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Abstract A generic formulation for both passive and active transmembrane
transport is derived from basic thermodynamical principles. The derivation
takes into account the energy required for the motion of molecules across mem-
branes, and includes the possibility of modeling asymmetric flow. Transmem-
brane currents can then be described by the generic model in the case of elec-
trogenic flow. As it is desirable in new models, it is possible to derive other
well known expressions for transmembrane currents as particular cases of the
generic formulation. For instance, the conductance-based formulation for cur-
rent turns out to be a linear approximation of the generic current. Also, under
suitable assumptions, other formulas for current based on electrodiffusion, like
the constant field approximation by Goldman, can also be recovered from the
generic formulation. The applicability of the generic formulations is illustrated
first with fits to existing data, and after, with models of transmembrane potential
dynamics for pacemaking cardiocytes and neurons. The generic formulations
presented here provide a common ground for the biophysical study of physio-
logical phenomena that depend on transmembrane transport.
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Introduction
One of the most important physiological mechanisms underlying communication within and between cells is the
transport of molecules across membranes. Molecules can cross membranes either passively (Stein and Litman,
2014), or via active transport (Bennett, 1956). Molecules are passively transported across a membrane when
they move along their (electro)chemical gradient and occurs through channels that may be spontaneously formed
within the lipid bilayer (Blicher and Heimburg, 2013), or lined by transmembrane proteins (Hille, 1992; Stein
and Litman, 2014) that may be selective for molecules of specific types (Favre et al., 1996; Almers and McCleskey,
1984; Doyle et al., 1998). Therefore, passive transport is (electro)diffusive in nature. In contrast, active transport
takes molecules against their electrochemical gradients, and is mediated by transmembrane proteins commonly
called pumps (e.g. symporters, exchangers) that mechanically translocate the molecules they transport (Bennett,
1956; Ussing, 1949a,b). The energy for active transport of molecules may be obtained from biochemical reactions
(e.g. ATPases, light-driven pumps) or from the electrochemical gradients of molecules transported in parallel to
the molecule that is actively transported (SKou, 1965). One important functional distinction between channels
and pumps is that the rate of transport for channels is generally several orders of magnitude faster than the rate for
pump-mediated transport (Ussing, 1949c; Gadsby, 2009). Such differences are reflected in the sizes of different
transmembrane currents typically observed in excitable cells (Herrera-Valdez and Lega, 2010).
Theoretical models of transmembrane transport play a critical role in developing our understanding of the func-
tion and mechanisms underlying electrical signaling and cellular excitability (Goldman, 1943; Barr, 1965; Cole,
1965; Kell, 1979; Läuger, 1973; Stevens and Tsien, 1979; Wiggins, 1985a,b,c; DiFrancesco and Noble, 1985; En-
dresen et al., 2000; Gadsby, 2009), and some of its associated pathologies (Marbán, 2002; Ashcroft, 2005). The
best known transmembrane transport models include the widely used conductance-based formulation from the
seminal work of Hodgkin and Huxley (1952), the Goldman-Hodgkin-Katz equation (Hodgkin and Katz, 1949;
Goldman, 1943; Pickard, 1976), and several other expressions for carrier and channel mediated transport with
many different functional forms (Rosenberg and Wilbrandt, 1955; Rasmusson et al., 1990a,b; DiFrancesco and
Noble, 1985). Other formulations for ionic transport across membranes derived from biophysical principles avail-
able in the literature include those in the seminal work by Pickard (1969, 1976), Jacquez and Schultz (1974);
see also Jacquez (1981) and similar work by Endresen et al. (2000), and those in the excellent book by Johnston
et al. (1995). Such formulations describe the relationship between the activity and permeability of ions across
membranes, and the transmembrane potential. However general models that describe physiological transport
that include passive and active transport of charged or non-charged molecules, possibly including bidirectional
but asymmetric flows, are still missing. The work presented here builds upon the results previously mentioned
by describing transport macroscopically in terms of the energy required to move molecules across a membrane.
The result is a generic formulation with a common functional form for both passive and active transport (Herrera-
Valdez, 2014) that also includes a term that regulates the asymmetry in the flow (rectification).
The details of the derivation can be found are explained in the next section. Examples of fits to experimental
data and features like asymmetric bidirectional flow. An application of the generic formulation is illustrated with
models for the transmembrane potential dynamics in cardiac pacemaker cells and striatal fast spiking interneurons
(Appendix) using the same functional forms for the currents. Derivations of formulas and specific examples of
noncentral issues addressed in this article can be found in the Appendix.

Generic formulation for transmembrane flux and current
Work required for transmembrane molecular fluxes
Consider a system consisting of a biological membrane surrounded by two aqueous compartments (e.g. extracel-
lular and intracellular). Assume, to start with, that the compartments contain molecules of a single type s (e.g.
Na+, K+, glucose), possibly in different concentrations. Let ∆Gs be the energy required for the transport of the
molecules across the membrane in a specific direction (e.g. inside to outside). To write an expression for ∆Gs
it is necessary to take the direction of motion of the s-molecules into account. To do so, label the extracellular
and intracellular compartments as 0 and 1, respectively, and let cs and ds represent the source and the destina-
tion compartments for the transport of the s-molecules. The pair (cs, ds)=(0,1) represents inward transport and
the pair (cs, ds)=(1,0) represents outward transport. The work required to transport ns molecules of type s from
compartment cs to compartment ds can then be written as

∆Gs = ns (cs − ds)
�

kT ln
�

[s]0
[s]1

�

− qzs v
�

, (1)
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(Weer et al., 1988; Aidley, 1998; Blaustein et al., 2004) where q, zs, [s]0, and [s]1 represent the elementary charge,
the valence, the extracellular, and the intracellular concentrations for the molecules of type s, respectively. Two
particular cases are worth noticing. First, if s is an ion, then zs 6= 0 and equation (1) becomes

∆Gs = qzsns (cs − ds) (vs − v) , (2)

where vs is the Nernst potential for the s-molecules1 (Nernst, 1888). Second, if the s-molecules are not charged,
then zs = 0 and the work required to move the s-type molecules from cs to ds simplifies to

∆Gs = ns (cs − ds)kT ln
�

[s]0
[s]1

�

. (3)

If∆Gs < 0, then the molecules can be transported passively (e.g. electrodiffusion), decreasing the electrochemical
gradient for s across the membrane. In contrast, if ∆Gs > 0, the transmembrane transport of s from cs to ds is
not thermodynamically favorable, which means the transport from cs to ds requires energy that is not available in
the electrochemical gradient for s (active transport). As a consequence, active transport of s would increase the
driving force for the motion of s across the membrane.

Figure 1. Fluxes biased in the target→source (backward, b=0.1, black dashed line), source→target (for-
ward, b=0.9, red dash-dot line), or showing no rectification (b=0.5, blue solid line). See Table 1 for
examples.

