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Abstract9

Polygenic Risk Scores (PRS) consist in combining the information across many single-10

nucleotide polymorphisms (SNPs) in a score reflecting the genetic risk of developing a dis-11

ease. PRS might have a major public health impact, possibly allowing for screening campaigns12

to identify high-genetic risk individuals for a given disease. The “Clumping+Thresholding”13

(C+T) approach, which is the most common method to derive PRS, uses only univariate genome-14

wide association studies (GWAS) summary statistics, which makes it fast and easy to use.15

However, previous work showed that jointly estimating SNP effects for computing PRS has the16

potential to significantly improve the predictive performance of PRS as compared to C+T.17

In this paper, we present an efficient method to jointly estimate SNP effects, allowing for18

practical application of penalized logistic regression on modern datasets including hundreds19

of thousands of individuals. Moreover, our implementation of penalized logistic regression20

directly includes automatic choices for hyper-parameters. The choice of hyper-parameters for21

a predictive model is very important since it can dramatically impact its predictive performance.22

As an example, AUC values range from less than 60% to 90% in a model with 30 causal SNPs,23

depending on the p-value threshold in C+T.24

We compare the performance of penalized logistic regression to the C+T method and to a25

derivation of random forests. Penalized logistic regression consistently achieves higher predic-26

tive performance than the two other methods while being very fast. We find that improvement27

in predictive performance is more pronounced when there are few effects located in nearby ge-28

nomic regions with correlated SNPs; AUC values increase from 83% with the best prediction29

of C+T to 92.5% with penalized logistic regression. We confirm these results in a data analysis30

of a case-control study for celiac disease where penalized logistic regression and the standard31

C+T method achieve AUC of 89% and of 82.5%.32

In conclusion, our study demonstrates that penalized logistic regression is applicable to33

large-scale individual-level data and can achieve more discriminative polygenic risk scores.34

Our implementation is publicly available in R package bigstatsr.35
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1 Introduction39

Polygenic Risk Scores (PRS) consist in combining the information across many single-nucleotide40

polymorphisms (SNPs) in a score reflecting the genetic risk of developing a disease. PRS are41

useful for genetic epidemiology when testing the polygenicity of one disease and finding a com-42

mon genetic contribution between two diseases (Purcell et al. 2009). Personalized medicine43

is another major application of PRS. Personalized medicine envisions to use PRS in screen-44

ing campaigns in order to identify high-risk individuals for a given disease (Chatterjee et al.45

2016). As an example of practical application, targeting screening to men at higher polygenic46

risk could reduce the problem of overdiagnosis and lead to a better benefit-to-harm balance in47

screening for prostate cancer (Pashayan et al. 2015). Yet, PRS would have to show a high dis-48

criminative power between cases and controls in order to be used for helping in the diagnosis49

of diseases. For screening high-risk individuals and for presymptomatic diagnosis of the gen-50

eral population, it is suggested that the AUC must be greater than 75% and 99% respectively51

(Janssens et al. 2007).52

Several methods have been developed to predict disease status, or more generally any phe-53

notype, based on SNP information. A commonly used method, called “P+T” or “C+T” (which54

stands for “Clumping and Thresholding”) – or even just PRS – is used to derive PRS from re-55

sults of Genome-Wide Association Studies (GWAS) (Chatterjee et al. 2013; Dudbridge 2013;56

Evans et al. 2009; Purcell et al. 2009; Wray et al. 2007). This technique uses GWAS sum-57

mary statistics only, allowing for fast implementation. However, the “C+T” approach also58

has several limitations. Previous studies have shown that predictive performance of the C+T59

method is very sensitive to the threshold of inclusion of SNPs, depending on the disease ar-60

chitecture (Ware et al. 2017). Linear Mixed-Models (LMMs) are another widely-used method61

in fields such as plant and animal breeding or for predicting highly heritable quantitative hu-62

man phenotypes such as height (Lello et al. 2017; Yang et al. 2010). Yet, models resulting63

from LMM, known e.g. as “gBLUP”, are not optimal for predicting disease status based on64

genotypes (Abraham et al. 2013). Moreover, these methods and their derivatives are often65

computationally demanding, both in terms of memory and time required, which makes them66
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unlikely to be used for prediction on very large datasets (Golan and Rosset 2014; Maier et al.67

2015; Speed and Balding 2014; Zhou et al. 2013). Finally, statistical learning methods have68

also been used to derive PRS for complex human diseases by jointly estimating SNP effects.69

Such methods include joint logistic regression, Support Vector Machine (SVM) and random70

forests (Abraham et al. 2012, 2014; Botta et al. 2014; Okser et al. 2014; Wei et al. 2009).71

