were identified and their predicted affinities were calculated 

by adding the respective experimentally determined single mutation penalties (∆∆Gpred = ∆∆G1 + 

∆∆G2; Figure 2E, Table S2). We used the experimentally derived instead of globally fit single 

mutant penalties in this analysis, as coupling may affect the fit values. Qualitatively, the 

conclusions were not affected by the fit parameters, as in both cases the strongest coupling was 

observed between positions 7 and 8, with negligible deviations at other positions. Only double 

mutant combinations represented by more than one sequence in our library were considered. 

Deviations between the observed and predicted ∆∆G value were determined and averaged 

across all mutants with mutations at a given pair of positions (Figure S4G). 

 
The double mutant analysis indicated coupling between mutated positions 7 and 8, with negligible 

deviations from additivity at other positions for which data were available. Because of the highly 

destabilizing effects of mutations in the 5′ half of the binding site, these mutations were strongly 

underrepresented among double mutants, as they generally lead to alternative registers being 

preferred or fall outside the reliably measurable affinity range. For the same reasons, any 

couplings involving 5′ mutations are unlikely to be biologically relevant. 

 

To determine the sequence dependence of position 7 and 8 couplings, including potential longer-

range couplings, we next extended the analysis to varying combinations of residues flanking each 

position 7 and 8 residue. Specifically, and recognizing that coupling is most likely to occur between 

neighboring residues, we assessed the following combinations for systematic deviations from 

predicted values: 1) residue of interest flanked by two consensus residues; 2) only the 5′ 

neighboring base mutated; 3) only the 3′ neighboring base mutated; 4) both neighboring residues 

mutated. In this analysis, we included all variants that contained the indicated combination in the 

best predicted consecutive register (as predicted by additive nonconsecutive model; Figure 3B); 

any sequence was permitted outside the indicated combination.  

 

Only 7G and 7C showed strong systematic deviations from predicted affinity for the indicated 

neighbor combinations (Figure S4H,I), and to a lesser extent––the 9G residue, which showed 

systematically tighter binding when preceded by the consensus residue 8A as opposed to residue 
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8 mutations (Figure S4J). Further inspection of 7G coupling indicated an additional bifurcation 

based on position 5 identity, indicating longer-range coupling (Figure S4H). The previously 

observed structural differences in purine and pyrimidine recognition at position 5, with dramatic 

effects on backbone configuration and in some structures––on position 6 recognition provide a 

potential structural rationale for this longer-range coupling (Lu and Hall, 2011).  
 
Analysis of in vivo crosslinking data  
Determining a set of position weight matrices to find putative binding sites. The analysis of in vivo 

crosslinking data was carried out in two stages: first, we identified the transcriptome sites 

predicted to be bound by PUM2 (∆∆Gpred ≤ 4 kcal/mol) by using a set of position weight matrices 

(PWMs) that approximate our thermodynamic model to efficiently identify binding sites. Second, 

we applied the full thermodynamic model, as described in Figure 3G and Figure 4, to this set of 

putative binding sites. Using PWMs for genome-wide searches is supported with currently 

available software and can computationally obtain matches to the whole transcriptome within a 

reasonable amount of time. In contrast, genome-wide application of the full thermodynamic model 

was prohibitively computationally expensive. 

 

Each PWM is a matrix with rows representing different positions within the binding sequence and 

columns representing the four bases that could be at that position. The value of the PWM for each 

position and base is the probability of observing that base at that position in a set of binding 

sequences, wherein the probability is proportional to the ∆∆G terms from our thermodynamic 

model, as detailed below: 55,6 = ∑ 4*5@AAB5,6/CDE/4*5@AAB5,6/CDE6  for position i and base j. For 

the simplest binding configuration (i.e., 9 bound positions with no flipped residues), ∆∆Gi,j values 

corresponded to the binding terms in Table 1A (∆∆Gb
X). Each genomic sequence was compared 

with the PWM to determine a log-odds score: F = ∑ G5,6HIJ@55,6/0.25E5 , where G5,6 = 1 if the 

sequence at position i has base equal to j, otherwise G5,6 = 0. A log-odds score of ≥2 was found 

to capture the large majority of variants with ∆∆G < 4 kcal/mol, and so this value was applied as 

the threshold above which a sequence was considered as a putative binding site. 

