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 Abstract  
To explore the molecular processes underlying some biological theme of interest 
based on public data, gene lists are used herein as input for the construction of 
annotated pathway maps, employing Cytoscape apps, and then high-throughput 
(“omics”) gene expression data are overlaid onto these maps. Seeded with a 
published set of marker genes of the senescence-associated secretory phenotype 
and the genes of the cellular senescence KEGG pathway, a gene/protein interaction 
network and annotated clusters (a “pathway map”) of cellular senescence are 
derived. The map can be amended, by adding some application-specific genes, and 
overlaid with gene expression data describing cellular senescence of fibroblasts and 
with disease-related gene expression data associated with prostate and pancreatic 
cancer, and with ischemic stroke, allowing insights into the role of cellular 
senescence in disease. Some gene expression data are derived from the “Biomarker 
Benchmark repository”. The pathway map approach can be followed in principle for 
any biological theme of interest, fostering much-needed independence from the 
investigator-biased expert networks usually used for overlaying gene expression 
data. 
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 Introduction 
High-throughput data do not usually yield biological or medical insight just by 
themselves. Enrichment analyses are arguably the most popular way of generating 
insight, but they do not usually consider the mechanistic details of gene-protein 
interaction and regulation, as pathways and interaction networks do. Thus, there is a 
need for a flexible, easy to follow route to detailed insight, which does not limit the 
researcher to a specific fixed set of genes to begin with (like, KEGG pathways), nor 
to the expert knowledge as it is ingrained in a pathway database. Moreover, such a 
route to detailed insight should be simple and straightforward. Also, the route to 
detailed insight should be as robust as possible, and this property is not easy to fulfill. 
In this work, robustness specifically refers to a high degree of stability of the clusters 
into which the network unfolds, with respect to modifications of the input gene list. 
Without such clustering, we are left with interaction networks in the form of 
unstructured “hairballs” that enable fewer insights1. However, if we shy away from the 
commonplace utilization of more or less immutable expert pathways (from KEGG, 
WikiPathways, Ingenuity, etc.), we need to obtain the pathway or network interaction 
information based on other sources, which are necessarily non-expert-curated 
interaction data. These are available in large amounts, but these are also inherently 
noisy and based on a mix of experimental or computational source interactions 
generated in a variety of contexts. Thus, we must expect automated clustering to lack 
robustness. Nevertheless, by an appropriate choice of interaction data, we here 
demonstrate that it is possible to generate pathway maps based on gene lists in an 
automated fashion. Moreover, we show that these pathway maps can be sufficiently 
stable such that small perturbations of the input gene list, e.g. the addition of a few 
genes, do not trigger sweeping changes in the pathway map, even if we insist on 
non-overlapping clusters, for easy comprehension and visualization. Using the MCL 
clustering and annotations based on wordcloud-assisted processing of GO gene 
annotations as provided by Cytoscape apps (for details see below), in this paper we 
assemble a plausible pathway map that is describing cellular senescence in a highly 
unbiased fashion. We furthermore amend the pathway map by adding a few genes 
based on application-specific interest. For senescence- and disease-related data, we 
then show how the pathway maps make it easier to extract insights from high-
throughput gene expression datasets. 

The focus of our interest for establishing such an automated workflow is on cellular 
senescence. 50 years ago it was discovered that human diploid fibroblasts have a 
finite replicative potential in culture after which the cells enter a state of irreversible 
replicative arrest2. Today it is clear that in addition also various types of stress, like 
reactive oxygen species or DNA damaging agents, can induce cellular senescence, 
suggesting that it is a special stress response state of the cell3. Transcriptional 
changes include an up-regulation of tumor suppressor and anti-apoptotic genes and 
a down-regulation of cell-cycle promoting genes. In addition, senescent cells secrete 
an inflammatory mix of cytokines, growth factors and matrix metalloproteinases, 
which form the senescence-associated secretory phenotype (SASP). This paracrine 
signaling has a range of negative effects involving tissue remodeling, aging and 
tumorigenesis. Molecular identification of senescent cells is not trivial, since the 
senescent state induced by different triggers in different tissues is heterogeneous4. 
Still, key markers are a large and flat cell morphology, a senescence-associated form 
of β-galactosidase, and expression of tumor suppressors such as CDKN1A (p16INK4A). 
Senescent cells are involved in the initiation and progression of various diseases. 
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Although cellular senescence generally acts as a tumor suppressor mechanism, it 
can also promote cancerogenesis and fibrosis via the SASP5. Such (antagonistic) 
pleiotropy includes fibrotic processes important for wound healing6 and in the liver7. 
Cellular senescence is also implicated in diseases such as cancer, stroke, 
atherosclerosis, osteoarthritis and metabolic disorders5. A causal relationship is 
supported by studies that showed that transplanting senescent cells into young 
animals caused physical dysfunction8 and removing senescent cells increases health 
and lifespan8-10.  

