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Abstract

Collective migration is commonly observed in groups of migrating cells,
in the form of swarming or aggregation patterns. Mathematical models
have been proven very useful in understanding the dynamics of collective
cell migration. Such models leading to collective migration depend on
how cells decide over their velocity upon their microenvironmental infor-
mation. This cell decision-making is mediated by a variety of biophysical
mechanisms. The latter can be either too complex or largely unknown. To
circumvent the problem of knowing all the details of the underlying mech-
anisms, we need to identify a principle that serves as a generative model
of collective migration independent from the biophysical details of the
system. Employing the least microenvironmental uncertainty principle
(LEUP), we construct a model where cells sense the microenvironmental
velocity distribution and reorient towards the least microenvironmentally
uncertain direction. Depending on the choice of parameters, for instance
interaction strength and size of the local interaction neighborhood, a mul-
titude of collective migration patterns can emerge such stable global polar
aligned state, partial nematically-ordered state or even vortices. Finally,
we apply this model to the study of the collective migration of spher-
ical Serratia marcescens bacteria. We show that our mode vl satisfac-
tory reproduces the experimentally observed collective vortical behavior
of spherical bacteria.

1 Introduction

Collective movement of populations is observed in several biological systems at
different scales, from massive migration of mammals (Bennett and Tang, 2007)
to cells during embryogenesis (Sato et al. 2010). In these systems, cells which
are able to propel themselves independently, start moving in a coordinated
fashion once enough similar cells are brought together. Due to the relevance of
many of these processes to human activity, as well as their pervasiveness, sev-
eral models have been proposed for studying collective migration. Mechanistic
models, in particular, incorporate the driving interactions between individuals
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in the specific system modeled. It is clear that different types of individuals,
especially across different spatial scales, synchronize their movements through
different mechanisms. This results in a variety of models specific to a certain in-
dividual species (Bennett and Tang, 2007; Hernandez-Ortiz et al. 2005; Ginelli
et al. 2015). However, it is not uncommon the partial knowledge of the exact
biophysical details of these mechanisms.

To address the above, phenomenological models of collective migration have
been proposed. Typically, these mathematical models introduce a phenomeno-
logical short-range bias every individual feels. In one of the most influencial
collective migration models (Vicsek et al. 1995), the direction of movement of
individuals changes towards the mean velocity of individuals in a local neigh-
borhood, inducing long-range swarming at the population level. Such models
can be further refined into “physical” models, where individual individual dy-
namics are dictated by a system of Langevin equations. In Langevin equation
models, the reorientation of individual velocities is brought about by the exis-
tence of a local interaction potential, which is determined by neighboring cells.
Collective migration can be achieved, for example, through a ferromagnetic-
like interaction potential, which locally aligns individual velocities polarly, or a
liquid-crystal-like interaction potential, promotes nematic alignment (Peruani
et al. 2008).

Here, we view migration as an active decision-making process of single cell
velocity, in terms of speed and direction. In the specific case of biological cells,
velocity decision-making involves intracellular processes such as actin polymer-
ization, receptor recruitment, or in bacteria flagellar motor reversal mechanisms,
to name a few. It is generally accepted that many kinds of cells base their phe-
notypic decisions according to their microenvironment (Kobayashi 2010; Libby
et al. 2007; Andrews and Iglesias, 2007; Perkins and Swain 2009 for a review).
More formally, the probability of cells to display certain velocity is dependent
on the probability of assessing their local microenvironment. It has been argued
that an energcelly-efficient manner for cells to encode their microenvironmental
information is by following microenvironmental entropy gradient-based decisions
(Hatzikirou 2018). In other words, a cell may react to its environment by either
conforming to the information present in its environment, or acting against it.
This entropy-driven decision making principle has been termed least microenvi-
ronmental uncertainty principle (LEUP). If the microenvironmental information
includes information about the states of other cells, this cell-decision making
process can be considered as the result of “social pressure” (Castellano et al.
2009).

In this work, we present a Langevin model of swarming where cells can
sense the velocity orientations of other cells in their surroundings. Cells act
as Bayesian inferrers and change their own orientation to optimize their prior,
according to environmental orientation information. Under these assumptions,
cells reorient according to the entropy gradient of the environmental informa-
tion. A parameter, named the sensitivity, controls the strength and direction-
ality of the reorientation in relation to the local entropy gradient. We find that
the system adopts a steady, polar-ordered state for negative values of the sen-
sitivity, when the sensitivity is negative. Conversely, the system remains out
of equilibtium, but partially nematic-ordered when the sensitivity is positive.
Furthermore, we find that the qualitative behavior of the model depends on
the values of the cell density, noise strength, sensitivity, and size of the interac-
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tion neighborhood. Finally, we show that our model replicates the experimental
behavior of a system of interacting spherical bacteria.