Joint transmembrane transport of different types of molecules
To find an expression for∆G that describes a more general transport mechanism, assume that transport takes place
as single events in which molecules of m different types move in parallel, or possibly sequentially (e.g. first Na+,
then K+), across the membrane. Let S be a set that represents the types of molecules that are jointly transported in
a single event. For instance, for Na+-H+ exchangers, S = {Na, H}, with m = 2. The energy required to transport
these molecules is the sum of the energies required to transport each of the molecules in S. In other words,

∆GS =
∑

s∈S

∆Gs. (4)

As before, transport is thermodynamically favorable when∆GS ≤ 0. If not, extra energy is required. To distinguish
between these two cases, define the total energy of the transport mechanism as

∆G = δExt∆GExt +∆GS , (5)
1The transmembrane potential for which there is a zero net flux of s-ions across the membrane, as given by the Nernst-Planck equation, is

vs =
kT
zsq

log
�

[s]0
[s]1

�

.
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where δExt = 1 if ∆GS > 0, and 0 otherwise. In particular, for ATP-driven transport, the extra energy supplied by
hydrolysis of ATP (Tanford, 1981; Weer et al., 1988) is

∆GATP = q∆G0
ATP + kT ln

�

[ADP] [Pi]
[ATP]

�

= qvATP, (6)

where vATP ≈ −450 mV (Endresen et al., 2000), but could vary depending on the amounts of ATP, ADP, and Pi
(Weer et al., 1988). Similar expressions could be derived for active transport driven by light, or other sources of
energy.

Flux due to transmembrane transport
The formulation in equation (10) can be combined with equation (1) to derive a generalized expression for flux and
model different known mechanisms of physiological transmembrane transport, possibly combining the transport
of different molecules simultaneously (e.g. Na-H exchange). In this case, the forward direction of the transport
would be described by the combined forward transport of each of the different molecules under consideration. For
instance, the source and target compartments for Na+ and Ca2+ are different in Na-Ca exchangers. The stoichiom-
etry for the transport mediated by Na-Ca exchangers in the forward direction involves three Na+ molecules moving
inward (along their electrochemical gradient) in exchange for one Ca2+ molecule moving outward (against their
electrochemical gradient) (Mullins, 1979; Venetucci et al., 2007).
Let α and β be the flux rates in the forward and backward directions, in units of molecules per ms per µm−2.
These rates depend, a priori, on the energy required for the transport of the molecules in S. The net flux rate
associated to the net transmembrane transport, can then be written as

Φ(∆G) = α(∆G)− β(∆G). (7)

How do α and β depend on ∆G? The steady state relationship between the energy ∆G and the the forward and
backward flow rates, hereby represented by α and β , can be written as

α

β
(∆G) = exp

�

−
∆G
kT

�

, (8)

where k is Boltzmann’s constant, and T the absolute temperature.
Assuming that α and β are continuous functions, the rates α and β can be rewritten as

α= r exp
�

−b
∆G
kT

�

, β = r exp
�

(1− b)
∆G
kT

�

, (9)

where r (molecules per ms per µm−2) may depend on temperature (Sen and Widdas, 1962), the transmembrane
potential (Starace et al., 1997), the concentrations inside and outside of the membrane (Yue et al., 1990), and
other factors (Novák and Tyson, 2008). Note that the functional form of the rates in equations (9) are similar to
those by Butler (1924); Erdey-Grúz and Volmer (1930). Also, notice that the steady state relationship between α
and β in equation (8) can be obtained from equations (9), for any r and any b. However, it should be the case
that r and b vary in specific ranges depending on the physico-chemical characteristics of the pore through which
molecules cross the membrane, and in general, on the the transport mechanism. As mentioned earlier, the rate r
should larger for electrodiffusive transport in comparison to the slower transport rates for pumps and other carrier
proteins. If the parameter b ∈ [0,1], then b∆G and (b− 1)∆G have opposite signs and can be thought of as the
energies required to the transport of the molecules in S in the forward and backward directions, respectively, with
b biasing the transport in the forward direction when close to 1, and in the backward direction when close to 0
(Fig. 1).
The flux can then be written explicitly combining equations (7) and (9) to obtain,

Φ(∆G) = r
�

exp
�

−b
∆G
kT

�

− exp
�

(1− b)
∆G
kT

��

. (10)

Taking the above observations into account, it is possible to combine equations (4) and (5), to write an expres-
sion similar to equation (8) for the steady state balance between the forward and backward transport of all the
molecules in S.
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Flux and current
Substitution of the formulas for ∆G from equations (4) (5) into equation (10), the flux rate resulting from simul-
taneously transporting molecules in S across the membrane can be written explicitly

Φ = r

�

∏

s∈S

�

[s]0
[s]1

�bns(ds−cs)

exp
�

b
ηv −δExtravExtra

vT

�

−
∏

s∈S

�

[s]0
[s]1

�(b−1)ns(ds−cs)

exp
�

(b− 1)
ηv −δExtravExtra

vT

�

�

,

(11)
where vT = kT/q and

η=
∑

s∈S

ns (cs − ds) zs (12)

represents the net number of charges moved across the membrane.
If the transport is electrogenic, then the product qη (in Coulombs) represents the net charge moved across the
membrane, relative to the extracellular compartment. Non electrogenic transport yields η = 0, which means the
flow does not depend on the transmembrane potential, and

Φ = r

�

∏

s∈S

�

[s]0
[s]1

�bns(ds−cs)

exp
�

−b
δExtravExtra

vT

�

−
∏

s∈S

�

[s]0
[s]1

�(b−1)ns(ds−cs)

exp
�

(1− b)
δExtravExtra

vT

�

�

. (13)

If only ions are involved in the transport, the flux simplifies to

Φ = r
§

exp
�

b
�

ηv − vo

vT

��

− exp
�

(b− 1)
�

ηv − vo

vT

��ª

, (14)

where
vo = δExtvExt +

∑

s∈S

nszs (cs − ds) vs. (15)

The quantity vo/η can be thought of as a reversal potential. If η < 0, then positive charge is transported inward,
or negative charge is transported outward. In contrast, η > 0 means that positive charge is transported outward
or negative charge transported inward. For instance, inward electrodiffusion of single Na+ ions gives an η = −1,
which can be thought of as loosing one positive charge from the extracellular compartment in each transport event
(see Table 1). In particular, for electrodiffusive (passive) transport of ions of type l, vo reduces to nlzl (cl − dl) vl .
A list with examples of energies and total charge movements for different transport mechanisms can be found
Table 1.

Table 1. Energy required for transmembrane transport mediated by different passive and active mecha-
nisms.

