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Abstract: Recently, we presented a new approach to create high-speed amplitude modulation 

of femtosecond laser pulses in the MHz range to tag multiple excitation beams and their 

corresponding fluorescence signals with specific frequencies. In this work, we discuss the 

sensitivity of this method and its utility for in vivo recordings of Ca2+ signals in brain tissue 

compared to conventional two-photon laser scanning microscopy. While frequency-

multiplexed imaging appears slightly inferior in terms of image quality due to shot noise- 

induced cross-talk between individual frequency channels, the specific application of the 

technique for recording average signals from selected regions of interest such as neuronal cell 

bodies is found to be exceptionally promising. We used phase information contained within 

each pixel of the selected area represented by a short waveform to phase-align and recombine 

them into one extended waveform, thereby effectively increasing the waveform measurement 

time. This procedure narrows the detection band of a digital lock-in filter and thus decreases 

noise contributions from other frequency channels by more than an order of magnitude.  
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1. Introduction 

Two-photon laser scanning microscopy (TPLSM) [1] has become a standard tool for 

functional imaging of neural activity with sub-cellular resolution. Conventional TPLSM can 

achieve maximal data acquisition rates up to 50 frames per second [2, 3], which is sufficient 

for monitoring Ca2+–associated fluorescence signal transients within one or several imaging 

planes with satisfactory temporal resolution. Although highly desired, simultaneous 

functional recordings from large ensembles of neurons labeled with calcium- or voltage-

sensitive indicators remain challenging due to limitations in TPLSM scan speeds and data 

acquisition rates [2, 4]. A variety of experimental techniques have emerged designed to 

improve the speed of imaging over a larger area or a volume. These can be generally assigned 

to several broad categories: those increasing the sweep rate at which a focused beam moves 

through the volume [5],  those involving engineered excitation point spread function to 

increase the individual voxel size in a volume [6-8], and those restricting the imaging volume 

to selected regions of interest (ROI) [9-11]. For example, several reports demonstrated 

functional imaging of cell activity within (0.5 mm)3 at the rate of several Hz [6, 7]. 

Nevertheless, emergence of new imaging systems with a significantly larger field-of-view 

(FOV) and more than an order of magnitude increase in the accessible imaging volume [3, 

12] again raises the issue of limited data acquisition rates in TPLSM.  

To address emerging needs of large FOV systems, a separate class of techniques may be 

employed. These methods are focused on multiplexed image acquisition, where the sample is 

scanned with multiple excitation beams and the emission is recorded with a single detector 

[12-16]. One approach, termed “spatiotemporal multiplexing,” utilized multiple excitation 

pulse trains delayed in time relative to each other and separated the corresponding emission 

signals based on their arrival time at a detector [12, 13, 16]. The useful number of acquisition 

channels was ultimately limited by the laser pulse repetition rate and the fluorescence lifetime 

of the fluorophore, leaving room only for a few multiplexed channels with commonly used 

commercial 80 MHz femtosecond pulsed lasers.  
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Recently we introduced a new two-photon frequency-division multiplexing microscopy 

(TPFDMM) method to create amplitude modulation of femtosecond laser pulses in the MHz 

range based on interference of periodically phase-shifted femtosecond pulse trains, and 

demonstrated frequency-multiplexed two-photon imaging in test samples [17]. The major 

limiting factor of this approach is shot noise, whose average spectral density is distributed 

uniformly across the detection frequency bandwidth, and, therefore, induces cross-talk 

between individual frequency channels. While it has been predicted that the signal-to-noise 

ratios (SNR) in TPFDMM and conventional TPLSM images are similar, given the same data 

acquisition rate and the same average emission intensity per channel [17], TPFDMM data is 

contaminated with cross-talk related ghost images from other active channels. At high 

scanning speeds provided by resonance galvanometer (RG) scanners individual pixel dwell 

times become less than 100 ns. Together with low emission signal intensities, this may result 

in unacceptably low contrast between individual frequency channels in TPFDMM. In this 

work, we analyze the performance of TPFDMM in more detail and demonstrate its utility for 

recording Ca2+ signals in vivo. Most importantly, we propose a novel method of incorporating 

phase information to the analysis of functional signals that leads to more than an order of 

magnitude reduction in cross-talk between frequency-encoded imaging channels.  

