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Abstract 

Eukaryotic microalgae dominate primary photosynthetic productivity in fluctuating nutrient-

rich environments, including coastal, estuarine and polar regions, where competition and 

complexity are presumably adaptive and dynamic traits. Numerous genomes and 

transcriptomes of these species have been carefully sequenced, providing an 

unprecedented view into the vast genetic repertoires and the diverse transcriptional 

programs operating inside these organisms. Here we collected, re-mapped, quantified and 

clustered publicly available transcriptome data for ten different eukaryotic microalgae in 

order to develop new insights into their molecular systems biology, as well as to provide a 

large new resource of integrated information to facilitate the efforts of others to further 

compare and contextualize the results of individual and new experiments within and 

between species. This is summarized herein and provided for public use by the eukaryotic 

microalgae research community. 

Keywords: microeukaryotes, microalgae, transcriptomics, systems biology 

Introduction 

Eukaryotic microalgae dominate primary photosynthetic productivity in fluctuating nutrient-

rich environments, including coastal, estuarine and polar regions, where competition and 

complexity are presumably adaptive and dynamic traits [1–3]. Numerous genomes and 

transcriptomes of these species have been carefully sequenced, providing an 

unprecedented view into the vast genetic repertoires and the diverse transcriptional 

programs operating inside these organisms [4–16]. The integration of these transcriptome 

data to allow wholistic, multi-experiment and system-level analysis and interpretation is 

important and fruitful for gaining new understandings of concerted microbial functions 

[17,18]. 

In order to facilitate new insights into the molecular systems biology of eukaryotic 

microalgae, we systematically collected, re-mapped, quantified and clustered publicly 

available transcriptome data for ten different eukaryotic microalgal species, investigated 
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methods and caveats of integration, performed basic clustering, functional annotation and 

orthology analyses within and between species, and built an interactive online resource for 

the further exploration of the largest single compendium of microalgal transcriptomics data to 

date. 

Results 

Data integration 

The sequencing read data for nine microalgal species were obtained from the Sequence 

Read Archive (SRA) [19] and systematically re-mapped to current genome assemblies using 

HISAT2  [20], SAMtools [21], and StringTie [22] on Amazon Web Services [23] (see 

Materials and Methods). By-sample transcriptomic read counts for Thalassiosira weissflogii 

were estimated by mapping reads onto genome-free transcript assemblies from the Marine 

Microbial Eukaryote Sequencing Project [9]. Transcriptomic data for the freshwater 

microalga Chlamydomonas reinhardtii are the subject of ongoing study by other groups [24], 

and may be combined with these data in the future. Within-species normalization of raw 

transcript-per-million (TPM) [25] counts was conducted using a method developed to 

maximize the number of uniform genes [26]. 

Batch effects 

The integration of independent transcriptome experiments is prone to systematic variations 

that are unique--but often consistent--to each individual laboratory, treatment, preparation, 

platform, or other unaccountable factors. It is presumed that some of these biases may be 

corrected by applying an appropriate normalization to the data, while others may remain 

[27]. 

To normalize RNA-seq transcriptome data, we applied a method developed to 

algorithmically maximize the number of “uniform genes,” or those for which transcript levels 

are least variant over multiple experiments, to serve as internal standards for within-sample 

normalization factors [26]; this compared favourably in this regard to the ‘Trimmed Mean of 

M Values’ (TMM) [28] and other methods of normalization across a large RNA-seq dataset 

of diverse human tissues. Application to microalgal transcriptome data in this study adjusted 

distributions of log10TPM values across different experimental series (Supplementary Figure 

S1), resulting in improvements to the consistency of measurements for typical 

“housekeeping” genes, such as actins, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), tubulins, and ribosomal proteins (Supplementary Figure S2). Remaining batch 

effects apparent between different studies included sets of transcripts whose within-study 

biases may be attributable to biological and/or non-biological sources. 
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Previously assembled microarray data for Thalassiosira pseudonana and Phaeodactylum 

tricornutum [29] were appended to this dataset to facilitate direct comparisons between the 

results of different platforms used to estimate transcriptome-wide expression levels, as well 

as between independent experiments. Microarray fold-change ratio data and RNA-seq TPM 

data in aggregate were distributed similarly (Supplementary Figure S3). These data are 

presented and provided without further normalisation to fit ideal distributions, and therefore 

preserve biologically faithful measurements and to facilitate further comparisons between 

other similarity, normalisation and clustering approaches. 