 

To account for binding registers with a single flipped residue, a row was inserted at the flipped 

position, with values derived from the base flipping penalties (∆∆Gf
Y
, Table 1B). Our 

thermodynamic model found that flipping is accommodated only in four positions; thus, a PWM 

was determined for each of these four binding registers. In practice, for a given sequence, flips 

between positions 4/5 and 5/6 had very similar PWMs, and so a single PWM was derived to 

search for both of these binding configurations, using the average values. On average, an inserted 

residue penalized the overall affinity by ~1.5 kcal/mol. To account for this overall destabilization, 

the threshold log-odds score for these three flipped PWMs was increased to 4 (i.e., a sequence 

had to have log odds score ≥4 for the sequence to be considered as a putative binding site).  

 

A set of four additional PWMs were derived to account for having two flipped residues at each of 

the four flipped positions. Once again positions 4/5 and 5/6 produced very similar PWMs and 

were averaged, resulting in three distinct PWMs. For these PWMs, the threshold for log-odds 

score was increased to 5 to account for the additional destabilization of having two flipped 

residues. 
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The PWM for no flipped residues and with one flipped residue had two or one fewer positions to 

account for, respectively, than the PWM for two flipped residues. Thus, all PWMs were brought 

to the same length of 11 rows (corresponding to 11 bound or flipped positions) by padding at the 

3′ end with rows that do not contribute to the log odds score of any sequence (values were set 

equal to 0.25 for all bases). 

 

Finally, these seven PWMs and their respective threshold values were saved in a single file, with 

format defined by the program HOMER, as described: 

http://homer.ucsd.edu/homer/motif/creatingCustomMotifs.html. 

 

Determining binding sites within the transcriptome. The seven PWMs described above were used 

to determine putative binding sites across the transcriptome for subsequent quantitative analysis 

with our full thermodynamic model. Initially, a set of genome locations was determined from the 

Gencode v24 annotation file, obtained from the ENCODE project: 

 

wget 
https://www.encodeproject.org/files/gencode.v24.primary_assembly.annot
ation/@@download/gencode.v24.primary_assembly.annotation.gtf.gz.  
 
These genome annotations were converted to a bed file format, and any overlapping regions were 

merged, using the program bedtools merge (v2.25.0). The package HOMER (v4.8.3) was used 

to search for matches to the PWMs within these genome locations, with the command: 

 

annotatePeaks.pl ${genome_locations} hg38 -m ${pwm_file} -mbed 
{output_motif_locations} -noann -nogene. 
 

The set of output motif locations, corresponding to putative binding sites, was subsequently 

filtered to remove any overlapping regions (bedtools merge), and if two regions overlapped, only 

the site with the lowest log odds score was kept. This set of motif sites was annotated again using 

HOMER to map each site to a gene, mRNA location (i.e. 5′ UTR, CDS, 3′ UTR), and gene type 

(i.e., protein-coding, noncoding RNA, etc), each of which come from the default Refseq 

annotations for human genome assembly GRCh38 (hg38) (O'Leary et al., 2016). 

 

annotatePeaks.pl ${motif_locations} hg38 > ${output_annotations} 
 

These annotations were used to filter motif locations based on: (1) Being part of a protein-coding 

gene in the 5′ UTR, CDS, 3′ UTR, or being part of a noncoding RNA; (2) Being on the same strand 

as its annotated gene. This filtering resulted in a final set of 646,268 binding motif locations around 

which PUM2 binding was assessed. 

 

In addition to this set of filtered motif locations, a set of “random” sites were determined, which 

served as controls throughout. These sites were obtained by choosing 5,000,000 random start 

sites within the original set of genome locations. These random sites spanned the same number 
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of nucleotides as the putative binding sites (11 nt). These 5 million sites were subsequently 

annotated and filtered exactly as the putative binding sites were, resulting in 76,094 “random” 

locations. 