2. Methods 

High-speed amplitude modulation of multiple excitation beams derived from a single 

mode-locked Ti:Sapphire laser (Chameleon Ultra II, Coherent) was created by interfering 

femtosecond laser pulses with a periodic phase shift produced by acousto-optic deflectors 

(AODs, DTSX-A12-800.1000, AA Opto-electronic) with a custom-built Mach-Zehnder 

interferometer. In the present work, 3 excitation beams with equal angular offset and 

modulation frequencies of 1, 5, 7 MHz were generated. Imaging of tissue slices was 

performed on a custom-built TPLSM system, equipped with XY galvanometer scanners 

(6240H, Cambridge Technology), and a water immersion objective lens (25× XLPLAN N, 

Olympus).  Emission within a 500-700 nm spectral window was detected by a hybrid 

avalanche photodetector (R11322U-40, Hamamatsu), connected to a pre-amplifier 

(DHCPA100, 200 MHz bandwidth, FEMTO), and sampled with a streaming waveform 

digitizer at 500 MS/s (ATS9350, AlazarTech). Galvo-scanners were controlled with two 

DAQ boards (PCIe-6353, National Instruments), which also triggered waveform acquisition 

of each scan line. 

Custom MATLAB (MathWorks) routines were used for numerical modeling and analysis 

of amplitude-modulated emission signals. Simulated waveforms were synthesized based on 

the expected value of a fluorescence signal using Poisson statistics. We synthesized 400 

amplitude-modulated waveforms, each containing 8,000 samples for each set of input 

parameters, which included modulation frequencies between 30-39 MHz and average 

fluorescence intensities of 0.5, 1, 2, 4 photons per time sample. A sampling rate of 160 MHz 

was used in these simulations. Linear combinations of computer-generated waveforms were 

analyzed in MATLAB using the built-in FFT function to estimate amplitude or power spectra 

averages at a given frequency.  

To compare the performance of TPFDMM and TPLSM methods, we calibrated large 

FOV TPLSM system [3] (MultiPhoton MesoScope, Thorlabs) to quantify calcium signals 

recorded in actual in vivo imaging experiments in photonic units. Fluorescence signals were 

detected using a photomultiplier (HC11706-40, Hamamatsu) coupled to a current amplifier 

(HCA-400M-5K-C, FEMTO) and a 50 MHz low-pass filter (Mini-Circuits). Waveforms 

showing single photon detection events were recorded with an oscilloscope (204MXi-A, 

LeCroy) at 1 GS/s rate without low-pass filtering. Spontaneous neuronal activity was 
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recorded in the Slc17a7-IRES2-Cre mouse, in compliance with the Allen Institute’s animal 

imaging protocols. 

3. Cross-talk analysis in frequency-multiplexed two-photon imaging.  

Measurements of stochastic quantum events such as fluorescence emission are governed 

by Poisson statistics [18]. At a fixed excitation intensity, the recorded emission signals from a 

stable and uniform source sampled over discrete time intervals will vary randomly, a 

phenomenon is known as shot noise or Poisson noise, while the ensemble’s variance and the 

mean will remain equal given sufficiently large sample size. When adding signal sources with 

independent, i.e. uncorrelated, noise components, the relationship between the ensemble 

mean and the variance remains, as each parameter is the sum of its respective components. 

