
 

SIS-seq, a molecular ‘time machine’, connects single 

cell fate with gene programs 

Luyi Tian1,4*, Jaring Schreuder1*, Daniela Zalcenstein1,4*, Jessica Tran1, Nikolce 

Kocovski1,4, Shian Su1, Peter Diakumis2, Melanie Bahlo1,4, Toby Sargeant1,4, Phillip D. 

Hodgkin3,4, Matthew E. Ritchie1,4, Shalin H. Naik1,4. 

1Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, 

Parkville. Victoria. 3052 

2Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical 

Research, Parkville. Victoria. 3052 

3Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville. 

Victoria. 3052 

4Department of Medical Biology, University of Melbourne, Parkville. 3052. 

*Contributed equally to this work 

Correspondence should be sent to Dr Shalin H. Naik: naik.s@wehi.edu.au 

 

 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/403113doi: bioRxiv preprint 

https://doi.org/10.1101/403113
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract: 

Conventional single cell RNA-seq methods are destructive, such that a given cell cannot also 

then be tested for fate and function, without a time machine. Here, we develop a clonal 

method SIS-seq, whereby single cells are allowed to divide, and progeny cells are assayed 

separately in SISter conditions; some for fate, others by RNA-seq. By cross-correlating 

progenitor gene expression with mature cell fate within a clone, and doing this for many 

clones, we can identify the earliest gene expression signatures of dendritic cell subset 

development. SIS-seq could be used to study other populations harboring clonal 

heterogeneity, including stem, reprogrammed and cancer cells to reveal the transcriptional 

origins of fate decisions. 

 

Main text 

Single cell analyses including flow cytometry, microscopy, colony assays, clonal lineage 

tracing, and most recently single cell genomics methods, have revolutionised our 

understanding of biological systems and their heterogeneity1. As demonstrated by clonal 

assays, haematopoietic stem and progenitor cells (HSPCs) are particularly heterogeneous in 

their fate2, and the molecular programs governing these are gradually being characterised3-7. 

One challenge for connecting transcriptional signatures with functional heterogeneity is that 

these properties can rarely be measured on the same single cell i.e. single cell RNA-seq is 

destructive, so the same cell cannot then be tested for fate and, vice versa, a single cell tested 

for fate divides and differentiates such that the founder cell cannot be tested for its molecular 

profile. A time machine could conceivably allow one to first ascertain one feature of a given 

cell, then go back in time and re-test the same cell for the other feature, allowing cross-

comparison of the two. This is reminiscent of the challenge in quantum mechanics where a 

particle’s momentum and location cannot be simultaneously known (the popular 

interpretation of the ‘Heisenberg uncertainty principle’).  

For single cell biology, we reasoned that one solution to this challenge could be if single 

HSPCs were allowed to undergo limited clonal division such that resulting clones could be 

split, and siblings used separately in assays of both single cell RNA-seq and fate. In this way, 

siblings would be surrogates of the founder for later cross-correlation of fate heterogeneity 
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with molecular heterogeneity. We term this approach of testing split clones in different SISter 

conditions for RNA-seq, or fate, as SIS-seq. 

For this approach to work, several important conditions need to be met; a) that daughters 

derived from single stem or progenitor cells are highly concordant in their fate; b) that within 

an HSPC population there is fate heterogeneity allowing differences to be resolved, and c) 

that this program is reflected in measurable molecular features. 

We chose dendritic cell (DC) development as a suitable test of SIS-seq. DCs are a family of 

immune cells including conventional DC type 1 (cDC1), cDC type 2 (cDC2) and 

plasmacytoid DC (pDC), important for the detection of perturbed immune homeostasis, as 

well as immunity against pathogens, cancer and self-antigens8. The prevailing model suggests 

that DCs can be generated from HSPCs via Flt3-expressing progenitor cells9,10, which 

transition to a common DC progenitor (CDP)11,12, and on to dedicated progenitors13-15 for the 

individual DC subtypes. Relevant to SIS-seq is that DCs can be generated in vitro16 for ease 