In total, 1,375 samples (transcriptome measurements) were integrated from sixty-nine 

independent experimental studies representing ten species and four distinct clades of 

microalgae (Figure 1, Supplementary Table S1), providing a rich consolidated dataset for 

new and comparative data exploration. 

 

Figure 1. Summary of sample counts by a) microalgal clade and b) species. 

Diatoms

Green algae

Haptophyte

Eustigmatophyte

Phaeodactylum tricornutum (540)
Species (# samples)

Thalassiosira pseudonana (380)

Micromonas pusilla (164)

Emiliania huxleyi (69)

Nannochloropsis oceanica (68)

Cyclotella cryptica (56)

Thalassiosira weissflogii (26)
Fragilariopsis cylindrus (40)

Thalassiosira oceanica (21)
Pseudo−nitzschia multiseries (12)

a b
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Clustering with efficient empirical estimates of reproducibility 

Agglomerative hierarchical clustering based on aggregate within-sample correlations [30] 

was performed for each species, resulting in high numbers of putative clusters with distinct 

conditional and experimental patterns of expression in all ten microalgal species. In order to 

assess the robustness, reproducibility and statistical boundaries of apparent clusters of co-

expressed transcripts, we employed deep bootstrapping of hierarchical trees with multi-scale 

resampling using a version of Pvclust [31] refactored to run more efficiently on large 

matrices [29]. This produced data-supported, fine-grained clusters of transcripts 

(Supplementary Table S1) whose expression patterns over all conditions imply--but not do 

prove--uniquely shared responses, regulation, activities, or functions that appear to be linked 

to biological or environmental change. Large, robust clusters of co-expressed and putatively 

related genes include major aspects of microalgal biology, such as the regulation of light 

harvesting and ribosomes, while smaller clusters of condition-specific genes abound, such 

as those for nutrient scavenging (Figure 2). 
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Figure 2. Distinct bootstrap-supported clusters of co-expressed genes in four diatom 

species, which include ribosomal proteins (orange), photosynthesis and light harvesting 

genes (blue), and nitrate uptake genes (magenta). Notable conditions affecting the transcript 

levels of these gene groups include a) nitrate-limited chemostat cultures of T. pseudonana 

[32], b) batch cultures of T. pseudonana experiencing periodic nutrient stress [33], c) P. 

tricornutum cultures subject to nitrate depletion [34], F. cylindrus subject to d) prolonged 

darkness [12] and e) nitrate limitation [35], and f) Pseudo-nitzschia multiseries subject to 

nitrate limitation [35]. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 1, 2018. ; https://doi.org/10.1101/403063doi: bioRxiv preprint 

https://doi.org/10.1101/403063


The occurrence of orthologically related clusters of co-expressed genes across all included 

species reflects a conservation of concerted transcriptional regulation of fundamental 

microalgal processes. In the case of nitrate uptake mechanisms in diatoms (Figure 2, 

magenta lines), the transcript levels of putatively orthologous nitrate uptake transporters 

correlate with organic nitrogen-limited conditions in multiple species. An abundance of 

smaller apparent clusters, comprised of large proportions of novel and under-characterized 

genes, implies a wealth of divergently regulated functions whose unique expression patterns 

might contribute to species specificity and environmentally linked biological programs. 

Public exploration via online resource 

To further increase the public utility and accessibility of this data resource, we created a 

lightweight database that includes basic protein homolog predictions using BLASTp [36], 

protein sequences, functional annotations, putative promoter region sequences, as well as 

an interactive online interface to this compendium using Django [37] and d3.js [38]. This 

resource (Figure 3) is currently available at https://alganaut.uts.edu.au in cooperation with 

the Australian National eResearch Collaboration Tools (NeCTAR) [39]. The transcriptomic 

datasets assembled in this work are also available for download, independent analysis and 

use. 