 

Using the thermodynamic model to predict ∆∆G values of each putative binding site. The 11-nt 

sequence of all motif locations (“binding” or “random”) were each assessed for their predicted 

∆∆G using the full thermodynamic model (Figure 4; 37 ˚C). The sequence within each motif 

location was determined using the bedtools getfasta command and the hg38 genome build in 

fasta format.  

 

This 11-nt window has three possible binding registers if no residues are flipped (∆∆Gconsecutive,1, 

∆∆Gconsecutive,2, ∆∆Gconsecutive,3), in addition to other binding registers with one or two residues flipped 

(see Figure 4). Each sequence was also assessed for the ∆∆Gnoflip, which represents the 

ensemble energy of the three ∆∆Gconsecutive values, with no contribution from any of the flipped 

binding registers. 

 

Determining expression of putative PUM2 binding sites. RNA-seq expression data for K562 cell 

lines was obtained from the ENCODE project (Consortium, 2012). These data consisted of 

transcript-per-million (TPM) values for each ENSEMBL transcript across two replicates 

(https://www.encodeproject.org/files/ENCFF272HJP/@@download/ENCFF272HJP.tsv and 

https://www.encodeproject.org/files/ENCFF471SEN/@@download/ENCFF471SEN.tsv). The 

TPM values for each transcript were averaged across the two replicates, and the value for each 

Refseq transcript identifier was then determined using Ensembl Biomart for hg38 

(http://uswest.ensembl.org/biomart/martview/2602e63453effc6fdd3fae6b78dfed42). The TPM 

value for each Refseq transcript gave the relative expression of motif sites within that transcript, 

as assessed using the annotations from HOMER described above. 

  

In some analyses, only motif sites on transcribed genes (TPM > 0 in K562) were included in 

certain subsequent analyses, resulting in further filtering of the number of motif sites examined to 

445,368 total sites. 

 

Obtaining eCLIP signal around putative PUM2 binding sites. Enhanced UV crosslinking and 

immunoprecipitation (eCLIP) data for PUM2 protein in human K562 cells was obtained from 

ENCODE (Van Nostrand et al., 2016). Sequencing read alignments (in the form of a BAM file) 

were obtained for two replicate pulldown samples and one input sample which did not undergo 

antibody pulldown for PUM2 but was otherwise experimentally processed identically 

(https://www.encodeproject.org/files/ENCFF786ZZB/@@download/ENCFF786ZZB.bam, 

https://www.encodeproject.org/files/ENCFF732EQX/@@download/ENCFF732EQX.bam, 

https://www.encodeproject.org/files/ENCFF231WHF/@@download/ENCFF231WHF.bam). Only 

alignments corresponding to the second sequencing read (read2) were kept, as the 5′ end of this 

read corresponds to the putative crosslinking site (Van Nostrand et al., 2016). The alignments 

were obtained using the package samtools (version 0.1.19-96b5f2294a): 

 

samtools view -bh -f 128 ${input_bam} > ${output_R2_bam} 
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This set of filtered alignments was used to determine the number of observed crosslinks (i.e., 

read2 start sites) on each strand at any position within the genome, using the package bedtools: 

 

bedtools genomecov -ibam {R2_bam} -strand + -bg -5 > 
{output_bedgraph_plus} 
bedtools genomecov -ibam {R2_bam} -strand - -bg -5 > 
{output_bedgraph_minus} 
 

The number of crosslink sites (from eCLIP data) at each nucleotide position within each motif 

location was determined using the package pyatac ins 

(https://nucleoatac.readthedocs.io/en/latest/pyatac/). Only crosslink sites on the same strand as 

the motif were included in the total count. The number of reads starting 55 nt upstream and 

extending to 25 nt downstream from the motif location center (80 nt total; Figure S7F) were 

summed for each sample, corresponding to the motif site’s eCLIP read count; this window 

accounted for the asymmetrical observed distribution of crosslink sites around PUM2 consensus 

motifs. eCLIP signal for each motif site was determined as the sum of eCLIP read count for the 

two replicates, divided by the relative expression of that motif site. Similarly, eCLIP input for each 

motif site was the eCLIP read count for the input sample, divided by the relative expression of 

that motif site. 

