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Whole genome sequencing (WGS) is now playing a central role
in the control and study of tuberculosis. Factors hindering ge-
nomic data interpretation can difficult our understanding of the
pathogen biology and lead to incorrect clinical predictions. An-
alyzing an extensive Mycobacterium tuberculosis dataset com-
prising more than 1,500 sequencing samples from different pub-
lished works, with additional samples sequenced in our labora-
tory, we find that contamination with non-target DNA is a com-
mon phenomenon among WGS studies. By using this data and
in-silico simulations, we show that even subtle contaminations
can produce dozens of false variants and large miscalculations
of allele frequencies, often leading to errors that are very hard to
detect and propagate through the analysis. In our dataset, 94%
of the polymorphic positions were incorrectly identified due to
contaminations. We exemplify the consequences of these errors
in the context of clinical predictions for all the studies analyzed,
and demonstrate that unexpected contaminations suppose a ma-
jor pitfall in WGS studies. In addition, we present an approach
based on the removal of contaminant reads that shows an out-
standing performance analyzing both clean and contaminated
data. Based in our findings, applicable to most of organisms,
we urge for the implementation of contamination-aware analy-
sis pipelines.
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Introduction
Whole genome sequencing (WGS) has enhanced the study
of complex biological phenomena in bacteria, such as pop-
ulation dynamics, host adaptation or outbreaks of micro-
bial infections(1, 2). Democratization of high-throughput se-
quencing technologies and continuous improvements in lab-
oratory procedures are also turning WGS into a promising
alternative for the clinical diagnosis and surveillance of sev-
eral pathogenic species (3–6). Since most genomic studies
are based on the identification of nucleotide polymorphisms
and calculation of allele frequencies, the accuracy of the vari-
ant calling process is pivotal to draw biological conclusions
from WGS data. Notwithstanding, the performance of the
analysis pipelines is seldomly evaluated, and possible factors

hindering high-throughput sequencing data interpretation are
usually overlooked.
Over the last years, groups working in different areas have
shown that DNA contaminations is one factor potentially
misleading biological conclusions (7–9). However, most bac-
terial genomic studies are still neglecting the impact of poten-
tial contaminations with non-target DNA in their analyses.
This stems from the general assumption that pure culture se-
quencings only yield reads from the target organism and, if
any, contaminating reads can hardly map to the target ref-
erence genome. As the decentralization of high-throughput
sequencing and its associated analysis allow more groups to
conduct WGS studies, controlling the factors that compro-
mise the outcomes accuracy becomes crucial. This can be
particularly relevant when studying bacterial organisms with
low genetic diversity, for which evolutionary inferences and
diagnostic may depend on few genetic variants.
Mycobacterium tuberculosis (MTB) represents a perfect ex-
ample of such an organism. Tuberculosis is now recognized
as the deadliest infectious disease in the world and one quar-
ter of the global population is estimated to be infected (10).
Due to its long culture-based diagnostic turnarounds, WGS
is being extensively used not only to study its biology, but
also in the clinical context(11, 12). Particularly, the ability of
sequencing the complete genome of the pathogen from com-
plex clinical samples will suppose a major breakthrough, now
pursued by several groups (13, 14).
Here we use an extensive dataset comprising more than 1500
MTB sequencing samples coming from different WGS stud-
ies along with in-silico simulated data to assess the impact
of contamination in WGS analysis. We show that presence
of non-target reads is a common phenomenon among WGS
studies, even when sequencing is performed from pure cul-
ture isolates. Importantly, we demonstrate that subtle con-
taminations represent a major pitfall, since they are prevalent,
hard to detect, and can introduce dozens of false variants.
In our dataset, a great proportion of the estimated genetic
variability was due to contamination, and allele frequency
calculations, the foundation of most genomic studies, were
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largely altered. These alterations can lead to misinterpreta-
tion of WGS data as we demonstrate for two relevant appli-
cations: epidemiology and drug resistance prediction. In ad-
dition, we provide a contamination-aware workflow based on
a taxonomic filter that exhibits an outstanding performance,
allowing a robust analysis even for highly contaminated sam-
ples, such as sequencings from complex clinical specimens.