We recently developed two R packages, bigstatsr and bigsnpr, for efficiently analyzing72

large-scale genome-wide data (Privé et al. 2018). Package bigstatsr now includes an efficient73

algorithm with a new implementation for computing sparse linear and logistic regressions on74

huge datasets as large as the UK Biobank (Bycroft et al. 2017). In this paper, we present a com-75

prehensive comparative study of our implementation of penalized logistic regression against76

the C+T method and the T-Trees algorithm, a derivation of random forests that has shown high77

predictive performance (Botta et al. 2014). In this comparison, we do not include any LMM78

method for the reasons mentioned before and do not include any SVM method because it is ex-79

pected to give similar results to logistic regression (Abraham et al. 2012). For the C+T model,80

we report results for a large grid of hyper-parameters. For the penalized logistic regression, the81

choice of hyper-parameters is included in the algorithm so that we report only one model for82

each simulation. We also use this penalized logistic regression on a feature-augmented dataset83

in order to capture not only linear effects, but also recessive and dominant effects.84

To perform simulations, we use real genotype data and simulate new phenotypes (Zhou85

et al. 2013). In order to make our comparison as comprehensive as possible, we compare86

different disease architectures by varying the number, size and location of causal effects as well87

as the heritability. We also compare different models for simulating phenotypes, one with only88

linear effects, and one that combines linear, dominant and interaction-type effects. Overall, we89

find that the penalized logistic regression consistently achieves higher predictive performance90

than the C+T and T-Trees methods while being very fast. This demonstrates the feasibility and91

relevance of this approach for PRS computation on large modern datasets.92
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2 Methods93

2.1 Genotype data94

We use real genotypes of European individuals from a case-control celiac disease study (Dubois95

et al. 2010). The composition of this dataset is presented in table S1. Details of quality control96

and imputation for this dataset are available in Privé et al. (2018). For simulations presented97

later, we first restrict this dataset to controls in order to remove the genetic structure induced by98

the celiac disease status. Then, we decided to remove population structure because it can affect99

the predictive performance of methods (Martin et al. 2017). In order to alleviate population100

structure, we keep people from the UK only and we further remove outliers based on a robust101

Mahalanobis distances computed using the first 10 principal components of the remaining in-102

dividuals. This 3-step filtering process results in a sample of 7100 individuals with minimal103

population structure (see supplementary notebook “preprocessing”). We also use this dataset104

for real data application, in this case keeping all 15,155 individuals (4496 cases and 10,659105

controls). Both datasets contain 281,122 SNPs.106

2.2 Simulations of phenotypes107

We simulate binary phenotypes using a Liability Threshold Model (LTM) with a prevalence

of 30% (Falconer 1965). We vary parameters of the simulations in order to match a range of

genetic architecture from low to high polygenicity. This is achieved by varying the number of

causal variants and their location (30, 300, or 3000 anywhere in all 22 chromosomes or 30 in the

HLA region of chromosome 6), and the heritability (50% or 80%). In a second phase, in order

to further increase the proportion of causal variants, we restrict the dataset to chromosome 6

only (18,941 SNPs) instead of using all 22 automosal chromosomes (281,122 SNPs). We also

consider deviation from the standard normal additive model, drawing effects of causal SNPs

from either a Normal or from a Laplace distribution, and computing liability scores either from

a “simple” model with linear effects only or a “fancy” model that combines linear, dominant

and interaction-type effects. For the “simple” model, we compute the liability score of the i-th
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individual

yi =
∑

j∈Scausal

wj · G̃i,j + εi ,

where wj are weights generated from a Gaussian or a Laplace distribution, Gi,j is the allele108

count of individual i for SNP j, G̃i,j corresponds to its standardized version (zero mean and109

unit variance for all SNPs), ε follows a Gaussian distribution N(0, 1 − h2) and Scausal is the110

set of causal SNPs. For the “fancy” model, we simulate phenotypes using linear, dominant and111

interaction-type effects (see Supplementary Materials).112

We implement 3 different simulation scenarios, summarized in table 2. Scenario №1 uses113

the whole dataset (all 22 autosomal chromosomes) and a training set of size 6000. It com-114

pares all methods described in section 2.4. For each combination of the remaining parameters,115

results are based on 100 simulations excepted in the first simulation comparing penalized lo-116

gistic regression with T-Trees; this simulation relies on 5 simulations only because of a much117

higher computational burden (several hours of computation for a single simulation) of T-Trees118

as compared to other approaches. Scenario №2 consists of 100 simulations per combination of119

parameters on a dataset composed of chromosome 6 only. Reducing the number of SNPs aims120

at increasing the polygenicity (the proportion of causal SNPs) of the simulated models and at121

virtually increasing the sample size (Dudbridge 2013; Márquez-Luna et al. 2017; Vilhjálms-122

son et al. 2015). For this scenario, we use the additive (“simple”) model only, but continue to123

compare all previous different values of the other parameters. Finally, scenario №3 reuses the124

whole dataset but this time varying the size of the training set in order to assess how the sample125

size affects predictive performance of methods. A total of 100 simulations per combination of126

parameters are run using 300 causal SNPs randomly chosen anywhere on the genome.127

