
1

KymoButler: A deep learning software

for automated kymograph tracing and analysis

Maximilian A. H. Jakobs, Andrea Dimitracopoulos, Kristian Franze

Department of Physiology, Development and Neuroscience, University of Cambridge,

Cambridge, UK

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Abstract

Knowledge about the dynamics of cytoskeletal proteins, such as actin filaments and

microtubules, is key to understanding numerous active cellular processes. Automated tracking

algorithms nowadays allow to follow the motion of fluorescently labelled cytoskeleton-

associated proteins to some extent. However, these algorithms often require human

supervision and are less accurate than manual analysis, which on the other hand is time-

consuming and prone to unconscious bias. As an alternative, kymographs, which are images

depicting dynamic processes along a predefined axis, offer a convenient approach to visualise

and track fluorescent proteins. However, kymographs are currently almost exclusively

analysed manually, again limiting throughput. We here developed and trained KymoButler, a

deep neural network to trace dynamic processes in kymographs. We demonstrate that

KymoButler performs at least as well as manual tracking and outperforms currently available

automated tracking packages. Additionally, we successfully applied KymoButler to a variety

of different kymograph tracing problems. Finally, the network was packaged in a web-based

"one-click" software for use by the wider scientific community. Our approach significantly

speeds up data analysis, avoids unconscious bias, and represents a step towards the

widespread adaptation of Artificial Intelligence techniques in biological data analysis.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

Introduction

In eukaryotic cells, biopolymers such as microtubules and actin filaments (F-actin) provide

structural support and enable essential cellular functions including intracellular transport

(Franker & Hoogenraad 2013; Mitchison & Cramer 1996), cell motility (Gardel et al. 2010),

and cell division (Prosser & Pelletier 2017, Lancaster et al. 2013).

Both microtubules and F-actin are polar filaments with a +end and a –end which differ in their

chemical and dynamical properties. Microtubules, for example, exhibit a mostly stable -end,

while the +end undergoes rapid cycles of growth and shrinkage (Brouhard 2015).

Measurements of microtubule dynamics are usually performed by genetically expressing

fluorescent proteins that preferentially bind to the filament ends, such as the +End-Binding

protein 1 (EB1) (Piehl et al. 2004; Ma et al. 2004). These fluorescent proteins (particles) are

recorded using time-lapse fluorescence microscopy and tracked with a variety of approaches.

Since actin and microtubules can only grow along their own axis, it is possible to visualise and

simplify filament end tracking by using kymographs (Chenouard et al. 2010; Mangeol et al.

2016) - 2D images generated by stacking the intensity profile along a given line, e.g. the F-

actin or microtubule axis, for each time point of a movie. Thus, kymographs are length-time

images showing labelled filament ends as lines (Fig. 1). They are not limited to tracking

cytoskeletal filaments but have been widely employed to visualise biological processes across

different length scales, ranging from single molecule to cell tracking (Twelvetrees et al. 2016;

Barry et al. 2015).

Kymographs provide an elegant solution to the visualisation and quantification of particle

dynamics. In contrast to most currently available tracking software, which faces the difficult

computational problem of identifying corresponding particles in different frames, a kymograph

visualises this problem, and only requires the tracing of lines in an image, a much simpler task

for humans and machines alike. These lines then represent the track of a filament, or any

other process, so that measuring the lines’ lengths and slopes allows to calculate the average

velocities and growth periods of a cytoskeletal filament, respectively.

Conventional kymograph tracing or particle tracking algorithms produce acceptable results

when applied to images with a high signal-to-noise ratio (SNR), but are exceedingly error-

prone at lower SNRs (Applegate et al. 2011; Mangeol et al. 2016). While immunocytochemical

stains may result in high quality images with high SNR, live-cell imaging as required for the

investigation of dynamic processes usually suffers from autofluorescence, limited light

exposure, and the low labelling densities required to keep the cells undamaged. The resulting

lower quality images often require cumbersome manual error corrections, leading to similar

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

time commitments as an exclusively manual analysis. Thus, the problem of automatically, and

reliably, tracking dynamic processes in live cells is still largely unresolved, and any automation

in kymograph tracing that preserves the accuracy of manual annotation would represent a

significant improvement in the experimental workflow.

In recent years, Artificial Intelligence (AI), and particularly Deep Neural Networks, have been

very successfully introduced to data processing in biology (Mathis et al. 2018; Weigert et al.

2017). AI-based image analysis has several advantages over other approaches: it is less

biased than human users, takes a shorter time to analyse immense datasets, and most

importantly, comes closer to human performance than conventional tracking algorithms

(Mathis et al. 2018). Most AI approaches to image analysis utilise Fully Convolutional Deep

Neural Networks (FCNs) that were shown to excel at object detection in images (Dai et al.

2016; Szegedy et al. 2014; LeCun et al. 2008). A convolutional neural network is able to use

a multitude of hidden layers to apply kernels of all shapes and sizes to images, filtering the

information from the background. This ability should, in theory, enable an FCN to trace

biopolymer dynamics in low SNR kymographs with unmatched precision.

Here we developed a stand-alone software, ‘KymoButler’, which is based on an FCN, to

automatically and reliably extract biopolymer dynamics from kymographs. Whilst we trained

the FCN on microtubule +end growth dynamics using manually traced kymographs of EB1-

GFP in neurons, the KymoButler software performs well on kymograph data of cytoskeletal

filaments in other cells, including EB3-GFP traces from mitotic HeLa cells and actin speckles

in Aplysia neuronal growth cones. Finally, the KymoButler outperforms conventional

automated tracking and, quite remarkably, several cases of manual tracing.