Results
DNA contamination is pervasive across WGS MTB
studies and sample types. To look for contaminant DNA
in WGS datasets, we used Kraken (15) to taxonomically
classify the sequencing reads of 1553 sequencing runs from
eight different MTB studies (here referred as the experimen-
tal dataset, see Methods). According to Kraken classifica-
tions, contamination is present to some extent in all stud-
ies analyzed (Figure 1). As expected, sequencings from di-
rect clinical samples and early positive mycobacterial growth
indicator tubes (MGIT), which are inoculated with primary
clinical samples, present higher levels of contamination in
terms of both the number of samples contaminated and the
proportion of non-MTB DNA within them. Common con-
taminants for these samples comprise human DNA and bac-
teria usually found in oral and respiratory cavities like Pseu-
domonas, Rothia, Streptococcus or Actinomyces (16, 17), and
can constitute virtually all reads in some samples. Impor-
tantly, contamination was also detected in studies in which
the DNA sequenced came from pure culture isolates. For
instance, Bacillus, Negativicoccus and Enterococcus repre-
sented up to the 68%, 58% and 32% respectively of different
samples from the KwaZulu study. Strikingly, 17 out of 73
samples from Nigeria were identified as Staphylococcus au-
reus (92% to 99% of reads), probably due to a mistake during
data uploading or mislabeling. The deep sequencing dataset
was mostly free of contamination, with the exception of two
samples for which a 3.32% of Acinetobacter baumannii and
a 2.83% of non-tuberculosis mycobacteria (NTM) was iden-
tified (representing 795,887 and 920,379 reads respectively).
Remarkably, Kraken left a high proportion of reads unclas-
sified in many instances. This could be mainly due to ei-
ther the absence of the organism from the database, or hard
to classify sequences. Indeed, when using the NCBI blastn
(18) to search a random subset of unclassified reads in the
non-redundant database (nr), we observed three main pat-
terns. Reads that either did not produce significant matches
with any organism, or came from eukaryotes not present in
our Kraken database; reads that produced partial alignments
with many different taxa; and reads that produced good align-
ments, even with Mycobacterium tuberculosis, but having
alignment identities around 90%, what makes Kraken unable
to find exact matches of 31 base pairs.

Evaluating the impact of contamination in WGS anal-
ysis with simulated data. Firstly, we evaluated how non-
MTB sequencing reads map to the MTB reference genome.
In order to do this, we performed alignments of simulated
sequencings for 45 organisms, including oral and respira-

tory microbiota, clinically common NTM and human. As
expected, conserved genes like the 16S, rpoB or the tR-
NAs, constitute hotspots where contaminant sequences are
easily aligned to. However, non-MTB alignments are pro-
duced across the reference genome (Figure 2a). Naturally,
this is dependent on the phylogenetic relationship of the con-
taminant organism to the one being studied. For example,
many more sequencing reads from Nocardia are aligned to
the Mycobacterium tuberculosis complex (MTBC) reference
genome than from distantly related organisms such as Strep-
tococcus . Non-tuberculosis mycobacteria represent the best
example of this as their read mappings can produce high se-
quencing depths along the MTBC reference genome. Impor-
tantly, human reads, which are usually the major concern in
clinical samples, did not produced alignments at all.

Next, we assessed the performance of two contamination-
aware approaches to avoid errors introduced by non-target
reads: a filter removing low quality alignments, and a taxo-
nomic filter removing non-MTBC reads. By measuring the
mean sequencing depth obtained along the genome in 100-
bp windows, we observed that both methods greatly reduced
the number of non-MTB mappings (see Additional file 1).
Remarkably, whereas the mapping filter was unable to elim-
inate contaminant alignments in several conserved regions,
specially the 16S gene, the taxonomic filter displayed an
outstanding performance eliminating all non-MTB mappings
with the only exception of some M. avium reads (Additional
file 2).