For each excitation event at time t the detected emission signal F(t) can be tentatively 

separated into the sum of an average or expected signal S0 and purely random (stochastic) 

noise components R(t). Considering multiple detection events, we may write the following set 

of equations: 

2

0 0 0( ) ( ); ( ) ; ( ) 0, ; ( ( )) ( )F t S R t F t S R t t S Var R t R t             (1) 

If the measurement events are ergodic and independent, which is the case for fluorescence 

signal detection, Eq. 1 can be applied to the scenario where the expected signal S(t) varies 

periodically in time and only its average remains constant. For periodically modulated 

excitation intensity I(t), the expected two-photon emission signal S(t) is given as: 

2
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2 3 3 8

ft
I t I S t A ft ft A I


  

  
     

 
        (2) 

where I0 is the maximum excitation intensity, f is the modulation frequency, A s the average 

emission signal expressed here in units of photons/pulse, and  is the proportionality 

coefficient connecting excitation intensity and emission signal in specific experimental 

conditions. Note that in the case of amplitude-modulated excitation, we expect to detect 3/8 of 

the total number of photons as compared to unmodulated excitation of the same average 

power. We may consider sub-ensembles of F(t) that correspond to the same expected value 

S(t) and recombine these sub-ensembles to obtain similar expression as in Eq. 1: 
2( ) ( ( )) ( )S t Var R t R t                                                (3) 

Noise variance is related to the power spectrum of a signal. For instance, in a case of discrete 

measurement of a time series signal, and in the specific case considering our noise component 

Ri(t), Parseval’s theorem states: 

1 1
22
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where ( )kR f  is a discrete Fourier transform (DFT) complex variable corresponding to a 

frequency f, Ns is the number of recorded time samples, and P   is the average of the noise 

power spectrum. On the left is the sum of the corresponding average values 2( )R t , and 

combining with Eq. 3 we obtain: 

sS N P                                                              (5) 

In the case of multiple emission sources, provided they are statistically independent, Eq. 5 can 

be written as: 

1 1

,
ch chN N

s j j

j j

N S P
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                                                        (6) 
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where Nch represents the number of contributing signals or channels. Eqs. 5,6 provide the 

straightforward connection of a total average emission signal to the power spectrum average 

of a corresponding noise time series. To compute an average amplitude spectrum estimate we 

recall that DFT values, both real and imaginary, are a weighted sum of random noise 

variables. With a sufficient number of measurements, these values represent a normal 2D 

distribution in the complex space. One may derive probability distributions of 
2

( )kR f  and 

( )kR f  which originate from the same normal distribution and demonstrate that: 

2

( ) ( )
4

k kR f R f


                                               (7) 

The noiseless two-photon signal corresponding to a frequency f and peak-to-peak amplitude 

3

8
A   (see Eq. 2) has DFT amplitude spectrum value:  

2
( )

3
sS f A N                                                        (8) 

Combining Eqs. 6-8 we obtain the signal-to-background ratio (SBR) estimate, which is a ratio 

of a DFT amplitude of a noiseless harmonic to the average background created by noise in all 

contributing signals: 
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                                                    (9) 

We can see that the SBR increases as the square root of the number of measurements, and 

decreases as the square root of the sum of average emission intensities in each amplitude-

modulated channel. 

4. Numerical analysis of amplitude-modulated waveforms 
To demonstrate validity of the analysis above, we performed numerical simulations of 

amplitude-modulated signals in the presence of shot noise and estimated signal and cross-talk 

values for a given number of samples and contributing channels. Figure 1a shows simulated 

waveforms from a single channel modulated at 30 MHz and a sum of 10 channels modulate at 

frequencies 30-39 MHz. The average amplitude of each waveform is 0.5 photons per sample.  

  

Fig. 1. (a) Computer-generated waveforms from 1 and 10 simultaneous channels amplitude-modulated at 

30 MHz and 30 – 39 MHz. Average intensity in each channel is 0.5 photons/sample. (b) DFT spectra of 

the simulated waveform (blue trace in (a)) computed from 480 and 8000 time samples. (c) Average DFT 
amplitudes at 30 MHz and 40 MHz, representing signal and background from 10 active channels. The 

corresponding waveform example is shown in (a) in blue. Theoretical predictions via Eqs. 7,8 are shown 

as solid lines. 