 

The median eCLIP signal and input around sites identified as ‘background’ sites was determined 

from sites with predicted ∆∆G > 4.5 kcal/mol, regardless of whether the site originated from the 

“binding” or “random” motif locations. The eCLIP signal (or input) values were divided by the 

‘background’ signal (or input) value to obtain the eCLIP signal (or input) enrichment above the 

background expectation. 

 

Assessing secondary structure around motif sites. Consensus motif sites (∆∆Gpred < 0.5 kcal/mol), 

comprising 4,816 non-overlapping sites, were assessed for local secondary structure occluding 

the binding site. The sequence around each motif site was determined using bedtools 
getfasta. Multiple different lengths of flanking regions were included in this assessment (10 nt, 

20 nt, or 80 nt on either side of the motif site). An additional line within the sequence fasta file 

gives the constraint that the binding site (i.e., the first 8 nt of the motif site, given the weak 

interaction at position 9) remains unpaired. Using the program RNAfold (v2.1.8 (Lorenz et al., 

2011)), the ensemble energy was determined for each sequence: 

 

cat ${input_fasta} | RNAfold --noPS -p0 -C -T37 > 
${output_values_wconstraint} 
cat ${input_fasta} | RNAfold --noPS -p0 -T37 > 
${output_values_noconstraint} 

 

The difference in ensemble free energy with and without the constraint gives the accessibility of 

that site: ∆∆Gss = ∆Gno_constraint – ∆Gconstraint (see also Accounting for RNA structure above). 
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Enrichment of PUM2 sites within 3′ UTRs 
Sites derived from the PUM2 PWMs (described in Analysis of in vivo crosslinking data above; 

not filtered for being expressed in K562 cells) were divided into bins based on the predicted ∆∆G, 

and the fraction of motifs within each bin that were annotated as 5′ UTR, CDS, or 3′ UTR was 

determined as described above (i.e., using HOMER), and are shown in Figure 6C. Enrichment 

for transcript annotations of motif sites (Figure S7E) was determined relative to the annotation 

frequencies of “random” locations. 

 
HPLC purification of RNA oligonucleotides for competition binding measurements 
Desalted RNA oligonucleotides were ordered from IDT and purified by reverse-phase HPLC 

(XBridge Oligonucleotide BEH C18 Prep column or Agilent ZORBAX Eclipse Plus C18 column), 

using an acetonitrile gradient in the presence of 0.1 M triethylamine acetate. Following 

purification, the solvent was exchanged into MilliQ water with Amicon Ultra 3K concentrators. 

 

[γ- 32P]-labeling of RNA nucleotides 
RNA oligonucleotides for direct binding measurements were ordered from IDT and 5′ labeled with 

[γ- 
32

P] ATP (Perkin Elmer) using T4 polynucleotide kinase (T4 PNK, Thermo Fisher Scientific). 

The 5 µL reactions contained 1x PNK buffer (Thermo Fisher Scientific), 5 µM oligonucleotide, 5 

µM [γ- 
32

P] ATP and 1 µL of T4 PNK. The reactions were incubated at 37 ̊ C for 30 min and purified 

by non-denaturing gel electrophoresis (20% acrylamide).  

 

Gel shift binding measurements 
Competition binding measurements. To obtain PUM2 binding measurements in the absence of 

potential structure formation and alternative sites, and to compare the affinities determined by 

different approaches, we performed competition gel shift binding measurements with 8mer 

oligonucleotides carrying a subset of single mutations in the UGUAUAUA background. PUM2 