Pump or channel Molecule (s) ns cs ds cs − ds ∆Gs = qns(cs − ds)
�

kT log
�

[s]0
[s]1

�

− qzs v
�

η vo α/β = exp
�

−∆G
kT

�

Cl− channel Cl− 1 0 1 -1 ∆GCl = q(vCl − v) 1 vCl

�

[Cl]1
[Cl]0

�

exp
�

v
vT

�

K+ channel K+ 1 1 0 1 ∆GK = q(vK − v) 1 vK

�

[K]1
[K]0

�

exp
�

v
vT

�

Na+ channel Na+ 1 0 1 -1 ∆GNa = −q(vNa − v) -1 −vNa

�

[Na]0
[Na]1

�

exp
�

− v
vT

�

Ca2+ channel Ca2+ 1 0 1 -1 ∆GCa = −2q(vCa − v) -2 −2vCa

�

[Ca]0
[Ca]1

�

exp
�

−2 v
vT

�

Na+-K+ ATPase
Na+ 3 1 0 1 ∆GNa = 3q(vNa − v)

1 vATP + 3vNa − 2vK

�

[Na]1
[Na]0

�3 � [K]0
[K]1

�2
exp

�

v−vATP
vT

�

K+ 2 0 1 -1 ∆GK = −2q(vK − v)
Ca2+ ATPase Ca2+ 1 1 0 1 ∆GCa = 2q(vCa − v) 2 vATP + 2vCa

�

[Ca]1
[Ca]0

�

exp
�

2v−vATP
vT

�

H+ ATPase H+ 1 1 0 1 ∆GH = q(vH − v) 1 vATP + vH

�

[H]1
[H]0

�

exp
�

v−vATP
vT

�

Na+-Ca2+ exchanger
Na+ 3 0 1 -1 ∆GNa = −3q(vNa − v)

-1 2vCa − 3vNa

�

[Na]1
[Na]0

�3 � [Ca]0
[Ca]1

�

exp
�

− v
vT

�

Ca2+ 1 1 0 1 ∆GCa = 2q(vCa − v)

Na+-I− symporter
Na+ 2 0 1 -1 ∆GNa = −2q(vNa − v)

-1 −vI − 2vNa

�

[Na]1
[Na]0

�2 � [I]1
[I]0

�

exp
�

− v
vT

�

I−1 1 0 1 -1 ∆GI = −q(vI − v)

Na+-H+ exchanger
Na+ 1 0 1 -1 ∆GNa = −q(vNa − v)

0 vH − vNa

�

[H]1
[H]0

��

[Na]0
[Na]1

�

H+ 1 1 0 1 ∆GH = q(vH − v)

K+-Cl− symporter
K+ 1 1 0 1 ∆GK = q(vK − v)

0 vK − vCl

�

[K]1
[K]0

��

[Cl]1
[Cl]0

�

Cl− 1 1 0 1 ∆GCl = −q(vCl − v)

Na+-K+-Cl− symporter
Na+ 1 0 1 -1 ∆GNa = −q(vNa − v)

0 2vCl − vNa − vK

�

[Na]0
[Na]1

��

[K]0
[K]1

��

[Cl]1
[Cl]0

�2
K+ 1 0 1 -1 ∆GK = −q(vK − v)
Cl− 2 0 1 -1 ∆GCl = 2q(vCl − v)

The first, more complex, form of the flux in equation (13) could be useful when working with models for which
changes in the concentrations of different molecules are relevant.
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Transmembrane current. The flux that results in electrogenic transport (equations (13) and (14)) can be con-
verted to current density after multiplication by qη. In short form,

i = qηΦ (16)

with qr in amperes/m2 or equivalent units.
Substitution of equations (13) or (14) into equation (16) yields a general formula for the current generated by
transmembrane ionic flux (Fig. 2), that uses the same functional form for channels (protein or lipid) and pumps.
Recall that equation (16) can also be written explicitly in terms of the transmembrane concentrations of one or
more of the ions involved using equation (13). It is possible to derive expressions for r that take into account
biophysical variables like temperature and the shape and length of the pore through which the molecules cross
(Pickard, 1969; Endresen et al., 2000).

Special cases and examples
A number of nontrivial and important properties of transmembrane ionic currents, including rectification, are
also described by equation (16). Also, different models for current already in the literature can be obtained by
making approximations or setting particular cases from equation (16). Examples include electrodiffusive currents
that result from integration of the Nernst-Planck equation along the length of membrane pore (Pickard, 1969;
Jacquez and Schultz, 1974; Johnston et al., 1995). Of particular interest, conductance-based currents are linear
approximations of the formulation (16), around the reversal potential for the current.

Lower order approximations to the generic formulation and conductance based models. Conductance-
based currents (Hodgkin and Huxley, 1952) are linear approximations of the generic current from equation (16),
around the reversal potential vo/η. To see this, use Taylor’s theorem (Courant and John, 2012; Spivak, 2018) to
rewrite the generic current from equation (16) as a series around vo

i = qηr

�

�

ηv − vo

vT

�

+
�

b−
1
2

��

ηv − vo

vT

�2

+

�

3b2 − 3b+ 1
3!

�

�

ηv − vo

vT

�3

+ ...

�

. (17)

Truncation of the series to first order gives

i ≈ g
�

v −
vo

η

�

, (18)

where g = η2qr/vT is in units of nS/µm2, which has the functional form of the conductance-based current used
in the Hodgkin and Huxley (1952) model. For instance, the linear approximation for the current through an open
sodium channels around vNa in equation (18) gives gNa = qrNa/vT, and vo = ηNavNa, with ηNa = −1, so that
iNa ≈ gNa(v − vNa).
Notice that third order approximations to equation (14) can also capture rectification. In contrast, first order
approximations (conductance-based models) cannot capture rectification.

Rectification results from asymmetric bidirectional flow. The flux of molecules across the membrane can be
biased in either the outward or the inward direction when mediated by proteins. This was first called ”anomalous
rectification” by Katz (1949), who noticed that K+ flows through muscle membranes more easily in the inward,
than in the outward direction (Armstrong and Binstock, 1965; Adrian, 1969). It was later found some K+ channels
display the bias in the opposite direction (Woodbury, 1971). The former type of K+ current rectification is called
inward, and the latter outward.
Rectification is a bias in either of the two directions of transport, which may result from changes in the structure
of the proteins or pores through which the molecules cross the membrane (Riedelsberger et al., 2015; Hollmann
et al., 1991). The type of rectification (inward or outward) depends on what molecules are being transported
and on the structure of the proteins mediating the transport. Rectification is therefore not only a property of
ions, as shown by molecules like glucose, which may cross membranes via GLUT transporters bidirectionally, but
asymmetrically, even when the glucose concentration is balanced across the membrane (Lowe and Walmsley,
1986).
Rectification can be described by equation (13) by setting b to values different from 1/2, and becomes more
pronounced as b is closer to either 0 or 1. These values represent biases in the transport toward the source, or the
target compartment, respectively. As a consequence, rectification yields an asymmetry in the graph of α− β as a
function of ∆G (Fig. 2). For electrogenic transport, rectification can be thought of as an asymmetric relationship
between current flow and voltage, with respect to the reversal potential vo. The particular case b = 1/2 (non
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Figure 2. Fluxes for K-electrodiffusion for bK ∈ {0.1,0.5, 0.9} and their cubic approximations. Inward recti-
fication occurs for bK < 1/2 and outward rectification for bK > 1/2 and qrKNK = 1.