Fig. 1b shows Fourier spectra of 10 combined waveforms containing 480 and 8,000 samples. 

The contrast between the signals and the background is markedly enhanced with an increased 

b) a) c) 
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number of samples. Plotting the DFT signal (30 )kR MHz  and background (40 )kR MHz  

amplitudes as a function of Ns computed from 400 simulated traces reveals the trends 

predicted by Eqs. 7,8 (Fig. 1c). Solid lines show theoretical predictions which are in excellent 

agreement with our simulation results. To illustrate adverse effects of cross-talk on the image 

quality and measurement accuracy of functional signals, we created images from 1 to 10 

combined waveforms, whereas each pixel intensity corresponded to ( )kR f  values (f = 30 – 40 

MHz) in the DFT spectrum normalized to the expected photon intensity per pulse. Only 160 

time samples from each waveform with an average amplitude of 0.5 photon/sample were used 

in computing pixel intensity. Here waveform recording time per pixel was 1 s, and the signal 

intensity was equivalent to 1 photon per laser pulse, assuming 80 MHz laser pulse rate. The 

images shown in Fig. 2a are arranged in a 10  10 matrix. Rows contain images from 1 to 10 

active channels each modulated at different frequency, and the columns correspond to the 

specific modulation frequency. One can see the progressive increase of noise in the images 

and the appearance of background as the number of active channels increases. In our prior 

work [17], we discussed that frequency-multiplexed imaging performance in terms of SNR is 

similar to conventional TPLSM given the same data acquisition rate and the same number of 

photons generated by each excitation pulse. Fig. 2b shows simulated images from a 

conventional TPLSM that can be compared row by row to the images in Fig. 2a. As the 

number of channels in TPFDMM increases, the signal integration time in TLPSM is reduced 

proportionally. Pixel averages and corresponding standard deviations from images in Fig 2a, 

columns at 30 MHz and 40 MHz, and in Fig. 2b are presented in Fig. 2c. There is a clear 

quantitative similarity in SNR values of TPLSM and TPFDMM with the stated comparison 

criteria. Besides additional noise, each TPFDMM image will contain ghost images due to shot 

noise-induced cross-talk, which will increase proportionally to the square root of sum of 

average signal intensity in every channel. In Fig. 2d we replotted the TPFDMM data from 

Fig. 2c in units of DFT amplitude to demonstrate quantitative agreement with Eqs. 7,8. 

          

Fig. 2. (a) Simulated frequency-multiplexed images from 1 to 10 active channels. Pixel intensity is scaled 
to the average intensity expressed in photons/pulse. (b) Conventional TPLSM images generated with 

different pixel dwell times. (c) Average and standard deviation of pixel intensity values computed from 

images in (a) and (b) and expressed in units of photons per pulse. (d) A comparison of data from (c) 
plotted as DFT amplitudes and theoretical predictions from Eqs. 7,8. 

5. Frequency-multiplexed imaging in vitro 
We acquired images from brain slices containing neurons labeled with the calcium 

indicator GCaMP6f by scanning a single neuron with 3 beams modulated at 1, 5, 7 MHz (Fig. 

3). For visualization purposes, the corresponding focal points in the image plane were 

laterally offset by ~ 20 m each. A digitizer with data streaming capabilities allowed 

acquisition of complete waveforms corresponding to scan lines across an image. Each line 

contained 1,274,000 samples, which were binned into 1,000 time samples per pixel in post-

processing. A conventional TPLSM image (Fig. 3a), computed from the waveform’s average 

value, displays a triple image of the same neuron. Besides the main three, one can notice 

additional faint images of the same neuron resulting from additional weak excitation beams. 

b) a) c) d) 
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These extra beams appear due to the limited dynamic range of the radio-frequency (RF) 

amplifiers, specifically due to a non-linear amplifier response to the periodic spikes in the 

amplitude of an AOD RF driving signal created by the linear combination of three harmonics. 

These artifacts are not essential and will be ignored in the following discussion. 