2 Cell velocity dynamics

Moving and interacting biological cells are modeled by a two-dimensional self-
propelled particle model (SPP). In this model, N ∈ N cells move on a two-
dimensional plane. The n-th cell is characterized by its position, ~rn ∈ R2, and
an orientation θn ∈ [0, 2π) ⊂ R. Due to the small size of cells, it is assumed
that viscous forces dominate. Cells are also assumed to move with a constant
speed vn ∈ R+, which may vary among cells. Changes in velocity are therefore
only due to a change in direction. Changes in direction (reorientations) result
from a local potential U (~rm, θm) : R2 × [0, 2π) 7→ R which depends on the
positions and orientations of cells within a radius R ∈ R+. The bias of the cell
to follow the potential gradient is regulated by a parameter β ∈ R, called the
sensitivity. Additionally, angular fluctuations occur due to a stochastic noise
term ξn(t) ∈ [0, 2π), where t ∈ R+ denotes time. The noise will be assumed to
be a zero-mean, white noise term, which has the statistical properties 〈ξn(t)〉 = 0
and 〈ξn (t1) ξm (t2)〉 = 2Dδ (t1 − t2) δnm, where t1 and t2 are two time points,
D ∈ R+ is the angular diffusion, δ(t) is the Dirac delta, and δnm is the Kronecker
delta. Taking everything into account, the stochastic equations of motion of the
n-th cell read (Peruani et al. 2008)

d

dt
~rn = vn~v (θn) (1a)

d

dt
θn = −β ∂

∂θn
U (~rm, θm) + ξn(t), (1b)

where ~v (θn) is the normalized velocity of the cell. A representation of the SPP
model is shown in Fig. 1.

The interaction potential U (~rm, θm), which dictates the reorientation dy-
namics of cells, needs to be specified. Biophysically, the potential should encom-
pass steric effects, hydrodynamic interactions, chemotactic effects, and terms
arising from internal cellular processes, for example, flagellar motor dynamics,
actin polymerization, receptor dynamics, etc. Finding such a potential is a
formidable task since not all of the mechanisms and interactions involved are
known. To circumvent this problem, we associate velocity cell decision-making
to a variational principle of particular information theoretic measures (Bialek,
2012), known as the least microenvironmental uncertainty principle (LEUP) as
introduced in (Hatzikirou 2018).

2.1 Cell decision-making: Least microenvironmental un-
certainty principle

The state of the n-th cell in this case is its orientation θn. The set of in-
trinsic states of other cells within its radius of interaction is given by Θn =
{θm : ‖~rn − ~rm‖ ≤ R}. The cell reacts to the environmental information, Θn,
by changing its own state, θn. The cell then acts as a Bayesian decision-maker,
such that

P (θn | Θn) =
P (Θn | θn)P (θn)

P (Θn)
,

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/404889doi: bioRxiv preprint 

https://doi.org/10.1101/404889
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Sketch of the SPP model dynamics. The n-th cell is represented by
a point particle with constant speed vn and orientation θn. Depending on the
form of the interaction potential, the cell may feel a reorientation force −∂θU
due to interaction with other cells inside a neighborhood with radius R.

where P (Θn | θn) can be interpreted as the probability that the cell perceives
all other cells in its surroundings, and P (θn) is the probability distribution of
the cell’s orientation (or prior). However, sensing other cells and evaluating
P (Θn | θn) entails an energy cost. It is reasonable to assume that the cell will
try to optimize its prior P (θn) for the sake of energetic frugality.

Using statistical mechanical arguments, the problem is equivalent to find-
ing the prior that minimizes the entropy of the cell with its surroundings. Let
S (θn,Θn) be the entropy of the cell-surroundings system, S (θn) the internal
entropy of the cell, and S (Θn | θn) the entropy of the information sensed by
the cell. The entropies are connected by the relation S (θn,Θn) = S (θn) +
S (Θn | θn). The optimization problem is finding P (θn) that minimizes S (θn,Θn),
while making sure that P (θn) is normalized; in other words

δ

δP (θn)

{
S (θn,Θn)− β̃

[∫
P (θn = ϑ)S (Θn | θn = ϑ) dϑ− S̄ (Θn | θn)

]
−λ
[∫

P (θn = ϑ) dϑ− 1

]}
= 0,

(2)

where δ
δP (θn) is the functional derivative, S̄ (Θn | θn) is the expected ensam-

ble statistics, and λ and β̃ are Lagrange multipliers. Taking into account the
relations among entropies, Eq. (2) yields

P (θn = ϑ) =
e−β̃S(Θn|θn=ϑ)

Z
, (3)

where Z =
∫
e−β̃S(Θn|θn=ϑ)dϑ is a normalization constant, and β̃ is the respon-
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siveness of the cell. Using Eq. (3), the internal entropy of the cell, defined as
S (θn) =

∫
P (θn = ϑ) lnP (θn = ϑ) dϑ, is given by

S (θn) = −β̃S (Θn | θn) + lnZ. (4)

Using the relation between thermodynamic potentials, it is evident that the
internal energy is given by

U (Θn, θn) = −S (Θn | θn) , (5)

and the Helmholtz free energy is

F = − 1

β̃
lnZ. (6)

