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Abstract 12 

Kymographs are graphical representations of spatial position over time, which are often used 13 

in biology to visualise the motion of fluorescent particles, molecules, vesicles, or organelles 14 

moving along a predictable path. Although in kymographs tracks of individual particles are 15 

qualitatively easily distinguished, their automated quantitative analysis is much more 16 

challenging. Kymographs often exhibit low signal-to-noise-ratios (SNRs), and available tools 17 

that automate their analysis usually require manual supervision. Here we developed 18 

KymoButler, a Deep Learning-based software to automatically track dynamic processes in 19 

kymographs. We demonstrate that KymoButler performs as well as expert manual data 20 

analysis on kymographs with complex particle trajectories from a variety of different 21 

biological systems. The software was packaged in a web-based "one-click" application for 22 

use by the wider scientific community. Our approach significantly speeds up data analysis, 23 

avoids unconscious bias, and represents another step towards the widespread adaptation of 24 

Machine Learning techniques in biological data analysis. 25 

  26 
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Introduction 27 

Many processes in living cells are highly dynamic, and molecules, vesicles, and organelles 28 

diffuse or are transported along complex trajectories.  Particle tracking algorithms represent 29 

powerful approaches to track the dynamics of such particles ((Jaqaman et al. 2008; 30 

Sbalzarini & Koumoutsakos 2005; Lee & Park 2018)).  However, particularly in scenarios 31 

where particles follow a stationary path and move much faster than the confounding cell 32 

(e.g., as in molecular transport along neuronal axons and dendrites, retrograde actin flow, or 33 

cilia transport), kymographs provide an elegant solution to the visualisation and analysis of 34 

particle dynamics. Kymographs are generated by stacking the intensity profile along a 35 

defined path for each time point of a movie. In the resulting space-time image, each (usually 36 

fluorescently) labelled particle is shown as a line, whose slope, for example, represents the 37 

velocity of that particle (Figure 1A). 38 

In many biological processes, multiple particles move along the same stationary path with 39 

little to no deviations, making kymographs a very useful representation of their dynamics. 40 

Hence, kymographs have been widely employed to visualise biological processes across 41 

different length scales, ranging from diffusion and transport of single molecules to whole cell 42 

movements (Twelvetrees et al. 2016; Barry et al. 2015). The analysis of these kymographs 43 

only requires tracing lines in 2D images, a rather simple task compared to the more general 44 

approach of particle tracking, where one has to identify the centre of the particles in each 45 

frame, and then correctly assign these coordinates to corresponding particles across frames. 46 

Publicly available kymograph analysis software simplifies the tedious and time-consuming 47 

task of tracing kymographs, but most of these solutions require manual supervision, and 48 

they are mainly applicable to particles that follow a unidirectional motion, i.e. do not change 49 

their direction or velocity (Figure 1C, example 2) (Neumann et al. 2017; Mangeol et al. 2016; 50 

Chenouard et al. 2010; Zala et al. 2013). This category includes, for example, the dynamics 51 

of growing microtubule +ends and F-actin dynamics in retrograde actin flow (Lazarus et al. 52 
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2013; del Castillo et al. 2015; Alexandrova et al. 2008; Babich et al. 2012). In many other 53 

biological contexts, however, particles can stop moving, change direction, merge, cross each 54 

other’s path, or disappear for a few frames. The kymographs obtained from these processes 55 

exhibit ‘bidirectional’ motion (Figure 1C, example 1); this category includes cellular transport 56 

processes, for example molecular or vesicle transport in neuronal axons and dendrites (Faits 57 

et al. 2016; Tanenbaum et al. 2013; Koseki et al. 2017). Thus, the problem of automatically 58 

and reliably tracking dynamic processes in kymographs is still largely unresolved, and given 59 

the limitations of currently available kymograph analysis software, most kymographs are still 60 

analysed by hand, which is slow and gives rise to unconscious bias.  61 

In recent years, Machine Learning (ML), and particularly Deep Neural Networks, have been 62 

very successfully introduced to data processing in biology and medicine (Mathis et al. 2018; 63 