Prostate and pancreatic cancer are on opposite ends in terms of survival prospects 
at time of diagnosis. Prostate cancer is a heterogenous disease ranging from well 
differentiated and hardly progressive low-grade cancer to highly aggressive and life-
threatening high grade disease. In the United States, prostate cancer that is local or 
regional at the time of diagnosis has a 5-year survival rate of nearly 100%, while 
those with distant metastases have a 5-year survival rate of 29%11. In contrast, in the 
less than 20% of cases of pancreatic adenocarcinoma with a diagnosis of localized 
small cancerous growth (less than 2 cm in Stage T1), about 20% of Americans 
survive to five years12. Cellular senescence can suppress both prostate and 
pancreatic cancer, and cancerous proliferation in general, but it also triggers tumor 
progression by the SASP13,14. Also, cellular senescence contributes to 
atherosclerosis and thromboembolism, and after the ischemic stroke it can attenuate 
recovery15,16,17. Moreover, cancer and stroke are linked by components of the SASP, 
specifically PAI1 (aka SERPINE1)18. Patients with pancreatic cancer show an 
especially high incidence of thromboembolic complication16. In the following, we 
specifically explore such molecular commonalities by mapping high-throughput data 
to senescence-related pathway maps. 
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 Results 

Construction and exploration of senescence pathway maps  
In the following, we will first explore a canonical map (based on SASP-related and 
cellular senescence genes), overlaying public high-throughput data that were 
specifically generated to characterize cellular senescence. We will then explore the 
canonical map with disease-related data. We also add genes of interest to explore 
specific senescence pathway maps for specific disease applications. 

Applying GeneMANIA19 and AutoAnnotate20 to the 189 SASP and cellular 
senescence genes4,21 (see Suppl. Table 1 in Suppl. File 1), with default parameters 
(except for the limitation of interaction data to co-localization, genetic and protein 
interactions, see Methods), we obtained the pathway map of Fig. 1 and Table 1. 
GeneMANIA added 20 closely interacting genes towards a total of 209 genes. In Fig. 
1, the nodes in the pathway are colored using three gene expression data sets of 
Ras-induced senescence22,23,4, as described below. The clusters from Fig. 1 that 
include more than two genes are presented in Table 1, where the numbering 
matches the one in the figure, starting top-left. All clusters and full lists of genes are 
provided in Suppl. Table 2 in Suppl. File 1. The Cytoscape file is provided in Suppl. 
File 2. Finally, the pathway map can be explored interactively at 
http://functional.domains/senescence/. 

In a bird’s-eye view, the canonical map of Fig. 1 consists of 28 clusters. The two 
largest clusters/pathways on the top left feature most of the cell-cycle genes, 
including CDKNs (cyclin-dependent kinase inhibitors), CDKs (cyclin-dependent 
kinases) and CCNs (cyclins). The SASP is mostly featured in the 6-gene cluster near 
the top right (cluster 7, red arrow), and in the 3-gene cluster bottom-left (cluster 18, 
blue arrow). The bottom-right circular structure includes all genes not assigned to any 
cluster. Table 1 provides a list of the larger clusters; we will refer to this detailed 
breakdown of clusters/pathways in the presentations that follow. By construction, the 
clustering rests on nothing else but co-localization, protein and genetic interaction 
data, and the annotation of these clusters rests on nothing else but the GO 
annotations of the genes in each cluster. Thus, the pathway map required no specific 
expert intervention except for the individual layout of the clusters, which placed the 
genes roughly in an upstream/downstream fashion (see Discussion). 
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Fig. 1: Canonical senescence pathway map, based on the SASP and the KEGG 
cellular senescence genes. The same pathway map is shown with annotations 
from three different experiments. The size of a gene node is proportional to its 
GeneMANIA score, which indicates the relevance of the gene with respect to the 
original list of genes to which GeneMANIA, based on the network data, added 
another 20 genes. Genes upregulated in senescence (GSE19899, ref22, top, 
GSE61130, ref23, middle, E-MTAB-5403, ref4, bottom) are shown in red, 
downregulated genes are shown in blue, and grey denotes genes for which no 
expression values were available. Clusters with genes known for their association 
with the SASP are indicated by an arrow. The color of an edge refers to the source of 
the edge in the underlying network, that is physical interactions (red), co-localization 
(blue), and genetic interactions (green). The thickness of an edge is proportional to 
its GeneMANIA “normalized max weight”, based on the network data. The pathway 
maps can be explored interactively at http://functional.domains/senescence. 
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Table 1: Senescence-related clusters/pathways of Fig. 1, sorted by size. Suppl. Table 2 in Suppl. File 
1 provides a full list of clusters (including clusters of size 2), and the full list of genes per cluster. 