of assessment of multiple clones, and be derived from single HSPCs11. Moreover, cellular 

barcoding and clone-splitting experiments in vivo17 and in vitro18 demonstrated that DC 

lineage bias, and also individual DC subtype bias, is heterogeneous amongst HSPCs, but 

restricted within a given clone. These properties fit the first two conditions for SIS-seq to be 

feasible. Moreoever, known molecular regulators of DC subtype fate can be identified within 

single cells of DC progenitors14, thus fitting the third condition. However, as most of these 

molecular regulators that have been identified to act at downstream progenitor stages of DC 

development, closer to the mature cell19, there remained an opportunity to identify novel 

earlier regulators in less-differentiated HSPCs. 

SIS-seq was used to identify the early transcriptional origins of DC fate from HSPCs, as 

follows: Single Sca1+ ckit+ HSPCs were isolated from BM of ubiquitin C-GFP mice, which 

allowed their tracking, and cultured amongst a pool of non-GFP BM filler cells from 

C57BL/6 mice in medium supplemented with Flt3 ligand11. Clones were split after 2.5 days, 

which allowed sufficient progenitor cell expansion for clone-splitting, but which was prior to 

DC differentiation11. At this time, wells were examined by microscopy for GFP+ clones, and 

those with 10 or more cells were split into three equal parts to yield duplicate wells for 

further culture to test fate at day 8, and the remaining third for single cell, or small cell 

number RNA-seq using CEL-Seq20 on the less differentiated cells to provide a transcriptional 

‘snapshot’ of the clone prior to differentiation.  
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We examined the fate of 105 clones in duplicate split culture conditions using FACS. Most 

clones were conserved in their lineage bias between sister wells. Four example clones are 

shown in Figure 1b, with different indicated fate biases. To better visualise fate conservation 

for all clones, we used ternary plots (Figure 1c), where a sample’s cellular composition 

dictates its position. For example, where a sample contained only pDCs, it would be at the 

apex of the plot marked pDC. If the sample contained equal numbers of the three DC 

subtypes, then it would be placed in the centre.  

We first assessed the internal non-GFP population controls to establish whether any well 

exhibited any fate bias. As seen in Figure 1c, left ternary plot, this was not the case. When we 

assessed the fate bias of GFP+ cells for all clones within those same wells, and connected 

duplicate wells with a line to visualise their fate relationships, we observed that clones were 

highly heterogeneous in their fate, but fate was similar for those clones split into sister wells 

(short connecting lines). Moreoever, when the individual clones were summed together, they 

recapitulated the cellular composition of the population controls (Figure 1c, middle ternary 

plot, orange dot). This contrasted when those same wells were randomly connected to another 

clone, which exhibited long lines (Figure 1c, right ternary plot). By using Euclidean distance 

between the fate of sisters, which is a statistical readout for similarity in fate, we 

demonstrated real sister clones were more conserved in their fate (small distance) than 

random sisters (large distance) (Figure 1c, right panel). Therefore, while HSPC clones were 

heterogeneous in their fate, clones in sister conditions were highly conserved. Thus, the 

aforementioned condition of conserved fate for SIS-seq to be useful was met for most clones 

(98/105). Those clones not conserved in fate may be of biological interest, but were excluded 

from further analyses to focus on the initial goals of SIS-seq. 

Using clones with conserved fate, we sought to identify those genes expressed in their less 

differentiated siblings that correlated with each clone’s final mature DC fate, using linear 

regression analysis (see Methods). As expected, we identified genes known to be associated 

with DC subtype-specific fate such as Batf3 in cDC fate21, and Dntt with pDC fate22, however 

the analyses also revealed novel genes such as Pram1 and Zfp788 (Fig 1d). More than 1000 

genes were determined to be associated with individual or dual DC subtype output as can be 

seen in a ternary plot (Figure 1e, Supplementary Table 1). Here, the position of the gene is 

proportional to its enrichment within a given fate bias. This data was also visualised as a 

clustered heatmap (Figure 1f) where clustering was only based on expression of genes 
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selected by SIS-seq, and fate was layered on top afterwards. As observed in Figure 1f, fate 

segregated into clusters generated by RNA-seq. The genes were further filtered by the glmnet 

algorithm, and ribosomal and mitochondrial genes eliminated, resulted 613 genes as our final 

list (Supplementary Table 2).Thus, only by assessing many clones, and being able to link 

gene expression with fate of clones using SIS-seq, were the transcriptional correlates of early 

DC fate observed.  