Weigert et al. 2017; Florian et al. 2017; Guerrero-Pena et al. 2018; Falk et al. 2019; Bates et 64 

al. 2017). ML-based image analysis has several advantages over other approaches: it is less 65 

susceptible to bias than manual annotation, it takes a much shorter time to analyse large 66 

datasets, and, most importantly, it comes closer to human performance than conventional 67 

algorithms (Mathis et al. 2018).  68 

Most ML approaches to image analysis utilise Fully Convolutional Deep Neural Networks 69 

(FCNs) that were shown to excel at object detection in images (Dai et al. 2016; Szegedy et 70 

al. 2014; LeCun et al. 2008; Falk et al. 2019). Through several rounds of optimisation, FCNs 71 

select the best possible operations by exploiting a multitude of hidden layers. These layers 72 

apply image convolutions using kernels of different shapes and sizes, aiming to best match 73 

the output of the neural network to the provided training data labels, which were previously 74 

derived from manual annotation. This means that the network learns to interpret the images 75 

based on the available data, and not on a priori considerations. This approach has become 76 

possible due to the incredible improvements in computation times of modern CPUs and the 77 

adoption of GPUs that can execute an enormous number of operations in parallel. Currently, 78 

the most successful architecture for biological and medical image analysis is the U-Net, 79 
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which takes an input image to generate a binary map that highlights objects of interest based 80 

on the training data (Ronneberger et al. 2015).  81 

Here we present KymoButler, a new stand-alone FCN software based on the U-Net 82 

architecture, to automatically and reliably extract particle tracks from kymographs. The 83 

software was packaged into an easy-to-use web interface and a downloadable software 84 

package, and it was benchmarked against traditional software and manual annotation on 85 

synthetic (i.e., ground truth) data. We show that KymoButler performs very well on 86 

challenging bidirectional kymographs, where particles disappear, reappear, merge, cross 87 

each other’s path, move in any direction, change speed, immobilise, and reverse direction. 88 

KymoButler thus represents a substantial improvement in the automation of kymograph 89 

tracing, speeding up the experimental workflow, while preserving the accuracy of manual 90 

annotations. 91 

Results 92 

The KymoButler software package 93 

For our FCN-based kymograph analysis software, we implemented a customised 94 

architecture based on the U-Net (Ronneberger et al. 2015). We first trained the FCN to 95 

segment kymographs, i.e. binarize the image into regions with particle tracks (foreground) 96 

and noise (background). Our training data consisted of manually annotated tracks in 487 97 

unidirectional and 79 bidirectional kymographs (unpublished data from our group and other 98 

laboratories, see Materials and Methods and Acknowledgements for details). Since no 99 

ground truth was available in the manually annotated kymographs, we also generated 221 100 

synthetic unidirectional and 21 synthetic bidirectional kymographs that were used for training 101 

(see Figure 1-figure supplement 3 for examples).  102 
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Our network takes an input kymograph to generate 2D maps that assign a “trackness” value 103 

between 0 and 1 to each pixel of the input image, with higher values representing a higher 104 

likelihood of pixels being part of a track. The training was performed with pixel-wise cross-105 

entropy loss (see Methods for details) and implemented in Mathematica 106 

(http://www.wolfram.com/mathematica). We furthermore took advantage of the intrinsic 107 

differences in the appearance of unidirectional and bidirectional kymographs and trained two 108 

separate specialised networks, a unidirectional segmentation module, and a bidirectional 109 

segmentation module (Figure 1–figure supplement 1 and Figure 1–figure supplement 2).  110 

The unidirectional segmentation module generates separate trackness maps for tracks with 111 

negative and positive slopes (which could, for example, correspond to tracks of anterograde 112 

and retrograde transport processes, respectively), to remove line crossings from the output 113 