The internal energy depends on the orientation of the cell, as well as the
orientations of other cells in the surroundings. Thus, it plays the role of the
required interaction potential in the equations of motion. In this case, the
potential depends mainly on the cells’ intrinsic states, i.e. on their orientations.
By doing so, it is evident that the responsiveness of the cells to LEUP, and
the sensitivity in the equations of motion are the same, hence β = β̃. By
substituting Eq. (5) into Eq. (1b), one obtains the equations of motion of the
model

d

dt
~rn = vn~v (θn) (7a)

d

dt
θn = β

∂

∂θn
S (Θn | θn) + ξn(t). (7b)

Without loss of generality, it will be assumed that the orientations of cells within
the interaction neighborhood are distributed according to

P (ϑ ∈ Θn | θn) =
sinh γ

2π [cosh (γ)− cos (ϑ− µ)]
, (8)

where µ is the mean of the distribution and γ is a parameter related to the
variance of neighbouring cell velocities. This is a wrapped Cauchy distribution,
periodic over the interval [−π, π]. Please note that the results are independent
of this choice (see SI K) According to this distribution, the entropy is

S (Θn | θn) = ln (2π) + ln
(
1− e−2γ

)
. (9)

The parameter γ depends on the local polar order (i.e. the degree of parallel
alignment) of cell velocities in the neighborhood. Before defining γ, we will first
define the observables characterizing the order of the velocity field.

2.2 Collective migration observables

Let us define the normalized complex velocity of the n-th cell, zn ∈ C as zn =
eiθn , where i is the imaginary unit. The k-th moment of the velocity over an
area A is given by

〈
zk
〉
A

= 1
NA

∑
m∈A z

k
m, where the sum is over all cells in area

A, and NA is the total number of cells in A. The polar order parameter in the
area A is given by

S1
A = |〈z〉A| , (10)
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which is the modulus of the first moment of the complex velocity in A, while
the nematic order parameter in the area A is given by

S2
A =

∣∣〈z2
〉
A

∣∣ , (11)

which is the modulus of the second moment of the complex velocity in A. The
order parameters are bounded, i.e.

0 ≤ S1
A, S

2
A ≤ 1, (12)

due to the complex velocities zn being normalized. The parameter γ for the
distribution of orientations in the neighborhood of the n-th cell is given by

γ = − ln
(
S1
CR,n

)
, (13)

where the subindices CR,n indicate a circular area of radius R centered at ~rn.
While global polar and/or nematic order are characteristic of steady flows,

rotating flow fields are commonly observed in out-of-equilibrium systems. The
vorticity is an observable which is equal to twice the local angular velocity, and
is thus a measure of the local strength and direction of rotation of the field. The
vorticity ω is defined as

ω (~r) = [∇× ~vmean (~r)] · ~k, (14)

where ~vmean (~r) is the mean velcity field at point ~r, and ~k is vector normal to
the plane where cells move.

3 Ascending (β > 0) or descending (β < 0) the
entropy gradient

By using the LEUP, we have modeled interaction as a reorientation dictated by
the local entropy gradient. However, the specific response of cells to the entropy
gradient is mediated by the parameter β. The absolute value |β| is proportional
to the likelihood of the cell to reorient according to a given entropy gradient.
More importantly, the sign of β determines the specific reaction of cells towards
the entropy gradient. If β < 0, cells tend to go against the entropy gradient
towards the entropy minimum, restricting the distribution of angles to a narrow
section. Conversely, β > 0 forces cells to follow the entropy gradient towards
the entropy maximum, broadening the angle distribution.

To evaluate the effect of these two opposite migration strategies, we analyze
the steady states in the two parameter regimes. By expanding S1

CR,n
using

Eq. (10), defining the components of the mean neighborhood velocity as v̄y,n =∑
CR,n3m6=n sin θm and v̄x,n =

∑
CR,n3m6=n cos θm, and differentiating Eq. (9),

we find that the orientation of θn at the entropy extrema must be such that (see
Supporting information)

tan θn =
v̄y,n
v̄x,n

,

but
v̄y,n
v̄x,n

= tan θ̄, the tangent of the mean orientation of the neighbors, excluding

the n-th cell. This results in two extremum points θn = θ̄ and θn = θ̄ + π,
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one where the velocity of the n-th cell is parallel to the average velocity of its
neighbors, and one when it is antiparallel. In the first case

sin θn ∝ v̄y,n and (15a)

cos θn ∝ v̄x,n, (15b)

while in the second case

sin θn ∝ −v̄y,n and (16a)

cos θn ∝ −v̄x,n. (16b)

It can be shown (see Supporting information) that θn = θ̄ corresponds to an
entropy minimum, while θn = θ̄ + π corresponds to an entropy maximum.
Consequently, the behavior of the regime β < 0 is analogous to that of
the Vicsek model (Vicsek et al. 1995). Conversely, the regime β > 0
corresponds to a nematic analog of the Vicsek model.