Results

Generation of training data, neural net training, and validation

Microtubules constitute a prevalent fraction of the filaments contained in growing neuronal

axons (Kapitein & Hoogenraad 2015). To generate kymographs capturing microtubule

filament dynamics, we cultured neurons dissociated from Drosophila melanogaster larvae,

expressing EB1-GFP under the endogenous eb1 promoter, and tracked the dynamics of EB1

puncta in 520 axons (Fig. 1A). In this model system, EB1-GFP puncta move in the axon either

towards the cell body (retrograde) or away from the cell body (anterograde). We generated

kymographs by manually tracing the axon and stacking the intensity profile along the axon for

each frame into one image (Fig. 1B-C). In these kymographs, individual EB1-GFP trajectories

are visually distinguishable as bright lines. We traced these trajectories by hand and colour-

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

coded them by directionality (anterograde or retrograde, Fig. 1D), creating a dataset of input

images (the raw kymographs) and labels (the traces).

We then used these pairs of input-label images to train an FCN to separate pixels belonging

to an EB1-GFP trace from background pixels. We built a custom neural network based on

Google’s “inception” architecture, the Tracer FCN (Szegedy et al. 2014) (Methods and Fig.

S1-2). Additionally, we designed a much faster, shallower FCN that only takes a 10% of the

evaluation time of the Tracer FCN while maintaining similar levels of performance in our

system (Fig. S1-2). Both FCNs take the input kymograph and decompose it into several

images, called feature-maps, through numerous convolution and deconvolution steps. The

final output is an image of the same size as the input image, in which each pixel value

corresponds to the probability p of this pixel being part of the foreground (part of a trace). The

nets were trained to recognise traces going from the left to the right. Applying them to the

original and the vertical mirror image allows to distinguish between anterograde and

retrograde traces, respectively.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

Figure 1: Generation of kymographs showing microtubule EB1-GFP dynamics and subsequent

training of the Tracer FCN. (A) Fluorescence time-lapse images of a drosophila neuron expressing

EB1-GFP. A single EB1-GFP punctum is shown in four consecutive frames (arrows). (B) Hand-drawn

line along the axon building up each pixel row of the kymograph. (C) Example kymograph obtained from

the line shown in (B). Arrow: track resulting from the EB1-GFP comet shown in (A). (D) Individual EB1-

GFP traces were traced by hand, distinguished by directionality (blue = anterograde, red = retrograde),

and overlaid on the kymograph. (E) Example output of the Tracer FCN applied to validation data (see

methods). An 80x80 pixel subimage from the kymograph shown in (D) (box) is fed to the Tracer FCN.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

(F) The heat maps show the predicted probability p for each pixel being part of a trace (top: anterograde

traces, bottom: retrograde traces). (G) Tracer FCN prediction: pixels were considered to be part of a

track when t>0.2, and iterative thinning was applied to generate traces. (H) Hand-traced (manual)

images for both directions. (I) the prediction (orange) was overlaid with the manual annotation (blue);

co-localised pixels appear pink. The FCN fully recapitulated the hand-traced data and even recognised

traces that were omitted by mistake in hand tracings, even though it had never ‘seen’ this image during

training. (J) The performance of the Tracer FCN when applied to the whole validation data set in terms

of a manual to Tracer FCN similarity score (see methods) plotted as a function of probability cut-offs t.

The insets highlight the scores of the anterograde predictions of the kymograph shown in (E). A

maximum in similarity is achieved at t=0.2. For larger p cut-off values the network tends to return shorter

traces than the manual labelling; for smaller t tracks become incorrectly linked (left inset). Scale bars:

2 μm (horizontal), 25 sec (vertical).

We split our dataset into a validation set and a training set, by randomly selecting two biological

repeats with a total of 33 (~6%) kymographs as validation data. The training dataset was used

to iteratively change the FCN parameters to match the FCN output to the manually traced lines

(see Methods). This was done by minimising loss (a function that quantifies the difference

between the desired image and the FCN output) through stochastic gradient descent and

changing the network’s parameters accordingly. The training of the FCN stops when changing

the parameters does not lead to any further decrease of the loss (Fig. S2). The validation data

set was then used to quantify how the FCN performed using a previously unseen dataset.

Trained FCNs assign the probability of being part of a trace to each pixel in the input image

(Fig. 1F). To convert these probability maps into tracks and compare them to the manual data,

we introduced a threshold value t: any pixel that had a larger value than t was classified as

being part of a track. The resulting binary image was then iteratively thinned so that only traces

with a width of one pixel remained, which was subsequently overlaid on the manual data for

comparison (Fig. 1G). The trained Tracer FCN showed a precise overlay with the manual

tracks from the validation data (see Fig. 1H-I). Often, the Tracer FCN surpassed the accuracy

of manual labelling, as it was able to recognise previously unlabelled traces that were

erroneously omitted.

Next, we quantified the effect that the threshold value t had on the output of the network by

introducing a similarity score that accounts for the differences between the output of the Tracer

FCN and the manual labels (Fig. 1J). A score of 1 would indicate a perfect overlay, while a

score of 0 would indicate no matches. For small t (0.01) we observed frequent artefacts, for

example the linking of parallel tracks. For high t (0.5) the predicted tracks were too short. An

optimum threshold was found around t=0.2 (Fig. 1J), which was therefore used throughout

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

this paper unless stated otherwise. The maximum similarity score we achieved was ~0.7. As

the KymoButler tends to outperform and detect more traces than identified by the manual

labelling (where faint or short traces are often missed), similarity is decreased (<1) when

automated detection is close to an optimum. These results indicated that a trained FCN is able

to automate the kymograph tracing process, significantly reducing research workload and

avoiding biased data analysis.