(Figure 1–figure supplement 1). The trackness maps are then binarized and morphologically 114 

thinned to yield separated lines in a skeletonized map (Figure 1–figure supplement 1). We 115 

found the binarization threshold to depend on the biological application and on the signal to 116 

noise ratio of the input image. For our synthetic data, we used a value of 0.2 and generally 117 

observed consistent results for both segmentation modules between 0.1-0.3 (Figure 1–figure 118 

supplement 4).  119 

In bidirectional kymographs, tracks show more complex morphologies, since they can 120 

change direction and cross each other multiple times. The bidirectional segmentation 121 

module therefore generates a single trackness map, which needs to be further processed in 122 

order to obtain individual particle tracks. After thresholding and morphologically thinning the 123 

trackness map, we obtained a skeletonised image with multiple track crossings (Figure 1–124 

figure supplement 1). In these images, we detected starting points of tracks by 125 

morphological operations (Figure 1–figure supplement 1B) and moved along each line from 126 

one row (time point) to the next. Then, whenever a crossing point was encountered (with two 127 

or more possible pixels to advance to), the software calls a decision module to resolve the 128 

crossing. The decision module, again based on a modified version of the U-Net, is 129 
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specialised in solving these crossings and trained on our bidirectional kymograph data 130 

(Figure 1–figure supplement 1B and Figure 1–figure supplement 2). The inputs of the 131 

module consist of three 48 by 48 pixel crops: (1) the input kymograph, (2) the skeletonised 132 

trackness map, and (3) the skeleton of the current track (Figure 1–figure supplement 1B). 133 

The output of the module is a map that assigns a score between 0 and 1 to each pixel of the 134 

skeletonised trackness map (2). Then, the most likely skeleton segment to continue the 135 

current track (3) is selected from the decision score map and the average score saved as a 136 

measure for track confidence. If the predicted path is less than 3 pixels long, the track is 137 

resolved and terminated. Once all the tracks with starting points are resolved, they are 138 

removed from the skeletonised trackness map, which is then scanned again for starting 139 

points, and the steps above are repeated until no further starting points are found. 140 

Furthermore, long overlaps between tracks are assigned to the track with the highest 141 

confidence so that no large overlapping regions between tracks are found in the final result 142 

(see Materials and Methods). 143 

Finally, we implemented the class module, a simple convolutional network that classifies 144 

input kymographs into unidirectional or bidirectional classes (Figure 1–figure supplement 1B 145 

and Figure 1–figure supplement 2A). The class module was trained on both unidirectional 146 

and bidirectional data until the error rate on a validation dataset, which contained 72 147 

kymographs and their classes, became persistently 0%. We linked the class module to the 148 

unidirectional and bidirectional segmentation modules as well as to the decision module 149 

(Figure 1–figure supplement 1B), and packaged them into KymoButler, an easy-to-use, drag 150 

& drop browser-based app for quick and fully automated analysis of individual kymographs 151 

(http://kymobutler.deepmirror.ai).  152 

The only free parameter in KymoButler is the threshold for trackness map segmentation. The 153 

default threshold is 0.2, but users can freely adjust it between 0.1 and 0.3 (+1 and -1 in the 154 

cloud interface) for their specific application. After the computation, which only takes 1-20 155 

seconds per kymograph (depending on complexity), KymoButler generates several files 156 
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including a dilated overlay image highlighting all the tracks found in different colours, a CSV 157 

file containing all track coordinates, and another summary file with post processing data, 158 

such as average velocities and directionality (Figure 1B). Finally, we tested KymoButler on 159 

previously published kymographs from a variety of different biological data (Figure 1C and 160 

Figure 1-figure supplement 1A) and on unpublished data from collaborators (not shown). 161 

Performance on unidirectional Kymographs 162 

We quantitatively evaluated the performance of KymoButler on unidirectional kymographs, 163 

i.e. particles that move with mostly uniform velocities and with no change in direction (Figure 164 

1C, Figure 2, Figure 1-figure supplement 1A). The unidirectional module of KymoButler was 165 

compared to an existing kymograph analysis software, which is based on Fourier filters, and 166 

which provided the best performance among publicly available software in our hands 167 