rectifying) yields a functional form for current similar to that proposed by Pickard (1969), and later reproduced
by (Endresen et al., 2000), namely

i = 2qηr sinh
�

ηv − vo

2vT

�

. (19)

From here on, subscripts will be used to represent different transport mechanisms. For instance, the current for a
Na-Ca pump will be written as iNaCa.
Electrodiffusion of K+ through channels (η = 1 and vo = vK), is outward for v > vK, and inward for v < vK. The
K+ current through the open pore is therefore

iK = qrK

§

exp
�

bK

�

v − vK

vT

��

− exp
�

(bK − 1)
�

v − vK

vT

��ª

. (20)

Current flow through inward rectifier channels (Riedelsberger et al., 2015) can be fit to values of bK < 1/2. For
instance,

iKin = qrK

�

1− exp
�

vK − v
vT

��

, (bK = 0), (21)

describes a current with limited flow of K+ in the outward direction, similar to the currents described originally
by Katz (1949). Analogously, bK > 1/2 limits the inward flow. For example, the current

iKout = qrK

�

exp
�

v − vK

vT

�

− 1
�

, (bK = 1), (22)

describes outward rectification (Riedelsberger et al., 2015).
Based on the work of Riedelsberger et al. (2015) on K+ channels, inward (outward) rectification arises when the S4
segment in K+ channels is located in the inner (outer) portion of the membrane. These two generic configurations
can be thought of in terms of ranges for the parameter bK, namely, bK < 1/2 for inward, and bK > 1/2 for outward
rectification.
In general, ion channels are typically formed by different subunits, that may combine in different ways, resulting in
structural changes that may restrict the flow of ions through them, causing rectification. For instance, non-NMDA
glutamatergic receptors that can be activated by kainic acid and α-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onic acid (AMPA) conduct Na+, K+, and Ca2+, with different permeabilities depending on the subunits that form
the receptor (Hollmann et al., 1991). The reason is that the specific combination of GluR subunits forming the
receptor restrict ionic flow in different ways. In particular, the currents recorded in oocytes injected with combi-
nations of GluR1 and GluR3 cRNA have different steady state amplitudes and show different levels of rectification
(Fig. 3).

Page 7 of 22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/403238doi: bioRxiv preprint 

https://doi.org/10.1101/403238
http://creativecommons.org/licenses/by-nc-nd/4.0/


F1000Research DRAFT ARTICLE (PRE-SUBMISSION)

Figure 3. Currents recorded from oocytes injected with GluR3 cRNA (blue), or a combination of GluR1 and
GluR3 cRNA (orange), in Ca2+ ringer solution after activation by AMPA. The curves were fit with (vo, b, rq)=(-
30,0.45,21), for GluR3 and (vo, b, rq)=(-35,0.35,20), for GluR1+GluR3. The data was digitized from figure
3B in the article by Hollmann et al. (1991), using the ginput function from the python module matplotlib
(Hunter, 2007).

Primary active transport. The Na-K ATPase is a primary active transporter that uses the energy from the hy-
drolysis of one molecule of ATP for the uphill transport of Na+ and K+ (Weer et al., 1988). The kinetics of the
Na-K ATPase can be assumed to translocate 3 Na+ ions outward and 2 K+ ions inward (ηNaK = 1) with a reversal
potential vNaK = vATP + 3vNa − 2vK (see Table 1) in a single transport event (Post and Jolly, 1957; Garrahan and
Glynn, 1967; Gadsby et al., 1985; Chapman, 1973). Importantly, the transport kinetics of the Na-K ATPase and by
extension, the current, reverse for potentials smaller than vNaK (Weer et al., 1988).
The current-voltage relationships recorded from Na-K ATPases in guinea pig ventricular cells are shaped as hyper-
bolic sines (Gadsby et al., 1985). Those currents would be fit with bNaK ≈1/2, yielding currents of the form

iNaK(v) = 2qrNaK sinh
�

v − vNaK

2vT

�

. (23)

The voltage-dependence of the Na-K ATPase currents is reported to show a plateau as v increases past the reversal
potential for the current, in response to steroids like strophandin (Nakao and Gadsby, 1989). In such cases, the
Na-K ATPase current can be assumed to be inwardly rectifying and fit with values of bNaK ≈ 0, so that,

iNaK(v) = qrNaK

�

1− exp
�

vATP + 3vNa − 2vK − v
vT

��

, (24)

or alternatively,

iNaK(v) = qrNaK

�

1−
�

[Na]0
[Na]1

�3 � [K]1
[K]0

�2

exp
�

vATP − v
vT

�

�

. (25)

The rectification for the Na-K pump ATPase has also been reported to occur in small neurons of the dorsal root
ganglion in rats (Hamada et al., 2003). The alternative expression (25) also explains qualitatively different be-
haviors of the Na-K current as a function of the transmembrane concentrations of Na+ and K+. For instance, if
either [Na]1 or [K]0 increase and v > vNaK, then the amplitude of iNaK would increase at a smaller rate of change in
comparison to when v < vNaK, which grows exponentially in size. This is also in line with reports of non significant
changes in the transport by Na-K ATPases in response to elevated intracellular Na+ during heart failure (Despa
et al., 2002), in which the transmembrane potential is likely to be depolarized.
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Secondary active transport. An example of a pump that mediates secondary active transport is the Na-Ca ex-
changer, which takes 3 Na+ ions from the extracellular compartment in exchange for one intracellular Ca2+ ion in
forward mode (Pitts, 1979; Reeves and Hale, 1984). The reversal potential for the current is vNaCa = 2vCa − 3vNa,
with ηNaCa = 1. Assuming bNaCa = 1/2, the Na-Ca current is

iNaCa(v) = 2qrNaCa sinh
�

v − vNaCa

2vT

�

(26)

The driving force v − vNaCa could reverse in sign with large enough increases in the intracellular concentration
of Ca2+, or in the membrane potential. As a result, the current could have a dual contribution to the change
in transmembrane potential, as predicted by some theoretical models of cardiac pacemaker activity (Rasmusson
et al., 1990a,b).