The KymoButler software package

We packaged the trained FCNs into two easy-to-use interfaces for quick and fully automated

kymograph analysis: (1) a browser-based app with the shallow FCN (Fig. S1) to quickly drag

& drop individual kymographs in order to analyse them (http://kymobutler.deepmirror.ai) and

(2) a simple command line python script to be used offline with the full Tracer FCN

(https://github.com/MaxJakobs/KymoButler). While the Tracer FCN is preferable to precisely

analyse large or more complex data sets, the web based shallow version can be used to

quickly assess the feasibility of the approach with a given kymograph. In both cases, the user

first has to generate a kymograph for their specific problem, with any available kymograph

generator (for example the Multi Kymograph Fiji plugin (https://imagej.net), the

KymographTracker package (Chenouard et al. 2010), or the KymographClear Fiji plugin

(Mangeol et al. 2016)). The software then applies the FCN to the image twice (once to the

original and once to the vertical mirror image), threshold the result, apply iterative thinning,

generate an overlay of predicted tracks onto the kymograph, and finally extract and classify

each connected line as a single trace (Fig. 2). In the software, the user can freely define the

threshold parameter t, the probability above which a pixel is considered to be part of a trace.

After the computation, which takes approximately 5-10 seconds on a conventional computer

(Tracer FCN on a CPU), the KymoButler generates several files including an overlay image

highlighting all the tracks found in different colours, and a CSV file per kymograph, containing

all track coordinates and track directionality for post-processing.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

http://kymobutler.deepmirror.ai/
https://github.com/MaxJakobs/KymoButler
https://imagej.net/
https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

Fig.2: The KymoButler package - an automated

software for kymograph analysis. (A) The software is

first presented with a kymograph image input of any

format. (B) Subsequently, the Tracer FCN is applied to

the image twice (once to the original and once to the

vertical reflection) resulting in two heat maps that assign

each pixel the probability of being part of an antero- or

retrograde trace (top two panels). Then the software

binarizes the resulting images with a user-given

threshold t (here t=0.2). The binary images are then

thinned iteratively, and each line gets segmented as one

track (blue and red lines, bottom two panels). (C) The

software then generates multiple output files: an overlay

of the segmented tracks with the original image (shown,

each colour represents a distinct track) and a CSV file

per kymograph, with every trace’s coordinates. Scale

bars: 2 μm (horizontal), 25 sec (vertical).

The KymoButler software outperforms conventional tracking

To assess the performance of KymoButler, we compared it to manual kymograph tracing and

to the plusTipTracker package, which was explicitly written for tracking EB1-GFP puncta

(Applegate et al. 2011). In conventional tracking algorithms such as the plusTipTracker,

individual features are first detected through local thresholding and then linked with each other

between frames. We compared the average track velocities (start-to-end velocity) and track

lengths of EB1-GFP puncta of our validation data set (33 previously ‘unseen’ kymographs,

Fig. 3) for all the three approaches. There was no significant difference between the average

velocities (KymoButler: 4.6 ± 1.0 𝜇𝑚/𝑚𝑖𝑛 , Manual: 4.3 ± 0.9 𝜇𝑚/𝑚𝑖𝑛 , plusTipTracker:

4.8 ± 1.4 𝜇𝑚/𝑚𝑖𝑛, ANOVA p=0.16, Fig. 3A). However, when plotting the velocities calculated

by the two algorithms against manually determined data in a 2D scatter plot, 97% (32/33) of

the velocities calculated with KymoButler fell within the standard deviation of the manual data

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

(±0.9 𝜇𝑚/𝑚𝑖𝑛), while this was only true for 73% (24/33) of the velocities calculated with

plusTipTracker (Fig. 3B).

The average track lengths revealed by manual tracing, KymoButler, and plusTipTracker

differed significantly (Fig. 3C, p<10-23, one way ANOVA). A post-hoc analysis showed no

differences between KymoButler and manual analysis (25 ± 5 𝑠𝑒𝑐 and 23 ± 4 𝑠𝑒𝑐, p=0.16,

Tukey-Kramer test). However, the plusTipTracker analysis significantly underestimated the

track times by about twofold (12 ± 2 𝑠𝑒𝑐, p<10-9, Tukey-Kramer test) (Fig. 3C). Additionally,

in 85% (28/33) of kymographs analysed with KymoButler, the average lengths of the traces

were within the standard deviation of the manual data (± 5 𝑠𝑒𝑐), but only 1 out of the 33 axons

analysed with plusTipTracker fell within the same region (Fig. 3D).

We noticed that for one kymograph the manual tracing resulted in much larger average EB1-

GFP track lengths than calculated by both KymoButler and plusTipTracker (dot 2 in Fig. 3D).

Revisiting the manual data revealed that several short tracks were unlabelled incorrectly (black

box in Fig. 3F). Additionally, some tracks were erroneously drawn too long, while KymoButler

broke them rightly into several shorter ones (red box in Fig. 3F), indicating that KymoButler

performs better than manual labelling on most kymographs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

Fig.3: KymoButler microtubule dynamics analysis outperforms conventional tracking

algorithms. (A) Average EB1-GFP velocities per axon were similar for manual tracing, the KymoButler,

and plusTipTracker package (p=0.17 ANOVA). Each dot represents one axon and the boxplots show

the median and the upper and lower quantiles. (B) 2D scatterplot of the average velocities calculated

with KymoButler (green dots) and plusTipTracker (magenta dots) against the average velocities

calculated via manual tracing. Black lines indicate a deviation of ±0.9𝜇𝑚/𝑠𝑒𝑐 from the identity line,

corresponding to the standard deviation of the manually traced velocities. (C) Boxplots of the average

track lengths, i.e. the time during which EB1-GFP puncta were visible, calculated with manual tracing,

KymoButler, and the plusTipTracker. The average track length was approximately half as long when

the plusTipTracker package is used, compared to the manual tracing and KymoButler (p<10-9, Tukey-

Kramer test), which yielded similar results. (D) 2D scatter plot of the average track lengths calculated

with the KymoButler (green dots) and plusTipTracker (magenta dots) against the average track lengths

calculated via manual tracing. Black lines again indicate the standard deviation of the manual data. (E)

Kymograph of data point 1 labelled in (D) with overlaid manually labelled traces and the predicted traces

of KymoButler (each colour represents one segmented track). There is an excellent correspondence

between the tracks obtained by both approaches. (F) Kymograph of data point 2 labelled in (D) with

overlaid traces. KymoButler breaks up several tracks more accurately than the manual tracking (red

box, long trace in the centre, red arrow) and adds several shorter tracks that were incorrectly omitted

in the manual approach (black box, black arrow). Only tracks longer than 2 frames were included in the

analysis. (G) Zoom into the red box shown in (F). Scale bars: 2μm (horizontal), 25 sec (vertical).