Demultiplexed imaging corresponding to frequencies 7, 1, 5 MHz are presented in Fig. 3b, c, 

d, respectively. False color intensity scales in Fig. 3a and Fig. 3b-d are matched to allow 

visual comparison between conventional and frequency-encoded two-photon images. 

Demultiplexed images at a given frequency exhibit a single neuron along with two ghost 

images, which appear due to wideband shot noise in active signals modulated at different 

frequencies. This cross-talk will be reduced if we increase the number of samples and thus 

narrow the detection bandwidth. Fourier transform spectra also contain phase information, 

which we extract by computing the 4-quadrant inverse tangent of the imaginary to the real 

part ratio of the complex DFT value at a selected frequency. Figure 3e shows the computed 

phase values from each pixel/waveform within ROI corresponding to the cell body from Fig. 

3a. It becomes evident that the phase within vertical scan line changes monotonically, and 

that the rate of phase change depends on the beam modulation frequency. Figure 3f,g shows 

wrapped and the corresponding unwrapped phase plots obtained from selected vertical lines 

across phase images in Fig. 3e. A linear fit of the lines in Fig. 3f yields the rates of phase 

change equal to -216, -163, -28 mrad/µs, corresponding to 7, 5, 1 MHz amplitude-modulated 

emission signals, respectively. Notably, the relative values of phase change rates do not 

quantitatively match the ratios between 7, 5, 1 MHz frequencies. The relationship of the 

phase within TPFDMM images and the signal modulation frequency is the subject of a future 

study. However, we note that the phase is determined by several factors, including the rate of 

an excitation beam movement across an image plane and phases of the AOD driving 

frequencies that create amplitude modulation in the excitation beams. 
 

 

  
Fig. 3. (a) Conventional two-photon image of a brain tissue slice recorded while scanning a tissue sample 

with 3 excitation beams modulated at 7 MHz, 1 MHz, and 5 MHz. (b,c,d) Demultiplexed images 

corresponding to different frequencies. (e) Phase image from pixels within selected ROIs in (a) outlining a 
cell body. (f) Phase plots as a function of time obtained from selected vertical lines within phase images in 

(e). (g) Phase plots from (e) unwrapped and shifted to common origin. 

As follows from Eq. 9, cross-talk between channels in TPFDMM can be reduced by 

binning the image into smaller number of pixels thereby sacrificing imaging resolution. One 

of the most essential applications of TPLSM is functional recording of fluorescence signal 

changes in Ca2+ indicators which are linked to neural activity. The signal is recorded from an 

area occupied by neuron soma that is more than 100× larger than the size of an individual 

pixel. To fully utilize advantages of the TPFDMM method, it is essential to treat the signals 

b) a) c) d) 

 e)  f) g) 
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acquired from a ROI as one continuous waveform which consists of individual parts 

corresponding to lines or pixels within. As we have demonstrated earlier (see Fig. 3), the 

phase of each pixel can be determined from the recorded trace itself. Other methods of 

tracking the phase which do not rely on the phase calculation from noisy signals may be 

developed as well, for example, by independently recording phases of both the excitation 

beams and the optical scanner. Once phase information is available, it is trivial to align the 

phases of each individual component and reconstruct an extended waveform. 

As a demonstration, we selected identical ROI1 and ROI2 with the same number of 

pixels from neuron images in Fig. 3 corresponding to 5 MHz and 7 MHz excitation beams 

(see Fig. 3e). We examined contributions of the main signal modulated at a given frequency 

to the other frequency channel after performing phase-alignment and reconstruction of 

extended waveforms based on known phase information. Specifically, we performed identical 

phase adjustments of waveforms/pixels within ROI1 and ROI2 using the measured phase in 

either the 7 MHz or the 5 MHz channel, and compared spectral amplitudes at these 

frequencies. Each pixel therein consists of 1,000 samples, which contains exactly 14 and 10 

periods of 7 MHz and 5 MHz frequencies sampled at 500 MHz. Phases of each waveform 

were adjusted to 0 phase difference by cyclic rotation of samples within (MATLAB’s 

circshift function).  Due to waveform discretization, phase adjustments can be performed 

within a finite accuracy of 63 and 88 mrad for 5 and 7 MHz frequencies, respectively. Note 

that phase adjustment precision may be improved, for example, with interpolation and digital 

oversampling. Next, arrays were concatenated to form phase-aligned waveforms, whose DFT 

spectra are shown in Fig. 4. To avoid ambiguity, we explicitly denote DFT spectra 11R  and 

