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Abstract 

Knowledge about the dynamics of cytoskeletal proteins, such as actin filaments and 

microtubules, is key to understanding numerous active cellular processes. Automated tracking 

algorithms nowadays allow to follow the motion of fluorescently labelled cytoskeleton-

associated proteins to some extent. However, these algorithms often require human 

supervision and are less accurate than manual analysis, which on the other hand is time-

consuming and prone to unconscious bias. As an alternative, kymographs, which are images 

depicting dynamic processes along a predefined axis, offer a convenient approach to visualise 

and track fluorescent proteins. However, kymographs are currently almost exclusively 

analysed manually, again limiting throughput. We here developed and trained KymoButler, a 

deep neural network to trace dynamic processes in kymographs. We demonstrate that 

KymoButler performs at least as well as manual tracking and outperforms currently available 

automated tracking packages. Additionally, we successfully applied KymoButler to a variety 

of different kymograph tracing problems. Finally, the network was packaged in a web-based 

"one-click" software for use by the wider scientific community. Our approach significantly 

speeds up data analysis, avoids unconscious bias, and represents a step towards the 

widespread adaptation of Artificial Intelligence techniques in biological data analysis. 
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Introduction 

In eukaryotic cells, biopolymers such as microtubules and actin filaments (F-actin) provide 

structural support and enable essential cellular functions including intracellular transport 

(Franker & Hoogenraad 2013; Mitchison & Cramer 1996), cell motility (Gardel et al. 2010), 

and cell division (Prosser & Pelletier 2017, Lancaster et al. 2013).  

Both microtubules and F-actin are polar filaments with a +end and a –end which differ in their 

chemical and dynamical properties. Microtubules, for example, exhibit a mostly stable -end, 

while the +end undergoes rapid cycles of growth and shrinkage (Brouhard 2015). 

Measurements of microtubule dynamics are usually performed by genetically expressing 

fluorescent proteins that preferentially bind to the filament ends, such as the +End-Binding 

protein 1 (EB1) (Piehl et al. 2004; Ma et al. 2004). These fluorescent proteins (particles) are 

recorded using time-lapse fluorescence microscopy and tracked with a variety of approaches.  

Since actin and microtubules can only grow along their own axis, it is possible to visualise and 

simplify filament end tracking by using kymographs (Chenouard et al. 2010; Mangeol et al. 

2016) - 2D images generated by stacking the intensity profile along a given line, e.g. the F-

actin or microtubule axis, for each time point of a movie. Thus, kymographs are length-time 

images showing labelled filament ends as lines (Fig. 1). They are not limited to tracking 

cytoskeletal filaments but have been widely employed to visualise biological processes across 

different length scales, ranging from single molecule to cell tracking (Twelvetrees et al. 2016; 

Barry et al. 2015).  

Kymographs provide an elegant solution to the visualisation and quantification of particle 

dynamics. In contrast to most currently available tracking software, which faces the difficult 

computational problem of identifying corresponding particles in different frames, a kymograph 

visualises this problem, and only requires the tracing of lines in an image, a much simpler task 

for humans and machines alike. These lines then represent the track of a filament, or any 

other process, so that measuring the lines’ lengths and slopes allows to calculate the average 

velocities and growth periods of a cytoskeletal filament, respectively. 

Conventional kymograph tracing or particle tracking algorithms produce acceptable results 

when applied to images with a high signal-to-noise ratio (SNR), but are exceedingly error-

prone at lower SNRs (Applegate et al. 2011; Mangeol et al. 2016). While immunocytochemical 

stains may result in high quality images with high SNR, live-cell imaging as required for the 

investigation of dynamic processes usually suffers from autofluorescence, limited light 

exposure, and the low labelling densities required to keep the cells undamaged. The resulting 

lower quality images often require cumbersome manual error corrections, leading to similar 
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time commitments as an exclusively manual analysis. Thus, the problem of automatically, and 

reliably, tracking dynamic processes in live cells is still largely unresolved, and any automation 

in kymograph tracing that preserves the accuracy of manual annotation would represent a 

significant improvement in the experimental workflow. 

In recent years, Artificial Intelligence (AI), and particularly Deep Neural Networks, have been 

very successfully introduced to data processing in biology (Mathis et al. 2018; Weigert et al. 

2017). AI-based image analysis has several advantages over other approaches: it is less 

biased than human users, takes a shorter time to analyse immense datasets, and most 

importantly, comes closer to human performance than conventional tracking algorithms 

(Mathis et al. 2018). Most AI approaches to image analysis utilise Fully Convolutional Deep 

Neural Networks (FCNs) that were shown to excel at object detection in images (Dai et al. 

2016; Szegedy et al. 2014; LeCun et al. 2008). A convolutional neural network is able to use 

a multitude of hidden layers to apply kernels of all shapes and sizes to images, filtering the 

information from the background. This ability should, in theory, enable an FCN to trace 

biopolymer dynamics in low SNR kymographs with unmatched precision. 

Here we developed a stand-alone software, ‘KymoButler’, which is based on an FCN, to 

automatically and reliably extract biopolymer dynamics from kymographs. Whilst we trained 

the FCN on microtubule +end growth dynamics using manually traced kymographs of EB1-

GFP in neurons, the KymoButler software performs well on kymograph data of cytoskeletal 

filaments in other cells, including EB3-GFP traces from mitotic HeLa cells and actin speckles 

in Aplysia neuronal growth cones. Finally, the KymoButler outperforms conventional 

automated tracking and, quite remarkably, several cases of manual tracing. 