2.3 Predictive performance measures128

In this study, we use two different measures of predictive accuracy. First, we use the Area Un-129

der the Receiver Operating Characteristic (ROC) Curve (AUC) (Fawcett 2006; Lusted 1971).130

In the case of our study, the AUC is the probability that the PRS of a case is greater than the131

PRS of a control. This measure indicates the extent to which we can distinguish between cases132
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and controls using PRS. As a second measure, we also report the partial AUC for specificities133

between 90% and 100% (Dodd and Pepe 2003; McClish 1989). This measure is similar to134

the AUC, but focuses on high specificities, which is the most useful part of the ROC curve135

in clinical settings. When reporting AUC results of simulations, we use estimates of maxi-136

mum achievable AUC of 84% and 94% for heritabilities of respectively 50% and 80%. These137

estimates are based on three different yet consistent estimations (see Supplementary Materials).138

2.4 Methods compared139

In this study, we compare three different types of methods: the C+T method, T-Trees and140

penalized logistic regression.141

The C+T (Clumping + Thresholding) method directly derives a Polygenic Risk Score (PRS)

from the results of Genome-Wide Associations Studies (GWAS). In GWAS, a coefficient of re-

gression (i.e. the estimated effect size β̂j) is learned independently for each SNP j along with

a corresponding p-value pj . The SNPs are first clumped (C) so that there remain only loci that

are weakly correlated with one another (this set of SNPs is denoted Sclumping). Then, threshold-

ing (T) consists in removing SNPs with p-values larger than a threshold pT to be determined.

Finally, a PRS is defined as the sum of allele counts of the remaining SNPs weighted by the

corresponding effect coefficients

PRSi =
∑

j∈Sclumping
pj < pT

β̂j ·Gi,j ,

where β̂j (pj) are the effect sizes (p-values) learned from the GWAS. In this study, we mostly142

report scores for a clumping threshold at r2 > 0.2 within regions of 500kb, but we also investi-143

gate thresholds of 0.05 and 0.8. We report three different scores of prediction: one including all144

the SNPs remaining after clumping (denoted “PRS-all”), one including only SNPs remaining145

after clumping and that have a p-value under the GWAS threshold of significance (p < 5 ·10−8,146

“PRS-stringent”), and one that maximizes the AUC (“PRS-max”) for these two thresholds (0147

and 5 · 10−8) and a sequence of 100 values of thresholds ranging from 10−0.1 to 10−100 and148
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equally spaced on the log-log-scale (Table S2). As we report the optimal threshold based on149

the test set, the AUC for “PRS-max” is an upper bound of the AUC for the C+T method.150

T-Trees (Trees inside Trees) is an algorithm derived from random forests (Breiman 2001)151

that takes into account the correlation structure among the genetic markers implied by linkage152

disequilibrium in GWAS data (Botta et al. 2014). We use the same parameters as reported in153

Table 4 of Botta et al. (2014), except that we use 100 trees instead of 1000 because using 1000154

trees provides a minimal increase of AUC while requiring a disproportionately long processing155

time (e.g. AUC of 81.5% instead of 81%, data not shown).156

Finally, for the penalized logistic regression, we find regression coefficients β0 and β that

minimize the following regularized loss function

L(λ, α) = −
n∑

i=1

(yi log (pi) + (1− yi) log (1− pi))︸ ︷︷ ︸
Loss function

+λ

(
(1− α)1

2
‖β‖22 + α‖β‖1

)
︸ ︷︷ ︸

Penalization

,

where pi = 1/
(
1 + exp

(
−(β0 + xTi β)

))
, x is denoting the genotypes and covariables (e.g.157

principal components), y is the disease status to predict, λ and α are two regularization hyper-158

parameters that need to be chosen. Different regularizations can be used to prevent overfitting,159

among other benefits: the L2-regularization (“ridge”, Hoerl and Kennard (1970)) shrinks coeffi-160

cients and is ideal if there are many predictors drawn from a Gaussian distribution (corresponds161

to α = 0 in the previous equation); the L1-regularization (“lasso”, Tibshirani (1996)) forces162

some of the coefficients to be equal to zero and can be used as a means of variable selection,163

leading to sparse models (corresponds to α = 1); the L1- and L2-regularization (“elastic-net”,164

Zou and Hastie (2005)) is a compromise between the two previous penalties and is particularly165

useful in the m � n situation (m: number of SNPs), or any situation involving many corre-166

lated predictors (corresponds to 0 < α < 1) (Friedman et al. 2010). In this study, we use an167

embedded grid search over α ∈ {1, 0.5, 0.05, 0.001}.168

To fit this penalized logistic regression, we use a very efficient algorithm (Friedman et al.169