12R  computed from ROI1 and ROI2 waveforms, respectively, aligned using 7 MHz / ROI1 

phase information. DFT spectra 22R  and 21R  were obtained from ROI2 and ROI1, 

respectively, aligned using 5 MHz / ROI2 phase information. 11R  primarily contains a signal 

modulated at 7 MHz, and the frequency domain amplitude of this component is the only one 

clearly visible in the spectrum (Fig. 4a top, blue line). 12R  contains 5 MHz signal, which is 

also seen in the frequency spectrum in the same panel, albeit with signal spread over 

neighboring frequency bins due to dephasing. Notably, cross-talk 12 (7 )R MHz  becomes 

negligible. A similar outcome is seen in the bottom panels of Fig. 4a,b where phase 

information from 5MHz emission signal was used for waveform alignment.  

      

Fig. 4. (a) Frequency spectra of phase-aligned and concatenated waveforms from pixels within ROI1 and 
ROI2 shown in Fig. 3e. Waveform phase alignment in upper and lower tiles was performed with phase 

values 7 MHz and 5 MHz in Fig. 3e, respectively. (b) Data in (a) shown with expanded X and Y scales to 

demonstrate residual crosstalk. (c) SBR dependence on the number of samples in phase-aligned datasets. 

Fits ~ sN   are shown as solid lines.  

Using the data from Fig. 4a, we computed the SBR as 11 12(7 ) / (7 )R MHz R MHz  and 

22 21(5 ) / (5 )R MHz R MHz . Similar comparisons can be made with datasets with reduced 

b) a) c) 
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number of samples. Fig. 4c shows SBR as function of Ns, demonstrating the expected square 

root of Ns dependence. 

6. TPLSM photon collection efficiency in vivo  
Signal intensity is another critical parameter affecting cross-talk between frequency 

channels. To establish a connection with theoretical estimates we must quantify the number of 

photons detected in real experiments. One approach is to measure the system conversion gain 

g using mean-variance or photon transfer curve method [19]. Although it is considered 

applicable to CCD and CMOS sensors, the method needs adaptation for amplified detectors 

due to the presence of additional noise sources which increase the signal variance [20]. To 

perform these measurements another system was used, the Multiphoton MesoScope [3], 

because of its highly optimized collection efficiency. To quantify g we used a direct 

correlation of the average number of photons from a stable emission source measured with 

photon counting technique and the average pixel intensity in the TPLSM images. In this 

experiment, waveforms showing individual photons and the corresponding images of a 

fluorescein solution were acquired at different excitation power levels. Waveforms examples 

are presented in Fig. 5a. Only spikes with an amplitude exceeding 40 mW were counted as 

photon detection events. Fig. 5b shows variations in the number of photons detected within a 

temporal window of 10 µs and Fig. 5c shows the corresponding mean-variance plot. We 

observed small deviation of ~ 15-20% from the expected trend, which may be caused by 

variations in the average photon flux as the beam moves across an imaging plane. Image non-

uniformities in the range of  ~ 10% are seen in averaged TPLSM images recorded from 

fluorescein solution, and were reported previously [3]. They do not significantly affect 

conversion gain measurements. 