(KymographDirect package (Mangeol et al. 2016)). Additionally, we traced kymographs by 168 

hand to obtain a control for the software packages. 169 

First, we generated 10 synthetic movies depicting unidirectional particle dynamics with low 170 

signal-to-noise ratio (~1.2, see Materials and Methods) and extracted kymographs from 171 

those movies using the KymographClear (Mangeol et al. 2016) Fiji plugin. Each of the 172 

kymographs was then analysed by Fourier-filtering (KymographDirect), KymoButler, and by 173 

hand, and the identified trajectories overlaid with the ground truth (i.e., the known dynamics 174 

of the simulated data) (Figure 2A). 175 

We then quantified the quality of the predicted traces. We first determined the best predicted 176 

track for each ground truth track (in case several segments were predicted to cover the 177 

same track) and then calculated the fraction of the length of the ground truth track that was 178 

correctly identified by that predicted track (“track recall”) (Figure 2B). Additionally, we 179 

determined the best overlapping ground truth track for each predicted track and then 180 

calculated the fraction of the length of the predicted track that was overlapping with the 181 
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ground truth track (“track precision”). Examples of low/high precision and low/high recall are 182 

shown in Figure 2B. We then calculated the geometric mean of the average track recall and 183 

the average track precision (the “track F1 score”, see methods) for each kymograph (Figure 184 

2E). The median F1 score of the manual control was 0.90, KymoButler achieved 0.93, while 185 

Fourier filtering achieved a significantly lower F1 score of 0.63 (� � 4 � 10��, Kruskal-Wallis 186 

Test, Tukey post-hoc: manual vs KymoButler � � 0.6, manual vs Fourier Filtering � � 3 �187 

10��).  188 

Our synthetic data also included gaps of exponentially distributed lengths (see Materials and 189 

Methods), allowing us to quantify the ability of KymoButler to bridge gaps in kymograph 190 

tracks (Figure 2C, F), which are frequently encountered in kymographs extracted from 191 

fluorescence data (Applegate et al. 2011). Both KymoButler and manual annotation 192 

consistently bridged gaps that belonged to the same trajectory, while Fourier filtering was 193 

less accurate (89% of all gaps correctly bridged by KymoButler, 88% by manual, and 72% 194 

by Fourier filter analysis; median of all 10 synthetic kymographs, � � 10��, Kruskal-Wallis 195 

Test, Tukey post-hoc: manual vs KymoButler � � 0.9, manual vs Fourier Filtering � � 2 �196 

10��, Figure 2F). 197 

We also quantified the ability of KymoButler to resolve track crossings. Again, both 198 

KymoButler and manual annotation performed significantly better than Fourier filtering (88% 199 

KymoButler, 86% manual, 60% Fourier filter; median percentage of correctly resolved 200 

crossings of all 10 synthetic kymographs, � � 10��, Kruskal-Wallis Test, Tukey post-hoc: 201 

manual vs KymoButler � � 0.9, manual vs Fourier Filtering � � 1 � 10��, Figure 2G).  In 202 

summary, KymoButler was able to reliably track particle traces in kymographs at low SNR, 203 

and it clearly outperformed currently existing software, while being as consistent as manual 204 

expert analysis. 205 
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KymoButler performance on bidirectional Kymographs 206 

As in many kymographs obtained from biological samples trajectories are not unidirectional, 207 

we also tested the performance of KymoButler on complex bidirectional kymographs, i.e. of 208 

particles with wildly different sizes, velocities, and fluorescence intensities that frequently 209 

change direction, may become stationary and then resume motion again (see Figure 1B, C, 210 

Figure 3A, Figure 1-figure supplement 1A for examples). Available fully automated software 211 

that relied on edge detection performed very poorly on our synthetic kymographs (Figure 3-212 

figure supplement 1). Therefore, we implemented a custom-written wavelet coefficient 213 

filtering algorithm in order to compare our FCN-based approach to a more traditional non-ML 214 

approach (Figure 3A, Figure 3-figure supplement 1, Materials and Methods). In short, the 215 

wavelet filtering algorithm generates a trackness map, similar to KymoButler, by applying a 216 

stationary wavelet transform to the kymograph to generate so-called “coefficient images” that 217 

highlight horizontal or vertical lines. These coefficient images are then overlaid and binarized 218 

with a fixed value (0.3), skeletonised, and fed into the KymoButler algorithm without the 219 

decision module, i.e. crossings are resolved by linear regression prediction. 220 