Electrodiffusive transport Consider transmembrane electrodiffusive transport of a single ionic type x , with zx
and vx representing the valence and the Nernst potential for x-ions, respectively. In this case, the reversal potential
satisfies

vo = nx(cx − dx)zx vx = ηx vx ,

and the generic expression (16) can be rewritten as

ix(v) = qηx rx

§

exp
�

ηx bx

�

v − vx

vT

��

− exp
�

ηx(bx − 1)
�

v − vx

vT

��ª

. (27)

In the absence of rectification (bx = 0.5),

ix(v) = 2qηx rx sinh
�

ηx
v − vx

2vT

�

. (28)

For calcium channels,

iCa(v) = 4qrCa sinh
�

v − vCa

vT

�

. (29)

See Pickard (1969); Jacquez and Schultz (1974) Table 1 for other examples.
The applicability of the general formulations described above is illustrated next with models of cardiac and neu-
ronal membrane potential.

Transmembrane potential dynamics
To show the application of the formulations discussed earlier, let us build a generic model of transmembrane
potential dynamics with currents generated by N different electrogenic transport mechanisms. For simplification
purposes, consider only one such mechanism, labeled as l, with pl Nl active sites, where Nl is the number of
membrane sites where the lth transport mechanism is found, and pl is the proportion of active sites (might be
voltage or ligand dependent). Then the total current mediated by the lth mechanism in a patch of membrane can
be written as āl plϕl(v) with āl = qNl rl (in pA/µm2), and

ϕl(v) = exp
�

bl

�

ηl v − vl

vT

��

− exp
�

(bl − 1)
�

ηl v − vl

vT

��

, (30)

where vl/ηl is the reversal potential for the lth current, l ∈ {1, ..., N}. There is experimental evidence for some ion
channels that supports the replacement of āl as a constant (Nonner and Eisenberg, 1998). The time-dependent
change in transmembrane potential can written as

∂t v = −
N
∑

l=1

al plϕl(v), (31)

with v is in mV and al = āl/CM in mV/mS (pA/pF) represents the current amplitude for the lth transport mech-
anism, normalized by the membrane capacitance, for l ∈ (1, ..., N). Only electrogenic transport mechanisms are
included.
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Figure 4. Central sinoatrial node pacemaking dynamics using the system (39)-(34). A. Transmembrane
potential and the reversal potential vNaCa as a function of time. B,C. Dynamics of large currents and small
currents, respectively.

Cardiac pacemaking in the sinoatrial node
The pacemaking dynamics of cells in the rabbit sinoanatrial node (Fig. 4) can be modeled using low dimensional
dynamical systems based on the assumption that v changes as a function of K+, Ca2+, and some Na+ transmem-
brane transport, (Herrera-Valdez and Lega, 2010; Herrera-Valdez, 2014). Transmembrane currents are assumed
to be mediated by a combination of channel-mediated electrodiffusion and pumping mechanisms. Explicitly, Ca2+

transport is mediated by L-type Cav13 channels (Mangoni et al., 2003) and Na+-Ca2+ exchangers (Sanders et al.,
2006). K+ transport is mediated by delayed-rectifier voltage-activated channels (Shibasaki, 1987), and Na+-K+

ATPases (Herrera-Valdez and Lega, 2010; Herrera-Valdez, 2014). In this model, the activation for the L-type Ca2+

channels is fast, and assumed to be at steady state (Herrera-Valdez and Lega, 2010). The proportion of activated
K+ channels and the proportion of inactivated Ca2+ channels are both represented by a variable w (Herrera-Valdez
and Lega, 2010; Av-Ron et al., 1991). The activation phase of currents recorded in voltage-clamp experiments
often displays sigmoidal time courses (Hodgkin and Huxley, 1952; Tsunoda and Salkoff, 1995; Covarrubias et al.,
1991). Therefore, the activation dynamics represented by w are described by solutions to equations of the form

∂t w= w [Fw(v)−w]Rw(v). (32)

where Fw and Rw represent the voltage-dependent steady state and rate (1/ms) for the opening of Kd channels
(Willms et al., 1999). The steady state for the activation of voltage-dependent channels is described by the function

Fu(v) =
ex p

�

gu
v−vu

vT

�

1+ ex p
�

gu
v−vu

vT

� , u ∈ {m, w} , (33)

which has a graph with increasing sigmoidal shape as a function of v. The parameters gu and vu control the
steepness and the half-activation potential, for u ∈ {m, w}. The activation rate for K+ channels is a voltage-
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dependent function of the form

Rw(v) = rw

�

ex p
�

bw gw
v − vw

vT

�

+ ex p
�

(bw − 1)gw
v − vw

vT

��

. (34)

where bw represents a bias in the conformational change for activation. The function Rw has the shape of a
hyperbolic cosine when bw is 1/2. The transmembrane (normalized) currents are given by

JNaK (v) = aNaK ϕNaK(v), (35)

JNaCa(v, c) = aNaCa ϕNaCa(v, c), (36)

JKD (v, w) = aKD w ϕKD(v), (37)

JCaL (v, w, c) = aCa (1−w)Fm(v) ϕCa(v, c), (38)

where c represents the intracellular Ca2+ concentration, and ϕx is a difference of exponential functions as defined
above, with x ∈ {NaK, NaCa,KD, CaL}. The temporal evolution for v is then described by

∂t v = −JNaK(v)− JNaCa(v, c)− JCaL(v, w, c)− JKD(v, w). (39)

During pacemaking the concentrations of Na+ and K+ across the membrane are assumed to change negligibly, but
the Ca2+ concentration does change at least 10-fold (Rasmusson et al., 1990a,b; Herrera-Valdez and Lega, 2011).
Therefore, the system includes an equation for the dynamics for c in which c converges to a steady state c∞ in the
absence of Ca2+ fluxes, and increases proportionally to the total transport of Ca2+ ions via L-type channels and
Na+-Ca2+ exchangers (Fig. 4). Explicitly,

∂t c = rc (c∞ − c)− kc [JCaL(v, w, c)− JNaCa(v, c)] , (40)

where kc (µM/mV) represents the impact of the transmembrane Ca2+ fluxes on the free intracellular Ca2+ concen-
tration. The minus sign in front of kc accounts for the fact that the sign of the JCaL is negative. The sign in front of
JNaCa is because the forward flux of Ca2+ mediated by the Na-Ca exchanger is opposite to that of electrodiffusive
Ca2+.

Figure 5. Dynamics of the calcium current and double activation. A. Behavior of the inactivating L-type
Ca2+ current with respect to the transmembrane potential (blue line) and a non-inactivating current (gray
line), and (B) with respect to the time-dependent change in v.