To understand whether other approaches and datasets could have identified similar gene 

expression correlates of fate, we compared them to those using SIS-seq. First, we asked 

whether the most highly variable genes in the same clonal data (i.e. in the absence of fate 

information) would have derived a similar set of genes. However, only 40 out of those top 

600 variable genes was shared with the 613 identified with SIS-seq, and did not include 

several known factors in DC development, including those sparsely expressed within the 

clonal data such as Batf3 (data not shown). This unsurprising but important result confirmed 

that the supervised analyses for fate in SIS-seq yields a unique gene set. 

We also compared SIS-seq to approaches where candidates were identified based on 

differential expression between: a) mature DC subtypes or, b) CDPs and other HSPC 

populations from the Immgen database23, or c) highly variant from single cell RNA-seq data 

of CDPs from a published dataset14 (Figure 2a). We assessed the overlap of genes identified 

using SIS-seq and those identified by these alternative approaches (Figure 2b) and 383/613 

were identified using SIS-seq and not other approaches. 

Transcription factors and epigenetic regulators are good candidates for genes important in 

fate determination. Those identified by SIS-seq are shown in Figure 2c, where 19/32 were 

identified only by SIS-seq and not the other techniques. This list included several known 

genes involved in fate24 determination including Batf3, Irf4 and Zbtb46, but also novel genes 

including Hoxc6, Dmrta and Mafb  (annotated by row in Figure 2c, based on Figure 2b). 

Thus, SIS-seq identified known genes but also revealed novel gene expression programs that 

correlate with fate. Some genes known to be involved in the development of specific DC 

subtypes were not identified, such as Tcf4. This was not surprising considering SIS-seq 

identifies the earliest gene expression programs of fate bias, not those differentially expressed 

late in DC development, such as Tcf425. The coexpression network of regulatory genes that 

correlated with fate bias of the three DC subtypes was created (Figure 2d) and we found the 

genes identified only by SIS-seq were coexpressed with known marker genes.  
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Notably, there was an imperfect correlation between transcriptional clusters and fate bias e.g. 

clones within clusters 2, 3, 6 and 8 were pDC-biased but expressed different gene signatures. 

There could be three possibilities for this: a) there were different molecular routes to the same 

cell type, and there is precedence for this in DC development26; b) the clusters represent 

different points of the same developmental trajectory, and the snapshot of our clones captured 

these different stages; and c) there is heterogeneity within our flow cytometric-sorted 

populations of DCs and the clusters may represent different clonal routes to these putative 

subpopulations. Recent evidence suggesting Siglec-H+ cells can be further separated by 

CCR9 expression into cDC progenitors and bona fide pDCs18,27, so this might be an example 

of c) as pDCs were not sorted based on CCR9 in these experiments. That is, Cluster 8 may 

represent genes that actually correlate with cDC bias, and where cells phenotypically ascribed 

as pDCs were in fact CCR9– cDC progenitors. In contrast, clusters 2, 3 and 6 appear similar, 

and may better reflect pDC differentiation programs, albeit at different stages or pathways. 

Lastly, we sought to understand whether recent scRNA-seq of HSPCs might have identified 

similar genes, considering our starting population was HSPCs rather than the downstream 

progenitors of Figure 2 a-d. Using two published datasets5,6, we determined a number of 

highly variable genes based on a statistical cut-off that gave a similar number of genes 

identified using SIS-seq. Only 55% were shared (Fig. 2e), indicating that scRNA-seq alone 

does not always identify those genes that correlate with a particular fate. 