We generated 10 kymographs from our synthetic movies with the KymographClear package 221 

(average signal-to-noise ratio was 1.4, since any lower signal generally obscured very faint 222 

and fast tracks). Each of the kymographs was then analysed by wavelet coefficient filtering, 223 

KymoButler, and manual annotation, and the predicted traces overlaid with the ground truth 224 

(Figure 3A). While the wavelet approach and KymoButler were able to analyse the 10 225 

kymographs in less than one minute, manual annotation by an expert took about 1.5 hours. 226 

Moreover, whereas the manual annotation and KymoButler segmentation overlaid well with 227 

the ground truth, the wavelet approach yielded numerous small but important deviations.  228 

Similarly to the unidirectional case, we quantified track precision and recall (Figure 3B, E) 229 

and calculated the resolved gap fraction (Figure 3C, F) and crossing fraction (Figure 3D, G). 230 

The median of the track F1 scores per kymograph for manual annotation (0.82) was similar 231 
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to KymoButler (0.80), while the wavelet filter approach only gave 0.60 ( � � 8 � 10��, 232 

Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler � � 0.7, manual vs wavelet 233 

filtering � � 10��, Figure 3E). While gaps were resolved by KymoButler and manual 234 

annotation in 89% and 95% of cases, respectively, only 74% were resolved by the wavelet 235 

algorithm (median of all 10 synthetic kymographs,  � � 3 � 10��, Kruskal-Wallis Test, Tukey 236 

post-hoc: manual vs KymoButler � � 0.4, manual vs wavelet filtering � � 2 � 10��, Figure 3F). 237 

Crossings were rarely resolved correctly by the wavelet algorithm (12%) but much more 238 

reliably by KymoButler (61%) and manual annotation (76%) (median of all 10 synthetic 239 

kymographs,  � � 3 � 10��, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler 240 

� � 0.4, manual vs wavelet filtering � � 2 � 10��, Figure 3G). 241 

Overall, these results showed that KymoButler performs well on both unidirectional and 242 

bidirectional kymographs, outperforms currently available automated analysis of kymographs, 243 

and it performs as well as manual tracing, while being much faster and not prone to 244 

unconscious bias. 245 

Discussion 246 

In this work, we developed software based on Deep Learning techniques to automate the 247 

tracking of dynamic particles along a stationary path in a noisy cellular environment. 248 

Convolutional neural networks (CNNs) are nowadays widely applied for image recognition. 249 

Since tracking is a priori a visual problem, we built a modular software utilising CNNs for 250 

identifying tracks in kymographs. We deployed our networks as KymoButler, a software 251 

package that takes kymographs as inputs and outputs all tracks found in the image in a 252 

matter of seconds. The network outperforms standard image filtering techniques on synthetic 253 

data as well as on kymographs from a wide range of biological processes, while being as 254 

precise as expert manual annotation. 255 
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The KymoButler software has only one adjustable parameter that is left to the user: a 256 

sensitivity threshold that, if low, allows more ambiguous tracks to be recognised, and if high 257 

discards them. For our synthetic data, the best value for the threshold lay between 0.1 and 258 

0.3 (Figure 1-figure supplement 4), and we observed a similar range for a variety of 259 

kymographs from published data. However, the threshold depends on the SNR of the input 260 

images, so that the correct threshold has to be chosen based on each biological application 261 

and imaging conditions.  We strongly recommend to visually inspect the output of 262 

KymoButler for each new application, and to compare the output to manual annotation. 263 

Most of the publicly available kymograph analysis software requires manual labelling to 264 

extract quantitative data (Chenouard et al. 2010; Neumann et al. 2017; Zala et al. 2013). 265 