(0.68 nM) was combined with trace labeled “S1a” RNA (UCUCUUUGUAUAUAUCUCUU, <0.08 

nM) in binding buffer (2 mM DTT, 100 mM potassium acetate, 0.2% Tween-20, 20 mM sodium 
HEPES, pH 7.4, 5% glycerol, 0.1 mg/mL BSA (NEB), 2 mM MgCl2), and diluted two-fold into 

solutions containing varying concentrations of unlabeled competitor RNAs (3-fold serial dilution 

series; 7–8 concentrations per oligonucleotide; final concentrations of 0.34 nM PUM2, <0.04 nM 

labeled S1a RNA, 0.17––3330 nM competitor RNA, depending on the oligonucleotide). Binding 

reactions were incubated at 25 ˚C for at least 1 h; equilibration was established by measuring 

binding after 1 h and 4.5 h incubations, which gave consistent results. We also performed controls 

for titration effects, by incubating the most tightly bound oligonucleotides (consensus, 5G and 7G 

variants) with 0.16 or 0.32 nM PUM2 (final concentration), giving consistent affinities. Following 

equilibration, 7.5 µL aliquots were transferred to 7.5 µL ice-cold loading buffer (5% Ficoll PM 400 

(Sigma), 0.03% BPB, and 2 µM unlabeled S1a RNA in binding buffer). The low temperature and 

unlabeled consensus RNA in the loading buffer prevented changes due to potential re-

equilibration during sample loading (Vaidyanathan et al., 2017)). The samples were carefully and 

immediately loaded on a continuously running 20% native acrylamide gel (5 ˚C, 750 V, 0.5x 

Tris/Borate/EDTA (TBE) running buffer: 44.5 mM Tris-borate, 1 mM Na2EDTA, pH 8.3; DANGER: 

extreme caution is required in this step due to high voltage; 
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https://ehs.stanford.edu/reference/electrophoresis-safety). Gels were dried, exposed to 

phosphorimager screens and scanned with a Typhoon 9400 Imager.  

 

Binding affinity for the labeled S1a oligonucleotide was measured in parallel by incubating 

0.0038–81 nM PUM2 (3-fold serial dilutions) with trace labeled S1a RNA (<0.04 nM) in binding 

buffer for at least 1 h at 25 ˚C. Samples were analyzed by gel electrophoresis as above. 

Measurements with three labeled RNA concentrations across a 9-fold range (upper limits of 13–

120 pM) gave consisted results, indicating no titration effects. Sufficient equilibration time was 

established by measuring the dissociation rate (0.011 s
-1

, corresponding to 5.25 min upper limit 

of equilibration time––i.e., five half-lives; see below (Vaidyanathan et al., 2017)). 

 

The gels were quantified with TotalLab Quant and fitting was performed with KaleidaGraph 4.1 

(Synergy). The affinity for the labeled S1a RNA was determined by fitting to a single-site binding 

equation:  

θ = A ´ 

[P]
KD + [P] + b   (Eq.11), 

 

where θ is fraction bound RNA, A is amplitude, [P] is PUM2 concentration, KD is the equilibrium 

dissociation constant and b is background. Competitor affinities (KD,comp) were determined using 

the equation by Lin & Riggs (Lin and Riggs, 1972): 

KD, comp = 

2 ´ K *D ´ [Rcomp]1/2

2 ´ [P]total – [R*]total – 2 ´ K *D
  (Eq.12), 

 

where KD* is the dissociation constant of the labeled S1a RNA; [Rcomp]½, the competitor 

concentration at which half of the labeled RNA is bound; [P]total, the protein concentration; and 

[R*]total the labeled RNA concentration. To determine the fraction of competitor RNA at which half 

of labeled RNA was bound, the competition binding curves were normalized by the fraction of 

labeled S1a RNA bound at saturation with no competitor (0.94). [R*]total was the upper limit of the 

labeled RNA concentration based on the total input and elution volume in the labeling reaction 

(<0.04 nM). Using the lower limit based on scintillation measurements of the 
32

P label (~0.004 

nM) did not affect relative affinity calculations and affected absolute affinities by <10%. The values 

shown in Figure S3F,G are averages and standard errors from two replicate measurements. 

 

For determination of flanking sequence effects, CUUGUAUAUAN oligonucleotides (N = A/C/G/U) 

were ordered from IDT, 5′ end labeled with [γ- 
32

P] ATP, and binding was measured as described 

for the S1a RNA above.  