In summary, we demonstrate SIS-seq as a simple and powerful approach to uncover many 

subtle differences in gene expression that correlate with fate, which would otherwise be 

difficult to determine with standard study designs and scRNA-seq, or other single cell 

approaches.  We envisage that SIS-seq, which approximates a molecular ‘time machine’, can 

be used to discover the features of rare subsets of cells based on their fate or function, and 

will be of particular interest in stem cell research, cancer and reprogramming.  This approach 

could also incorporate any other ‘omics measurements, such as ATAC-seq, that can be 

assessed as single cells or using small cell numbers. As most multi-omics methods strive to 

separate molecular features on the same single same cell28, which can be difficult to achieve,  

SIS-seq could provide a more practical alternative using separate but clonally related cells i.e. 

clonal multi-omics. 

SIS-seq could be scaled-up and deployed with higher resolution, for example using single 

cell transcriptomics, and an expressed lineage tracing barcode29. Barcoded progenitors could 
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be pooled in experiments, and one third of cells assessed by scRNA-seq and endogenous 

barcode expression at the time of clone-splitting, followed by assessement of barcode 

distribution in the cell types derived from the other two thirds of cells cultured until the end 

point of the experiment. By systematically linking fate with molecular heterogeneity of the 

undifferentiated cell using SIS-seq, we envisage that refined maps of haematopoiesis and 

other developmental processes are achieveable.  
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Methods: 

Mice 

All mice were bred and maintained under specific pathogen-free conditions at WEHI, 

according to institutional guidelines. Bone marrow cells from C57BL/6 (CD45.2) were used 

as filler cells, and C57BL/6-TG (UBC-GFP) 30scha/j as a source of GFP+ single cells. Mice 

were between 8-16 weeks at the time of sacrifice. 

 

Flt3 ligand cultures of DCs  

Cultures were set up as described16,30. Briefly, bone marrow cells were extracted from 

C57BL/6 mice and cultured at a density of 1.5 x 106 in 96-round bottom plates with DC 

culture medium and 200 ng/ml FLT3L obtained from Dr Jian-Guo Zhang (WEHI).  To 

generate conditioned medium that can sustain the growth and differentiation of isolated DC 

progenitors, medium derived from FLT3L cultures after 3.5 days was centrifuged to remove 

cells, then passed through a 0.22-μm filter, and frozen aliquots stored at -80°C, as described 

previously. This medium is referred to as DC-conditioned medium (DC-CM). 

  

Isolation and sorting of single GFP+ MPP or LSK cells 

The isolation and sorting of GFP+ progenitors was performed as described11. Briefly, bone 

marrow from C57BL/6-TG (UBC-GFP) was extracted and cells were enriched for ckit (2B8 

conjugated to APC) via magnetic activated cell sorting (MACS) positive selection. The ckit 

enriched fraction was subsequently stained for Sca-1 (E13 161-7conjugated to Alexa Fluor 

594 or Alexa Fluor 680), IL-7R (A7R34-2.2 conjugated to biotin with streptavidin-PECy7) 

and FLT3 (A2F10 conjugated to Phycoerythrin). Cells with positive expression of GFP, ckit, 

sca-1 and FLT3, while negative for IL-7R, were deemed MPPs and sorted into FLT3L-DC 

“filler” cultures as single cells, with 100-cell controls in duplicate. Cells with positive 

expression of GFP, cKit and Sca-1 were deemed Sca1+cKit+ (SKs). Cells were sorted using 

the BD Influx, BD FacsARIA W and BD FacsAria L. Single SKs from UBC-GFP mice were 

deposited in 96 well round bottomed wells pre-seeded with 1.5 x 106 total C57BL/6 BM cells 

(filler cells) cultured in DC-CM with an additional 200 ng/mL FLT3L at 37 °C and 5% CO2 

for 2.5 days. 