 

Figure 3. The “Alganaut” public interactive web resource for the exploration of microalgal 

transcriptomes. 
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Discussion 

Assembly and informed analysis of ever-expanding integrated datasets are crucial for 

organismal and environmental sciences. While dozens of microalgal genomes have now 

been sequenced, assembled and translated into large and diverse proteomes, the identities 

and functions of the majority of putative proteins discovered in these organisms remain a 

mystery. Approximately half or more of each new microalgal proteome bears no reliable 

similarity to any other species, nor to any known proteins or functional domains in existing 

gene databases [4–13]. Furthermore, mechanistically accurate gene networks, molecular 

“biomarkers,” robust environmental covariates, and intra- and inter-species dependencies 

are all yet to be discovered for eukaryotic microalgal species. “Data-driven” large-scale 

prediction and discovery of putative links between known and unidentified proteins will assist 

in further modeling, characterization and understanding of algal species. 

Data science potential 

In most species, the transcript levels of nearly all functional gene products depend on the 

physiological state of the cell or cell population, the biological and regulatory programs in 

operation, and environmental conditions. It is presumed that groups of transcripts that exhibit 

uniquely similar or correlated expression patterns over various conditions are more likely to 

be functionally related or co-regulated than those for which expression patterns diverge. 

Mining of transcriptome data can be performed in numerous ways. Most approaches yield a 

finite number of large clusters with similar memberships based on various algorithms, as 

well as increasingly divergent sub-clusters based on various arbitrary, heuristic, or statistical 

choices. Additional types of clustering and significance estimation can be fruitfully applied to 

these data. Both a) empirically appropriate statistical metrics and b) new and orthogonal 

experimental measurements will be required to agnostically compare the results of different 

“data-driven” predictions, as has been accomplished for established bacterial, metazoan and 

human systems [40]. Sources of validation and extension of models include fresh 

transcriptional data series, gene knockdowns, knockouts, overexpression, genome-wide 

binding studies, comparative genomics, proteomics, and subcellular localization atlases. 

Increasing amounts of these orthogonal experimental measurements will be particularly 

valuable to provide a sufficient scientific basis upon which to judge the accuracy and 

applicability of biological and statistical models. 

Limitations of transcriptome data 

Transcriptomics alone is insufficient to understand the complex biology and inner workings 

of microalgae. However, it is currently the easiest approach to gather comprehensive data to 

describe the intracellular behaviour, cellular programming, environmental responses, and 
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comparative molecular biology. The ease of obtaining, handling and interpreting sequence 

read data continues to outpace other types of measurements, including proteomics, 

phenomics, fluorometry, cytometry, and imaging. But the value of genomic and 

transcriptomic data are limited without adequate context--thus the relative shortage of other 

data types such as those mentioned above make them increasingly valuable to collect in 

parallel with transcript data. 

Post-transcriptional regulation and post-translational features including RNA modifications, 

binding and trafficking, degradation, protein modifications, subcellular localization, protein 

and chemical signalling, and allostery all crucially contribute to the cellular holo-program. 

Protein levels do, as an apparent rule, correlate closely with their corresponding transcript 

levels [42,43], but it is possible to identify interesting exceptions. For example, peptide 

signalling is prevalent in eukaryotic microalgae [44,45], and the complex subcellular 

locations of variously acting proteins is crucial to correctly understand their physiological 

roles across a large number of different membranes and compartments [46]. The 

measurement of protein phospho-states [47,48], which can provide data to model protein 

signalling and the post-translational activities of many transcription factors, may also be 

possible and relevant to advance systems biology studies in microalgae. 

Integrated datasets for environmental biology 

Biology is governed by detailed regulatory and metabolic programs operating throughout 

various environmental conditions. While rapid, high-throughput reverse genetics and 

phenotyping approaches are under development eukaryotic microalgal species, multi-omics 

and experimental systems biology are the fastest and broadest initial means to observe and 

predict the roles, functions and importance of new genes in new and non-model organisms. 

Molecular systems biology consists of collecting detailed and comprehensive measurements 

of numerous observable molecular features and parameters, and then using computing, 

statistics, quantitative hypotheses and biological models to apply these data to new 

questions [49]. The synthesis of community-wide datasets will continue to deepen our 

understanding of microalgae and help to inform further efforts including biological 

oceanography, direct genetics, and comparative microbial biology, and biotechnology. 