Some automated approaches have been published in the context of specific biological 266 

questions, but since these programs are currently not publicly available it is not clear how 267 

well they would perform on kymographs from other applications (Mukherjee et al. 2011; Reis 268 

et al. 2012). Other approaches do not extract individual tracks but only macroscopic 269 

quantities, as for example velocities (Chan & Odde 2008). As KymoButler is fully automated 270 

and able to reliably analyze kymographs from a wide range of biological applications, it fills 271 

an important gap. Here we showed that KymoButler is able to quantify mitochondria 272 

movement in neuronal dendrites, microtubule growth dynamics in axons, and in vitro 273 

dynamics of single cytoplasmic dynein proteins (Figure 1 and Figure 1-figure supplement 1). 274 

We predict that it can furthermore be applied to most if not all other kymographs obtained 275 

from time-lapse fluorescence microscopy without the need of any modifications. 276 

KymoButler outperformed Fourier filtering, edge detection, and customised wavelet 277 

coefficient selection on synthetic kymographs. While Fourier filtering ‘only’ performed ~30% 278 

worse than KymoButler on unidirectional kymographs, edge detection on bidirectional 279 

kymographs suffered greatly from background fluctuations and low SNR to such an extent 280 

that the extracted data was unusable (see Figure 3-figure supplement 1 for one example). 281 

Therefore, we designed a filtering algorithm based on wavelet coefficient image selection to 282 
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analyse complex bidirectional kymographs specifically for our synthetic data. KymoButler still 283 

performed 25% better than this approach (Figure 3). The main problem with either filtering 284 

approach compared to KymoButler was their inability to bridge track gaps and resolve line 285 

crossings, both of which occur frequently in biological data (Figure 2C, D and 3C, D). These 286 

challenges are met by KymoButler, which performed as well as expert annotation, but within 287 

a much shorter time (Figure 2 and 3). 288 

Our results show that KymoButler is able to correctly identify individual full-length tracks in 289 

kymographs with an average track F1 score (geometric mean of track precision and recall) 290 

of 92% on unidirectional tracks and 80% on complex bidirectional tracks, without suffering 291 

from inconsistency, bias, and laborious tracing, that plague manual tracking. While 292 

KymoButler is already performing very well, we aim to significantly improve it over future 293 

iterations. Every time a researcher uses our webform, the corresponding kymograph is 294 

anonymously uploaded to our cloud. Once a large number of diverse kymographs is 295 

uploaded, these kymographs will be added to our training data, improving KymoButler even 296 

further. 297 

The ultimate challenge will be to expand our approach to 2D or even 3D tracking problems. 298 

Here, we defined a 1D region of interest in 2D time-lapse movies, extracted 2D (space and 299 

time) images (kymographs), and finally tracked 2D lines in those images. A similar, albeit 300 

computationally heavier, approach could stack the frames of a 2D/3D movie on top of each 301 

other to generate a 3D/4D kymogram (2D space and time, or 3D space and time). Previously 302 

generated kymograms have led to intriguing results on whole-cell particle tracking problems 303 

with high SNR (Racine et al. 2007). The use of higher dimensional FCNs in the future has 304 

great potential to yield human-like performance on any biological and medical tracking 305 

problems. 306 

  307 
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Material and Methods 308 

All code was written in the wolfram language in Mathematica 309 

https://wolfram.com/mathematica and, if not stated otherwise, can be found online under our 310 

GitHub: https://github.com/deepmirror/KymoButler  311 

The KymoButler software package 312 

The KymoButler software was implemented in Mathematica to take advantage of easy web 313 

form deployment and distribution. The workflow is shown in Figure 1-figure supplement 1B. 314 