Next, let us assume that the model has a steady state, where the Helmholtz
free energy per cell is given by Eq. (6). Due to its extensivity, the Helmholtz
free energy of complete, non-interacting, steady state system is

FT ≈ −
1

β

N∑
n=1

lnZn = − 1

β
ln

(
N∏
n=1

Zn

)
,

where Zn is the normalization constant of Eq. (3) for the n-th cell. The effective

normalization constant ZT :=
∏N
n=1 Zn is given by

ZT =

∫
e−β

∑N
n=1[ln(2π)+ln(1−e−2γn)]dϑn. (17)

Integrating and susbtituting the resulting ZT into Eq. (6) (see Supporting in-
formation), yields the Helmoltz free energy

F = N

[(
1− 1

β

)
ln (γn) + ln(4π) +

ln (1− β)

β

]
. (18)

Eq. (18) is well-defined only for β < 1. This indicates that no steady state exists
for β ≥ 1, hinting at an out-of-equilibrium regime (Rebenshtok et al. 2014).
The present model belongs to the class of models with logarithmic potentials
(see Eqs. (5) and (9)). The existence of a non-normalizable state in certain
parameter regimes is a staple of systems with logarithmic potentials (Kessler
and Barkai, 2010).

4 Spectrum of collective cell migration patterns
for different parametric regimes

The model was implemented computationally to characterize the model and
the effects of the different parameters on the resulting macroscopic behavior.
The general qualitative behavior of the model can be observed in Fig. 2. In
the regime β < 0, cells tend to travel in a single direction after some time
has elapsed, similar to the Vicsek model. Conversely, in the β > 0 regime,
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(a) β > 0 (b) β < 0

Figure 2: Simulation snapshots of the velocity field at long times. Arrows show
the direction and magnitude of the velocity field. The snapshots were taken
after 200 time steps. 300 cells were simulated, with an interaction radius to
3, and noise standard deviation equal to 0.1. Speeds of all cells were Rayleigh
distributed with parameter σ = 16.6. In (a) the value of the sensitivity was 60
while in (b) the sensitivity was -2. Periodic boundaries were employed.

cells are seen to move collectively in transient vortice-like structures, even after
long times have elapsed. Qualitatively, the patterns resulting from different pa-
rameter combinations are summarized in Table 1. Analyzing simualtions, two
important phenomena are observed. First, there is a critical value of the in-
teraction radius, RC , which separates two regimes with qualitatively different
behavior. Specifically, when β > 0, no structures are formed for values of the in-
teraction radius below RC . This indicates that medium-to-long range spread of
information is necessary for ordering in this regime. Secondly, patterns are also
dependent on the choice of speed distribution among cells. Heuristically, a broad
speed distribution divides the population into fast and slow cells. While fast
cells are useful for spreading information (and therefore, increasing the effective
interaction range), slow cells are necessary for maintaining local ordering.

Furthermore, we quantitatively characterized global ordering at long times.
The global polar order parameter, given by Eq. (10), for the complete simulation
domain, measures the global degree of polar alignment, or polarization. The
global nematic order parameter, given by Eq. (11) for the complete simulation
domain, measures the tendency of all cells to align nematically, or along a single
axis. These order parameters take a value of one when there is global order,
while taking a value of zero when the system is completely disordered. It should
be noted that polar order implies nematic order, but the reverse is not true.

Similarly to other velocity alignment models (Peruani et al. 2008), the model
shows an order-disorder transition with increasing noise amplitude and decreas-
ing density (supplemental figure Fig. S1). More importantly, we observe that
in the regime β < 0 the system also undergoes a transition towards polar order
with decreasing β. After the transition, most cells have a similar orientation
(Figs. 3a and 3c). In the regime β > 0, a phase transition is also observed
towards nematic order with increasing β. In this case, however, the nematic
ordering is not perfect, as evidenced by the nematic order parameter reaching
values of around 0.25 after transition (Fig. 3b) compared to the value of 0.9 of
the polar order parameter after transition in the β < 0 regime. This is further
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(a) β < 0 (b) β > 0

(c) β < 0 (d) β > 0

Figure 3: Order-disorder phase transitions and orientation distributions in two
parameter regimes. (a) In the regime β < 0, a phase transition towards polar
order occurs at a critical value of the sensitivity. (c) After the phase transition,
polar order arises, and all cells have roughly the same orientation. (b) In the
regime β > 0, the phase transition towards nematic order occurs at critical value
of the sensitivity. (d) There is partial nematic order after the phase transition.
Accordingly, several cells have opposite orientations. (a) and (b) The number
of cells was fixed at 250, noise standard deviation equal to 0.05, and interaction
radius at 3. Values of the order parameters were averaged over 20 realizations
after 1000 time steps. (c) and (d) The number of cells was fixed at 250, noise
standard deviation equal to 0.01 , and interaction radius at 4. The histogram
was created with data from 20 realizations after 1000 time steps.
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Table 1: Qualitative description of the observed patterns for different sensitivity
and interaction radius regimes, as well as speed distributions.

β < 0

Speed distribution R < RC R > RC
Delta distribution Polar aligned

streets of cells
Scattered polar
aligned cells

Uniform
distribution

Compact polar
aligned cluster

Compact polar
aligned cluster

Rayleigh
distribution

Compact polar
aligned cluster

Compact polar
aligned cluster

β > 0

Speed distribution R < RC R > RC
Delta distribution No order or pat-

terns
Nematic streaming

Uniform
distribution

No order or pat-
terns

Nematic streaming
and vorticules

Rayleigh
distribution

No order or pat-
terns

Vortices

evidenced by the bimodal distribution of orientations with peak separation of
approximately π radians (Fig. 3d). These simulation results further corroborate
the theoretical results from Section 3. Finally, in the Supplementary Informa-
tion we show that the phase transitions are robust under system variations.