 

Day 2.5 split and fluorescence imaging 
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On day 2.5 after culture, each 200 μl cultured well was mixed well, then 100 µL of the 

contents transferred manually to a separate new well, and given approximately 30-60 minutes 

to settle. The 96-well plates containing sister wells derived from each single UBC-GFP LSK 

clone were imaged on a Nikon TiE live cell imaging system. Cells were maintained at 37 °C 

in a humidified atmosphere and 5% CO2. Images were acquired in DIC and fluorescence 

using a 4x 0.13NA plan neofluor objective, and GFP filter (FITC, ex 465-495, DM 505, em 

515-555). A Z-stack of 150 μm, with interval of 50um was performed and, the best focus 

plane was automatically selected for analysis using an offline Metamorph software (v 7.8.2.0) 

licence and method for automatic segmentation and cell count. Cell count script parameters, 

region size and diameter, were changed per experiment, on the basis of visual inspection of 

the 100 single cell controls. After imaging, cell cultures were incubated in 37 °C and at 5% 

CO2 for 4.5 days. 

 

Day 8 imaging and FACS analysis of DC clones 

After a further culture period of 6 days (total of 8 days from the original progenitor 

deposition), 96-well plates were imaged on the Nikon TiE live cell imaging system as 

described above. Wells with clones of greater than 10 cells were selected for flow cytometric 

analysis. Cells were labelled with antibodies to CD11c (N418-APC), Sirpα (P84 conjugated 

to Alexa flour 594 or 680) and Siglec-H (551 conjugated to PE). Flow cytometry was 

performed using a BD FACS Canto II (BD Biosciences) and BD Fortessa X20 (BD 

Biosciences). DCs were labelled with forward and side scatter profiles, with gating to remove 

doublets. To select for DCs, cells were gated based on intermediate to high expression of 

CD11c-APC, with subtypes gated for Sirpα and Siglec-H. DC that had negative expression of 

Sirpα and Siglec-H were cDC1s, those that were Sirpα+ were cDC2s, and pDCs were 

classified expression of Siglec-H. Data were analysed using FlowJo software (v 7.6.5), 

Microsoft Office Excel 2007 and Graphpad Prism (v 6.01). 

 

RNA-seq library preparation and data preprocessing 

  
Depending on cell abundance 1-10 cells per clone were FACS sorted for RNA sequencing. 

Transcriptome libraries were generated according to the CEL-Seq protocol20 with the 

exception that all column purifications were replaced by magnetic bead purifications using 

AMPure XP beads (Beckman Coulter A63880). Libraries were sequenced on the Illumina 
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NextSeq500 and MiSeq sequencer using a 75-cycle kit. Raw data are available in GEO under 

accession number GSE119097. 

  

The data was first demultiplexed by the cell barcode sequence and then aligned and counted 

using Rsubread (1.5.0)31 and featureCounts (1.5.0)32 with mm10 genome annotation. Quality 

control was performed using scPipe33 to remove low quality samples. The resulting gene 

count matrix was used as input for downstream analysis, and normalized using the same 

method as in Velten et al3 for further analysis. 

 

Examining lineage bias with gene expression data 

 

The relative proportion of cells within each gate of the DC subtypes was determined by 

FACS for each well, and then the statistical distance between sister wells calculated, and used 

together with the total cell count as the input of Mahalanobis distance for outlier detection. 

Random permutation on sisters described in Figure 1b were used to get a null distribution and 

a 0.05 p-value cut-off was used to exclude sisters with different lineage output, leaving us 

with 98 clones. We used edgeR (3.20.8)34 to model the correlation between lineage bias and 

gene expression, with lineage bias and batch as covariates in the generalized linear model. A 

p-value cut-off of 0.01 was used to select genes that correlate with lineage bias , which gave 

us 1071 genes (Figure 1e, f). The fold changes (FC) for each genes were scaled to 0-1 and 

converted to percentage and ploted in Figure 1e. Similar to STEMNET, we then applied a 

generalized linear model with regularization on the selected genes using glmnet35 to get the 

final SIS-seq prioritised gene list with 613 genes (Figure 2b). The parameter for 

regularization was chosen by 10-fold cross validation. The gene list was further reduced by 

selecting known marker genes and regulatory genes such as transcription factors and 

epigenetic modifiers using GO terms (Figure 2c). The gene expression matrix was imputed 

using MAGIC (0.1.0) 36 before plotting heatmaps using pheatmap 

(https://github.com/raivokolde/pheatmap). The cubed pairwise Pearson correlation of SIS-seq 

genes in Figure 2b was computed in order to reduce noise in correlation structure, and genes 

with correlations higher than 0.15 were selected. Correlations with lineage bias were also 

calculated and genes with correlation higher than 0.15 were kept in the co-expression 

network (Figure 2d).  