Our approach was to first segment kymograph pixels that are part of particle tracks from 315 

pixels that were part of the background with our segmentation modules. From previous work 316 

we knew that kymographs that depict unidirectional movement only, can be filtered into 317 

tracks that have positive slope and those that have negative slope (Chenouard et al. 2010), 318 

while no such assumptions can be made about bidirectional kymographs. Hence, we 319 

decided to take advantage of this simplification of unidirectional kymograph analysis by 320 

training two modules: one that is specialized to segment unidirectional kymographs and 321 

another one that segments bidirectional ones. Note that the bidirectional module is able to 322 

analyze any kymograph, including unidirectional ones, but since it is not specialized it 323 

performs slightly worse than the unidirectional module on unidirectional kymographs. To 324 

further simplify software usability, we prepended a class module that classifies input 325 

kymographs as bidirectional or unidirectional, and then applies the corresponding 326 

segmentation module and decision module (for bidirectional kymographs only). Our 327 

downloadable software package on GitHub allows the user to call either segmentation 328 

module (unidirectional/bidirectional) directly, if they wish to do so. 329 

When the kymograph is classified as unidirectional by the class module, the unidirectional 330 

segmentation module generates two trackness score maps for particles with negative or 331 

positive slope (Figure 1-figure supplement 1B). Since the particles move with roughly the 332 
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same velocity, the resulting maps mostly do not exhibit any crossings. Thus, we binarize the 333 

maps with a threshold between 0.1-0.3 (see benchmarking section for more information 334 

about the threshold). The resulting binary maps are then thinned iteratively so that each 335 

trace is only one pixel wide at any point and pruned so that branches that are shorter than 3 336 

pixels are deleted. Subsequently, each trace is segmented and selected only if they are at 337 

least 3 frames long. In the final step, pixels that lie in the same row of the kymograph are 338 

averaged over so that the final track has only one entry per frame. 339 

For bidirectional kymographs the software generates a trackness map, applies a binarization 340 

threshold (0.1-0.3, see benchmarking for more details), iterative thinning, and pruning 341 

(minimum length 3 pixels). However, since the resulting skeletonised map had a substantial 342 

number of crossings, and could not be easily segmented to yield individual tracks, we 343 

implemented a further module in the software. First, all lines in the skeletonised map are 344 

shortened so that each white pixel at a track end only has neighbouring pixels in different 345 

rows (time dimension). This was done so that we could detect track starting points (“seeds”) 346 

with a Hit-Miss transformation with kernel: ��1 �1 �1�1 1 �10 0 0 �. Application of this kernel yielded 347 

a binary map with 0 everywhere except at track seeds (Figure 1-figure supplement 1B, red 348 

dots). These seeds were then used to start tracing individual tracks in the kymograph by 349 

always advancing to the next white pixel. Once more than one potential future pixel is 350 

encountered, the decision module is called. The module generates three 48x48 crops of (1) 351 

the input kymograph, (2) the skeletonised trackness map, and (3) the skeleton of the current 352 

track and predicts a trackness map that has high values on the skeleton segment of the 353 

most likely future track (Figure 1-figure supplement 1B). This map is binarized with threshold 354 

0.5 and thinned. The precise threshold had little effect on the final output, so we fixed it at 355 

0.5 for all applications. Next, the largest connected component in the map is selected as the 356 

most likely future path and appended to the track if longer than 2 pixels. The average 357 

trackness value of this component (from the decision module prediction) is saved as a 358 
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measure of decision “confidence”. This process is repeated until no further possible pixels 359 

are found or no future path is predicted which is when the track is terminated. Once all seeds 360 

are terminated, the software subtracts all the found paths from the skeletonised trackness 361 

map and again looks for new seeds which are then again tracked in the full skeletonised 362 

image. The process is repeated until no further seeds are found, and then all tracks are 363 

averaged over their timepoints (rows in the kymograph image). Subsequently the software 364 

deletes tracks that are shorter than 5 pixels or part of another track and assigns overlaps 365 

that are longer than 10 pixels to the track with the highest average decision confidence. 366 