5 Application: collective behavior of spherical
bacteria

Collective motion of bacteria has been extensively studied in vitro and in slilico.
Most studies have focused on the collective properties of S. enterica, E. coli,
and M. xanthus. These species of bacteria are similar since they exhibit a high
aspect ratio. It has been shown that volume exclusion, coupled with a high
aspect ratio, is sufficient to induce velocity alignment in the system (Peruani
et al. 2006), and accordingly, ordered clusters of bacteria are observed at high
densities. On the other hand, for round bacteria was mathematically shown
that do not have the capacity to induce collective migration.

However, it has been recently shown (Rabani et al. 2013) that also spherical
bacteria do display collective migration. The biophysical mechanism whereby
spherical bacteria interact with one another must be different from the high
body ratio/volume exclusion mechanism proposed for other bacterial species.

An important aspect to consider is the bacterial speed vn. It was found
experimentally (Rabani et al. 2013) that bacterial speed follows a Rayleigh
distribution, dependent on bacterial density. Accordingly, the speed vn for every
cell in our model was Rayleigh-distributed matching the reported experimental
distributions. Simulation snapshots at long times were characterized by their
vorticity. The vortical behavior of our model was compared to the experimental
vortical behavior reported in Rabani et al. 2013.

As can be appreciated in Fig. 4, our model qualitatively and quantitatively

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/404889doi: bioRxiv preprint 

https://doi.org/10.1101/404889
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b)

(c) Vorticity distribution (simulations) (d) Vorticity distribution (experiment)

Figure 4: Comparison between vorticity trends in experiments and in simu-
lations. (a) Relation between spatially averaged speed and spatially averaged
absolute value of the vorticity. The simulation values shown are the mean val-
ues averaged over three realizations. (b) Dependence of the spatially averaged
absolute value of vorticity on the density. The simulation values shown are the
mean values averaged over three realizations (c) Probability density function of
the vorticity obtained from simulations for various densities. (d) Probability
densitiy function of the vorticity as obtained from experiments for various den-
sities. Experimental values were taken from Rabani et al. (2013). cell speed
vn was stochastic and Rayleigh distributed with distribution parameter γ de-
pending on density (see Supplementary material), following the distributions
reported in Rabani et al. (2013). Throughout all simulations, noise was set to〈
ξn(t)2

〉
= 0.1, interaction radius at R = 10, and sensitivity at β = 60. Data

was obtained after 500 time steps.
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satisfactory reproduces the vorticty behavior of the experimental system. Inter-
estingly, the behavior of the experimental system was replicated for high values
of the sensitivity β, and large interaction radii R. Such values of the sensi-
tivity and interaction radii indicate far-reaching, strong tendencies of bacteria
to reorient and migrate differently from their neighbours. Considering that
S. marcescens is an example of a spherical, rear-propelled particle (Ishikawa
2009), our results agree with previous findings indicating that S. marcescens
interacts through long-range hydrodynamics (Steager et al. 2008). Spherical,
rear-propelled cells have been shown to destroy polar order as a result of hydro-
dynamic interactions (Evans et al. 2011), similarly to our model. It should be
noted that our model tends to overestimate the value of the vorticity in certain
regimes. This could be an artifact of the constant speed of cell cells in our
model. While in the real system strong hydrodynamic interactions could result
in significant deacceleartion of bacteria, in our model an analogous situation
would result in sharp turns.

6 Discussion

In this work, we have introduced an off-lattice model of LEUP-induced collective
migration, based on the self-propelled particles modeling framework. It was
assumed that cells moved with constant speed, and changes in velocity were only
due to changes in their orientation. Reorientation is governed by a stochastic
differential equation depending on a white noise term and a force arising from
an interaction potential.

The exact form of the interaction potential is very complex, and its specific
form is dependent on particular details of the modeled system. While it has
been shown that, in general, interactions between cells can effectively drive the
entropy of the entire system towards an extremum point (Crosato et al. 2018;
Großman et al. 2013), here we do the opposite. Instead of modeling the in-
teraction potential biophysically, it was assumed that cells followed the LEUP,
which dictates that cells change their internal states in order to minimize the
uncertainty of the internal states of cells in their surroundings. In this model,
orientations were considered the only internal states. Under this assumption,
cells reorient either towards or against the gradient of entropy of the orienta-
tional distribution of cells in their neighbourhood, depending on the sign of the
sensitivity parameter, which also dictates the strength of the interaction. The
orientational distribution in the neighbourhood was assumed to be wrapped
Cauchy distributed. Such a distribution facilitates the mathematical analysis of
the model. However, the usage of other wrapped distributions does not qualita-
tively change the general behavior of the model (see Supporting information).