The KymoButler can be easily extended to other biological systems

We finally tested the capability of the KymoButler software to analyse kymographs generated

from different cell types and different cytoskeletal components. Note that we did not retrain

the Tracer FCN for these applications. First, we analysed time lapse movies of EB3-GFP

dynamics in interphase HeLa cells (Fig. 4A). After only changing the threshold parameter to

t=0.1, KymoButler predicted puncta trajectories as well as it did for Drosophila melanogaster

axon EB1-GFP. When comparing manually extracted traces with KymoButler results of raw

kymograph images, we did not find any significant differences between average EB3-GFP

microtubule growth velocities (Wilcoxon rank sum test, p=0.98) and average growth times

(Wilcoxon rank sum test, p=0.61) (Fig. 4B).

Remarkably, KymoButler was even able to quantify actin speckle velocities in Aplysia growth

cones. Average retrograde actin flow velocities showed no significant difference between

manual labelling and KymoButler analysis even though the network was only trained on EB1-

GFP puncta in axons (Wilcoxon rank sum test, p=0.08) (Fig. 4D).

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

Fig.4: KymoButler efficiently analyses particle tracks in other biological systems. (A-B) Analysis

of EB3-GFP in HeLa cells. (A) A kymograph was extracted from an interphase HeLa cell expressing

EB3-GFP and subsequently analysed by hand and with KymoButler. The heatmap represents the

probability map generated by KymoButler, the blue lines correspond to the hand traced EB3-GFP lines,

and the coloured lines represent the traces recognised by KymoButler. The threshold t was set to 0.1.

Scale bars: 5μm (horizontal), 10 sec (vertical) (B) Average EB3-GFP velocities and growth times

obtained by manual tracing and KymoButler analysis. No significant differences were found (Wilcoxon

rank sum test, p=0.98 velocities, growth times p=0.61). (C-D) Analysis of actin speckle dynamics in

Aplysia growth cones. (C) Kymograph of fluorescently labelled G-actin, and analysed traces with t=0.1.

Scale bars: 5μm (horizontal), 20 sec (vertical). (D) Average actin speckle velocities are similar for

manual and KymoButler analysis (test, p=0.08). Tracks less than 6 frames long were omitted from the

analysis.

Discussion

In this work, we used deep learning to optimise automated tracking of dynamic, fluorescently

labelled proteins in a noisy environment in cells. Fully convolutional neural networks (Tracer

FCNs) are nowadays widely applied for image recognition. Since tracking is a priori a visual

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

problem, we built an FCN for identifying traces in kymographs. We deployed our network in

two independent stand-alone software packages that take generic kymographs and output all

traces found in the image in a matter of seconds. Remarkably, the network not only

outperforms current particle tracking software and, in some cases, even manual tracking, but

it also performs just as well on kymographs of different dynamic processes, such as

fluorescence speckle microscopy.

Our KymoButler software has only one adjustable parameter: t, the threshold at which a pixel

is recognised as being part of a track. For our validation data, the best value for t was 0.2.

This threshold generally depends on the SNR of the image. If the SNR is low, the FCN is “less

confident” about a given pixel, so that the threshold has to be smaller. More noisy data, such

as the HeLa cell EB3-GFP data or actin speckles shown in Figure 4, produced good results

with a smaller threshold value (t=0.1). Hence, the correct threshold has to be chosen based

on each biological application and imaging conditions.

Available automated kymograph analysis software was not suitable for tracing EB1-GFP

puncta in axons, mainly because these packages were susceptible to noise. The

KymographDirect package, for example, applies a global threshold to individual kymographs

to extract traces, thus being very prone to variations in background intensity and requiring

manual screening (Mangeol et al. 2016). Most other currently available packages require

manual track tracing or linking, defeating the purpose of a fully automated analysis (Mukherjee

et al. 2011; Chenouard et al. 2010). An alternative approach quantifies kymograph velocities

through 2D autocorrelation, however, the analysis is limited as trace lengths cannot be

measured (Chan & Odde 2008).

The current gold standard for automated tracking of microtubule dynamics is the

plusTipTracker package. When we compared KymoButler with manual and plusTipTracker

data, it performed at least as well as manual tracking, and much better than the

plusTipTracker. The mismatch between the plusTipTracker and manual traces is likely

because (1) “long” tracks have a tendency of being split into several shorter ones, since the

probability of linking errors increases with track length (Supplementary Movie 1), and (2)

“short” tracks are sometimes incorrectly linked due to background fluctuations

(Supplementary Movie 2). The first issue results in too short track lengths, and the second

causes inflated velocity measurements.

We propose that manual tracking is inferior to the KymoButler as it suffers from inconsistency,

bias, and is overall laborious. While the KymoButler analyses each kymograph in the same

way, manual tracing performance varies from one kymograph to the next as well as between

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

users. In our dataset, we frequently overestimated trace lengths, so that the manual annotation

yielded slightly larger track lengths than the KymoButler. In future, KymoButler could be

trained on a larger dataset traced by multiple researchers to remove other inconsistencies that

may be present in the dataset, thus further improving the KymoButler’s performance.