In order to evaluate how these contaminant alignments can
affect WGS analysis, we simulated mock samples where se-
quencing reads from the reference genome were mixed with
different proportions of non-MTBC organisms. In addition,
we generated a version of the reference genome where ran-
dom mutations were introduced. This allowed us to quan-
tify both false positive and negative SNPs (see Methods). As
shown in Figure 2b, slight contaminations can be responsi-
ble for a high number of false positive and negative variant
calls. Predictably, the vast majority of the false positives cor-
responded to variable SNPs (vSNPs) and false positive fixed
SNPs (fSNPs) only originated from extreme contaminations.
Reduction of non-MTBC alignments mediated by the map-
ping filter led to a corresponding reduction in the number of
false positive SNPs, although many erroneous variants still
being called. In some cases, the number of false negatives
was higher denoting the elimination of correct MTBC align-
ments by this filter. By contrast, the taxonomic filter elim-
inated nearly all erroneous SNP calls. Its performance was
only compromised by contamination with Mycobacterium
avium. In this case, the taxonomic filter was not able to avoid
all false positive and negative SNPs introduced by contami-
nant M. avium reads. For example, when a 5% of M. avium
was present, the 4,353 false positive SNPs and 71 false neg-
ative SNPs identified with a conventional pipeline, were re-
duced to 41 and 4 respectively applying the taxonomic filter.
Importantly, applying the taxonomic filter to the uncontami-
nated mock sample of the reference genome did not produce
any false negative.
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Since many of the contaminant alignments are produced in
conserved genes, all these erroneous calls led to the pre-
diction of multiple false antibiotic resistances when using a
conventional pipeline (see Additional file 1). Importantly,
many of these false predictions corresponded to first line
drugs, classified as high confidence mutations according to
the PhyResSE reference catalog(19) (Additional file 3).

Normalization of SNPs by mapping to an MTBC an-
cestral genome. Normalizing the number of SNPs between
samples allowed the direct comparison of WGS outcomes
between studies and a detailed analysis of the impact pro-
duced by subtle contaminations. This normalization was pos-
sible by mapping to an inferred MTBC ancestral genome
(20). To illustrate this, we compared the outcomes of a stan-
dard pipeline in the experimental dataset using the afore-
mentioned ancestral genome and the conventional reference
strain for MTB, H37Rv. In order to avoid noise introduced
by possible contaminations, we only analyzed the samples
with more than the 99% of the reads classified as MTBC and
producing at least 40X of median sequencing depth (n=983).
As shown in Figure 3, when mapping to the inferred MTBC
ancestor (Figure 3.a), the number of fSNPs for all samples
stabilized around a very narrow range, in opposite to the re-
sults obtained when mapping to H37Rv (Figure 3.b). In fact,
99% of samples coming from human MTB strains (n=964)
were within a range of 668-953 fSNPs (median=860 fSNPs,
interquartile range (IQR)=87). In contrast, when mapping
to the reference strain, this range is dramatically extended to
381-1802 fSNPs (median=794 fSNPs, IQR=503). In the lat-
ter case, the lineage 4.10 strains, which H37Rv belongs to,
are much closer (408 fSNPs on average) than lineage 2 (1178
fSNPs), or lineage 1 (1769 fSNPs) strains. When mapping to
the MTBC ancestral genome, the remaining 1% of samples
were out of this range due to low sequencing depths, coinfec-
tions where many fSNP are lost due to mixed calls, and high
contaminations as will be detailed in the following sections.
Animal strains had also a higher number of fSNPs to the an-
cestral reference than human strains (895-1325 fSNPs, me-
dian=936 fSNPs, IQR=248, n=19), what is probably linked
to longer branches in the phylogeny. Based on this analysis
we set up an expected range of SNPs for any given MTB sam-
ple: 650-1400 fSNPs to include animal strains. Through the
following sections, we used this tool to focus our analysis on
subtle, hard-to-detect changes introduced by contaminations.