We show that, when the sensitivity parameter is negative, the model pro-
duces steady-state polar alignment patterns. Interestingly, we showed that the
famous Vicsek model is a special case of LEUP. Conversely, when the parameter
is positive, cells tend to reorient against the mean velocity of their neighbour-
hood. In this regime, the free energy diverges, indicating an out-of-equlibrium
parameter regime. This kind of parameter-dependent dichotomy is similarly
observed in systems with logarithmic potentials (Dechant et al. 2011), involved
in processes such as long range-interacting gases (Bouchet and Dauxois, 2005),
optical lattices (Lutz 2004), and DNA denaturation (Bar et al. 2008). The di-
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chotomy arises from the logarithmic form of the entropy driving interaction in
our model. It has been shown that, due to the non-normalizability of the steady
state solution, such systems require a time-dependent expression for their anal-
ysis (Kessler and Barkai, 2010). Therefore, an in-depth theoretical analysis of
our model would require a similar multicellular, time-dependent expression of
the angular probability densities.

Another interesting observation is that in the LEUP regime the emergence
of alignment patterns is almost independent of the interaction radius. On the
contrary, when β > 0 there exists a minimum interaction radius that allows
patterns to be formed. Thus, in this out-of-equilibrium regime pattern forma-
tion requires from the agents/cells a great amount of local microenvironmental
sampling, i.e. requires significant energy expenditures. Therefore, this should
be related to cells that either live in energy/nutrient rich environments or mi-
croenvironmental sampling is extremely cheap. Definitely, this is a point that
worths more attention.

As a proof of principle, we show that our model replicates the collective
vortical behavior of spherical motile cells. Recently, the collective behavior of
spherical bacteria been modelled as a combination of steric repulsion and hy-
drodynamic interactions (Lushi et al. 2014). Our study has shown that hydro-
dynamics and steric interactions induce long-range microenvironmental entropy
maximization, which coincides with the β > 0 LEUP regime. This generalises
the type of biophysical mechanisms requires to produce vortical patterns and
the above are just a realization.

As already mentioned, we have made a series of assumptions which helped
to simplify the model. Our model assumes a Gaussian, white noise term in the
orientational SDE. This results in normal diffusive behavior in the absence of
interactions. It has been observed experimentally, however, that in some condi-
tions, cells perform Lévy walks resulting in superdiffusive behavior (Matthäus
et al. 2009). By changing the distribution or time correlations of the noise
(Chechkin and Klages, 2009; Nava-Sedeño et al. 2017), it would be possible
to both replicate the non-Gaussian dynamics of single cells, and investigate the
effect of single anomalous dynamics on the collective behavior.

We have also assumed that cell velocities are the only internal states relevant
for reorientation, for simplicity and as a proof of concept of the LEUP principle.
However, it is reasonable to think that other states, such as relative position,
speed, or even the interaction radius, may be relevant to include when modeling
specific systems. It remains to be seen how additional states may impact the
order and emerging patterns of the system.

As stated above, LEUP circumvents the biophysical details of cell migration
and allows to reproduce a plethora of collective migration patterns. For instance,
we have analytically derived the polar and apolar alignment Vicsek models for
LEUP arguments. In this sense, LEUP acts as a generative model for collective
migration mechanisms. In particular, it acts as a probability generating function
for the single cell velocity (here only angle) equilibrium distribution. This is
particularly useful upon limited knowledge of such mechanisms, a problem called
structural model uncertainty. Another advantage of LEUP is the mapping of
biophysical mechanism combination to the β > 0 or β < 0 regimes. This
allows for unifying the model analysis but for a better classification of migration
mechanisms. Finally, known mechanisms or data could be easily integrated to
our proposed framework by further constraining the LEUP dynamics.
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Supplementary information

A Calculation of the curvature of micro-environmental
entropy and Helmholtz free energy

Initially, we expand S1
CR,n

using Eq. (10) and the definition of the complex
velocity zn

S1
CR,n =

1

NCR,n

√√√√√ ∑
m∈CR,n

sin θm

2

+

 ∑
m∈CR,n

cos θm

2

.

We define the quantities v̄y,n =
∑
CR,n3m6=n sin θm and v̄x,n =

∑
CR,n3m6=n cos θm.

Using these definitions, and expanding the square terms, the polar order param-
eter can be written as

S1
CR,n =

1

NCR,n

√
v̄2
y,n + v̄2

x,n + 2 (v̄y,n sin θn + v̄x,n cos θn). (S1)

Next, using Eq. (13), we substitute Eq. (S1) into Eq. (9) to obtain

S (Θn | θn) = ln (2π)

+ ln

{
1− 1

N2
CR,n

[
v̄2
y,n + v̄2

x,n + 2 (v̄y,n sin θn + v̄x,n cos θn)
]}

.
(S2)

As mentioned before, the cell will reorient towards the minimum of S (Θn | θn)
when β < 0, while reorienting towards the maximum when β > 0. To find the
entropy maxima and minima, we start by finding the entropy extrema, where
∂
∂θn

S (Θn | θn) = 0. Differentiating Eq. (S2) we have that, in an extremum
point

− 2
N2
CR,n

(v̄y,n cos θn − v̄x,n sin θn)