Results 

Generation of training data, neural net training, and validation 

Microtubules constitute a prevalent fraction of the filaments contained in growing neuronal 

axons (Kapitein & Hoogenraad 2015). To generate kymographs capturing microtubule 

filament dynamics, we cultured neurons dissociated from Drosophila melanogaster larvae, 

expressing EB1-GFP under the endogenous eb1 promoter, and tracked the dynamics of EB1 

puncta in 520 axons (Fig. 1A). In this model system, EB1-GFP puncta move in the axon either 

towards the cell body (retrograde) or away from the cell body (anterograde). We generated 

kymographs by manually tracing the axon and stacking the intensity profile along the axon for 

each frame into one image (Fig. 1B-C). In these kymographs, individual EB1-GFP trajectories 

are visually distinguishable as bright lines. We traced these trajectories by hand and colour-
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coded them by directionality (anterograde or retrograde, Fig. 1D), creating a dataset of input 

images (the raw kymographs) and labels (the traces). 

We then used these pairs of input-label images to train an FCN to separate pixels belonging 

to an EB1-GFP trace from background pixels. We built a custom neural network based on 

Google’s “inception” architecture, the Tracer FCN (Szegedy et al. 2014) (Methods and Fig. 

S1-2). Additionally, we designed a much faster, shallower FCN that only takes a 10% of the 

evaluation time of the Tracer FCN while maintaining similar levels of performance in our 

system (Fig. S1-2). Both FCNs take the input kymograph and decompose it into several 

images, called feature-maps, through numerous convolution and deconvolution steps. The 

final output is an image of the same size as the input image, in which each pixel value 

corresponds to the probability p of this pixel being part of the foreground (part of a trace). The 

nets were trained to recognise traces going from the left to the right. Applying them to the 

original and the vertical mirror image allows to distinguish between anterograde and 

retrograde traces, respectively. 
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Figure 1: Generation of kymographs showing microtubule EB1-GFP dynamics and subsequent 

training of the Tracer FCN. (A) Fluorescence time-lapse images of a drosophila neuron expressing 

EB1-GFP. A single EB1-GFP punctum is shown in four consecutive frames (arrows). (B) Hand-drawn 

line along the axon building up each pixel row of the kymograph. (C) Example kymograph obtained from 

the line shown in (B). Arrow: track resulting from the EB1-GFP comet shown in (A). (D) Individual EB1-

GFP traces were traced by hand, distinguished by directionality (blue = anterograde, red = retrograde), 

and overlaid on the kymograph. (E) Example output of the Tracer FCN applied to validation data (see 

methods). An 80x80 pixel subimage from the kymograph shown in (D) (box) is fed to the Tracer FCN. 
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(F) The heat maps show the predicted probability p for each pixel being part of a trace (top: anterograde 

traces, bottom: retrograde traces). (G) Tracer FCN prediction: pixels were considered to be part of a 

track when t>0.2, and iterative thinning was applied to generate traces. (H) Hand-traced (manual) 

images for both directions. (I) the prediction (orange) was overlaid with the manual annotation (blue); 

co-localised pixels appear pink. The FCN fully recapitulated the hand-traced data and even recognised 

traces that were omitted by mistake in hand tracings, even though it had never ‘seen’ this image during 

training. (J) The performance of the Tracer FCN when applied to the whole validation data set in terms 

of a manual to Tracer FCN similarity score (see methods) plotted as a function of probability cut-offs t. 

The insets highlight the scores of the anterograde predictions of the kymograph shown in (E). A 

maximum in similarity is achieved at t=0.2. For larger p cut-off values the network tends to return shorter 

traces than the manual labelling; for smaller t tracks become incorrectly linked (left inset). Scale bars: 

2 μm (horizontal), 25 sec (vertical). 

 

We split our dataset into a validation set and a training set, by randomly selecting two biological 

repeats with a total of 33 (~6%) kymographs as validation data. The training dataset was used 

to iteratively change the FCN parameters to match the FCN output to the manually traced lines 

(see Methods). This was done by minimising loss (a function that quantifies the difference 

between the desired image and the FCN output) through stochastic gradient descent and 

changing the network’s parameters accordingly. The training of the FCN stops when changing 

the parameters does not lead to any further decrease of the loss (Fig. S2). The validation data 

set was then used to quantify how the FCN performed using a previously unseen dataset.  

Trained FCNs assign the probability of being part of a trace to each pixel in the input image 

(Fig. 1F). To convert these probability maps into tracks and compare them to the manual data, 

we introduced a threshold value t: any pixel that had a larger value than t was classified as 

being part of a track. The resulting binary image was then iteratively thinned so that only traces 

with a width of one pixel remained, which was subsequently overlaid on the manual data for 

comparison (Fig. 1G). The trained Tracer FCN showed a precise overlay with the manual 

tracks from the validation data (see Fig. 1H-I). Often, the Tracer FCN surpassed the accuracy 

of manual labelling, as it was able to recognise previously unlabelled traces that were 

erroneously omitted.  

Next, we quantified the effect that the threshold value t had on the output of the network by 

introducing a similarity score that accounts for the differences between the output of the Tracer 

FCN and the manual labels (Fig. 1J). A score of 1 would indicate a perfect overlay, while a 

score of 0 would indicate no matches. For small t (0.01) we observed frequent artefacts, for 

example the linking of parallel tracks. For high t (0.5) the predicted tracks were too short. An 

optimum threshold was found around t=0.2 (Fig. 1J), which was therefore used throughout 
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this paper unless stated otherwise. The maximum similarity score we achieved was ~0.7. As 

the KymoButler tends to outperform and detect more traces than identified by the manual 

labelling (where faint or short traces are often missed), similarity is decreased (<1) when 

automated detection is close to an optimum. These results indicated that a trained FCN is able 

to automate the kymograph tracing process, significantly reducing research workload and 

avoiding biased data analysis. 