 

 

         

Fig. 5. (a)  Examples of photomultiplier output showing individual photons at different fluorescence 
signal intensities. (b) Fluctuations in the detected number of photons within 10 µs temporal window 

recorded at different excitation power levels. (c) Mean - variance plot of signals from (b). (d). Calibration 

plot showing average pixel intensity in TPLSM images as a function of average number of detected 

photons. (e,f) Averaged in vivo images of V1 layer 1 and 4 of a mouse recorded at depths 75 m and 375 

m. Intensity scale is in units of photons per pixel. (f) Examples of calcium signal transients from selected 

ROIs. 

In the central part of the scan line that contains 512 pixels, a 12 kHz resonant scanner moves 

with the highest speed, and the pixel dwell time is ~ 40 ns. The correspondence between 

average pixel intensity in the central part of the image and the average number of photons 

scaled proportionally to the pixel dwell time is shown in Fig. 5d. Linear fit yielded conversion 

b) a) c) 

e) f) g) 

d) 
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gain g  106 phot.-1pixel-1. We note that straightforward application of the mean-variance 

method without corrections yielded noticeably smaller g  44 phot.-1pixel-1. 

In vivo images of spontaneous activity within a mouse visual cortex recorded at depths of 

75 m and 375 m, averaged 1000 times and scaled to show image intensity in photonic units 

detected, are shown in Fig. 5e,f.  Extracted Ca2+-traces from selected cells scaled in units of 

average photons per pixel within the selected regions of interest are shown in Fig. 4g. Each 

pixel integrates signals from 3-4 excitation pulses, and the observed fluorescence signals from 

selected cells vary in the range ~ 0.1 – 2 photons per pulse. Background signals fluctuations 

resulting from out of focus fluorescence appear at the level ~0.1 photons per pulse (2 standard 

deviations) and define the sensitivity threshold of detecting a calcium signals from individual 

neurons. Note that photon intensities assumed in numerical simulations match the range 

observed in the experiment. Knowing these signal levels, Eqs. 7-9 can be directly used to 

evaluate cross-talk between frequency channels in TPFDMM when fluorescence is detected 

with photon counting methods. 

7. Discussion 
The major benefit of TPFDMM is its ability to utilize a significantly higher number of 

imaging channels [15, 21] as compared to alternative multiplexed imaging methods and to 

potentially achieve major increases in imaging throughput as well as the rate of volumetric 

recording of functional brain activity. Unlike time-multiplexed approaches [12, 13, 16], 

TPFDMM is not limited by the fluorescence lifetime of an optical indicator and can utilize 

multiple laser sources without pulse synchronization between excitation channels. While our 

approach achieves high modulation frequencies which are needed to support high scanning 

speed, the maximum usable modulation frequency is ultimately limited by the laser pulse 

repetition rate and the pixel dwell time. To be able to separate individual frequency 

components, pixel dwell times must accommodate at least one and preferably several periods 

of each modulation frequency. For example, TPLSM with 512 pixels per scan line has a 

minimum pixel dwell time in the range of 40-120 ns, depending on the speed of the RG 

scanner, which corresponds to 3-10 excitation pulses per pixel at 80 MHz laser repetition rate. 

Clearly, only the slowest 4 kHz RG mirror may potentially support frequency-multiplexed 

imaging with a few channels. TPFDMM performance can be substantially improved by 

increasing the laser repetition rate and thus the range of available modulation frequencies as 

well as increasing pixel dwell time and binning the image into a smaller number of pixels. 

Earlier, we discussed that TPFDMM matches the performance of TPLSM in terms of imaging 

resolution and SNR at the same fluorescence signal intensity per channel and the same data 

acquisition rates (see Fig. 2a-c, and [17]). This comparison assumes that the signals of equal 

intensity are present in every channel, which clearly is not the case in real experiments. When 

imaging multiple ROIs sequentially with the TPLSM, a significant delay is needed to 

reposition the scanning beam. For example, the Multiphoton Mesoscope achieves the 

transition time of ~10 ms, which is comparable to a 23 ms single frame acquisition time [3]. 

This dead time may be either eliminated or at least reduced proportionally to the number of 

channels in TPFDMM. When combined, these benefits can significantly improve TPFDMM 

performance. 