1− 1
N2
CR,n

[
v̄2
y,n + v̄2

x,n + 2 (v̄y,n sin θn + v̄x,n cos θn)
] = 0,

which reduces to the condition

v̄y,n cos θn = v̄x,n sin θn. (S3)

From here, it is evident that the orientation of θn at the entropy extrema must
be such that

tan θn =
v̄y,n
v̄x,n

,

but
v̄y,n
v̄x,n

= tan θ̄, the tangent of the mean orientation of the neighbors, excluding

the n-th cell. This results in two extremum points θn = θ̄ and θn = θ̄ + π,
one where the velocity of the n-th cell is parallel to the average velocity of its
neighbors, and one when it is antiparallel. In the first case

sin θn ∝ v̄y,n and (S4a)

cos θn ∝ v̄x,n, (S4b)
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while in the second case

sin θn ∝ −v̄y,n and (S5a)

cos θn ∝ −v̄x,n, (S5b)

To discriminate the maximum from the minimum point, the value of ∂2

∂θ2n
S (Θn | θn)

must be evaluated at each extremum point. The second derivative is given by

∂2

∂θ2
n

S (Θn | θn) =

2
N2
CR,n

(v̄y,n sin θn + v̄x,n cos θn)

1− 1
N2
CR,n

[
v̄2
y,n + v̄2

x,n + 2 (v̄y,n sin θn + v̄x,n cos θn)
]

−


2

N2
CR,n

(v̄y,n cos θn − v̄x,n sin θn)

1− 1
N2
CR,n

[
v̄2
y,n + v̄2

x,n + 2 (v̄y,n sin θn + v̄x,n cos θn)
]


2

.

In each extremum point, Eq. (S3) must hold, therefore

∂2

∂θ2
n

S (Θn | θn)

∣∣∣∣
ext

=

2
N2
CR,n

(v̄y,n sin θn + v̄x,n cos θn)

1− 1
N2
CR,n

[
v̄2
y,n + v̄2

x,n + 2 (v̄y,n sin θn + v̄x,n cos θn)
] .
(S6)

Defining κ as the proportionality constant relating sin θn and cos θn with v̄y,n
and v̄x,n, respectively, the second derivative evaluated at θn = θ̄ is

∂2

∂θ2
n

S (Θn | θn)

∣∣∣∣
θn=θ̄

=

2κ
N2
CR,n

(
v̄2
y,n + v̄2

x,n

)
1−

(
S1
CR,n

)2 > 0, (S7)

because the numerator is positive definite, and the denominator is positive fol-
lowing Eq. (12). The extremum point θn = θ̄ therefore corresponds to an
entropy minimum. Consequently, the behavior of the regime β < 0 is analogous
to that of the Vicsek model (Vicsek et al. 1995). Conversely, at θn = θ̄ + π we
find that

∂2

∂θ2
n

S (Θn | θn)

∣∣∣∣
θn=θ̄+π

=

−2κ
N2
CR,n

(
v̄2
y,n + v̄2

x,n

)
1−

(
S1
CR,n

)2 < 0, (S8)

uisng the same arguments as for the θn = θ̄ point. Therefore, the point θn =
θ̄+π corresponds to the entropy maximum. Then, the regime β > 0 corresponds
to a nematic analog of the Vicsek model.

Next, let us assume that the model has a steady state, where the Helmholtz
free energy per bacterium is given by F = − 1

β̃
lnZ. Due to its extensivity, the

Helmholtz free energy of the complete system is

FT = − 1

β

N∑
n=1

lnZn = − 1

β
ln

(
N∏
n=1

Zn

)
,

where Zn is the normalization constant of n-th cell( see Eq.(3) in paper ).

The effective normalization constant ZT :=
∏N
n=1 Zn is given by

ZT =

∫
e−β

∑N
n=1[ln(2π)+ln(1−e−2γn)]dϑn. (S9)
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The integration is performed over the orientations of all cells in the system.
Moreover, the dependency of each γn on all angles θn is complex and makes
integration challenging. However, variation of θn for all n translates into a
variation in all γn. Therefore, Eq. S9 is equivalent to

ZT =

∫
e−β

∑N
n=1[ln(2π)+ln(1−e−2γn)]dγn. (S10)

Expanding up to linear terms around γn = 0 yields

ZT =

∫
e−β

∑N
n=1[ln(2π)+ln(2γn)]dγn,

which after rearranging terms and integrating reduces to

ZT =

[
1

(4π)
β

γ1−β
n

1− β

]N
. (S11)

Substituting Eq. S11 into Eq. 6, and rearranging terms, yields the Helmholtz
free energy

F = N

[(
1− 1

β

)
ln (γn) + ln(4π) +

ln (1− β)

β

]
. (S12)

Eq. S12 is well-defined only for β < 1. This indicates that no steady state exists
for β ≥ 1, hinting at an out-of-equilibrium regime (Rebenshtok et al. 2014).
The present model belongs to the class of models with logarithmic potentials.
The existence of a non-normalizable state in certain parameter regimes is a
staple of systems with logarithmic potentials (Kessler and Barkai, 2010).