The solutions of equations (32)-(40) with parameters as in Table 2 reproduce important features of the membrane
dynamics observed in the rabbit’s central sinoatrial node, including the period (ca. 400 ms), amplitude (ca. 70
mV), and maximum ∂t v (<10 V/s) of the action potentials (Zhang et al., 2000).
The solutions of the system show a number of interesting features related to ionic fluxes. First, the Na-Ca current
reverses when v = vNaCa (Fig. 4A, blue line). During the initial depolarization and until the maximum downstroke
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rate, approximately, vNaCa < v, which means JNaCa > 0, so that Ca2+ extrusion by the Na-Ca exchanger occurs only
for a brief period of time during the downstroke and also after each action potential (Fig. 4C, blue line). Second,
as previously reported in different studies involving spiking dynamics, the time course of the Ca2+ current shows
a partial inactivation with a double peak (Fig. 4B, blue line) around a local minimum (Rasmusson et al., 1990a,b;
Carter and Bean, 2009), and in agreement with data from voltage-clamp experiments (Mangoni et al., 2006). A
number of models have made attempts to reproduce the double activation by making extra assumptions about
gating (Rasmusson et al., 1990a,b). For instance, some models include a second activation variable, or the multiple
terms in the steady state gating, or in the time constant for activation or inactivation. However, the explanation for
the double peak can be much simpler. The calcium current JCaL is a negative-valued, non monotonic function for
v < vCa, which can be thought of as a product of a amplitude term that includes gating and the function ϕCaL. The
normalized current JCaL has a local minimum (maximum current amplitude) around -10 mV (Fig. 4B, blue line
and Fig. 5A, blue line), after which the current decreases, reaching a local maximum as the total current passes
through zero, at the peak of the action potential around 10 mV, (Fig. 4B, where ∂t v = 0). The first peak for the
Ca2+ current occurs when v reaches the maximum depolarization rate (Fig. 5B). As v increases (e.g. upstroke of
the action potential). The second peak for the current occurs as the membrane potential decreases, and passes
again through the region where the maximal current occurs (local minimum for JCa). The two local minima for
JCaL represent peaks in the Ca2+ current that have different amplitudes due the difference in the time course of v
during the upstroke and the downstroke of the action potential (Fig. 5A, blue line, and Fig. 5B, where ∂t v = 0). It
is important to remark that the dual role played by w is not the cause of the double activation. This is illustrated
by analyzing the behavior of a non-inactivating JCaL without the inactivation component, (Fig. 5A, gray line). The
double activation can also be observed in models in which the activation of K+ channels and the inactivation of
Ca2+ or Na+ channels are represented by different variables (Rasmusson et al., 1990a) and in dynamic voltage
clamp experiments on neurons in which there are transient and persistent sodium channels (Carter and Bean,
2009).

Figure 6. Calcium dynamics during pacemaking. Time courses of the intracellular calcium concentration
(gray, left axis), the Nernst potential for Ca2+ (orange, right axis), and the reversal potential for the Na-Ca
exchanger (blue, right axis).

The double peak in the Ca2+ current is reflected in the intracellular Ca2+ concentration (Figure 6, gray line), and
by extension, on the Nernst potential for Ca2+ (Figure 6, blue line), which display two increasing phases and two
decreasing phases, respectively. The first and faster phase in both cases occur during the initial activation of the
L-type channels. The second phase occurs during the downstroke, as second peak of the Ca2+ current occurs. As a
consequence, the reversal potential for the Na-Ca exchanger, vNaCa = 3vNa − 2vCa (Figure 6, orange line) also has
two phases, this time increasing. Increasing the intracellular Ca2+ (Figure 6, gray line) concentration decreases
the Nernst potential for Ca2+, and viceversa. By extension, the reversal potential for the Na-Ca exchanger, vNaCa =
3vNa − 2vCa becomes larger when c increases. Ca2+ enters the cell in exchange for Na+ that moves out when
v > vNaCa, during most of the increasing phase and the initial depolarization phase of the action potential (blue
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lines in Figure 4A and C, and Figure 6).

Table 2. Parameters for the cardiac SAN pacemaker model. The amplitudes al can be thought of as āl/CM
where CM is a constant that represents the rate of change in charge around the membrane as a function of
v, and l ∈ {CaL, K,NaK, NaCa}.

Parameter Value Units Description

CM 30 pF Membrane capacitance
āCa 1 pA Maximum amplitude for the L-type Ca2+ current
āK 700 pA Maximum amplitude for the K+ current
āNaK 1 pA Maximum amplitude for the Na+-K+ current
āNaCa 2.5 pA Maximum amplitude for the Na+-Ca2+ current
aCa = āCa/CM 0.0333 pA/pF Maximum amplitude for the L-type Ca2+ current
āK = āK/CM 23.3333 pA/pF Maximum amplitude for the K+ current
āNaK = āNaK/CM 0.03333 pA/pF Maximum amplitude for the Na+-K+ current
āNaCa = āNaCa/CM 0.1 pA/pF Maximum amplitude for the Na+-Ca2+ current
vATP -420 mV Potential ATP hydrolysis
vNa 60 mV Nernst potential for Na+

vK -89 mV Nernst potential for K+

vNaK = 3vNa − 2vK + vATP -62 mV Reversal potential for the for Na+-K+ ATPase current
vNaCa = 2vCa − 3vNa – mV Reversal potential for the for Na+-Ca2+ current (vCa de-

pends continuously on [Ca]i)
vm13 -18 mV Half-activation potential for Cav13 L-type Ca2+-current
vw 0 mV Half-activation potential for the transient K+-current
gm13 4 – Activation slope factor for the Cav13 L-type Ca2+-current
gw 3 – Activation slope factor for the K+-current
rw 0.05 s−1 Activation rate for the cardiocyte K+-current
bw 0.35 – Activation slope factor for the K+-current
bNaK 0.5 – Non-rectification bias for the Na+-K+-current
bK 0.5 – Rectification for the transient K+-current
bNa 0.5 – Non-rectification bias for the transient Na+-current
bCa 0.5 – Non-rectification bias for the Cav13 L-type Ca2+-current
c∞ 0.1 µM Minimal (resting) intracellular Ca2+-concentration
rc 0.02 ms−1 Ca2+ removal rate
kc 0.00554 – Conversion factor between Ca2+ current and intracellular