Contamination often leads to subtle errors in variant
calling that are elusive to conventional pipelines. Hav-
ing established that contamination can have a large impact in
SNP detection, we compared the outcomes of WGS analysis
in the experimental dataset when using a conventional work-
flow with the taxonomic filter approach described. Overall,
we found two main types of samples according to their level
of contamination. High proportions of contaminating reads
originate odd results such as very low sequencing depths, un-
even genome coverages, or extreme number of variants. This
type of contamination is less likely to suppose a real threat,
as a careful analysis would probably detect it. Therefore, we

focused our analysis on the subtle changes produced by mod-
erate to light contaminations. To do this, we analyzed only
the samples that were within the range of 650-1400 fSNPs
to the MTBC ancestral genome when using a conventional
pipeline, and had at least the 50% of sequencing reads clas-
sified as MTBC (n=1381 samples; 89.55% of the experimen-
tal dataset). These represent the samples in which neither
the contaminations nor the errors produced would be easily
detected. Comparing with the taxonomic filter approach re-
vealed that variation in the number of SNPs (vSNPs + fSNPs)
is a common fact among studies, with no exception (Figure
4). Globally, around the 10% of samples differed in at least
10 SNPs. In samples with 50% to 90% of MTBC (n=63), the
median change in the number of SNPs was 81 (IQR=186).
Notably, these differences are observed in samples with slight
contaminations as well, as in 66 samples with 90% to 97% of
MTBC we observed a median change of 13 SNPs (IQR=51).
In fact, as shown in Figure 4, dozens of false SNPs can be
called even for samples that could be considered “pure”.
Analyzing samples with a percentage of MTBC reads greater
than the 99% (n=1009; 72%) allowed us to confirm, along
with the simulated data, that the taxonomic filter itself did
not impact the results presented above. In these samples, the
median difference in SNPs was one (IQR=2) before and after
eliminating contamination. Indeed, for 377 of these samples
(27%) no change in SNPs was observed at all.

Variant frequencies are extremely sensitive to contam-
inant sequences. Due to the relevance of variable posi-
tions and their individual frequencies in genome-based stud-
ies, we compared all the vSNPs called for the conventional
and the taxonomic filter workflows. A total of 269,938 non-
redundant variable positions were predicted by the conven-
tional analysis pipeline. When applying the taxonomic fil-
ter, this number was dramatically reduced to only 16,464
non-redundant variable positions and, consequently, the 94%
of the variants detected were attributed to noise introduced
by contaminants. Importantly, non-target reads produced
large fluctuations in SNP frequencies. The median differ-
ence in frequency for all vSNPs was 26% (IQR=39%) in
contaminated samples (MTBC < 99%; n=383; 28% of sam-
ples), and the magnitude of the frequency shift was directly
correlated to the level of contamination (Pearson correla-
tion coefficient=0.87). In contrast, for the remaining 1009
clean samples, no difference in frequency was observed (me-
dian=0%, IQR=0.6%), thus confirming again that removal
of non-MTBC reads does not impact the analysis in non-
contaminated samples.

Contamination can affect clinical predictions from
WGS data. To exemplify the extent of these alterations in
WGS data interpretation, we evaluated how contamination
can impact drug resistance predictions and epidemiology.
When following the conventional analysis workflow, incor-
rect drug resistance susceptibility profiles (WGS-DST) were
predicted for 53 samples according to known mutations de-
scribed in the PhyResSE catalog (Additional File 1). Among
these, 26 were false streptomycin resistances, 6 showed false
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resistance profiles to first line drugs and 1 sample showed an
undetected resistance to both fluoroquinolones and strepto-
mycin. It must be noted that our pipeline reports any vSNP
in a frequency of at least the 10%. Since WGS-DST strongly
depends on the frequency of the mutations and the cutoffs
used to call variable SNPs, we evaluated how contamination
introduced variant frequency fluctuations among resistance
associated genes. Whereas no change was observed for clean
samples (median=0%; IQR=0%), strong fluctuations were
observed in the case of contaminated samples (median=18%;
IQR=43%). Strikingly, a large fraction of the vSNPs called
in these genes showed a frequency shift of at least the 20%
as a consequence of contaminating reads (Figure 5a).
In order to assess the impact of contamination in epidemio-
logical predictions, we used the fSNPs to calculate the pair-
wise genetic distances for all samples belonging to the same
study. We observed that contamination strongly affected ge-
netic distance calculations when comparing the conventional
and the taxonomic filter pipelines (chi square < 0.01). Re-
markably, the level of contamination did not strongly corre-
late with the amount of change (Pearson correlation coeffi-
cient=0.51), in agreement with the fact that slight contamina-
tions can be responsible for significant changes in the number
of SNPs, and vice versa. Contamination largely depends on
sample source and laboratory procedures. This fact is clearly
reflected in the amount of change for different types of sam-
ple (Figure 5b). Genetic distance calculations are subject
to greater alterations in sputum sample sequencings than in
early MGIT culture sequencings (chi square < 0.01), and to
greater alterations in the former than in standard cultures (chi
square < 0.01). This distortion in genetic distance can lead to
define wrong epidemiological relationships. For instance, a
sample from Mozambique was unlinked from a transmission
cluster due to a high number of contaminant reads. In this re-
gard, it is particularly interesting that some samples from the
sputum capture-sequencing study showed several fSNPs of
distance to their respective matching cultures, four of which
were above typical transmission cutoffs (17, 19, 20 and 35
fSNPs respectively). When removing non-MTBC reads, all
genetic distances between sputum capture-sequencings and
their respective matching cultures were of 0 fSNPs.