The KymoButler software package 

We packaged the trained FCNs into two easy-to-use interfaces for quick and fully automated 

kymograph analysis: (1) a browser-based app with the shallow FCN (Fig. S1) to quickly drag 

& drop individual kymographs in order to analyse them (http://kymobutler.deepmirror.ai) and 

(2) a simple command line python script to be used offline with the full Tracer FCN 

(https://github.com/MaxJakobs/KymoButler). While the Tracer FCN is preferable to precisely 

analyse large or more complex data sets, the web based shallow version can be used to 

quickly assess the feasibility of the approach with a given kymograph. In both cases, the user 

first has to generate a kymograph for their specific problem, with any available kymograph 

generator (for example the Multi Kymograph Fiji plugin (https://imagej.net), the 

KymographTracker package (Chenouard et al. 2010), or the KymographClear Fiji plugin 

(Mangeol et al. 2016)). The software then applies the FCN to the image twice (once to the 

original and once to the vertical mirror image), threshold the result, apply iterative thinning, 

generate an overlay of predicted tracks onto the kymograph, and finally extract and classify 

each connected line as a single trace (Fig. 2). In the software, the user can freely define the 

threshold parameter t, the probability above which a pixel is considered to be part of a trace. 

After the computation, which takes approximately 5-10 seconds on a conventional computer 

(Tracer FCN on a CPU), the KymoButler generates several files including an overlay image 

highlighting all the tracks found in different colours, and a CSV file per kymograph, containing 

all track coordinates and track directionality for post-processing. 
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Fig.2: The KymoButler package - an automated 

software for kymograph analysis. (A) The software is 

first presented with a kymograph image input of any 

format. (B) Subsequently, the Tracer FCN is applied to 

the image twice (once to the original and once to the 

vertical reflection) resulting in two heat maps that assign 

each pixel the probability of being part of an antero- or 

retrograde trace (top two panels). Then the software 

binarizes the resulting images with a user-given 

threshold t (here t=0.2). The binary images are then 

thinned iteratively, and each line gets segmented as one 

track (blue and red lines, bottom two panels). (C) The 

software then generates multiple output files: an overlay 

of the segmented tracks with the original image (shown, 

each colour represents a distinct track) and a CSV file 

per kymograph, with every trace’s coordinates. Scale 

bars: 2 μm (horizontal), 25 sec (vertical). 

 

 

 

 

The KymoButler software outperforms conventional tracking 

To assess the performance of KymoButler, we compared it to manual kymograph tracing and 

to the plusTipTracker package, which was explicitly written for tracking EB1-GFP puncta 

(Applegate et al. 2011). In conventional tracking algorithms such as the plusTipTracker, 

individual features are first detected through local thresholding and then linked with each other 

between frames. We compared the average track velocities (start-to-end velocity) and track 

lengths of EB1-GFP puncta of our validation data set (33 previously ‘unseen’ kymographs, 

Fig. 3) for all the three approaches. There was no significant difference between the average 

velocities (KymoButler: 4.6 ±  1.0 𝜇𝑚/𝑚𝑖𝑛 , Manual: 4.3 ±  0.9 𝜇𝑚/𝑚𝑖𝑛 , plusTipTracker: 

4.8 ± 1.4 𝜇𝑚/𝑚𝑖𝑛, ANOVA p=0.16, Fig. 3A). However, when plotting the velocities calculated 

by the two algorithms against manually determined data in a 2D scatter plot, 97% (32/33) of 

the velocities calculated with KymoButler fell within the standard deviation of the manual data 
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(±0.9 𝜇𝑚/𝑚𝑖𝑛), while this was only true for 73% (24/33) of the velocities calculated with 

plusTipTracker (Fig. 3B). 

The average track lengths revealed by manual tracing, KymoButler, and plusTipTracker 

differed significantly (Fig. 3C, p<10-23, one way ANOVA). A post-hoc analysis showed no 

differences between KymoButler and manual analysis (25 ±  5 𝑠𝑒𝑐 and 23 ±  4 𝑠𝑒𝑐, p=0.16, 

Tukey-Kramer test). However, the plusTipTracker analysis significantly underestimated the 

track times by about twofold (12 ±  2 𝑠𝑒𝑐, p<10-9, Tukey-Kramer test) (Fig. 3C). Additionally, 

in 85% (28/33) of kymographs analysed with KymoButler, the average lengths of the traces 

were within the standard deviation of the manual data (± 5 𝑠𝑒𝑐), but only 1 out of the 33 axons 

analysed with plusTipTracker fell within the same region (Fig. 3D).  

We noticed that for one kymograph the manual tracing resulted in much larger average EB1-

GFP track lengths than calculated by both KymoButler and plusTipTracker (dot 2 in Fig. 3D). 

Revisiting the manual data revealed that several short tracks were unlabelled incorrectly (black 

box in Fig. 3F). Additionally, some tracks were erroneously drawn too long, while KymoButler 

broke them rightly into several shorter ones (red box in Fig. 3F), indicating that KymoButler 

performs better than manual labelling on most kymographs.  
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Fig.3: KymoButler microtubule dynamics analysis outperforms conventional tracking 

algorithms. (A) Average EB1-GFP velocities per axon were similar for manual tracing, the KymoButler, 

and plusTipTracker package (p=0.17 ANOVA). Each dot represents one axon and the boxplots show 

the median and the upper and lower quantiles. (B) 2D scatterplot of the average velocities calculated 

with KymoButler (green dots) and plusTipTracker (magenta dots) against the average velocities 

calculated via manual tracing. Black lines indicate a deviation of ±0.9𝜇𝑚/𝑠𝑒𝑐 from the identity line, 

corresponding to the standard deviation of the manually traced velocities. (C) Boxplots of the average 

track lengths, i.e. the time during which EB1-GFP puncta were visible, calculated with manual tracing, 

KymoButler, and the plusTipTracker. The average track length was approximately half as long when 

the plusTipTracker package is used, compared to the manual tracing and KymoButler (p<10-9, Tukey-

Kramer test), which yielded similar results. (D) 2D scatter plot of the average track lengths calculated 

with the KymoButler (green dots) and plusTipTracker (magenta dots) against the average track lengths 

calculated via manual tracing. Black lines again indicate the standard deviation of the manual data. (E) 

Kymograph of data point 1 labelled in (D) with overlaid manually labelled traces and the predicted traces 

of KymoButler (each colour represents one segmented track). There is an excellent correspondence 

between the tracks obtained by both approaches. (F) Kymograph of data point 2 labelled in (D) with 

overlaid traces. KymoButler breaks up several tracks more accurately than the manual tracking (red 

box, long trace in the centre, red arrow) and adds several shorter tracks that were incorrectly omitted 

in the manual approach (black box, black arrow). Only tracks longer than 2 frames were included in the 

analysis. (G) Zoom into the red box shown in (F). Scale bars: 2μm (horizontal), 25 sec (vertical). 