 

Comparisons to public datasets 
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For the DC dataset comparison in Figure 2b, differentially expressed gene lists were 

downloaded from the Immgen website (immgen.org)23. The genes enriched in CDP were 

derived by comparing CDPs to other progenitors, including GMPs, CMPs, CLPs and MDPs. 

The genes that were enriched in mature cDC1, cDC2 and pDC were obtained by comparing 

against the other two subtypes. The gene count matrix from Schlitzer et al. was downloaded 

from GSE60781. The informative genes were generated using the methods described in the 

scran pipeline37, which is to filter the highly variable genes and then perform gene-gene 

correlation analysis, keeping the correlated genes pairs (FDR<0.05). For the HSPC dataset 

comparison in Figure 2e, the two public HSPC datasets were downloaded from GSE81682 

and GSE70245. The “HSC”, “LT-HSC” in GSE81682 and “LSK” in GSE70245 were 

selected to represent HSPCs. The informative genes were selected in a similar way as for 

Schlitzer et al.14, which was to pick highly variable genes and keep correlated gene pairs. All 

venn diagrams were ploted using the nvenn package38
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Figure1. SIS-seq captures gene programs in DC subset development 

(A) The conceptual framework of SIS-seq. After a small pre-expansion of single HSPCs, 

clones are subdivided into three parts at day 2.5; one for RNA-seq, and other two 

further cultured for fate assays in ‘sister’ wells. Fate outcomes are then measured by 

flow cytometry, and computationally correlated with gene expression of sibling cells 

from day 2.5. 

(B) Example FACS plots showing conserved fate bias between siblings of pre-expanded 

HSPC clones in DC culture assays. 

(C) Fate bias in ternary plots of internal control samples (left), clonally-derived DCs 

where sister clones are connected (middle ternary plot) including the sum of all clones 

(orange dot), or where sister wells are randomly connected (right ternary plot). The 

distance between real sisters and random sisters summarized in the adjoining box plot 

for all clones. 

(D) Ternary plots show correlation between gene expression and fate bias for both novel 

and known marker genes. Each clone was averaged and placed as a single dot, then 

the size of that dot altered according to the expression of the indicated gene.  

(E) Ternary plots of scaled log fold change of fate bias for significant genes, with genes 

known to be associated with DC fate marked. 

(F) Clustered gene expression heatmap of significant genes across 98 clones, with the fate 

bias of each clone towards pDC, cDC1 and cDC2 layered on top. 

 

Figure 2. SIS-seq highlights unique gene expression signatures in DC development 

(A) Genes derived using SIS-seq compared with other gene lists, including those highly 

expressed in CDPs or mature DCs using Immgen; and variable genes expressed in 

single DC progenitors. These data sets correspond to different stages of DC 

development as indicated such that SIS-seq identifies the earliest gene expression 

correlates.  

(B) The overlap among different gene sets in (A) is highlighted in the Venn plot. 

(C) The gene expression of transcription factors identified with SIS-seq, which include 

known marker genes in DC development (grey annotation in y column) as well as 

novel genes (pink annotation in y column). Clones are portioned into 8 clusters based 

on gene expression, with different lineage bias patterns highlighted on top. 

(D) Gene co-expression network of regulatory genes that correlated with fate bias. Genes 

are coloured based on the overlap in Figure 2B, where genes in grey could be 
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identified from prior data, and those in pink are novel. 

(E) The overlap between SIS-seq identified genes to highly variable genes in other HSPC 

datasets. 
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