Discussion
In this work we use a taxonomic read classifier to check
for contamination in an extensive dataset of M. tuberculo-
sis WGS samples, demonstrating that non-target reads can be
found in any type of sample, regardless of the experiment be-
ing conducted or the specimen source. The assumption that
WGS from pure cultures only generates reads from the tar-
get organism, and that non-target reads are barely mapped to
the reference genome, has encouraged pipelines vulnerable to
contamination. Only few works included bioinformatic steps
aimed to deal with DNA contamination and, even in these
cases, the particular approaches used have not been evaluated
(13, 21, 22).
A recent report focused on the artifactual variation in WGS
of Mycobacterium tuberculosis from MGIT cultures hypoth-

esized that removal of non-mycobacterial reads prior to map-
ping might lead to the loss of several SNPs (23). Remark-
ably, the authors considered mycobacterial DNA as a whole,
disregarding non-tuberculosis mycobacteria. Here we show
that both NTM and non-mycobacterial DNA can be found
in cultures and primary diagnostic samples (Figure 1), which
sequencing reads can be aligned along the MTBC reference
genome (Figure 2a), leading to many false positive and neg-
ative variant predictions (Figure 2b). We use both simulated
and real sequencing experiments to demonstrate that removal
of contaminant reads prior to mapping is a solid approach not
affecting either the number of variants detected nor the fre-
quencies calculated. Of course, the efficacy of this method-
ology will directly depend on both the accuracy of the tax-
onomic classifier and the reference database used. In the
case of MTB, Kraken showed an outstanding performance,
although it was unable to distinguish some reads of M. avium,
a closely related organism to the MTBC. In these cases, better
databases or slower alignment-based algorithms like BLAST
could be used to improve the taxonomic filter accuracy.

While developing the pipeline to understand the impact of
contamination, we realized about the importance of the ref-
erence genome chosen for mapping. Most bioinformatic
pipelines for Mycobacterium tuberculosis align the sequenc-
ing reads to the reference strain H37Rv. This strain has been
comprehensively studied since its isolation in 1905 and has
been historically used as reference genome as it was the first
Mycobacterium tuberculosis genome ever sequenced (24).
H37Rv belongs to the lineage 4 of human MTBC and, as
a result, the variation expected when mapping to it deeply
depends on how phylogenetically close is the strain under
study. In contrast, by mapping to an inferred ancestral MTBC
genome we are able to establish an expected range of SNPs
for any given MTB sample. We use this range as a tool for
quality control, rapidly identifying extreme contaminations,
low quality sequencings, or super-infections with different
strains.