2010; Tibshirani et al. 2012; Zeng et al. 2017) from which we derived our own implementation170

in R package bigstatsr. This type of algorithm builds predictions for many values of λ, which is171

called a “regularization path”. To obtain an algorithm free of the choice of this hyper-parameter172
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λ, we developed a procedure that we call Cross-Model Selection and Averaging (CMSA, figure173

S1). Because of L1-regularization, the resulting vectors of coefficients are sparse and can be174

used to make a PRS based on a linear combination of allele counts. We refer to this method as175

“logit-simple” in the results section.176

In order to capture recessive and dominant effects in addition to linear effects, we use177

feature engineering: we construct a separate dataset with, for each SNP variable, two more178

variables coding for recessive and dominant effects: one variable is coded 1 if homozygous179

variant and 0 otherwise, and the other is coded 0 for homozygous referent and 1 otherwise.180

This results in a dataset with 3 times as many variables as the initial one, on which we can181

apply penalized logistic regression. We refer to this method “logit-triple” in the results.182

2.5 Evaluating predictive performance for Celiac data183

We use Monte Carlo cross-validation to compute AUC, partial AUC, the number of predictors184

and execution time for the original Celiac dataset with real phenotypes: we randomly split 100185

times the dataset in a training set of 12,000 indiduals and a test set composed of the remaining186

3155 individuals.187

2.6 Reproduciblity188

All the code used in this paper along with results such as figures and tables, are available as189

HTML R notebooks in the Supplementary Materials.190

3 Results191

3.1 Joint estimation improves predictive performance192

We compared penalized logistic regression (“logit-simple”) with the C+T method (“PRS”) us-193

ing whole-genome simulations of scenario №1 (Table 2).194

When simulating a model with 30 causal SNPs and an heritability of 80%, penalized logis-195

tic regression provides AUC greater than 93%, nearly reaching the maximum achievable AUC196
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of 94%, whereas AUC values obtained with C+T method range between 83% and 90% (Figures197

1 and 2). Moreover, penalized logistic regression consistently provides higher predictive per-198

formance than the C+T method across all scenarios we considered, excepted in some cases of199

high polygenicity or small sample size where all methods perform poorly (AUC values below200

60% – figures 3 and S3).201

Method “logit-simple” provides particularly higher predictive performance than “PRS-max”202

when there are correlations between predictors, i.e. when we choose causal SNPs to be in the203

HLA region. In this situation, the mean AUC reaches 92.5% with the “logit-simple” approach204

and 84% with “PRS-max”, while the maximum achievable AUC is 94% (Figure 1).205

Note that for the simulations we do not report results in terms of partial AUC because partial206

AUC values have a Spearman correlation of 98% with the AUC results for all methods (Figure207

S2).208

3.2 Importance of hyper-parameters209

In practice, a particular value of the threshold of inclusion of SNPs should be chosen for the210

C+T method and this choice can dramatically impact the predictive performance of C+T. For211

example, in a model with only 30 causal SNPs, AUC ranges from less than 60% when using all212

SNPs passing clumping to 90% if choosing the optimal p-value threshold (Figures 2 and S4).213

Concerning the r2 threshold of the clumping step in C+T, we mostly used the common214

value of 0.2. Yet, using a more stringent value of 0.05 provides higher predictive performance215

than using 0.2 in most of the cases tested in this paper (Figures S5, 3 and S6)216

Method “logit-simple” that automatically chooses hyper-parameter λ provides similar pre-217

dictive performance than the best predictive performance of the implementation of R package218

biglasso (Zeng et al. 2017), only slightly better for biglasso, which is likely due to over-fitting219

when reporting the best prediction (Figure S10).220
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3.3 Non-linear effects221

We tested the T-Trees method in scenario №1. As compared to “logit-simple”, T-Trees perform222

worse in terms of predictive ability, while taking much longer to run and making more complex223

predictive models because T-Trees use more predictors and non-linear effects (Figure S7). Even224

when simulating a “fancy” model in which there are dominant and interaction-type effects that225

T-Trees should be able to handle, AUC is still lower when using T-Trees than when using226

“logit-simple” (Figure S7).227

We also compared the two penalized logistic regressions in scenario №1, “logit-simple”228

and “logit-triple” that uses additional features (variables) coding for recessive and dominant229

effects. Predictive performance of “logit-triple” are nearly as good as “logit-simple” when230

there are only linear effects (differences of AUC are always smaller than 2%) and can lead to231

significantly greater results when there are also dominant and interactions effects (Figures S8232

and S9). For the “fancy model”, “logit-triple” provides AUC values at least 3.5% higher than233