Additionally, KymoButler was able to analyse kymographs from different dynamic processes

such as retrograde actin flow in neuronal growth cones. This result highlights that particle

tracking does not depend on the precise nature of the particle, e.g. actin or EB1, but on the

task of tracing a line in an image, which should be the same for any dynamic process that can

be represented this way.

Future work will expand our approach to 2D or even 3D tracking problems. In this paper, we

drew 1D lines in 2D movies, extracted 2D (space and time) images (kymographs), and finally

traced 2D lines in those images. A similar, albeit computationally heavier, approach could

stack the frames of a 2D/3D movie on top of each other to generate a 3D/4D image (2D space

and time, or 3D space and time). The 2D/3D lines in those images can then be traced by hand

and a more complex FCN trained to recognise them. This approach could yield human-like

performance in higher dimensional automated tracking.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

Software

Quick and easy cloud platform (Shallow FCN only): http://www.kymobutler.deepmirror.ai

GitHub with the command line interface (full Tracer FCN):

https://github.com/MaxJakobs/KymoButler

Acknowledgements

We would like to thank Paul Forscher for providing speckle microscopy time-lapse movies of

Aplysia growth cones, Eva Pillai for scientific input, proofreading, and logo design, Hannes

Harbrecht for fruitful discussions about FCN’s; Hendrik Schuermann for help with kymograph

tracing; and the Mathematica stack exchange community

(https://mathematica.stackexchange.com) without whom this project would have taken several

decades longer. The authors acknowledge funding by the Wellcome Trust (Research Grant

109145/Z/15/Z to M.A.H.J.), the Herchel Smith Foundation (Fellowship to A.D.), Isaac Newton

Trust (Research Grant 17.24(p) to K.F.), UK BBSRC (Research Project Grant BB/N006402/1

to K.F.), and the ERC (Consolidator Award 772426 to K.F.).

Material and Methods

Fly Stocks

The following stocks were used for expressing fluorescently tagged EB1: eb1-gfp (Bulgakova

et al. 2013) and uas:eb1-gfp (Jankovics & Brunner 2006). To include different genetic

backgrounds in our training data we also co-expressed two RNAi constructs: uas:wh-RNAi

(Bloom# 35573) and uas:dhcRNAi (Bloom# 36698) of which the latter is known to cause a

severe phenotype on EB1-GFP dynamics (del Castillo et al. 2015). All uas constructs were

driven by elav-gal4 (Bloom# 458) and transgenic lines generated through standard balancer

crossing procedures.

D. melanogaster neuronal culture and EB1-GFP live imaging

Primary cell cultures were prepared similar as to (Sanchez-Soriano et al. 2005). Third instar

larvae were selected, and their central nervous systems dissected. Subsequently, the tissue

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

http://www.kymobutler.deepmirror.ai/
https://github.com/MaxJakobs/KymoButler
https://mathematica.stackexchange.com/
https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

was dissociated in Hank’s Balanced Salt Solution (HBSS) supplemented with Dispase (Roche

049404942078001) and Collagenase (Worthington Biochem. LS004214). The cells were

plated in 30μl droplets of Schneider’s Medium (Thermo Fisher 21720024) supplemented with

insulin (2 μg/ml Sigma I0516) and fetal bovine serum (1:4 Thermo Fisher Scientific A3160801).

We plated the drops in ibidi glass-bottom μDishes (cat num 81158) and covered them with

25mm coverslips (VWR) to create small culture chambers. The glass bottom dishes were

previously coated with Concanavalin A (5μg/ml, 1.5h at 37°C). The culture chambers were

subsequently put at 26°C for 1.5h so that the cells settle on the coated surface of the dish.

Then the chambers were flipped to remove debris from the surface and left for 24 hours before

imaging.

Live imaging movies were acquired on a Leica DMI8 inverted microscope at 63x magnification

and 26°C (oil immersion, NA=1.4). To reduce autofluorescence the culture medium was

replaced with Live Imaging Solution (Thermo Fisher A14291DJ). For EB1-GFP imaging, an

image was taken every 2 seconds for 70-150 frames depending on sample bleaching rate.

We imaged 520 axons from 26 different dishes.

We also treated the cells with Latrunculin B (10 μM) and Ciliobrevin A (100 μM). Both drugs

are known to perturb microtubule dynamics so that including movies acquired with these

treatments would again make our FCN more robust (Rao et al. 2017; del Castillo et al. 2015).

In both cases the cells were first allowed to attach to the coated glass for 1.5h post dissection

before replacing the culture medium with culture medium supplemented with Latrunculin B or

Ciliobrevin A.

Aplysia neuronal culture and actin fluorescence speckle microscopy

Aplysia bag cell neurons were isolated and cultured as previously described in (Forscher et

al. 1987). Neurons were then injected with alexa-568 labelled G-actin (Molecular Probes) at

low levels, appropriate for fluorescence speckle microscopy (Danuser & Waterman-Storer

2006). The growth cone in Fig. 4B was imaged on a spinning disk confocal microscope at 2

Hz sampling rate.

HeLa Cell culture and imaging

A HeLa stable cell line expressing LifeAct-GFP and EB3-mRFP (Fink et al. 2011), was

maintained in Dulbecco’s Modified Eagles Medium (DMEM GlutaMAX; Gibco) supplemented

with 10% FBS and 50 U/ml penicillin and 50 μg/ml streptomycin (Invitrogen) at 37 C under 5%

CO2. Cells were imaged using an UltraView Vox (Perkin Elmer) spinning disc confocal

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

microscope with a 63X (NA 1.4) oil objective equipped with temperature and CO2 controlling

environmental chambers and images were acquired using a Hamamatsu ImagEM camera and

Volocity software at a rate of 2 Hz (Perkin Elmer).