Ca2+ concentration

Discussion
A generic, macroscopic model for transmembrane fluxes has been derived by directly calculating the work re-
quired to transport molecules across the membrane. The derivation is based on a general thermodynamic scheme
that takes into account the rate, stoichiometry, and the direction in which the molecules are transported across
the membrane. These biophysical parameters are then combined to write expressions for directional fluxes based
on van’t Hoff (1884) and Arrhenius (1889) formulations, weighted as in the Butler/Erdey-Gruz/Volmer equation
(Butler, 1924; Erdey-Grúz and Volmer, 1930). The result is a general description (equation 16) of the trans-
membrane molecular flux as a difference of exponential functions, that describes the transport dynamics in the
"forward" and "backward" directions, relative to a source compartment. The two exponential functions depend
on a common expression involving the transmembrane concentrations of the molecules being transported, and
possibly the transmembrane potential when transport is electrogenic.
Rectification, an asymmetry in the flow, is typically modeled modifying the dynamics of the gating variables of the
current. The general formulas for transmembrane transport include a bias term b that controls the relative contri-
bution of inward and outward components the transport. Hence, different types of rectification can be described
by favoring one of the directions for transport, conceptually in line with the ”anomalous rectification" originally
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reported by Katz (1949) for K+ in muscle cells. The bias term is not part of any gating mechanism. Instead, it
represents the asymmetry in bidirectional flux Based on the work of Riedelsberger et al. (2015), the inward (out-
ward, respectively) rectification in K+ channels occurs when the fourth transmembrane segment of the channel
(S4) is located closer to the intracellular (extracellular) portion of the membrane in its open configuration. There
are other reports that show that asymmetries in bidirectional transport occur as a consequence of changes in the
three dimensional structure of the protein mediating the transport (Halliday and Resnick, 1981; Quistgaard et al.,
2013). Therefore, the rectification term can be thought of as representing a structural component of the trans-
membrane protein through which molecules move (Fig. 2). Outward rectification in K+ channels can be explained,
for instance, by biasing the flux of K+ the forward (outward) direction (bK > 1/2). Instead, inward rectification
can be obtained by biasing the transport in the backward (inward) direction (bK < 1/2). It is important to remark
that non-rectifying currents with b = 1/2 are nonlinear functions of∆G, which shows that the nonlinearity of the
current-voltage relationships is not the defining characteristic of rectification; as argued in some textbooks (see
Kew and Davies, 2010).
The formulation for transmembrane flux may be rewritten in different alternative forms that can be found through-
out the literature (see equations (13) and (14), Goldman, 1943; Johnston et al., 1995). Of particular interest, the
widely used conductance-based models for current from the seminal work of Hodgkin and Huxley (1952) turn out
to be linear approximations of the generic current described here (Herrera-Valdez, 2012, 2014). This explains why
the Hodgkin and Huxley (1952) model is captures many of the defining features of action potential generation,
in spite of modeling ionic currents as resistive. Another interesting case is that electrodiffusive transmembrane
currents derived from the Nernst-Planck equation (Nernst, 1888; Planck, 1890), turn out particular cases of the
generic formulation presented here (see also Herrera-Valdez, 2014, for details). Examples include the constant
field approximation (Hille, 1992; Johnston et al., 1995; Clay et al., 2008), the non-rectifying currents proposed
by Endresen et al. (2000), and more general electrodiffusive currents that includes a bias term accounting for
rectification (Johnston et al., 1995; Herrera-Valdez, 2014).
Possibly of interest to mathematicians working on bifurcation theory, a third order approximation (equation (17))
resembling the Fitz-Hugh equations (FitzHugh, 1955, 1961; Fitz-Hugh, 1966), can be used to construct models
that give very close approximations to the full model, while keeping biophysical characteristics like rectification
and the multiplicative interaction between the slow variable w and the fast variable v. Further, the third order
approximation opens the possibility of expanding on the analysis of dynamical systems based on these generic
formulas to study normal forms and bifurcations. Another possible use of the third order approximations is in the
construction of network models.
One question of interest because of its possible impact on the interpretation of results from existing modeling
studies is how does the excitability and the resulting dynamics in a model of membrane dynamics change when
using the thermodynamic transmembrane currents or their approximations? The question has been addressed in
a study in which two simple neuronal models with currents mediated by Na+ and K+, each equipped with the
same biophysical gating properties and the same relative contributions for the currents, but one with currents as
in equation (19), the other with conductance-based currents. The two models display a number of qualitative and
quantitative differences worth considering while making the choice of a model in theoretical studies (Herrera-
Valdez, 2012). For a start, the two models are not topologically equivalent across many ratios of the relative
contributions of K+ and Na+ channels (Herrera-Valdez, 2012); as would be expected by the fact that conductance-
based formulations are only linear approximations of the generic currents. One of the most notable differences is
the contribution of the nonlinear, high order terms from equation (16), which results in more realistic upstrokes
for action potentials and an overall increased excitability; in this case characterized in terms of the minimum
sustained current necessary to produce at least one action potential. The increased excitability of the membrane
is due, in part, to the large, exponential contribution of the open Na+ and Ca2+ channels, but not the K+ channels,
to the change in the transmembrane potential near rest. The time course of the Na+ current during the beginning
of the action potential with the generic model is much sharper than that of the conductance-based formulation,
resulting in a faster upstroke of the action potential; and in better agreement with observations in cortex and
other tissues (Naundorf et al., 2006). It is important to remark that the sharper increase in the change of the
membrane potential is a consequence of the nonlinear driving force terms of the current (the flux term in the
generic formulation) and not in the activation dynamics for the transient Na+ current.
The generic formulation for both passive and active transmembrane transport can be thought of as a tool that
facilitates the construction and analysis of models of membrane potential dynamics. The generality and versatility
of the thermodynamic transmembrane transport formulations is illustrated with a model of the dynamics of cardiac
pacemaking (equations (39)-(34)). Another example with a model for a fast spiking interneuron can be found in
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the Appendix. The ion fluxes in the model are assumed to be mediated by two different types of voltage-gated
channels and two different types of pumps, all represented with the same functional form (see Herrera-Valdez
and Lega (2010); DiFrancesco and Noble (1985); Rasmusson et al. (1990b) for examples in which that is not the
case).
One important advantage of the generic formulation is that it includes the possibility of explicitly estimating the
number of channels or pumps mediating each of the transport mechanisms of interest. This has proven to be
useful to study the relative contributions of different currents to the excitability of neurons (see Herrera-Valdez
et al., 2013), cardiocytes (Herrera-Valdez, 2014), and other different tissues (unpublished work). Another exten-
sion of possible interest is that of modelling the transmembrane transport between organelles and the cytosolic
compartment, which can be done by directly replacing the difference cs− ds in equation (1) with 1 or -1, account-
ing for the direction of transmembrane motion of molecules relative to the outer compartment. This and other
generalizations enable the possibility of studying the interdependence between electrical excitability across tissues
and animal species (Herrera-Valdez et al., 2013), and its cross-interactions with metabolism and other processes
of physiological importance, all from a general theoretical framework with common formulations.