“logit-simple”, excepted when there are 3000 causal SNPs. Yet, the “triple” solution takes 2-3234

times as much time to run and requires 3 times as much disk storage as the “simple” solution.235

3.4 Simulations varying number of SNPs and training size236

First, when reproducing simulations of scenario №1 using chromosome 6 only (scenario №2),237

the predictive performance of “logit-simple” always increase (Figure S6). There is particularly238

a large increase when simulating 3000 causal SNPs: AUC from the “logit-simple” increases239

from 60% to nearly 80% for Gaussian effects and a heritability of 80%. On the contrary, when240

simulating only 30 or 300 causal SNPs on the corresponding dataset, AUC of the “PRS-max”241

does not increase, and even decreases for an heritability of 80% (Figure S6). Secondly, when242

varying the training size (scenario №3), we report an increase of AUC when increasing the243

training size, with a faster increase of AUC provided by “logit-simple” as compared to “PRS-244

max” (Figure 3).245
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3.5 Polygenic scores for the celiac disease246

Joint logistic regressions also provide higher AUC values for the Celiac data: 88.7% with247

“logit-simple” and 89.1% with “logit-triple” as compared to 82.5% with the C+T method. The248

relative increase in partial AUC, for specificities larger than 90%, is even larger (42% and 47%)249

with partial AUC values of 0.0411, 0.0426 and 0.0289 obtained with “logit-simple”, “logit-250

triple” and the C+T method, respectively. Moreover, logistic regressions use less predictors,251

respectively 1570, 2260 and 8360 (Table 1, figures 4 and supplementary notebook “results-252

celiac”). Note that for the C+T method, we still report the best result among 102 p-value253

thresholds. In terms of computation time, we report only the GWAS computation for the C+T254

method and we show that the “logit-simple” method, while learning jointly on all SNPs at once255

and testing different hyper-parameter values, is almost as fast as the C+T method (190 vs 130256

seconds), and the “logit-triple” takes less than twice as long as the “logit-simple” (296 vs 190257

seconds).258

Table 1: Results for the real Celiac dataset. The results are averaged over 100 runs where the train-
ing step is randomly composed of 12,000 individuals. In the parentheses is reported the standard
deviation of 105 bootstrap samples of the mean of the corresponding variable. Results are reported
with 3 significant digits.

Method AUC pAUC # predictors Execution time (s)
PRS-max 0.825 (0.000664) 0.0289 (0.000187) 8360 (744) 130 (0.143)
logit-simple 0.887 (0.00061) 0.0411 (0.000224) 1570 (46.4) 190 (1.21)
logit-triple 0.891 (0.000628) 0.0426 (0.000219) 2260 (56.1) 296 (2.03)

4 Discussion259

4.1 Joint estimation improves predictive performance260

In this comparative study, we present a computationally efficient implementation of penalized261

logistic regression. This model can be used to build polygenic risk scores based on very large262

SNP datasets such as the UK biobank (Bycroft et al. 2017). In agreement with previous work263

(Abraham et al. 2013), we show that jointly estimating SNP effects has the potential to sub-264
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stantially improve predictive performance as compared to the standard C+T approach in which265

SNP effects are learned independently. Penalized logistic regression nearly always outperform266

the C+T method, and the benefits of using it are more pronounced with an increasing sample267

size or when causal SNPs are correlated with one another.268

4.2 Importance of hyper-parameters269

The choice of hyper-parameter values is very important since it can greatly impact method270

performance. In the C+T method, there are two main hyper-parameters: the r2 and the pT271

thresholds that control how stringent are the clumping and thresholding steps, respectively.272

The choice of the r2 threshold of the clumping step is important. Indeed, on the one hand,273

choosing a low value for this threshold may discard independently predictive SNPs that are in274

Linkage Desiquilibrium; yet, on the other hand, when choosing a high value for this threshold,275

too much redundant information would be included in the model, which would bias SNP ef-276

fects. Based on the simulations, we find that using a stringent threshold (r2 = 0.05) leads to277

higher predictive performance, even when causal SNPs are correlated. It means that accurately278

estimating SNP effects is more important than including all causal SNPs. Moreover, in this pa-279

per, we reported the maximum AUC of 102 different p-value thresholds, a threshold that should280

normally be learned on the training set only. The choice of this threshold is very important as281

it can greatly impact the predictive performance of the C+T method, which we confirm in this282

study (Ware et al. 2017).283

On the contrary, in the penalized logistic regression presented here, we developed an auto-284

matic procedure called Cross-Model Selection and Averaging (CMSA) that releases investiga-285

tors from the burden of choosing hyper-parameter λ that accounts for the amount of regular-286

ization used in the model. Not only this procedure provides near-optimal results (as compared287

to the best prediction when using R package biglasso), but it also accelerates the training of288

the model thanks to the development of an early stopping criterion. Usually, cross-validation is289

used to choose hyper-parameter values and then the model is trained again with these particular290

hyper-parameter values (Hastie et al. 2008; Wei et al. 2013). Yet, performing cross-validation291

and retraining the model is computationally demanding; CMSA offers a less burdensome alter-292
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native. Concerning hyper-parameter α that accounts for the relative importance of the L1 and293