Kymograph generation and FCN training

The 520 neuronal axons were first traced by hand with the KymographTracker plugin for ICY

(http://icy.bioimageanalysis.org, (Chenouard et al. 2010)). We randomly choose two

biological repeats (2x dishes, 33 axons, ~6%) as a validation data set, i.e. we did only use 489

axons as training data. Subsequently we generated kymographs with the KymographTracker

plugin and traced EB1-GFP lines in those images by hand, using the same plugin. The traces

were then plotted in two images: one for retrograde tracks and one for anterograde tracks. We

also generated kymographs with a custom Mathematica script to obtain two slightly different

kymographs per axon. We then reflected each kymograph and the corresponding trace

images along the vertical (y) axis and stretched them along the x-axis to 0.5, 0.75, 1.25, and

1.5 their original length eventually resulting in a total number of 10,400 kymographs and their

respective manually traced images (two per kymograph). Hence out training/validation data

set comprises 9740/660 kymographs and their respective trace images.

We decided to design a Fully Convolutional Neural Network (FCN) to recognise the antero-

and retrograde lines in our noisy kymographs. An FCN does not exhibit any fully connected

layers, i.e. layers whose parameter number depends on the dimension of the input image, but

only calculates several parallel and consecutive image convolutions and/or deconvolutions

with trainable parameters. As the number of these parameters does not depend on the size of

the input image, kymographs do not have to be resized before application of the FCN.

We used Mathematica (http://wolfram.com) to both generate and train our FCN. Even though

the network is fully convolutional, the Mathematica training algorithm needed all input images

to have the same dimensions. Thus, we divided each kymograph into tiles of 80x80 pixels so

that one training “unit” comprised one input image and two output images, showing

anterograde and retrograde traces. To make training more efficient, we decided to only train

one network to recognise anterograde (left to right) tracks so that each of these sets was again

split into an input tile with the anterograde tracks and the vertically reflected input + retrograde

tile. The total number of tile pairs thus became 149,488 for the training data and 9740 for the

validation data. In this way the final network would have to be called twice: once on the original

kymograph and once on the reflected one to detect both antero- and retrograde traces.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

http://icy.bioimageanalysis.org/
https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

Our approach to the precise architecture of the final Tracer FCN was purely empirical

comprising the following building blocks: (i) a convolutional layer with arbitrary kernel size and

number of output channels followed by a batch normalisation layer and a ‘leaky’ ramp

(leayReLU) activation function (𝑙𝑒𝑎𝑦𝑅𝑒𝐿𝑢(𝑥): = 𝑚𝑎𝑥(𝑥, 0) − 0.1 𝑚𝑎𝑥(−𝑥, 0)), (ii) a dropout

layer that randomly sets 10% of all input values to zero during training to prevent ‘overfitting’

of the input data, (iii) a deconvolutional layer with arbitrary kernel size and number of output

channels to sharpen the input images again followed by a batch normalisation layer and a

leayReLu layer, (iv) a pooling layer with kernel size three to replace a given pixel with the

maximum value in its neighbourhood. The batch normalisation layer is useful to stabilize the

training procedure as it rescales inputs to the activation function (leayReLu) so that they have

zero mean and unit variance. The leayReLu prevents so-called dead ReLu’s by applying a

small gradient to values below 0. These building blocks were previously used for image

recognition tasks in Google’s inception architecture (Szegedy et al. 2014).

The architectures we settled on is shown in Fig. S2. Six connected “Trace Block” layers are

used to denoise the image and highlight individual traces. The precise architecture of these

Blocks is again shown in Fig. S2. This block architecture allows a lot of flexibility with the

choice of operation, for example the convolving kernel size, throughout training and

evaluation. A major feature of the Trace Block architecture is the inclusion of deconvolutions.

Without explicitly computing deconvolutions in each block, as for example in the shallow FCN

in Fig. S2, the final image is more blurred, and one is unable to segment individual traces as

efficiently. In the final step of both architectures all channels are projected on only two and a

softmax layer is applied so that the sum over those channels is one for each pixel. The two

channels can be interpreted as the probability of a given pixel to be part of the background or

a trace.

To train the FCN we quantified the difference between the FCN output 𝑜 and the desired target

output 𝑡 through a cross entropy loss layer (𝐶𝐸𝑙𝑜𝑠𝑠(𝑡, 𝑜) = −(𝑡 ⋅ 𝑙𝑛(𝑜) + (1 − 𝑡) ⋅ 𝑙𝑛(1 − 𝑜)).

Here 𝑡 can be either 1 (background) or 2 (trace). For Example: The untrained FCN will give

0.5 as the probability of each pixel to be part of the background as it has no preference yet.

The corresponding loss for a pixel that should be part of the background (index=1) would be:

𝐶𝐸𝑙𝑜𝑠𝑠(0.5,1) = 0.69. During training this value might be updated to 0.9 decreasing the loss

to 𝐶𝐸𝑙𝑜𝑠𝑠(0.9,1) = 0.11.

We trained the FCN through stochastic gradient descent. Here we first randomly subdivided

all training tile pairs into batches of 50. For each batch we then calculated the average cross

entropy loss and the gradient of this loss in all tuneable parameters, e.g. the kernel entries in

the convolutions. We then updated all the parameters 𝜎 in the network according to 𝜎′ = 𝜎 −

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

𝜂𝜕𝜎𝐶𝐸𝑙𝑜𝑠𝑠(𝑡, 𝑜). Here 𝜕𝜎 denotes the partial derivative with respect to all parameters of the

FCN and 𝜂 is the learning rate, i.e. the multiplier giving absolute value of the shift in 𝜎 at a

given step. Note that 𝜂 is not fixed but is dynamically updated through the ADAM algorithm

(Kingma & Ba 2014). This was repeated for all batches until the whole training dataset was

visited by the algorithm constituting one round. The FCN was trained until no decrease in the

validation data loss was observed anymore (5 Rounds). Every 10 minutes, the average loss

was calculated for the validation dataset to obtain a readout on how the FCN performs on

previously “unseen” data.