Materials and Methods 

RNA-seq data integration and normalization 

Sequencing read data for eukaryotic microalgae with sufficient numbers of samples for 

integration (≥10, Supplementary Table S2) were obtained from the Sequence Read Archive 

(SRA) [19] as of February 2018 and re-mapped to current genome assemblies using 
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HISAT2 v2.1.0 [20], SAMtools 1.7 [21], and StringTie 1.3.4b [22] on Amazon Web Services 

[23]. Genome and RNA-seq data for C. cryptica were obtained from Traller et. al [11]. By-

sample transcriptomic read counts for T. weissflogii were estimated by mapping reads onto 

genome-free transcript assemblies from the Marine Microbial Eukaryote Sequencing Project 

[9]. The ordering and sample names of data series were taken as-is in accordance with 

source annotations. Within-species normalization of raw transcript-per-million (TPM) [25] 

counts was conducted using a method developed to maximize the number of uniform genes 

[26]. Previously assembled microarray data for T. pseudonana and P. tricornutum [29] were 

appended as log2 ratios of changes in expression to within-experiment internal reference 

controls. Various scripts used and intermediate datasets are available as Supplementary 

Information. 

Bootstrapped hierarchical clustering 

Agglomerative hierarchical clustering was performed using a c++ wrapper to call the 

Fastcluster [30] library directly and repeatedly, with in-memory multi-scale resampling of the 

data to perform efficient bootstrapping [29]. A partially refactored version of Pvclust [31] was 

used to assign bootstrap P-values to branch nodes in the hierarchical tree, providing a 

robust empirical estimate of reproducible and bifurcating sub-cluster memberships. 

Database and resource implementation 

An SQL database was used to combine transcriptomic data with pairwise reciprocal inter-

proteome homolog predictions (BLASTp 2.6.0 [36]), GO, KEGG, and KOG functional 

annotations where publicly available from draft genomes, and putative upstream promoter 

region sequences taken from public genome assemblies. These data were rendered 

explorable using Django 2.0.3 [37] and d3.js version 4 [38]. The data resource was made 

available on-line using a remote server instance on the Australian NeCTAR Research Cloud 

[39]. 
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Supporting Information 
 
Table S1. Dataset summary. 
  Dataset Bootstrapped clustering 

Species Abbr. Samples Projects 
No. 
clusters 

Max. 
size 

Median 
size 

Phaeodactylum tricornutum (Phatr) 539 (123*) 26 (7*) 2010 68 4 
Thalassiosira pseudonana (Thaps) 380 (56*) 17 (6*) 2172 64 4 
Micromonas pusilla (Micpu) 164 4 1439 165 5 
Emiliania huxleyi (Emihu) 69 6 9435 26 3 
Nannochloropsis oceanica (Nanoc) 68 5 2408 60 4 
Cyclotella cryptica (Cyccr) 56 1 4062 38 4 
Fragilariopsis cylindrus (Fracy) 40 4 5040 42 3 
Thalassiosira weissflogii (Thawe) 26 1 4121 44 3 
Thalassiosira oceanica (Thaoc) 21 3 8560 20 3 
Pseudo-nitzschia multiseries (Psemu) 12 2 3436 36 4 

*microarray samples/studies 
 
Table S2. RNA-seq samples included in dataset (separate file). 
 

 
Figure S1. Log10 by-transcript median TPM distributions (top: raw, bottom: normalized) for 
different RNA-seq experimental project series, for a) T. pseudonana and b) P. tricornutum. 
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Figure S2. Combined RNA-seq datasets for T. pseudonana and P. tricornutum, illustrating 
characteristic results of two routine batch normalization algorithms: “network centrality 
scaling” (NCS) and “trimmed mean of means” (TMM). The transcripts per million (TPM, y-
axis) for individual transcripts over all samples (x-axis) are shown as arbitrarily colored lines. 
Dashed lines indicate the within-sample minimum and maximum range of TPM values over 
all transcripts. 
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Figure S3. Distributions of microarray fold change (FC) (left) and RNA-seq normalized 
transcripts per million (TPM) values (right) included in the integrated datasets for T. 
pseudonana (top) and P. tricornutum (bottom). 
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