B Pattern formation in different β regime (see
Table 1)

Here, we present a simulation snapshot for the different parameter constellations
as defined in Table 1. To give a quantitative impression of each simulation, we
define the range of the polar order parameter as P, the nematic order parameter
as N and the mean absolute vorticity as V.
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(a) Polar aligned street
cells (P=0.6 to 0.7, N=0.5
to 0.7, V=0 to 0.04)

(b) Compact polar
aligned cells (P=0.8 to
1.0, N=0.7 to 1.0, V=0
to 0.065)

(c) Scattered polar
aligned cells (P=0.7 to
1.0, N=0.7 to 1.0, V=0
to 0.05)

(d) No order or patterns
(P=0 to 0.09, N=0 to
0.07, V=0 to 0.065)

(e) Nematic streaming
(P=0 to 0.05, N=0.3 to
0.5, V=0 to 0.065)

(f) Nematic streaming
and vorticules (P=0 to
0.03, N=0.2 to 0.4, V=0
to 0.04)

(g) Vortices (P=0 to 0.03,
N=0.2 to 0.4, V=0.1 to
0.35)
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C Finite size effects in polar order parameter
versus sensitivity (β < 0)

Figure S2: Polar order parameter vs. sensitivity graph with interaction radius
is at 3, and standard deviation of noise is fixed at 0.1. Density is fixed at 1.0
and the system size is varied. The micro-environmental distribution has been
taken from a wrapped Cauchy distribution. All order parameters were averaged
over 5 realizations after 103 time steps.
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D Finite size effects in polar order parameter
vs. noise graph

Figure S3: Polar order parameter vs. noise graph with interaction radius is at
3 and sensitivity is at -0.2. Density is fixed at 1.0 and the system size is varied.
The micro-environmental distribution has been taken from a wrapped Cauchy
distribution. All order parameters were averaged over 5 realizations after 103

time steps.
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E Finite size effects in nematic order parameter
for the positive sensitivity regime (β > 0)

Figure S4: Nematic order parameter vs. sensitivity graph with interaction
radius is at 3 and standard deviation of noise is at 0.05. Density is fixed at 2.5
and the system size is varied. The micro-environmental distribution has been
taken from a wrapped Cauchy distribution. All order parameters were averaged
over 20 realizations after 103 time steps.
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F Finite size effects in nematic order parameter
vs. noise graph

Figure S5: Nematic order parameter vs. noise graph with interaction radius is
at 3 and sensitivity is at 20. Density is fixed at 2.5 and the system size is varied.
The micro-environmental distribution has been taken from a wrapped Cauchy
distribution. All order parameters were averaged over 20 realizations after 103

time steps.
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G Polar and nematic order parameters vs. den-
sity graph

Figure S6: Polar order parameter and nematic order parameter vs. density
graph with interaction radius is at 3 and sensitivity is fixed at 15 (for nematic
order parameter) and -0.2 (for polar order parameter). The micro-environmental
distribution has been taken from a wrapped Cauchy distribution. All order
parameters were averaged over 20 realizations after 103 time steps.
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H Finite size effects in mean absolute vorticity
for the positive sensitivity regime (β > 0)

Figure S7: Mean absolute vorticity vs sensitivity graph. Density is fixed at 0.28
and the system size is varied. Interaction radius is fixed at 10, the variance
of noise was 0.1. Here micro-environmental distribution has been taken from
a wrapped Cauchy distribution. Values of the mean absolute vorticity were
averaged over 15 realizations after 500 time steps.
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I Finite size effects in mean absolute vorticity
vs. interaction radius graph

Figure S8: Mean absolute vorticity vs interaction radius graph. Density is fixed
at 0.28 and the system size is varied. Sensitivity is fixed at 10 and the variance
of noise at 0.1. Values of the mean absolute vorticity were averaged over 15
realizations after 500 time steps.
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J Average speed vs density graph of spherical
bacteria

Figure S9: The average speed of spherical bacteria vs. density, where σ is the
Rayleigh parameter. The graph was reproduced from the corresponding figure
in Rabani et al. 2013.
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Figure S10: Polar and nematic order parameter vs. sensitivity (β < 0) graph.
Interaction radius is fixed at 3, and standard deviation of noise at 0.05. Den-
sity is fixed at 2.5. Here micro-environmental entropy has been taken from a
wrapped exponential distribution. All order parameters were averaged over 5
realizations after 250 time steps.

K Polar and nematic order parameter versus
sensitivity for wrapped exponential distribu-
tion

The qualitative behavior of the phase transitions is independent to the choice
of the microenvironmental distribution. To showcase this, we use the wrapped
exponential distribution. Although minot quantitative changes are observed,
the phase transitions for positive and negative sensitivities remain qualitatively
invariant (see Figs S10 and S11).

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/404889doi: bioRxiv preprint 

https://doi.org/10.1101/404889
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S11: Polar order parameter and nematic order parameter vs. sensitivity
(β > 0) graph. Interaction radius is fixed at 3, and standard deviation of noise at
0.05. Density is fixed at 2.5. Here micro-environmental entropy has been taken
from a wrapped exponential distribution. All order parameters were averaged
over 20 realizations after 103 time steps.
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