No Senescence-related gene 
cluster (“pathway”), automated 
annotation 

Size Key genes Remarks 

1 cycle regulation checkpoint 
mitotic cell 

19 GADD45, CDKN1A/B, 
CDK1/2/5, CCNA/B/E, 
E2F3, TGFB3 

stress response; cell 
cycle focused on S/G2/M 
phase; growth regulation 

2 transcription regulation cell 
response negative 

19 CDK4/6, CCND/E, 
E2F, RB/RBL, MYBL2, 
FOXM1, SIRT1, 
LMNB, SERPINE1 

cell cycle focused on G1 
phase; E2F/RB; DREAM-
complex-related24; 
deacetylation; nuclear 
lamina; fibrinolysis & cell 
adhesion 

3 antigen endoplasmic reticulum 
membrane vesicle 

11 HLA, KIR2DL MHC/killer 
immunoglobulin-like 
receptor mediated 
response to senescence25 

4 insertion mitochondrial outer 
membrane permeability 

11 RAD1/9, CCND, 
PPP3, MCU 

DNA damage response; 
mitochondrion 

5 kinase receptor pathway toll-
like signaling 

10 MAP2K, MAPK, 
VDAC3, GATA4, 
IGFBP2 

(Growth mediated by) 
MAP-kinase signaling 

6 repair signal dna regulation 
damage 

9 RAD50, NRAS, 
MDM2, VDAC2, 
SLC25A 

DNA damage response; 
mitochondrion 

7 response regulation leukocyte 
positive immunity 

6 CXCL5/8/20, IL1B SASP 

8 cell growth regulation process 
metabolic 

5 TGFB transforming growth factor 
beta regulation 

9 g2 transition dna-dependent 
atpase methyltransferase 

5 LIN9/37/52/54, RBPP4 MuvB/DREAM complex 

10 signaling pathway 
phagocytosis 
phosphatidylinositol receptor 

5 RRAS, PI3K phosphatidylinositol-3-
kinase signaling 

11 muscle development skeletal 
fiber striated 

4 MMP1, TIMP2 (extracellular matrix) 

12 host morphology physiology 
organism secretion 

3 -/- -/- 

13 divalent metal ion cation 
calcium 

3 TRP TRP channels 

14 methyltransferase triglyceride 
catabolic neutral acylglycerol 

3 PPP1 Calcineurin 

15 peptidyl-serine phosphorylation 
peptidyl-tyrosine extracellular 
hormone 

3 IL11 (inflammation) 

16 morphogenesis regulation 
blood cell migration 

3 FGF2, CHEK2 (proliferation) 

17 transduction p53 dna 
checkpoint damage 

3 ATR, ATM DNA damage response 

18 multicellular organismal 
macromolecule extracellular 
matrix 

3 MMP3/10 SASP, metallopeptidase 

19 development response skeletal 
muscle signaling 

3 MTOR, CCNB3 (cellular proliferation) 
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Exploring microarray data on cellular senescence 
The gene expression data on Ras-induced senescence of IMR90 fibroblasts 
displayed in Fig. 1 (top) were published as part of a study of the role of the Rb 
(retinoblastoma) protein family in senescence22. The authors reported that a 
“disruption of a p21-mediated cell-cycle checkpoint” could be due to loss of the tumor 
suppressor Rb that usually attenuates cellular proliferation. Accordingly, in the 
situation of senescence as described in Fig. 1 (top), we find that p21 (CDKN1A) is 
the only strongly upregulated gene in the cluster/pathway 1, and the most strongly 
downregulated genes are the cyclins (CCNs) A2 and B1, reflecting that the S/G2/M 
phases are most affected (Vermeulen et al, 2003). In cluster/pathway 2, we find that 
other parts of the cell cycle (G1 phase) are not affected as much. Most prominently, 
downregulation of Lamin B is observed here. Lamin B happens to be allocated to 
cluster/pathway 2, even though its downregulation is a general feature of cellular 
senescence. The two clusters/pathways most closely associated to the SASP 
(pathways 7 and 18, next-to-top-right and bottom-left of the map, red and blue arrow) 
feature the expected upregulation of their members, in particular of IL1B and of 
cytokines, and of matrix metalloproteinases 3 and 10. In cluster/pathway 11, MMP1 
is found upregulated as well, and its inhibitor TIMP1 is downregulated. Ras-induced 
senescence is reflected in the map by upregulation of HRAS, which is however part 
of the circular structure of genes not allocated to any cluster/pathway. Finally, the 