The KymoButler can be easily extended to other biological systems 

We finally tested the capability of the KymoButler software to analyse kymographs generated 

from different cell types and different cytoskeletal components. Note that we did not retrain 

the Tracer FCN for these applications. First, we analysed time lapse movies of EB3-GFP 

dynamics in interphase HeLa cells (Fig. 4A). After only changing the threshold parameter to 

t=0.1, KymoButler predicted puncta trajectories as well as it did for Drosophila melanogaster 

axon EB1-GFP. When comparing manually extracted traces with KymoButler results of raw 

kymograph images, we did not find any significant differences between average EB3-GFP 

microtubule growth velocities (Wilcoxon rank sum test, p=0.98) and average growth times 

(Wilcoxon rank sum test, p=0.61) (Fig. 4B). 

Remarkably, KymoButler was even able to quantify actin speckle velocities in Aplysia growth 

cones. Average retrograde actin flow velocities showed no significant difference between 

manual labelling and KymoButler analysis even though the network was only trained on EB1-

GFP puncta in axons (Wilcoxon rank sum test, p=0.08) (Fig. 4D).  
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Fig.4: KymoButler efficiently analyses particle tracks in other biological systems. (A-B) Analysis 

of EB3-GFP in HeLa cells. (A) A kymograph was extracted from an interphase HeLa cell expressing 

EB3-GFP and subsequently analysed by hand and with KymoButler. The heatmap represents the 

probability map generated by KymoButler, the blue lines correspond to the hand traced EB3-GFP lines, 

and the coloured lines represent the traces recognised by KymoButler. The threshold t was set to 0.1. 

Scale bars: 5μm (horizontal), 10 sec (vertical) (B) Average EB3-GFP velocities and growth times 

obtained by manual tracing and KymoButler analysis. No significant differences were found (Wilcoxon 

rank sum test, p=0.98 velocities, growth times p=0.61). (C-D) Analysis of actin speckle dynamics in 

Aplysia growth cones. (C) Kymograph of fluorescently labelled G-actin, and analysed traces with t=0.1. 

Scale bars: 5μm (horizontal), 20 sec (vertical). (D) Average actin speckle velocities are similar for 

manual and KymoButler analysis (test, p=0.08). Tracks less than 6 frames long were omitted from the 

analysis. 

 

Discussion 

In this work, we used deep learning to optimise automated tracking of dynamic, fluorescently 

labelled proteins in a noisy environment in cells. Fully convolutional neural networks (Tracer 

FCNs) are nowadays widely applied for image recognition. Since tracking is a priori a visual 
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problem, we built an FCN for identifying traces in kymographs. We deployed our network in 

two independent stand-alone software packages that take generic kymographs and output all 

traces found in the image in a matter of seconds. Remarkably, the network not only 

outperforms current particle tracking software and, in some cases, even manual tracking, but 

it also performs just as well on kymographs of different dynamic processes, such as 

fluorescence speckle microscopy. 

Our KymoButler software has only one adjustable parameter: t, the threshold at which a pixel 

is recognised as being part of a track. For our validation data, the best value for t was 0.2. 

This threshold generally depends on the SNR of the image. If the SNR is low, the FCN is “less 

confident” about a given pixel, so that the threshold has to be smaller. More noisy data, such 

as the HeLa cell EB3-GFP data or actin speckles shown in Figure 4, produced good results 

with a smaller threshold value (t=0.1). Hence, the correct threshold has to be chosen based 

on each biological application and imaging conditions. 

Available automated kymograph analysis software was not suitable for tracing EB1-GFP 

puncta in axons, mainly because these packages were susceptible to noise. The 

KymographDirect package, for example, applies a global threshold to individual kymographs 

to extract traces, thus being very prone to variations in background intensity and requiring 

manual screening (Mangeol et al. 2016). Most other currently available packages require 

manual track tracing or linking, defeating the purpose of a fully automated analysis (Mukherjee 

et al. 2011; Chenouard et al. 2010). An alternative approach quantifies kymograph velocities 

through 2D autocorrelation, however, the analysis is limited as trace lengths cannot be 

measured (Chan & Odde 2008).  

The current gold standard for automated tracking of microtubule dynamics is the 

plusTipTracker package. When we compared KymoButler with manual and plusTipTracker 

data, it performed at least as well as manual tracking, and much better than the 

plusTipTracker. The mismatch between the plusTipTracker and manual traces is likely 

because (1) “long” tracks have a tendency of being split into several shorter ones, since the 

probability of linking errors increases with track length (Supplementary Movie 1), and (2) 

“short” tracks are sometimes incorrectly linked due to background fluctuations 

(Supplementary Movie 2). The first issue results in too short track lengths, and the second 

causes inflated velocity measurements. 