FCN performance evaluation

The direct output of both FCNs was an 80x80x2 tensor that assigns each pixel the probability

of being part of a trace (index=2) or the background (index=1). In order to reconstitute traces

from the FCN output we introduced a threshold value t for the second index, above which we

would consider a pixel being part of a trace. The training set comprises many more background

pixels than foreground pixels so that the FCN exhibits small probabilities around traces,

therefore the cut-off has to be chosen generally as an unintuitively small value (t<0.5). The

thresholded output images were iteratively thinned until they depicted lines of only one pixel

wide.

To compare the FCN output with the manual annotation for the validation data we defined a

similarity score as a function of the threshold as follows: (i) Both the anterograde and the

retrograde trace probability map are calculated with the FCN and thresholded and dilated by

one pixel. (ii) Both dilated binary predictions (0=background, 1=trace) are multiplied with the

respective binary manual trace images and in the resulting image the total number of pixels=1

counted (𝑜𝑣𝑙𝑝, a measure of the overlap between the prediction and the manual annotation).

(iii) We also calculated the total number of pixels=1 in the manual traced image (𝑁𝑚) and the

prediction (𝑁𝑝). (iv) The similarity score 𝑠 was then given by:

In short: The similarity score measures the overlapping pixels in the prediction and the manual

annotation and divides them by the absolute number of pixels being part of a trace in the

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

manual annotation (𝑜𝑣𝑙𝑝/𝑁𝑚). The result is divided by a factor measuring the difference in

pixels that are part of a trace between prediction and manual labelling to penalise large

discrepancies in total number of predicted pixels (1 + |𝑁𝑚 − 𝑁𝑝|/𝑁𝑚). Since the prediction

rarely overlaps completely with the manual annotation and frequently finds more objects that

were previously labelled, a ‘good’ score lies at around 0.7.

KymoButler software

The KymoButler software first applies either the deep Tracer FCN or the shallow FCN to a

given kymograph and its vertical reflection. The resulting foreground probability map is then

thresholded with the parameter t and thinned iteratively so that each trace is only one pixel

wide at any point. The thinned traces are then pruned by three pixels so that short branches

are deleted. Subsequently, each trace is segmented and selected only if it contains more than

5 pixels and is at least 3 frames long. This step removes noise from the result. In the final step,

pixels that lie in the same row of the kymograph are averaged over so that the resulting track

has only one entry per frame.

Comparison between KymoButler and plusTipTracker

We used the plusTipTracker version 1.1.4 for MATLAB 2014a (mathworks.com) to analyse

the axons from our validation dataset (33 axons). In each movie we first selected a region of

interest comprising the axon and omitting very bright artefacts. To run the software, we first

varied the detection parameters to find those that result in similar total track numbers as the

manual kymograph tracing approach. We settled on the following detection parameters: 𝜎1 =

1, 𝜎2 = 4, 𝐾 = 8 . For tracking we chose: 𝑚𝑖𝑛𝑇𝑟𝑎𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ = 3, 𝑚𝑎𝑥𝐺𝑎𝑝 = 2, 𝑚𝑖𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑 =

5, 𝑚𝑎𝑥𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑 = 15, 𝑚𝑎𝑥𝐹𝑤𝐴𝑛𝑔𝑙𝑒 = 30, 𝑚𝑎𝑥𝐵𝑤𝐴𝑛𝑔𝑙𝑒 = 10, 𝑠ℎ𝑟𝑖𝑛𝑘𝑉 = 0, and 𝑟𝐹𝑙𝑢𝑐 =

1.5. Note that we set the shrinkage velocity to zero so that the plusTipTracker does not try to

calculate microtubule shrinkage events.

In order to compare the plusTipTracker to the KymoButler we wrote a short Mathematica script

that calculates the predicted tracks for the same 33 axons with the Tracer FCN and exports

them in a MATLAB friendly format. As with the plusTipTracker we ignored all traces with track

lengths below 3 frames. All subsequent data plotting and analysis was done in MATLAB.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

Supplementary Figures

Fig. S1: FCN architecture. Left: An input 80x80 pixel image is first fed into 2 consecutive Tracer Blocks

that each output 110 80x80 images (feature maps). Then a Dropout Layer deletes (randomly) 10% of

all pixels in all feature maps (only during training). The result is again computed through four Tracer

Blocks. Subsequently, the resulting 110 feature maps are projected on two with a 1x1 convolution, the

result transposed and a softmax operation applied so that the two entries in each pixel of the 80x80

matrix sum up to 1. The result then comprises two 80x80 images: one whose pixel values give the

probability of being part of the foreground (prob fg) and one whose pixel values give the probability of

being part of the background (prob bg). Only convolution and deconvolution operations are used, hence

the network does not depend on the input image size and can be applied to images that are not 80x80

pixels large. Right Top: One Tracer Block comprises six parallel net chains. (1) the identity convolution

1x1 with 10 output maps. (2) a 1x1 convolution followed by a 3x3 convolution with 20 output maps. (3)

a 1x1 convolution followed by a 5x5 convolution with 20 output maps. (4) a 1x1 convolution followed by

a 9x9 convolution with 20 output maps. (5) a 1x1 convolution followed by a 3x3 deconvolution with 20

output maps. (6) a 3x3 max pooling operation followed by a 1x1 convolution with 20 output maps. The

resulting feature maps are catenated along the first dimension to generate 110 feature maps as an

output of the block. Right Bottom: As this net can be computationally demanding for web form

applications and hence expensive to maintain we also designed a shallower FCN: This net does not

comprise any parallel blocks and only evaluates one 3x3 convolution followed by a 5x5 convolution and

a 3x3 deconvolution.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

Fig. S2: Loss Curves for training and validation data. Top: Validation and batch Loss curves for the

Tracer FCN. The FCN was trained for 5 Rounds, i.e. full dataset visitations. 50 input tiles were summed

to one batch and the loss calculated on each batch (orange). Additionally, the loss on the validation

data set was calculated every 10 minutes (blue dots and curve). The loss reaches a plateau after ~4

Rounds. Bottom: The Batch loss of the Tracer FCN (blue, same data as in the orange curve above) and

the batch loss for the shallow FCN from Fig. S2.