members of the Rb family22 only feature a negligible fold-change, suggesting that 
their regulation is not mediated by the amount of transcript, but likely by 
phosphorylation, as is also the case for the CDKs. The E2F transcription factors do 
not feature much fold-change either; their downregulation in case of senescence is 
plausible though, as they are considered tumor drivers that are inhibited by the Rb 
proteins. Finally, CCNE1 (cyclin E1) as the key target of Rb is upregulated and this 
unexpected observation is discussed extensively in Chicas, et al. 22.  

Exploring RNA-Seq data on cellular senescence 
For comparison, we overlaid the RNA-Seq based expression data of Herranz, et al. 
23, which were used to study Ras-induced senescence in IMR90 fibroblasts, see Fig. 
1 (middle). For this dataset, the change in gene expression (log fold change, logFC) 
could be calculated for 205 of the 209 genes in the senescence pathway map; this 
number is the largest one available of all public datasets considered by Hernandez-
Segura, et al. 4. We note the high concordance between Fig. 1 top and middle; in 
cluster/pathway 1, the Herranz dataset is different only in that CXCL2 is upregulated, 
while in cluster 2, SERPINE1 is up-regulated instead of down-regulated, but Lamin B 
is downregulated as in the first IMR90 senescence dataset. The SASP in clusters 7 
and 18 is also upregulated, and the SASP-related antagonism of MMP1 and TIMP1 
in cluster 11 is visible. The SASP factor CSF226 (cluster 25) is upregulated much 
stronger here; in fact it is the strongest-upregulated gene in Fig. 1 (middle) but it is 
not further discussed in Herranz, et al. 23. Also, IL11 (cluster 15) is strongly 
upregulated. 

We also explored the datasets generated by Hernandez-Segura, et al. 4, along which 
our list of SASP genes was published. We focused on the HCA2 human foreskin 
fibroblast data of radiation-induced senescence (disregarding keratinocyte and 
melanocyte data) to allow for the most meaningful comparison with the other 
fibroblast data we investigated, using the 20-day post radiation data set that reflects 
cell-cycle arrest best according to the paper. This data set also has the highest 
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number of genes (of the canonical senescence pathway map) for which fold changes 
are available (160 out of 209). Reassuringly, the gene expression landscape (Fig. 1, 
bottom) closely resembles the one observed before, e.g. for clusters/pathways 1 and 
2 (except that CDK6 and CCNE1 feature higher expression). In cluster 4, CCND2 is 
upregulated strongly. The SASP is again upregulated, and in cluster 25, CSF2 is 
upregulated here as it is in the Herranz dataset (Fig. 1, compare middle to bottom). 

Exploration of cancer, stroke and mitochondrial dysfunction data 
Prostate cancer. We utilized the “Biomarker Benchmark repository” of Golightly, et 
al. 27, based, for prostate cancer, in turn on Erho, et al. 28 (GSE46691), and we used 
the repository’s gene expression data in R29 to derive log fold change data describing 
prostate cancer disease progression (logFC from Gleason grade 7 to 8-10, which is 
prognostic for metastasis, as suggested by the repository’s 
“Prognostic__Metastasis_Analysis.txt” file). For mapping to the senescence pathway 
map, we inverted the colors in this case, as disease progression towards metastasis 
is opposite to tumor-suppression by cellular senescence. Reassuringly, SASP genes 
are then turning red (that is, up in senescence, down in metastasis) in clusters 7 and 
18 (and also in cluster 1, affecting CXCL2), and cell cycle genes in clusters 1 and 2 
are turning blue (Fig. 2, top). The secretion of CXCL2 as a pro-inflammatory cytokine 
was found when investigating the stromal-epithelial interactions in the early stages of 
prostate cancer, in an in-vitro setting30 . 