Using the taxonomic filter approach we estimate that around
94% of the variants identified in clinical samples from eight
different WGS studies were introduced by contaminant reads.
Importantly, we show that many false SNPs can be called re-
gardless of the extent of contamination, with dozens of in-
correct calls even in samples that would normally be con-
sidered as “pure”. All these alterations can have a massive
impact in population diversity estimates, distorting the bio-
logical conclusions that are drawn from WGS data. Studies
trying to estimate a molecular clock, or the action of selec-
tive forces could be completely biased, since they are often
based on the frequency spectrum derived from low frequency
variants (25). We exemplify this issue by comparing the out-
comes of a conventional pipeline with a contamination-aware
approach based on a taxonomic filter for two relevant appli-
cations: epidemiology and prediction of drug-resistant phe-
notypes. When estimating transmission, we observed a con-
siderable fSNPs-distance variation for many of the pairwise
distances calculated. This is of particular relevance in slow-
evolving organisms like MTB, for which transmission events
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are determined based on few variants. Transmission estima-
tion can be affected by either false positive or false negative
fSNPs, since contaminant reads can make the frequencies
fluctuate around the threshold used to call fixed variants (90%
in this work). This holds true when performing WGS-DST,
as predictions based on the observation of certain mutations
will finally depend on the thresholds used to call variable po-
sitions (10% in this work).
Most of the contaminations and the errors they lead to are
very likely to pass unnoticed to conventional pipelines. We
claim that inclusion of analysis steps aimed to deal with con-
taminant data are indispensable in any bacterial WGS bioin-
formatic workflow. This will be particularly relevant in large
sequencing projects directed towards the discovery of new
genotype to phenotype associations and when performing di-
rect sequencing from complex clinical samples.

Methods

Experimental and simulated datasets analyzed. In or-
der to evaluate the extent of contaminations among differ-
ent MTB WGS studies and their impact in the analysis out-
comes, we analyzed tuberculosis WGS runs from eight differ-
ent studies. Seven of these datasets were publicly available
beforehand (13, 14, 21, 26–29). Another dataset was gen-
erated in our laboratory, corresponding to an Illumina MiSeq
sequencing of 138 samples from Mozambique see Additional
file 1. All these samples are referred as the experimental
dataset and comprised a total of 1553 Illumina runs (Table
1).
To validate our analysis and quantify the impact of contam-
ination under controlled conditions, we generated a simu-
lated dataset. This dataset consisted of simulated Illumina
MiSeq 250bp paired-end sequencing experiments using ART
(30) for the MTBC reference genome, the human genome
(GRCh38, Ensembl release 81) and 44 different non-MTBC
bacterial species (see Additional file 1).

Contamination assessment using Kraken. In order to
assess the contamination level in each sample, all sequencing
reads were taxonomically classified using Kraken (15) with
a custom database comprising all sequences of bacteria, ar-
chaea, virus, protozoa, plasmids and fungi in RefSeq (release
78), plus the human genome (GRCh38, Ensembl release 81).

Use of an ancestral genome to normalize the number
of SNPs. In this work we normalize the number of variants
for any given MTB sample by mapping to the inferred ances-
tral genome of the MTBC, establishing a range of expected
SNPs that we use as a tool for quality control. To high-
light the hazard that unexpected contaminations suppose to
WGS outcomes, we focus our analysis in samples present-
ing variations within this range that could, therefore, pass
completely unnoticed when using a conventional pipeline.
To better illustrate this, we analyzed all the samples from
the experimental dataset as described in the variant calling
section mapping to both the conventional reference strain

H37Rv (NC_000962.3) and the aforementioned MTBC an-
cestral genome (20). We compared these two approaches
in terms of the number of fixed SNPs called for all non-
contaminated samples, considering non-contaminated those
with more than the 99% of the reads classified as MTBC and
producing at least 40X of median sequencing depth.