We propose that manual tracking is inferior to the KymoButler as it suffers from inconsistency, 

bias, and is overall laborious. While the KymoButler analyses each kymograph in the same 

way, manual tracing performance varies from one kymograph to the next as well as between 
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users. In our dataset, we frequently overestimated trace lengths, so that the manual annotation 

yielded slightly larger track lengths than the KymoButler. In future, KymoButler could be 

trained on a larger dataset traced by multiple researchers to remove other inconsistencies that 

may be present in the dataset, thus further improving the KymoButler’s performance.  

Additionally, KymoButler was able to analyse kymographs from different dynamic processes 

such as retrograde actin flow in neuronal growth cones. This result highlights that particle 

tracking does not depend on the precise nature of the particle, e.g. actin or EB1, but on the 

task of tracing a line in an image, which should be the same for any dynamic process that can 

be represented this way. 

Future work will expand our approach to 2D or even 3D tracking problems. In this paper, we 

drew 1D lines in 2D movies, extracted 2D (space and time) images (kymographs), and finally 

traced 2D lines in those images. A similar, albeit computationally heavier, approach could 

stack the frames of a 2D/3D movie on top of each other to generate a 3D/4D image (2D space 

and time, or 3D space and time). The 2D/3D lines in those images can then be traced by hand 

and a more complex FCN trained to recognise them. This approach could yield human-like 

performance in higher dimensional automated tracking. 
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Software 

Quick and easy cloud platform (Shallow FCN only): http://www.kymobutler.deepmirror.ai  

GitHub with the command line interface (full Tracer FCN): 

https://github.com/MaxJakobs/KymoButler  
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Material and Methods 

Fly Stocks 

The following stocks were used for expressing fluorescently tagged EB1: eb1-gfp (Bulgakova 

et al. 2013) and uas:eb1-gfp (Jankovics & Brunner 2006). To include different genetic 

backgrounds in our training data we also co-expressed two RNAi constructs: uas:wh-RNAi 

(Bloom# 35573) and uas:dhcRNAi (Bloom# 36698) of which the latter is known to cause a 

severe phenotype on EB1-GFP dynamics (del Castillo et al. 2015). All uas constructs were 

driven by elav-gal4 (Bloom# 458) and transgenic lines generated through standard balancer 

crossing procedures. 

D. melanogaster neuronal culture and EB1-GFP live imaging 

Primary cell cultures were prepared similar as to (Sanchez-Soriano et al. 2005). Third instar 

larvae were selected, and their central nervous systems dissected. Subsequently, the tissue 
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was dissociated in Hank’s Balanced Salt Solution (HBSS) supplemented with Dispase (Roche 

049404942078001) and Collagenase (Worthington Biochem. LS004214). The cells were 

plated in 30μl droplets of Schneider’s Medium (Thermo Fisher 21720024) supplemented with 

insulin (2 μg/ml Sigma I0516) and fetal bovine serum (1:4 Thermo Fisher Scientific A3160801). 

We plated the drops in ibidi glass-bottom μDishes (cat num 81158) and covered them with 

25mm coverslips (VWR) to create small culture chambers. The glass bottom dishes were 

previously coated with Concanavalin A (5μg/ml, 1.5h at 37°C). The culture chambers were 

subsequently put at 26°C for 1.5h so that the cells settle on the coated surface of the dish. 

Then the chambers were flipped to remove debris from the surface and left for 24 hours before 

imaging. 

Live imaging movies were acquired on a Leica DMI8 inverted microscope at 63x magnification 

and 26°C (oil immersion, NA=1.4). To reduce autofluorescence the culture medium was 

replaced with Live Imaging Solution (Thermo Fisher A14291DJ). For EB1-GFP imaging, an 

image was taken every 2 seconds for 70-150 frames depending on sample bleaching rate. 

We imaged 520 axons from 26 different dishes.  

We also treated the cells with Latrunculin B (10 μM) and Ciliobrevin A (100 μM). Both drugs 

are known to perturb microtubule dynamics so that including movies acquired with these 

treatments would again make our FCN more robust (Rao et al. 2017; del Castillo et al. 2015). 

In both cases the cells were first allowed to attach to the coated glass for 1.5h post dissection 

before replacing the culture medium with culture medium supplemented with Latrunculin B or 

Ciliobrevin A. 

Aplysia neuronal culture and actin fluorescence speckle microscopy 

Aplysia bag cell neurons were isolated and cultured as previously described in (Forscher et 

al. 1987). Neurons were then injected with alexa-568 labelled G-actin (Molecular Probes) at 

low levels, appropriate for fluorescence speckle microscopy (Danuser & Waterman-Storer 

2006). The growth cone in Fig. 4B was imaged on a spinning disk confocal microscope at 2 

Hz sampling rate. 

HeLa Cell culture and imaging 

A HeLa stable cell line expressing LifeAct-GFP and EB3-mRFP (Fink et al. 2011), was 

maintained in Dulbecco’s Modified Eagles Medium (DMEM GlutaMAX; Gibco) supplemented 

with 10% FBS and 50 U/ml penicillin and 50 μg/ml streptomycin (Invitrogen) at 37 C under 5% 

CO2. Cells were imaged using an UltraView Vox (Perkin Elmer) spinning disc confocal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint 

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

microscope with a 63X (NA 1.4) oil objective equipped with temperature and CO2 controlling 

environmental chambers and images were acquired using a Hamamatsu ImagEM camera and 

Volocity software at a rate of 2 Hz (Perkin Elmer). 

Kymograph generation and FCN training 

The 520 neuronal axons were first traced by hand with the KymographTracker plugin for ICY 

(http://icy.bioimageanalysis.org, (Chenouard et al. 2010)). We randomly choose two 

biological repeats (2x dishes, 33 axons, ~6%) as a validation data set, i.e. we did only use 489 

axons as training data. Subsequently we generated kymographs with the KymographTracker 

plugin and traced EB1-GFP lines in those images by hand, using the same plugin. The traces 

were then plotted in two images: one for retrograde tracks and one for anterograde tracks. We 

also generated kymographs with a custom Mathematica script to obtain two slightly different 

kymographs per axon. We then reflected each kymograph and the corresponding trace 

images along the vertical (y) axis and stretched them along the x-axis to 0.5, 0.75, 1.25, and 

1.5 their original length eventually resulting in a total number of 10,400 kymographs and their 

respective manually traced images (two per kymograph). Hence out training/validation data 

set comprises 9740/660 kymographs and their respective trace images. 