Pancreatic cancer. Overlaying gene expression data of carcinoma-associated 
fibroblasts (GSE81368)31 onto the canonical senescence pathway map, in the first 
pathway (cluster 1) we observe downregulation of most cell-cycle genes, specifically 
of cyclins A2, B1 and B2, matching the observation of a reduced number of S-phase 
cells reported by the authors (see Fig. 2, middle). The upstream stress signaling by 
GADD45 is upregulated, as is the downstream SASP-related factor CXCL2. In 
cluster 2, which is more closely connected to the G1 phase, there is no consistent 
pattern. SASP genes in clusters 7 and 18 are upregulated, most prominently CXCL8 
(also known as IL8) and MMP3, both as noted in the paper. Still, cyclin D variants, in 
form of CCND1 (in cluster 20), CCND2 (in cluster 4) and CCND3 (in cluster 2), are 
upregulated, suggesting some G1-phase activity. Next, we overlaid gene expression 
data describing that senescence driven by KDM6B, a tumor-suppressing mediator of 
KRAS-induced senescence, attenuated aggressiveness of PDAC cells 
(GSE28155)32, onto an amended senescence pathway map, following our map 
construction recipe except for adding KDM6B and its downstream target CEBPA 
(also known as C/EBPα) to the list of input genes. The amended senescence 
pathway map in Fig. 2 bottom was thus generated de novo, and it is displayed 
without any manual layout. The clustering, however, is essentially the same as in the 
canonical pathway map. Again, clusters 1 and 2 feature most of the cell cycle genes. 
While gene expression of KDM6B (grey arrow) was not measured, CEBPA (red 
arrow) is downregulated as expected. However, the cell cycle gene featured in the 
paper, CDKN2A/p16, is not differentially expressed as would be expected, the other 
cell cycle genes are regulated in an inconsistent fashion, and the SASP genes are 
unexpectedly downregulated (cluster 7). 
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Fig. 2: Senescence in disease, prostate and pancreatic cancer. The canonical 
senescence pathway map (top and middle), based on the SASP and the KEGG 
cellular senescence genes, and an amended one (bottom), adding two genes of 
interest and omitting any manual layout. Genes upregulated in disease (GSE46691 
Erho, et al. 28, top, GSE81368, ref31, middle, GSE28155, ref32, bottom) are shown in 
red, downregulated genes are shown in blue, and grey denotes genes for which no 
expression values are available. See Fig. 1 for further explanations. 
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Stroke. Overlaying the differential data provided by comparing ischemic stroke 
patients to controls33 (GSE22255) reveals that senescence-associated processes 
can indeed be found in peripheral blood mononuclear cells (PBMCs) after stroke. 
Specifically, in cluster 1, CDKN1A is upregulated, and, correspondingly, CCNA2 is 
downregulated, though most cell cycle genes are regulated in no consistent fashion. 
The SASP genes in cluster 7 are upregulated, as is interleukin 6 (IL6; found in the 
circular structure bottom right). IL6 is not only an important part of SASP, but can 
also be linked with angiogenesis after infarction34. Furthermore, it is discussed as a 
biomarker for the risk and outcome for ischemic stroke35,36. 

Cancer and Stroke. Co-morbidity has been described for stroke and pancreatic 
cancer37, based in part on cancer associated hypercoagulation. We added the four 
extra SASP factors from Valenzuela, et al. 18, their Table 1 (“Senescence-associated 
secretory phenotype (SASP) factors with potential effect on platelets aggregation and 
the fibrinolytic system”), that are not already included in the canonical map (that is, 
MMP2, FN1, THPO and CSF3). We then constructed a revised pathway map, which 
is mostly stable with respect to the canonical one except that clusters 1 and 2 are 
merged. In this revised pathway map, inconsistently regulated cell-cycle genes are 
thus forming the resulting top-left cluster, while the SASP factors are found 
upregulated in cluster 9, second row to the left. In the revised map, these include the 
upregulated IL6. Another upregulated SASP factor, IL1B, is found in cluster 19, third 
row. The other SASP factors involved in coagulation, including the ones that were 
added (red arrows), display only some moderate upregulation. 