Analysis pipeline: impact of contaminant DNA in vari-
ant calling outcomes. In order to evaluate the impact of
DNA contamination in WGS analysis, each sample was ana-
lyzed following three different methods. Firstly, each sam-
ple was analyzed using a conventional tuberculosis WGS
pipeline. In summary, reads were trimmed and filtered us-
ing Trimmomatic (31) to remove low-quality sequences and
then mapped to the MTBC ancestral genome using bwa mem
(32). Variants were then called and filtered using VarScan2
(33) with two different set of parameters. To study transmis-
sion we used high-stringent parameters to obtain high con-
fidence fixed variants (fSNPs) (minimum depth of 20 reads,
average base quality of 20, p-value cutoff 0.01, observed in
both strands and minimum frequency of 90%), including re-
moval of SNPs in repetitive and mobile regions, SNPs called
within a 4bp window from deleted positions and high SNP
density regions (allowing a maximum of 3 SNPs in 10bp
windows). In order to predict drug resistance and study bac-
terial subpopulations, we used another set of parameters that
allowed us to look into variable SNPs (vSNPs) (minimum
depth of 10 reads and variant observed in at least 6 reads, av-
erage base quality of 20, p-value cutoff 0.01, observed in both
strands and minimum frequency of 10%), including removal
of SNPs in repetitive and mobile regions, and SNPs called
near deleted positions within a window of 4bp. Sequencing
depth was calculated for each sample using bedtools (34).
Samples were then reanalyzed, following the same steps, but
adding a previous taxonomic filter removing those reads clas-
sified by Kraken as any species other than Mycobacterium tu-
berculosis complex. Alternatively, samples were reanalyzed
substituting this taxonomic filter by a custom alignment fil-
ter. Different parameter combinations were tested to max-
imize removal of non-MTB mappings, minimizing loss of
MTB mappings (see Additional file 1). The filter finally con-
sisted in the removal of alignments with length, identity and
mapping quality below 40bp, 97% and 60 respectively.

Estimation of false positive and negative calls in the
simulated dataset. In order to inspect which regions of the
reference genome are susceptible of recruiting non-MTBC
reads, we analyzed the samples of the simulated dataset as
described in the analysis pipeline and then measured the
mean sequencing depth along the genome in 100 bp win-
dows. To assess whether false positive SNPs and drug re-
sistance predictions are produced by these non-MTBC map-
pings, we generated mock contaminated samples by mixing
simulated sequencing reads from the MTBC ancestor refer-
ence with different proportions (5%, 15%, 30% and 70%) of
other organisms corresponding to 12 common contaminants
identified in the experimental dataset. Therefore, any SNP
identified when analyzing these samples, would be a false
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positive SNP imputable to contamination. In addition, we
mapped these mock samples to a modified version of the ref-
erence genome where we introduced two types of mutations.
Random mutations each 100bp, and all the drug resistance
conferring mutations described as “high confidence” in the
PhyResSE catalog (19). Therefore, any of the introduced
SNPs that were undetected when analyzing these samples,
would be false negative SNPs attributable to contamination.

Pairwise genetic distances and drug resistance pre-
diction in the experimental dataset. For each study, ge-
netic distances between samples were calculated from mul-
tiple alignments of non-redundant variable positions across
samples using the R library APE (35) as the fSNP distance,
disregarding resistance-associated positions and using pair-
wise deletion for gap positions. Samples with at least 650
fixed SNPs to the MRCA genome and a median coverage of
20X were grouped in the same transmission cluster using a
maximum distance threshold of 15 fSNPs to cover a range
of recent and older transmission events. Drug resistance was
predicted for samples with a median coverage of at least 20X
according to the PhyResSE catalog of known resistance con-
ferring mutations. Mutations in resistance associated genes
that were not in this list and not described as phylogenetic
polymorphisms in the literature, were annotated as “candi-
date resistance mutations” (see Additional file 1).
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Table 1. Studies of the experimental dataset. *This study included sequencings from non-MTB organisms. We analyzed the 168 reported as MTB by the authors.

Study Publication Runs analyzed Accession
Mozambique Unpublished 138 PRJEB27421

Kwazulu-Natal Cohen et al. 2015 433 PRJNA183624
Nigeria Senghore et al. 2017 73 PRJEB15857
Belarus Wollenberg et al. 2017 552 PRJNA200335

High depth Trauner et al. 2017 63 PRJEB13325, PRJEB17864
Sputum capture-sequencing Brown et al. 2015 58 PRJEB9206
Sputum direct-sequencing Votintseva et al. 2017 68 SRP093599

MGIT sequencing Pankhurst et al. 2016 168* PRJNA268101, PRJNA302362
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