We decided to design a Fully Convolutional Neural Network (FCN) to recognise the antero- 

and retrograde lines in our noisy kymographs. An FCN does not exhibit any fully connected 

layers, i.e. layers whose parameter number depends on the dimension of the input image, but 

only calculates several parallel and consecutive image convolutions and/or deconvolutions 

with trainable parameters. As the number of these parameters does not depend on the size of 

the input image, kymographs do not have to be resized before application of the FCN. 

We used Mathematica (http://wolfram.com) to both generate and train our FCN. Even though 

the network is fully convolutional, the Mathematica training algorithm needed all input images 

to have the same dimensions. Thus, we divided each kymograph into tiles of 80x80 pixels so 

that one training “unit” comprised one input image and two output images, showing 

anterograde and retrograde traces. To make training more efficient, we decided to only train 

one network to recognise anterograde (left to right) tracks so that each of these sets was again 

split into an input tile with the anterograde tracks and the vertically reflected input + retrograde 

tile. The total number of tile pairs thus became 149,488 for the training data and 9740 for the 

validation data. In this way the final network would have to be called twice: once on the original 

kymograph and once on the reflected one to detect both antero- and retrograde traces. 
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Our approach to the precise architecture of the final Tracer FCN was purely empirical 

comprising the following building blocks: (i) a convolutional layer with arbitrary kernel size and 

number of output channels followed by a batch normalisation layer and a ‘leaky’ ramp 

(leayReLU) activation function (𝑙𝑒𝑎𝑦𝑅𝑒𝐿𝑢(𝑥): = 𝑚𝑎𝑥(𝑥, 0) − 0.1 𝑚𝑎𝑥(−𝑥, 0)), (ii) a dropout 

layer that randomly sets 10% of all input values to zero during training to prevent ‘overfitting’ 

of the input data, (iii) a deconvolutional layer with arbitrary kernel size and number of output 

channels to sharpen the input images again followed by a batch normalisation layer and a 

leayReLu layer, (iv) a pooling layer with kernel size three to replace a given pixel with the 

maximum value in its neighbourhood. The batch normalisation layer is useful to stabilize the 

training procedure as it rescales inputs to the activation function (leayReLu) so that they have 

zero mean and unit variance. The leayReLu prevents so-called dead ReLu’s by applying a 

small gradient to values below 0. These building blocks were previously used for image 

recognition tasks in Google’s inception architecture (Szegedy et al. 2014). 

The architectures we settled on is shown in Fig. S2. Six connected “Trace Block” layers are 

used to denoise the image and highlight individual traces. The precise architecture of these 

Blocks is again shown in Fig. S2. This block architecture allows a lot of flexibility with the 

choice of operation, for example the convolving kernel size, throughout training and 

evaluation. A major feature of the Trace Block architecture is the inclusion of deconvolutions. 

Without explicitly computing deconvolutions in each block, as for example in the shallow FCN 

in Fig. S2, the final image is more blurred, and one is unable to segment individual traces as 

efficiently. In the final step of both architectures all channels are projected on only two and a 

softmax layer is applied so that the sum over those channels is one for each pixel. The two 

channels can be interpreted as the probability of a given pixel to be part of the background or 

a trace. 

To train the FCN we quantified the difference between the FCN output 𝑜 and the desired target 

output 𝑡 through a cross entropy loss layer (𝐶𝐸𝑙𝑜𝑠𝑠(𝑡, 𝑜) = −(𝑡 ⋅ 𝑙𝑛(𝑜) + (1 − 𝑡) ⋅ 𝑙𝑛(1 − 𝑜) ). 

Here 𝑡 can be either 1 (background) or 2 (trace). For Example: The untrained FCN will give 

0.5 as the probability of each pixel to be part of the background as it has no preference yet. 

The corresponding loss for a pixel that should be part of the background (index=1) would be: 

𝐶𝐸𝑙𝑜𝑠𝑠(0.5,1) = 0.69. During training this value might be updated to 0.9 decreasing the loss 

to 𝐶𝐸𝑙𝑜𝑠𝑠(0.9,1) = 0.11.  

We trained the FCN through stochastic gradient descent. Here we first randomly subdivided 

all training tile pairs into batches of 50. For each batch we then calculated the average cross 

entropy loss and the gradient of this loss in all tuneable parameters, e.g. the kernel entries in 

the convolutions. We then updated all the parameters 𝜎 in the network according to 𝜎′ = 𝜎 −
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𝜂𝜕𝜎𝐶𝐸𝑙𝑜𝑠𝑠(𝑡, 𝑜). Here 𝜕𝜎 denotes the partial derivative with respect to all parameters of the 

FCN and 𝜂 is the learning rate, i.e. the multiplier giving absolute value of the shift in 𝜎 at a 

given step. Note that 𝜂 is not fixed but is dynamically updated through the ADAM algorithm 

(Kingma & Ba 2014). This was repeated for all batches until the whole training dataset was 

visited by the algorithm constituting one round. The FCN was trained until no decrease in the 

validation data loss was observed anymore (5 Rounds). Every 10 minutes, the average loss 

was calculated for the validation dataset to obtain a readout on how the FCN performs on 

previously “unseen” data. 