Mitochondrial dysfunction in mice. We recently contributed to an investigation of 
the effects of mitochondrial heteroplasmy in mice, based on a conplastic adenine-
repeat variation (9 to 13A) in the origin of light-strand DNA replication of the 
mitochondrial genome, which causes shorter lifespan in female mice38. Overlaying 
the corresponding gene expression data onto the canonical senescence pathway 
map (Fig. 3, bottom) demonstrates no clear pattern except in cluster 2, where 
specifically the downstream genes (SIRT1, LMNB1, SERPINE1, TFDP2) are 
regulated as expected in cellular senescence; in fact, the SASP factor SERPINE1 
(also known as PAI1) is the gene with the strongest upregulation in the entire 
pathway map. 
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Fig. 3: Senescence in stroke and mitochondrial dysfunction. The canonical 
senescence pathway map (top and bottom), based on the SASP and the KEGG 
cellular senescence genes, and an amended one (middle), adding four genes of 
interest and omitting any manual layout. Genes upregulated in disease or dysfunction 
(GSE22255, ref33, top and middle, Hirose et al.38 bottom) are shown in red, 
downregulated genes are shown in blue, and grey denotes genes for which no 
expression values are available. See Fig. 1 for further explanations. 
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 Discussion 
The senescence pathway maps described here were generated in an automated 
fashion. Manual fine-tuning was only required for the initial selection of the underlying 
network data. This increases our confidence that the same approach can be followed 
by researchers who wish to obtain a quick overview of their high-throughput data in 
the context of their specific choice of network input genes.  The approach also 
worked for our recent analyses of genes implicated in human and C. elegans 
health39. In all cases, public network data were used to generate a specific network 
based on a list of input genes by GeneMANIA19, which was then clustered into 
“pathways” by AutoAnnotate20, in turn employing ClusterMaker40. Here, the only fine-
tuning came in, as follows. If a large amount of interactions is publicly available for 
the input genes, they form a tight “hairball” so that clustering by the default 
approaches offered by AutoAnnotate returns a single cluster, or no results at all. 
Thus, employing all the default network sources of GeneMANIA, clustering of the 
senescence genes that gave rise to the canonical senescence pathway map was 
then dominated by a single large cluster. Therefore, we limited the underlying 
network information to three of the six available sources (co-localization, genetic and 
protein interactions but not co-expression, pathways or shared domains) to obtain the 
map as presented in Fig. 1. In case of health genes based on genome-wide 
association studies, the default (larger) set of network sources could be used39 
without resulting in a tight “hairball”, since many of the genes included there featured 
only sparse connectivity as is typical for a gene list based on genome-wide 
association. 

The annotation of the clusters/pathways based on frequent words in the GO terms of 
the pathway genes was completely automated as well (by AutoAnnotate, in turn 
employing WordCloud). In the maps presented, we deviated slightly from the default 
WordCloud parameters, in setting the “max. number of words per cluster label” to the 
maximum of 5, to display as much information as possible, and by setting the 
“Adjacent word bonus” to 0; the default “Adjacent word bonus” of 8 triggered the 
listing of some rare words adjacent to frequent words, such as “vesicle-mediated 
transport” in case of the second-largest cluster, caused by a GO annotation of one 
gene (SERPIN1: “regulation of vesicle-mediated transport”). The layout (the 
determination of the exact positioning of the genes) was based on expert knowledge, 
but this step is optional, it pleases the eye (by avoiding label overlap) and enables 
easier understanding (by placing “upstream” and “downstream” genes into a 
presumably right order). 

There are three major advantages of our approach, in comparison to the mapping of 
high-throughput data onto existing curated pathways such as the ones offered by 
KEGG or WikiPathways. For one, our approach works even if there is no expert 
pathway available that can be expected to help in understanding a high-throughput 
dataset. Also, our approach is not biased by the expert knowledge included in the 
structure of existing pathways. And there is flexibility in the selection of the gene list, 
here shown by assembling the canonical senescence gene list from two sources to 
start with, and later on by adding a few specific genes for application-specific 
investigations.  