 

Dissociation rate constant measurements. PUM2 dissociation rate constant from S1a RNA was 

measured by incubating 3.8 nM PUM2 with labeled S1a RNA (<0.5 nM) in binding buffer at 25 ˚C 

for 50 min, followed by addition of 2.5-fold volume excess of unlabeled RNA chase in binding 

buffer (final concentrations: 1 nM PUM2, <0.14 nM labeled S1a RNA, 1 µM unlabeled S1a RNA). 

At various time points, 7.5 µL aliquots were moved to 7.5 µL ice-cold loading buffer (5% Ficoll PM 
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400 (Sigma), 0.03% BPB in binding buffer) and immediately loaded on continuously running 20% 

native acrylamide gel. The dissociation curve was fit to a single exponential in Kaleidagraph: 

 

θ = (A - b) ´ 4-kofft + b   (Eq.13), 

 

where θ is fraction bound RNA, A is the fraction bound before adding the chase (A = 0.90), b is 

the fraction bound at the completion of the dissociation reaction (b = 0.02), and koff is the 

dissociation constant, and t is time after adding chase.  

 

Determination of active protein fraction by titration. Saturating concentration of unlabeled 

consensus RNA (10–200 nM; S1a or UCUUGUAUAUAUA for wild-type PUM1/2, 

UCUUGUAUUUAUA for mutant PUM1) was mixed with trace 
32

P-labeled RNA of the same 

sequence (<0.15 nM) and incubated with protein concentrations at least 4-fold below and above 

the RNA concentration for 45 min – 1 h (25 ̊ C). Following native gel electrophoresis, active protein 

fraction was determined from the intersection of lines fit through protein concentrations below and 

above the breakpoint. Throughout, the protein concentrations and absolute affinities reflect active 

protein concentrations (SNAP-Cy3B-PUM2: 57%, PUM1-SNAP-Cy3B: 61%, mutPUM1-SNAP-

Cy3B: 20%, unlabeled SNAP-PUM2 used for gel-shift controls: 38–45%). 

 
Modeling the cellular PUM2 binding landscape 
To assess the distribution of PUM2 across cellular RNA sites, we determined the numbers of 

each 9mer, 10mer and 11mer sequence in the human transcriptome (representing consecutive 

sites and sites containing one or two flipped residues). For simplicity, here we assumed equal 

expression of all protein-coding transcripts, with sequences obtained from GENCODE (genome 

release GRCh38.p12; ‘Protein-coding transcript sequences’ fasta file; 

https://www.gencodegenes.org/releases/28.html)(Harrow et al., 2012). Absolute numbers of each 

binding site were determined by normalizing the nucleotide count in the above transcriptome file 

to match the estimated mRNA nucleotide count in a single human cell (8.9´10
8
 nucleotides, 

corresponding to ~0.5 pg mRNA per cell) (Livesey, 2003; Marinov et al., 2014; Tang et al., 2011). 

These numbers can be adjusted to account for cell-specific variation in total mRNA levels and 

differential expression based on publicly available RNAseq data (Consortium, 2012; Sloan et al., 

2016).  

 
The number of PUM2 molecules per cell was estimated at 10,000, based on published numbers 

of 2,000 and 18,000 in HCT116 and HeLa cells, respectively (Lee et al., 2016; Nagaraj et al., 

2011). 
  
To calculate the distribution of cellular protein bound across the different mRNA sequences, we 

first calculated PUM2 relative affinities for each 9–11mer site using our thermodynamic model. 

The affinities for consecutive 9mer sites were calculated using the binding and coupling terms in 

Table 1A,C; to determine affinities for sites containing flipped residues, we calculated the 

ensemble affinities of the four possible registers with one single-nucleotide flip (Figure 4; 10mer 

sites); and the ensemble of the four possible registers with a two-nucleotide flip and six possible 

registers of two single-nucleotide flips (11mer sites), using the terms in Table 1A–C. 
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PUM2 occupancies for each RNA species were calculated using an equilibrium competition 

model, where the occupancy of a given RNA species (P•Ri) is a function of protein abundance 

(P), and the affinities and abundances of all RNA (R) sites: 

  P + R1 ⇌ P•R1 

  P + R2 ⇌ P•R2 

... 