L2 regularizations, we use a grid search directly embedded in the CMSA procedure.294

4.3 Non-linear effects295

In this paper, we also explored how to capture non-linear effects. For this, we introduced a296

simple feature engineering technique that enables logistic regression to detect and learn not297

only additive effects, but also dominant and recessive effects. This technique improves the298

predictive performance of logistic regression when there are some non-linear effects in the299

simulations, while providing nearly the same predictive performance when there are only linear300

effects. Moreover, it also improves predictive performance for the celiac disease.301

Yet, this approach is not able to detect interaction-type effects. In order to capture interaction-302

type effects, we tested T-Trees, a method that is able to exploit SNP correlations thanks to303

special decision trees (Botta et al. 2014). However, predictive performance of T-Trees were304

consistently lower than with penalized logistic regression, even when simulating a model with305

dominant and interaction-type effects that T-Trees should be able to handle.306

4.4 Limitations307

Our approach has one major limitation: the main advantage of the C+T method is that it is308

applicable directly to summary statistics, allowing to leverage the largest GWAS sample size309

to date, even when individual cohort data cannot be merged because of practical and ethical310

reasons (e.g. consortium data including many cohorts). As of today, the proposed penalized311

logistic regression does not allow for the analysis of summary data, but this represents an312

important future direction of our work. The current version is of particular interest for the313

analysis of modern SNP dataset including hundreds of thousands of individuals.314

Finally, in this comparative study, we did not consider the problem of population structure315

(Márquez-Luna et al. 2017; Martin et al. 2017; Vilhjálmsson et al. 2015) and also did not316

consider non-genetic data such as environmental and clinical data (Dey et al. 2013; Van Vliet317

et al. 2012). In next study, we will assess how can we use models and effects learned in one318
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population to improve learning and prediction in another population.319
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Table 2: Summary of all simulations. Where there is symbol ‘-’ in a box, it means that the param-
eters are the same as the ones in the upper box.

Numero of
Dataset

Size of Causal SNPs Distribution
Heritability

Simulation
Methods

scenario training set (number and location) of effects model

1 All 22 chromosomes 6000

30 in HLA
Gaussian 0.5 simple

PRS
30 in all logit-simple

300 in all Laplace 0.8 fancy logit-triple
3000 in all (T-Trees)

2 Chromosome 6 only - - - - simple
PRS

logit-simple

3 All 22 chromosomes

1000

300 in all - - - -
2000
3000
4000
5000
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Figure 1: Main comparison of the C+T and “logit-simple” methods in scenario №1 for the “simple”
model and an heritability of 80%. Mean of AUC over 100 simulations for “logit-simple” and the
maximum AUC reported with the C+T method (“PRS-max”). Upper (lower) panel is presenting
results for effets following a Gaussian (Laplace) distribution. Error bars are representing ±2SD of
105 non-parametric bootstrap of the mean of AUC. The blue dotted line represents the maximum
achievable AUC.
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Figure 2: Comparison of three different p-value thresholds used in the C+T method in scenario №1
for the “simple” model and an heritability of 80%. Mean of AUC over 100 simulations. Upper
(lower) panel is presenting results for effets following a Gaussian (Laplace) distribution. Error bars
are representing ±2SD of 105 non-parametric bootstrap of the mean of AUC. The blue dotted line
represents the maximum achievable AUC.
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Figure 3: Comparison of models when varying sample size in scenario №3 for the “simple” model
with 300 causal SNPs sampled anywhere on the genome. Mean of AUC over 100 simulations for
the maximum values of PRS for three different r2 thresholds (0.05, 0.2 and 0.8) and “logit-simple”
as a function of the training size. Upper (lower) panels are presenting results for effets following
a Gaussian (Laplace) distribution and left (right) panels are presenting results for an heritability of
0.5 (0.8). Error bars are representing ±2SD of 105 non-parametric bootstrap of the mean of AUC.
The blue dotted line represents the maximum achievable AUC.
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Figure 4: ROC Curves for the “C+T”, “logit-simple” and “logit-triple” methods for Celiac disease
dataset. Models were trained using 12,000 individuals. These are results projecting these models
on the remaining 3155 individuals. The figure is plotted using R package plotROC (Sachs et al.
2017).
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Supplementary Materials409

“Fancy” model410

For the “fancy” model, we separate the causal SNPs in three equal sets S(1)
causal, S