Our approach has limitations. In some scenarios it is possible that the pathway map 
defies common sense in grouping together genes whose interaction is based on the 
underlying network sources, but the genes are not known to work together based on 
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the literature. It may be hard to decide whether such pathways are biologically 
meaningful, or whether these only reflect the noise in the underlying public interaction 
data. In our case, the canonical cell-cycle genes (CDKNs, CDKs; CCNs i.e. cyclins) 
were mostly, but not exclusively, distributed to the two largest 
clusters/pathways.Moreover, there are still a number of steps required for the recipe 
from the input gene list towards the pathway map, but these could be fully automated 
in principle. A final issue is the low dimensionality of any pathway map: in a 2D plane, 
and even in 3D space1,41, only the most prominent groups of genes can be visualized 
as genes that are “working together”. All the other groupings, many of which may act 
in parallel, or be realized only in some specific cellular contexts, are reflected in the 
large number of edges that connect the genes of the different clusters/pathways. Still, 
the plausibility of the resulting pathway maps does not necessarily come as a 
surprise. Already some time ago, Dutkowski, et al. 42 observed that the GO gene set 
hierarchy can, to some degree, be inferred from protein interaction data. Further, the 
experience of other researchers with GeneMANIA and AutoAnnotate includes many 
meaningful clusterings of networks as described in the original publications as well as 
in work citing these. 
 
This work made intense use of the benefits that FAIR principles of scientific data 
already offer. Data were found and accessed with GEO and GEO2R, and they were 
interoperable via GeneMania, AutoAnnotate and Cytoscape, supporting reuse that 
enabled new insights into cellular phenotypes. This work shall be extended over time 
with data from more diseases to which senescence is considered to contribute. While 
the pathway maps themselves were generated in an automated fashion, the 
selection of experimental data was not. Thus, we have not yet reached the limits as 
to the degree of automation of data analyses, for senescence and other cellular 
phenotypes.   

 Methods 
Construction of the canonical senescence pathway map. For the canonical 
senescence pathway map, we provided 33 known senescence markers assembled 
by Hernandez-Segura et al. 4 (Fig. S2 therein) together with the 160 genes included 
in the human “cellular senescence” KEGG pathway (see Suppl. File 1) to the 
Cytoscape application GeneMANIA19, version 3.4.1, downloaded October 2017. We 
used default settings except that we limited the underlying interaction data to co-
localization, genetic and protein interactions, to create a functional interaction 
network that is complemented with the GeneMANIA default of 20 connecting genes. 
(The overlap between the 33 markers from Hernandez-Segura et al and the 160 
KEGG genes consisted of CDKN1A, CDKN2A, CXCL8 and IL6; including the 20 
genes added by GeneMANIA, the senescence pathway map thus consists of 209 
genes.) For clustering and annotation of the clusters based on the “annotation name” 
column of GO annotations collected by GeneMANIA, we used AutoAnnotate20 v1.2, 
downloaded October 2017, in Quick start modus to enable “layout network to prevent 
cluster overlap”, so that a map of disjoint clusters (senescence pathways) was 
generated, supplemented by a second advanced annotation step to increase the 
“max. number of words per cluster label” to the largest possible value of 5, and 
setting the “Adjacent word bonus” to 0. Cluster annotations were generated by 
AutoAnnotate based on these parameters using WordCloud43 v3.1.1, downloaded 
January 2018; using an adjacent word bonus results in cluster annotations with more 
words that do not feature an obvious relationship to cellular senescence. Thus, with 
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two minor modifications, we conducted the same pathway mapping approach as 
Möller et al. 39. We performed a manual layout of the clusters/pathways guided by 
expert knowledge, placing genes considered “upstream” in senescence-related 
signaling on top, and placing genes considered “downstream” (specifically 
components of the SASP) further down. 

Overlaying of expression data onto pathway maps. We searched the GEO (Gene 
Expression Omnibus) database in July 2018 for datasets/series with the search term 
“cellular senescence”, limited to the type “Expression profiling by array”, sorting by 
the number of samples. From the resulting list, we selected GSE19899 as the 
second-largest dataset (50 samples); the largest dataset, GSE40489, was very 
specific to lymphoma and therefore ignored. The gene expression (GPL570) subset 
of the GSE19899 dataset consists of two experiments/batches (the latter one 
consisting of the last 6 samples, marked explicitly “E2”), and both experiments 
consist of two replicates, A and B. From experiment 1, we took the two “MLP 
(Growing)” replicates as control, and the two “MLP (Senescent)” replicates as 
senescent samples, ignoring quiescent samples as well as samples treated with 
shRNA (MLP samples are labeled as “Growing cells expressing a vector control”). 
From experiment 2, we took the two “(Growing)” replicates as control, and the two 
“(Senescent)” replicates as senescent samples. All samples are from human lung 
fibroblast IMR-90 cells, featuring control versus Ras-induced senescence.  