References

Applegate, K.T. et al., 2011. plusTipTracker: Quantitative image analysis software for the
measurement of microtubule dynamics. Journal of Structural Biology, 176(2), pp.168–
184.

Barry, D.J. et al., 2015. Open source software for quantification of cell migration, protrusions,
and fluorescence intensities. The Journal of Cell Biology, 209(1), pp.163–180.

Brouhard, G.J., 2015. Dynamic instability 30 years later: complexities in microtubule growth
and catastrophe. W. Bement, ed. Molecular biology of the cell, 26(7), pp.1207–1210.

Bulgakova, N.A. et al., 2013. Dynamic microtubules produce an asymmetric E-cadherin-
Bazooka complex to maintain segment boundaries. The Journal of Cell Biology, 201(6),
pp.887–901.

Chan, C.E. & Odde, D.J., 2008. Traction Dynamics of Filopodia on Compliant Substrates.
Science, 322(5908), pp.1687–1691.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

Chenouard, N. et al., 2010. Curvelet analysis of kymograph for tracking bi-directional
particles in fluorescence microscopy images. In 2010 17th IEEE International
Conference on Image Processing (ICIP 2010). IEEE, pp. 3657–3660.

Dai, J. et al., 2016. R-FCN: Object Detection via Region-based Fully Convolutional
Networks. pp.379–387.

Danuser, G. & Waterman-Storer, C.M., 2006. Quantitative fluorescent speckle Microscopy of
cytoskeleton dynamics. Annual Review of Biophysics and Biomolecular Structure, 35(1),
pp.361–387.

del Castillo, U. et al., 2015. Interplay between kinesin-1 and cortical dynein during axonal
outgrowth and microtubule organization in Drosophila neurons V. Allan, ed. eLife, 4,
p.e10140.

Fink, J. et al., 2011. External forces control mitotic spindle positioning. Nature cell biology,
13(7), pp.771–778.

Forscher, P. et al., 1987. Cyclic AMP induces changes in distribution and transport of
organelles within growth cones of Aplysia bag cell neurons. Journal of Neuroscience,
7(11), pp.3600–3611.

Franker, M.A.M. & Hoogenraad, C.C., 2013. Microtubule-based transport - basic
mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci, 126(Pt 11),
pp.2319–2329.

Gardel, M.L. et al., 2010. Mechanical Integration of Actin and Adhesion Dynamics in Cell
Migration. dx.doi.org, 26(1), pp.315–333.

Jankovics, F. & Brunner, D., 2006. Transiently reorganized microtubules are essential for
zippering during dorsal closure in Drosophila melanogaster. Developmental cell, 11(3),
pp.375–385.

Kapitein, L.C. & Hoogenraad, C.C., 2015. Building the Neuronal Microtubule Cytoskeleton.
Neuron, 87(3), pp.492–506.

Kingma, D.P. & Ba, J., 2014. Adam: A Method for Stochastic Optimization.

Lancaster, O.M. et al., 2013. Mitotic rounding alters cell geometry to ensure efficient bipolar
spindle formation. Developmental cell, 25(3), pp.270–283.

LeCun, Y. et al., 2008. Backpropagation Applied to Handwritten Zip Code Recognition.
dx.doi.org, 1(4), pp.541–551.

Ma, Y. et al., 2004. Quantitative Analysis of Microtubule Transport in Growing Nerve
Processes. Current Biology, 14(8), pp.725–730.

Mangeol, P., Prevo, B. & Peterman, E.J.G., 2016. KymographClear and KymographDirect:
two tools for the automated quantitative analysis of molecular and cellular dynamics
using kymographs. Molecular biology of the cell, 27(12), pp.1948–1957.

Mathis, A. et al., 2018. Markerless tracking of user-defined features with deep learning.
arXiv.org, cs.CV.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

25

Mitchison, T.J. & Cramer, L.P., 1996. Actin-based cell motility and cell locomotion. Cell,
84(3), pp.371–379.

Mukherjee, A. et al., 2011. Automated kymograph analysis for profiling axonal transport of
secretory granules. Medical Image Analysis, 15(3), pp.354–367.

Piehl, M. et al., 2004. Centrosome maturation: measurement of microtubule nucleation
throughout the cell cycle by using GFP-tagged EB1. Proceedings of the National
Academy of Sciences, 101(6), pp.1584–1588.

Prosser, S.L. & Pelletier, L., 2017. Mitotic spindle assembly in animal cells: a fine balancing
act. Nature reviews. Molecular cell biology, 18(3), pp.187–201.

Rao, A.N. et al., 2017. Cytoplasmic Dynein Transports Axonal Microtubules in a Polarity-
Sorting Manner. Cell reports, 19(11), pp.2210–2219.

Sanchez-Soriano, N. et al., 2005. Are dendrites in Drosophila homologous to vertebrate
dendrites? Developmental Biology, 288(1), pp.126–138.

Szegedy, C. et al., 2014. Going Deeper with Convolutions. arXiv.org, cs.CV.

Twelvetrees, A.E. et al., 2016. The Dynamic Localization of Cytoplasmic Dynein in Neurons
Is Driven by Kinesin-1. Neuron, 90(5), pp.1000–1015.

Weigert, M. et al., 2017. Content-Aware Image Restoration: Pushing the Limits of
Fluorescence Microscopy. bioRxiv, p.236463.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/405183doi: bioRxiv preprint

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