P + Rn ⇌ P•Rn. 

 The fraction of total protein bound to RNA sequence R1 equals: 

 

[P•R1]
[P]total

 = 
K1[P][R1]

[P] + K1[P][R1] + K2[P][R2] + … + Kn[P][Rn]
 = 

K1[R1]
1 + K1[R1] + K2[R2] + … + Kn[Rn]

  
 
= 

K1[R1]
 1 +∑ Ki[Ri]n

i=1
  (Eq. 14). 

 

We used affinities predicted for each RNA by our thermodynamic model: 

 

  Ki = e–∆Gi/RT
  (Eq. 15), 

  

where ∆Gi = ∆GWT + ∆∆Gi; ∆GWT is the measured affinity for the UGUAUAUAU reference 

sequence at 37 ˚C (–12.1 kcal/mol), and ∆∆Gi is the relative free energy for binding to sequence 

Ri (∆∆Gi) predicted by our thermodynamic model.  

 

To convert the sequence counts into concentrations, we used the cell volume of 10
–12

 L (Fujioka 

et al., 2006). Given the much greater number of RNA sites than the number of cellular PUM2 

molecules (78,000 consensus UGUA[ACU]AUAN sites alone vs. 10,000 PUM2 molecules), we 

assume that most RNA sites are unbound, i.e., that [Ri] ≈ [Ri]total. [This assumption will not hold at 

very high protein concentrations or in the presence of very high specificity, as discussed in main 

text; these alternate regimes can be readily simulated using KinTek Explorer or similar software 

(Johnson et al., 2009).] 
 

The occupancies plotted in Figure 6G correspond to the amount of PUM2 bound to each RNA 

species (i.e., fractional protein occupancy from Eq. 14 multiplied by the total amount of protein): 

 

 [P•R1]= [P]total ´ 
K1[R1]

1+∑ Ki[Ri]n
i=1

  (Eq. 16).  

K1 

K2 

Kn 
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Concentrations of occupied sites were converted into the number of protein bound sequences as 

follows: [P•R1] ´ NA ´ Vcell, where NA is Avogadro’s number and Vcell is the cell volume.  

 

The bars in Figure 6G denote the sum of occupancies for all 9mer RNA species containing the 

indicated numbers of nonconsensus residues (blue) and 10–11mer species with flipped residues 

(green). 

 

Fractional occupancies of each RNA sequence were determined (using the definition of the 

amount of bound RNA from Eq. 14), as follows: 

 

 

[P•R1]
[R1]total

 = 
[P]total ´	K1[R1]

[R1]total´(1+∑ Ki[Ri])n
i=1

 ≈ 

[P]total ´ K1

1+∑ Ki[Ri]n
i=1

  (Eq. 17). 

 

Given the varied affinities for RNAs containing a given number of nonconsensus residues, there 

is a range of fractional occupancies, as depicted in the boxplot in Figure 6I. 

 

Occupancy prediction algorithm 
A script for predicting PUM2 occupancy on any RNA sequence (see Figure 6E,F) can be found 

on https://github.com/pufmodel. The script accepts any RNA sequence in fasta format and 

predicts PUM2 occupancies relative to the UGUAUAUAU consensus at each site along the 

sequence based on our thermodynamic model. The algorithm currently assumes a linear 

relationship between affinity and occupancy, as explained above in Modeling the cellular PUM2 
binding landscape, as we do not expect saturating binding in vivo in the presence of the large 

excess of tight RNA binding sites over cellular protein. Currently the script provides normalized 

occupancies relative to the consensus sequence; to determine fractional RNA occupancies within 

the cell, experimental PUM2 and RNA concentrations will need to be considered. The fractional 

occupancies in the example shown in Figure 6F have been calculated based on our landscape 

model (see Modeling the cellular PUM2 binding landscape).  
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