We also investigated RNA-seq based datasets of cellular senescence. RNAseq data 
from one study4 was obtained from the Gene Expression Omnibus: Herranz et al. 
(accession GSE61130; we only contrasted senescent versus non-senescent cells; 
any manipulation related to ZFP36L1 was ignored). In addition, RNAseq data from 
Hernandez-Segura et al. was downloaded from Array Express (accession E-MTAB-
5403). Data was converted to log2-fold changes, from the normalized data. 

To investigate senescence in a variety of disease scenarios, we selected the 
following disease datasets based on in-house expertise. Prostate cancer expression 
data28 (GSE46691) as prepared in a readily interpretable format27 was read into R 
version 3.5.1. Ensembl gene IDs were converted to HUGO gene IDs with biomaRt44, 
and mean expression of samples with Gleason score >= 7 minus mean expression 
levels of samples with a lower Gleason score was computed as logFC. For 
pancreatic cancer, we selected the only GEO hit with the search term ("cellular 
senescence" "pancreatic cancer"), GSE81368. We selected all 3 samples with 
growth state “non-senescent” as control, and all 6 samples with growth state 
“senescent”, independent of the experimental factors gender (male/female) and 
protocol (“Peroxide”/“Replication”). A wider search with the term (senescence 
"pancreatic cancer") retrieved one more dataset, that is, GSE28155. Here, we 
selected all three samples “BxPC3 cells transfected with control vector” as 
senescent, and all three samples “BxPC3 cells transfected with vector expressing 
shJMJD3” as control, since KDM6B (aka JMJD3) is a tumor-suppressive mediator of 
KRAS-induced senescence. For stroke, we found no GEO hit with the search term 
("cellular senescence" "ischemic stroke”). Using the search term ("ischemic stroke" 
"peripheral blood mononuclear cells”), we took GSE22255, which has the largest 
number of samples (i.e. 40). We selected all 20 samples labeled “control” as control, 
and all 20 samples labeled “IS patient” for the senescent state, based on the 
“Characteristics” column. Finally, mapping liver gene expression data changes from 
the C57BL/6J-mtAKR/J strain of mice (compared to control C57BL/6J mice) that 
feature heteroplasmy-related dysfunction triggering a lower lifespan and a metabolic 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2018. ; https://doi.org/10.1101/404525doi: bioRxiv preprint 

https://doi.org/10.1101/404525
http://creativecommons.org/licenses/by-nd/4.0/


15 

 

impairment38, we directly took the “effect size” column from their “Supplementary File 
S1”, and used the gene symbols for mapping directly from mouse to human. 

For each GEO array-based dataset, we used the GEO2R tool45 to compute fold-
changes using default parameters, inspected the “Values” boxplot, and downloaded 
the resulting table, imported it into Numbers (which works similar to Excel, but does 
not require changing “General” manually to “Text” column format for the gene 
names), and exported to CSV format. Selecting the “Gene.symbol” column as key 
column of the table and selecting the “gene name” column created by GeneMANIA 
as the “Key column for network”, we established matching gene names in the 
GEO2R and GeneMANIA tables as the common reference and then imported the 
tables into Cytoscape. In case of GSE81368 (pancreatic cancer), no gene symbols 
were available, but we could match the GB_ACC of GEO2R to the RefSeq mRNA ID 
in the GeneMANIA table, after removing all trailing version numbers („.1“, „.2“, „.3“, 
etc.) from the GB_ACC. Direct import of the text files from GEO2R is hindered by 
quotation marks, which are removed by Numbers. Finally, we created/copied and 
adjusted the “Style” of the resulting network so that the logFC values from GEO2R 
are mapped continuously to a red-blue color scale with the appropriate max/min 
settings, adding a handle to map a logFC of 0 to white. 

The accompanying web presentation uses CytoscapeJS to present the pathways. 
Genes can be selected via their cluster or by the GeneOntology terms they are 
annotated with. Any such selection of genes is referenced to the MEM46 and 
g:Profiler47 web services.  
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