FCN performance evaluation 

The direct output of both FCNs was an 80x80x2 tensor that assigns each pixel the probability 

of being part of a trace (index=2) or the background (index=1). In order to reconstitute traces 

from the FCN output we introduced a threshold value t for the second index, above which we 

would consider a pixel being part of a trace. The training set comprises many more background 

pixels than foreground pixels so that the FCN exhibits small probabilities around traces, 

therefore the cut-off has to be chosen generally as an unintuitively small value (t<0.5). The 

thresholded output images were iteratively thinned until they depicted lines of only one pixel 

wide. 

To compare the FCN output with the manual annotation for the validation data we defined a 

similarity score as a function of the threshold as follows: (i) Both the anterograde and the 

retrograde trace probability map are calculated with the FCN and thresholded and dilated by 

one pixel. (ii) Both dilated binary predictions (0=background, 1=trace) are multiplied with the 

respective binary manual trace images and in the resulting image the total number of pixels=1 

counted (𝑜𝑣𝑙𝑝, a measure of the overlap between the prediction and the manual annotation). 

(iii) We also calculated the total number of pixels=1 in the manual traced image (𝑁𝑚) and the 

prediction (𝑁𝑝). (iv) The similarity score 𝑠 was then given by: 

 

 

In short: The similarity score measures the overlapping pixels in the prediction and the manual 

annotation and divides them by the absolute number of pixels being part of a trace in the 
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manual annotation (𝑜𝑣𝑙𝑝/𝑁𝑚). The result is divided by a factor measuring the difference in 

pixels that are part of a trace between prediction and manual labelling to penalise large 

discrepancies in total number of predicted pixels (1 + |𝑁𝑚 − 𝑁𝑝|/𝑁𝑚). Since the prediction 

rarely overlaps completely with the manual annotation and frequently finds more objects that 

were previously labelled, a ‘good’ score lies at around 0.7. 

KymoButler software  

The KymoButler software first applies either the deep Tracer FCN or the shallow FCN to a 

given kymograph and its vertical reflection. The resulting foreground probability map is then 

thresholded with the parameter t and thinned iteratively so that each trace is only one pixel 

wide at any point. The thinned traces are then pruned by three pixels so that short branches 

are deleted. Subsequently, each trace is segmented and selected only if it contains more than 

5 pixels and is at least 3 frames long. This step removes noise from the result. In the final step, 

pixels that lie in the same row of the kymograph are averaged over so that the resulting track 

has only one entry per frame. 

  

Comparison between KymoButler and plusTipTracker 

We used the plusTipTracker version 1.1.4 for MATLAB 2014a (mathworks.com) to analyse 

the axons from our validation dataset (33 axons). In each movie we first selected a region of 

interest comprising the axon and omitting very bright artefacts. To run the software, we first 

varied the detection parameters to find those that result in similar total track numbers as the 

manual kymograph tracing approach. We settled on the following detection parameters: 𝜎1 =

1, 𝜎2 = 4, 𝐾 = 8 . For tracking we chose: 𝑚𝑖𝑛𝑇𝑟𝑎𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ = 3, 𝑚𝑎𝑥𝐺𝑎𝑝 = 2, 𝑚𝑖𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑 =

5, 𝑚𝑎𝑥𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑 = 15, 𝑚𝑎𝑥𝐹𝑤𝐴𝑛𝑔𝑙𝑒 = 30, 𝑚𝑎𝑥𝐵𝑤𝐴𝑛𝑔𝑙𝑒 = 10, 𝑠ℎ𝑟𝑖𝑛𝑘𝑉 = 0, and 𝑟𝐹𝑙𝑢𝑐 =

1.5. Note that we set the shrinkage velocity to zero so that the plusTipTracker does not try to 

calculate microtubule shrinkage events.  

In order to compare the plusTipTracker to the KymoButler we wrote a short Mathematica script 

that calculates the predicted tracks for the same 33 axons with the Tracer FCN and exports 

them in a MATLAB friendly format. As with the plusTipTracker we ignored all traces with track 

lengths below 3 frames. All subsequent data plotting and analysis was done in MATLAB. 
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Supplementary Figures 

 

 

Fig. S1: FCN architecture. Left: An input 80x80 pixel image is first fed into 2 consecutive Tracer Blocks 

that each output 110 80x80 images (feature maps). Then a Dropout Layer deletes (randomly) 10% of 

all pixels in all feature maps (only during training). The result is again computed through four Tracer 

Blocks. Subsequently, the resulting 110 feature maps are projected on two with a 1x1 convolution, the 

result transposed and a softmax operation applied so that the two entries in each pixel of the 80x80 

matrix sum up to 1. The result then comprises two 80x80 images: one whose pixel values give the 

probability of being part of the foreground (prob fg) and one whose pixel values give the probability of 

being part of the background (prob bg). Only convolution and deconvolution operations are used, hence 

the network does not depend on the input image size and can be applied to images that are not 80x80 

pixels large. Right Top: One Tracer Block comprises six parallel net chains. (1) the identity convolution 

1x1 with 10 output maps. (2) a 1x1 convolution followed by a 3x3 convolution with 20 output maps. (3) 

a 1x1 convolution followed by a 5x5 convolution with 20 output maps. (4) a 1x1 convolution followed by 

a 9x9 convolution with 20 output maps. (5) a 1x1 convolution followed by a 3x3 deconvolution with 20 

output maps. (6) a 3x3 max pooling operation followed by a 1x1 convolution with 20 output maps. The 

resulting feature maps are catenated along the first dimension to generate 110 feature maps as an 

output of the block. Right Bottom: As this net can be computationally demanding for web form 

applications and hence expensive to maintain we also designed a shallower FCN: This net does not 

comprise any parallel blocks and only evaluates one 3x3 convolution followed by a 5x5 convolution and 

a 3x3 deconvolution. 
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Fig. S2: Loss Curves for training and validation data. Top: Validation and batch Loss curves for the 

Tracer FCN. The FCN was trained for 5 Rounds, i.e. full dataset visitations. 50 input tiles were summed 

to one batch and the loss calculated on each batch (orange). Additionally, the loss on the validation 

data set was calculated every 10 minutes (blue dots and curve). The loss reaches a plateau after ~4 

Rounds. Bottom: The Batch loss of the Tracer FCN (blue, same data as in the orange curve above) and 

the batch loss for the shallow FCN from Fig. S2.  