Implications for experimentalists. One of the main advantages of the generic expressions is that fits to ionic
currents can be made straight from the voltage-clamp data without much effort, and without having to calculate
conductances, which amounts to imposing the assumption that the current to voltage relationship is linear. Fits to
experimental currents can then be directly put into equations describing the change in the membrane potential,
and model membrane dynamics of interest without having to make many extra adjustments, as it is the case for
most conductance-based models restricted to data.
The model for current in equation (19) has been used to construct simplified models for the membrane dynamics of
different cell types using experimental data. Examples include motor neurons in Drosophila melanogaster (Herrera-
Valdez et al., 2013), pyramidal cells in the young and ageing hippocampus of rats (McKiernan et al., 2015), medium
spiny neurons in the mouse striatum (Suárez et al., 2015), rabbit sinoatrial node cells (Herrera-Valdez, 2014), and
other types of excitable cells (McKiernan and Herrera-Valdez, 2012).

Conclusions
A generic model that describes physiological transmembrane transport of molecules has been derived by consid-
ering basic thermodynamical principles. The model unifies descriptions of transport mediated by channels and
pumps, it can model biases in either one of the directions of flow, and it can be easily converted into a model
for current in the case of electrogenic transport. As it is desirable in all models, the generic expressions can be
thought of as extensions of some previous models. In particular, it is shown that the conductance-based model for
current turns out to be a first order approximation of the generic formulation.
The expressions for current and molecular fluxes across the membrane based on the generic formulation can be
used to build general models of transmembrane potential using a unified framework (Shou et al., 2015).
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Table A1. Physical constants. The conversion factor f from pA to µM ·ms−1 = mM ·s−1 implies⇒ M = f ·10−9

Coul. Then f = 109 M/Coul = 109 · 96485.3329/F ≈ 1014 M/Coul.

Constant Value Units Description

T0 273.16 degrees Kelvin Zero absolute temperature
NA 6.023 × 1023 molecules/Mole Avogadro’s number
q 1.60217733 ×10−19 Coulombs/molecule Elementary charge
k 1.381 ×10−23 Joules/oKelvin Boltzmann constant

F= qNA 96485.33289 Coulombs/Mole Faraday’s constant (the magnitude of electric
charge per mole of electrons)

R= kNA 1.987 cal/(Mole oKelvin) Gas constant

Appendix
The Goldman constant field approximation from the general formulation
Let x = [x] j , j ∈ {0, 1} (extra, and intracellular concentrations of an ion of type x . The Goldman-Hodgkin-Katz
equation describing the transmembrane current carried by x-ions is given by
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is an amplitude term that can be approximated by a constant (Nonner et al., 1998; Nonner and Eisenberg, 1998;
Endresen et al., 2000). A specific example for a calcium current at 24oC can be found in equations 25 and 26 in
the article by Herrera-Valdez and Lega (2011). Notice that equations (A1)-(A2) reduce to
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when b = 1/2.
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Fast spiking interneuron dynamics
A simple model of the dynamics of a fast spiking (FS) striatal interneuron can be constructed using (31). To
do so, assume the transmembrane potential depends on three currents respectively mediated by Na-K pumps,
non-inactivating K+ channels, and Na+ channels with transient dynamics, with voltage-dependent gating in both
channels. It is also assumed that the proportion of activated K+ is represented by a variable w ∈ [0,1], which also
represents the proportion of inactivated Na+ channels (Av-Ron et al., 1991; Rinzel, 1985). That is, 1−w represents
the proportion of non-inactivated Na+ channels. The dynamics for w can be assumed to follow a logistic scheme,
capturing the behaviour of delayed-rectifier K+ currents typically recorded in voltage clamp mode without adding
extra powers to w (see for instance Hodgkin and Huxley, 1952, and the Appendix). It is also assumed that sodium
channel activation is fast, described by its steady state function of v.

Figure A1. Rest to spiking transitions of FS interneuron under current clamp. The traces show responses to
current-clamp stimulation of different amplitudes. The transition between rest and spiking with a rheobase
occurs between 40 and 50 pA, as shown for some FS neurons in the mouse striatum (Orduz et al., 2013).
The traces correspond to stimulation amplitudes of 0 (gray dots), 40 (black dashed line), 50 (blue), and
80 pA (gray). Parameters can be found in Table A2.

Explicitly, the dynamics of the system can then be captured by coupled differential equations of the form

∂t v = −(1−w)Fm(v)aNaT ψNaT(v)−waKaD ψKaD(v)− aNaK ψNaK(v), (A4)

∂t w = w [Fw(v)−w]Rw(v), (A5)

The activation rate for K+ channels depends is a voltage-dependent functions Rw and Fw as defined for the cardiac
pacemaking model.
The dynamics of the system are such that, as v increases, w increases, but at a slower rate in comparison to v. This
is because the activation w is always moving toward its steady state value, which increases as v increases. Once
w increases, the Na+ current tends to decrease and the K+ current tends to increase, thereby causing a decrease
in v. The slower dynamics in w relative to those in v capture the delay between the amplification caused by the
Na+ current and the recovery caused by the K+ current. The current mediated by Na/K-ATPase acts as an extra
attracting force toward vNaK that increases nonlinearly as the distance between v and vNaK increases.
Striatal FS interneurons display maximum ∂t v between 100 and 200 V/s. In current clamp mode, most neurons
are silent, and show transitions between rest and repetitive spiking at a rheobase current of approximately 90 pA,
with initial firing rates between 50 and 60 Hz and a delay to first spike in the transition that decreases as the
stimulus amplitude increases (Fig.A1, parameters in Table A2).
To include these properties into the model, the membrane capacitance was specified first, then the maximum ∂t v
was adjusted by fitting the parameter aNaT, and then the contributions for the K+ channels and the Na-K ATPase
are set to obtain spiking and fit the rheobase.
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The model in equations (A4)-(A5) reproduces dynamics observable in fast spiking neurons in CA1 (Erisir et al.,
1999) or in the striatum (Orduz et al., 2013; Tepper et al., 2010).

Table A2. Parameters for the fast spiking interneuron model.

Parameter Value Units Description

Current amplitudes and capacitance for the neuronal membrane model
Cm 30 pF Membrane capacitance
āNaK 67 pA Maximum amplitude for the Na+-K+ ATPase current
āK 4400 pA Maximum amplitude for the delayed-rectifier K+ current
āNa 1400 pA Maximum amplitude for the transient Na+ current
vATP -430 mV Potential ATP hydrolysis
vNaK = 3vNa − 2vK + vATP -72 mV Reversal potential for the for Na+-K+ ATPase current
vK -89 mV Nernst potential for K+

vNa 60 mV Nernst potential for Na+

vmT -17 mV Half-activation potential for the transient Na+-current
vw -5 mV Half-activation potential for the transient K+-current
gmT 5 – Activation slope factor for the transient Na+-current
gw 4 – Activation slope factor for the K+-current
rw 2 s−1 Activation rate for the neuronal K+-current
bw 0.3 – Activation slope factor for the K+-current
bNaK 0.5 – Non-rectification for the Na+-K+-current
bK 0.5 – Non-rectification for the transient K+-current
bNa 0.5 – Non-rectification for the transient Na+-current
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