(2)
causal and

S
(3)
causal; S

(3)
causal is further separated in two equal sets, S(3.1)

causal and S(3.2)
causal. We then compute

yi =
∑

j∈S(1)
causal

wj · G̃i,j

︸ ︷︷ ︸
linear

+
∑

j∈S(2)
causal

wj · D̃i,j

︸ ︷︷ ︸
dominant

+

k=
∣∣∣S(3.1)

causal

∣∣∣∑
k=1

j1=e
(3.1)
k

j2=e
(3.2)
k

wj1 · ˜Gi,j1Gi,j2

︸ ︷︷ ︸
interaction

+ εi ,

where Di,j = 1 {Gi,j 6= 0} and S(q)
causal =

{
e
(q)
k , k ∈

{
1, . . . ,

∣∣∣S(q)
causal

∣∣∣}}.411

Maximum AUCs412

We used three different ways to estimate the maximum achievable AUC for our simulations.413

First, we used the estimation from equation (3) of Wray et al. (2010). For a prevalence fixed at414

30% and an heritability of 50% (respectively 80%), the approximated theoretical values of AUC415

are 84.1% (respectively 93.0%). Note that this approximation is reported to be less accurate416

for high heritabilities. Secondly, if we assume that the genetic part of the liabilities follows a417

Gaussian distribution N(0, h2) and that the environmental part follows a Gaussian distribution418

N(0, 1 − h2), we can estimate the theoretical value of the AUC that can be achieved given419

the heritability h2 through Monte Carlo simulations. We report AUCs of 84.1% and 94.1% for420

an heritability of 50% and 80%, respectively. Thirdly, we reproduce the exact same procedure421

of simulations and, for each combination of parameters (Table 2), we estimate the AUC of422

the “oracle”, i.e. the true simulated genetic part of the liabilities through 100 replicates. For423

every combination of parameters, AUC of oracles are comprised between 83.2% and 84.2%424

for an heritability of 50% and between 93.2% and 94.1% for an heritability of 80%. Given425

all these estimates of the maximal achievable AUC and for the sake of simplicity, we report426

maximum AUCs of 84% (94%) for heritabilities of 50% (80%) whatever are the parameters of427
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the simulations.428
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Population UK Finland Netherlands Italy Total
Cases 2569 637 795 495 4496
Controls 7492 1799 828 540 10659
Total 10061 2436 1623 1035 15155

Table S1: Number of individuals by population and disease status in the celiac disease case-control
study (after quality control, genotyped on 281,122 SNPs).

1.00e+00 7.22e-01 5.87e-01 4.20e-01 2.43e-01 1.00e-01 2.35e-02 2.21e-03 4.69e-05 8.81e-08 3.18e-12 1.83e-19 2.89e-31 1.70e-50 7.71e-82
5.00e-08 7.05e-01 5.65e-01 3.95e-01 2.20e-01 8.47e-02 1.79e-02 1.42e-03 2.28e-05 2.73e-08 4.69e-13 8.08e-21 1.80e-33 4.30e-54 1.06e-87
7.94e-01 6.87e-01 5.42e-01 3.69e-01 1.97e-01 7.08e-02 1.34e-02 8.83e-04 1.05e-05 7.74e-09 6.03e-14 2.86e-22 7.73e-36 5.97e-58 5.49e-94
7.81e-01 6.69e-01 5.19e-01 3.43e-01 1.75e-01 5.85e-02 9.79e-03 5.31e-04 4.61e-06 2.01e-09 6.69e-15 7.92e-24 2.24e-38 4.37e-62 1.00e-100
7.67e-01 6.50e-01 4.95e-01 3.18e-01 1.54e-01 4.76e-02 7.01e-03 3.08e-04 1.90e-06 4.72e-10 6.32e-16 1.70e-25 4.26e-41 1.61e-66
7.53e-01 6.30e-01 4.70e-01 2.93e-01 1.35e-01 3.82e-02 4.90e-03 1.72e-04 7.31e-07 1.00e-10 5.04e-17 2.75e-27 5.16e-44 2.83e-71
7.38e-01 6.09e-01 4.46e-01 2.68e-01 1.17e-01 3.02e-02 3.33e-03 9.18e-05 2.63e-07 1.89e-11 3.35e-18 3.31e-29 3.84e-47 2.26e-76