 

References 

Applegate, K.T. et al., 2011. plusTipTracker: Quantitative image analysis software for the 
measurement of microtubule dynamics. Journal of Structural Biology, 176(2), pp.168–
184. 

Barry, D.J. et al., 2015. Open source software for quantification of cell migration, protrusions, 
and fluorescence intensities. The Journal of Cell Biology, 209(1), pp.163–180. 

Brouhard, G.J., 2015. Dynamic instability 30 years later: complexities in microtubule growth 
and catastrophe. W. Bement, ed. Molecular biology of the cell, 26(7), pp.1207–1210. 

Bulgakova, N.A. et al., 2013. Dynamic microtubules produce an asymmetric E-cadherin-
Bazooka complex to maintain segment boundaries. The Journal of Cell Biology, 201(6), 
pp.887–901. 

Chan, C.E. & Odde, D.J., 2008. Traction Dynamics of Filopodia on Compliant Substrates. 
Science, 322(5908), pp.1687–1691. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint 

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Chenouard, N. et al., 2010. Curvelet analysis of kymograph for tracking bi-directional 
particles in fluorescence microscopy images. In 2010 17th IEEE International 
Conference on Image Processing (ICIP 2010). IEEE, pp. 3657–3660. 

Dai, J. et al., 2016. R-FCN: Object Detection via Region-based Fully Convolutional 
Networks. pp.379–387. 

Danuser, G. & Waterman-Storer, C.M., 2006. Quantitative fluorescent speckle Microscopy of 
cytoskeleton dynamics. Annual Review of Biophysics and Biomolecular Structure, 35(1), 
pp.361–387. 

del Castillo, U. et al., 2015. Interplay between kinesin-1 and cortical dynein during axonal 
outgrowth and microtubule organization in Drosophila neurons V. Allan, ed. eLife, 4, 
p.e10140. 

Fink, J. et al., 2011. External forces control mitotic spindle positioning. Nature cell biology, 
13(7), pp.771–778. 

Forscher, P. et al., 1987. Cyclic AMP induces changes in distribution and transport of 
organelles within growth cones of Aplysia bag cell neurons. Journal of Neuroscience, 
7(11), pp.3600–3611. 

Franker, M.A.M. & Hoogenraad, C.C., 2013. Microtubule-based transport - basic 
mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci, 126(Pt 11), 
pp.2319–2329. 

Gardel, M.L. et al., 2010. Mechanical Integration of Actin and Adhesion Dynamics in Cell 
Migration. dx.doi.org, 26(1), pp.315–333. 

Jankovics, F. & Brunner, D., 2006. Transiently reorganized microtubules are essential for 
zippering during dorsal closure in Drosophila melanogaster. Developmental cell, 11(3), 
pp.375–385. 

Kapitein, L.C. & Hoogenraad, C.C., 2015. Building the Neuronal Microtubule Cytoskeleton. 
Neuron, 87(3), pp.492–506. 

Kingma, D.P. & Ba, J., 2014. Adam: A Method for Stochastic Optimization. 

Lancaster, O.M. et al., 2013. Mitotic rounding alters cell geometry to ensure efficient bipolar 
spindle formation. Developmental cell, 25(3), pp.270–283. 

LeCun, Y. et al., 2008. Backpropagation Applied to Handwritten Zip Code Recognition. 
dx.doi.org, 1(4), pp.541–551. 

Ma, Y. et al., 2004. Quantitative Analysis of Microtubule Transport in Growing Nerve 
Processes. Current Biology, 14(8), pp.725–730. 

Mangeol, P., Prevo, B. & Peterman, E.J.G., 2016. KymographClear and KymographDirect: 
two tools for the automated quantitative analysis of molecular and cellular dynamics 
using kymographs. Molecular biology of the cell, 27(12), pp.1948–1957. 

Mathis, A. et al., 2018. Markerless tracking of user-defined features with deep learning. 
arXiv.org, cs.CV. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint 

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Mitchison, T.J. & Cramer, L.P., 1996. Actin-based cell motility and cell locomotion. Cell, 
84(3), pp.371–379. 

Mukherjee, A. et al., 2011. Automated kymograph analysis for profiling axonal transport of 
secretory granules. Medical Image Analysis, 15(3), pp.354–367. 

Piehl, M. et al., 2004. Centrosome maturation: measurement of microtubule nucleation 
throughout the cell cycle by using GFP-tagged EB1. Proceedings of the National 
Academy of Sciences, 101(6), pp.1584–1588. 

Prosser, S.L. & Pelletier, L., 2017. Mitotic spindle assembly in animal cells: a fine balancing 
act. Nature reviews. Molecular cell biology, 18(3), pp.187–201. 

Rao, A.N. et al., 2017. Cytoplasmic Dynein Transports Axonal Microtubules in a Polarity-
Sorting Manner. Cell reports, 19(11), pp.2210–2219. 

Sanchez-Soriano, N. et al., 2005. Are dendrites in Drosophila homologous to vertebrate 
dendrites? Developmental Biology, 288(1), pp.126–138. 

Szegedy, C. et al., 2014. Going Deeper with Convolutions. arXiv.org, cs.CV. 

Twelvetrees, A.E. et al., 2016. The Dynamic Localization of Cytoplasmic Dynein in Neurons 
Is Driven by Kinesin-1. Neuron, 90(5), pp.1000–1015. 

Weigert, M. et al., 2017. Content-Aware Image Restoration: Pushing the Limits of 
Fluorescence Microscopy. bioRxiv, p.236463. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint 

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