Additional benefits of TPFDMM become apparent when we consider specific 

applications such as the functional recording of calcium signals from neurons. In this work, 

we demonstrated that cross-talk and noise contributions from other frequency-encoded 

channels can be reduced proportionally to the square root of the acquisition time needed to 

measure a signal from every pixel within a cell body. For example, the signal acquisition time 

equals ~7 µs, given single cell body ~15 µm in diameter and a dwell time of ~40 ns/µm when 

using the fastest 12 kHz RG scanner. Assuming average signal intensities of 0.5 photons per 

pulse in each imaging channel, the resulting SBR is approximately 9 and 6, for 2 and 4 

imaging channels, respectively (see Eq. 9). Therefore, we may expect to see noise at the level 
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of ~0.05 – 0.08 photons/pulse when imaging with 2 – 4 channels simultaneously. In the 

example shown above, the background noise of calcium signals appears at the similar level in 

the range of ~0.1 photons per pulse. Note that these measurements were performed with 

analog and not photon counting detection, and therefore noise levels are slightly 

overestimated in this comparison. It is possible to conclude that at these fluorescence signal 

intensities (~0.5 photon/pulse) and scan speeds (40 ns/µm), TPFDMM will allow reliable 

detection of Ca2+ spikes from multiple simultaneously-imaged channels. Using slower scan 

speeds provided by 8 and 4 kHz RG scanners will only improve TPFDMM performance. 

A major limitation for TPFDMM which also affects every other TPLMS imaging method 

is the physiologically acceptable excitation power levels for in vivo applications. Prior studies 

have placed this limit at ~250 mW with ~900 nm excitation [22]. We mentioned previously 

that amplitude-modulated excitation is expected to generate 3/8 of the average signal as 

compared to conventional unmodulated excitation (Eq. 2). To compensate for the signal loss, 

input power must be increased by 8 / 3   for two-photon imaging. Clearly, if multiple beam 

foci are distributed in the same imaging plane, the input power will increase proportionally to 

the number of excitation beams. Since the required power increases exponentially with depth, 

it appears advantageous to position the beams with an axial offset and distribute laser power 

unevenly between scanning beams. It is possible, however, to greatly reduce the overall 

exposure by restricting image acquisition to the selected ROIs which include, for example, 

only cell bodies and exclude empty spaces that do not contain useful information [23]. 

8. Conclusions 

In this work a utility of TPFDMM method for functional in vivo recordings of calcium 

signals was studied. Analytical expressions were derived, describing the relationship between 

average two-photon emission intensity in each channel and expected cross-talk arising due to 

shot noise in other active channels, and the results were verified with numerical simulations. 

We proposed a novel approach that leverages phase information within individual pixels in 

the selected ROI to synthetically extend waveform measurement time and thus significantly 

reduce cross-talk between active channels. Practical application of this method was 

demonstrated in vitro by imaging GCaMP6f-labeled slices of brain tissue with multiple 

frequency-encoded beams. We also established a quantitative relationship between the signal 

intensities detected during in vivo experiments and theoretical predictions to guide TPFDMM 

performance evaluations. Our results suggest that in vivo calcium signal levels detected in real 

in vivo experiments are sufficient for TPFDMM. Novel calcium indicators such as GCaMP7 

[24] with increased fluorescence efficiency may further improve the performance of this 

imaging method. While we examined only one specific use case of TPFDMM, other 

applications of this method are feasible. For example, spatially-multiplexed TPLSM with 

multiple excitation beams and multiple detectors [25] or random access scanning [9] may 

incorporate frequency-encoded excitation and detection to improve data acquisition rates and 

the quality of information recorded. We note that the TPFDMM method is technically 

complex and still under development. Flexible positioning of excitation beams within FOV, 

management of significantly higher data streams as compared to conventional TPLSM, real-

time image reconstruction methods, as well as new image segmentation and postprocessing 

algorithms are needed to bring TPFDMM into the realm of practical applications.  
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