Table S2: The 102 thresholds used for the C+T method for this study.
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Figure S1: Illustration of one turn of the Cross-Model Selection and Averaging (CMSA) procedure.
First, this procedure separates the training set inK folds (e.g. 10 folds). Secondly, in turn, each fold
is considered as an inner validation set (red) and the other (K − 1) folds form an inner training set
(blue). A “regularization path” of models is trained on the inner training set and the corresponding
predictions (scores) for the inner validation set are computed. The model that minimizes the loss
on the inner validation set is selected. Finally, the K resulting models are averaged. We also use
this procedure to derive an early stopping criterion so that the algorithm does not need to evaluate
the whole regularization paths, making this procedure much faster.
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Figure S2: Correlation between AUC and partial AUC values in scenario №1. There is a Spearman
correlation of 98% between values of AUC and partial AUC. The relation between the two values
are the same whatever are the heritability, distribution of effects and method used.
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Figure S3: Comparison of the C+T and “logit-simple” methods in scenario №1 for the “simple”
model and an heritability of 50%. Mean of AUC over 100 simulations for “logit-simple” and the
maximum AUC reported with the C+T method (“PRS-max”). Upper (lower) panel is presenting
results for effets following a Gaussian (Laplace) distribution. Error bars are representing ±2SD of
105 non-parametric bootstrap of the mean of AUC. The blue dotted line represents the maximum
achievable AUC.
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Figure S4: Comparison of three different p-value thresholds used in the C+T method in scenario
№1 for the “simple” model and an heritability of 50%. Mean of AUC over 100 simulations. Upper
(lower) panel is presenting results for effets following a Gaussian (Laplace) distribution. Error bars
are representing ±2SD of 105 non-parametric bootstrap of the mean of AUC. The blue dotted line
represents the maximum achievable AUC.
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Figure S5: Comparison of models in scenario №1 for the “simple” model. Mean of AUC over
100 simulations for the maximum values of PRS for three different r2 thresholds (0.05, 0.2 and
0.8) and “logit-simple” as a function of the number and location of causal SNPs. Upper (lower)
panels are presenting results for effets following a Gaussian (Laplace) distribution and left (right)
panels are presenting results for an heritability of 0.5 (0.8). Error bars are representing ±2SD of
105 non-parametric bootstrap of the mean of AUC. The blue dotted line represents the maximum
achievable AUC.
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Figure S6: Comparison of models in scenario №2 (using chromosome 6 only) for the “simple”
model. Thinner lines represents results in scenario №1 (Figure S5). Mean of AUC over 100 sim-
ulations for the maximum values of PRS for three different r2 thresholds (0.05, 0.2 and 0.8) and
“logit-simple” as a function of the number and location of causal SNPs. Upper (lower) panels are
presenting results for effets following a Gaussian (Laplace) distribution and left (right) panels are
presenting results for an heritability of 0.5 (0.8). Error bars are representing ±2SD of 105 non-
parametric bootstrap of the mean of AUC. The blue dotted line represents the maximum achievable
AUC.
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Figure S7: Comparison of T-Trees and “logit-simple” in scenario №1 for an heritability of 80%.
Vertical panels are presenting results for effects following a Gaussian or Laplace distribution. Hori-
zontal panels are presenting results for the “simple” and “fancy” models for simulating phenotypes.
A: Mean of AUC over 5 simulations. Error bars are representing ±2SD of 105 non-parametric
bootstrap of the mean of AUC. The blue dotted line represents the maximum achievable AUC. B:
Boxplots of numbers of predictors used by the methods for 5 simulations. C: Boxplots of execution
times for 5 simulations.
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Figure S8: Comparison of “logit-triple” and “logit-simple” in scenario №1 for an heritability of
80%. Vertical panels are presenting results for effects following a Gaussian or Laplace distribu-
tion. Horizontal panels are presenting results for the “simple” and “fancy” models for simulating
phenotypes. A: Mean of AUC over 100 simulations. Error bars are representing ±2SD of 105 non-
parametric bootstrap of the mean of AUC. The blue dotted line represents the maximum achievable
AUC. B: Boxplots of numbers of predictors used by the methods for 100 simulations. C: Boxplots
of execution times for 100 simulations.
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Figure S9: Comparison of “logit-triple” and “logit-simple” in scenario №1 for an heritability of
50%. Vertical panels are presenting results for effects following a Gaussian or Laplace distribu-
tion. Horizontal panels are presenting results for the “simple” and “fancy” models for simulating
phenotypes. A: Mean of AUC over 100 simulations. Error bars are representing ±2SD of 105 non-
parametric bootstrap of the mean of AUC. The blue dotted line represents the maximum achievable
AUC.
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Figure S10: Comparison of “logit-triple” and the best prediction (among 100 tested λ values) for
“biglasso” (another implementation of penalized logistic regression) in scenario №1. Simulations
use the “simple” model, an heritability of 80% and α = 1. Vertical panels are presenting results for
effects following a Gaussian or Laplace distribution. A: Mean of AUC over 100 simulations. Error
bars are representing ±2SD of 105 non-parametric bootstrap of the mean of AUC. The blue dotted
line represents the maximum achievable AUC. B: Boxplots of numbers of predictors used by the
methods for 100 simulations. C: Boxplots of execution times for 100 simulations.
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