Both the unidirectional and the bidirectional module output a coloured overlay in which each 367 

track is drawn in a different randomly assigned colour and dilated with factor 1 for better 368 

visibility (see Figure 1B-C and Figure 1-figure supplement 1A).  Additionally, the software 369 

generates one CSV file that contains all the track coordinates and a summary CSV file that 370 

gives derived quantities, such as track direction and average speed. 371 

The software was deployed from Mathematica as a cloud based interface 372 

(http://kymobutler.deepmirror.ai) and a Mathematica package 373 

(https://github.com/deepmirror/KymoButler) 374 

Network architectures 375 

Our networks were built from convBlocks (a convolutional layer with 3x3 kernel size, padding, 376 

and arbitrary number of output channels followed by a batch normalisation layer and a ‘leaky’ 377 

ramp (leakyReLU) activation function (������������: � �����, 0� � 0.1 ������, 0�). Batch 378 

normalisation is useful to stabilise the training procedure as it rescales the inputs of the 379 

activation function (leakyReLu), so that they have zero mean and unit variance. The 380 

leakyReLu prevents the so-called “dead ReLu’s” by applying a small gradient to values 381 

below 0. These building blocks were previously used for image recognition tasks in Google’s 382 

inception architecture and in the U-Net architecture (Szegedy et al. 2014; Falk et al. 2019). 383 
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The module architectures we settled on are shown in Figure 1–figure supplement 1-2. All 384 

modules used the same core building blocks while having different input and output ports. 385 

The classification module takes a resized kymograph of size 64x64 pixels and generates two 386 

output values that correspond to the class probabilities for unidirectional/bidirectional 387 

kymographs (Figure 1–figure supplement 2A). The unidirectional segmentation module takes 388 

one input kymograph and generates two output images that correspond to the trackness 389 

scores of particles with positive or negative slopes (Figure 1–figure supplement 2B). The 390 

bidirectional segmentation module takes one input kymograph and generates one trackness 391 

score map highlighting any found particle tracks (Figure 1–figure supplement 2C).  Finally, 392 

the decision module takes three inputs of size 48x48 pixels to generate one trackness map 393 

(Figure 1–figure supplement 2D). All modules share the same core network that is 394 

essentially a U-Net with padded convolutions and with 64 (in the top level) to 1024 (in the 395 

lowest level) feature maps. We experimented with more complex architectures (parallel 396 

convolution modules instead of blocks, different number of feature maps) but could only 397 

observe minor increase in accuracy at a large expense in computation time. Due to the U-398 

Net architecture, each dimension of the inputs to the segmentation modules needs to be a 399 

multiple of 16. Thus, inputs were resized when they did not match the dimension 400 

requirements, and then the binarized output images from the segmentation modules were 401 

resized to the original input image size before proceeding further. 402 

Network training 403 

To train the networks we quantified the difference between their output   and the desired 404 

target output ! through a cross entropy loss layer ("#� $$�!,  � � ��! � �%� � & �1 � !� �405 

�%�1 �  � ). The loss was averaged over all output entries (pixels and classes) of each 406 

network. While we tried other loss functions, specifically weighted cross entropy loss and 407 

neighbour dependent loss as described in (Bates et al. 2017), we persistently obtained 408 

higher precision and recall with the basic cross entropy loss above. 409 
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Our training data comprised a mixture of synthetic data and manually annotated unpublished 410 

kymographs, kindly provided by the research groups mentioned in the acknowledgements. 411 

Most of the manual annotation was done by M. A. H. J. and A. D. In total, we used 487 412 

(+200 synthetic) unidirectional, and 79 (+21 synthetic) bidirectional kymographs, with 95% of 413 

the data used for network training, and ~5% of retained for network validation. All network 414 

training was performed on a workstation, using a nVidia 1080 Ti or a nVidia 1070 GPU. 415 

The class module depicted in Figure 1-figure supplement 2A was trained with batches of 416 

size 50 (with 25 unidirectional and 25 bidirectional kymographs to counter class imbalance) 417 

with random image transformations that included image reflections, rotations, resizing, 418 

colour negation, gaussian noise, random noise, and random background gradients. The final 419 

input image was randomly cropped to 64x64 pixels (see examples Figure 1-figure 420 

supplement 3A) and the class module was trained using stochastic gradient descent (ADAM 421 

optimiser (Kingma & Optimization n.d.), initial learning rate 0.001), until the validation set 422 

error rate was consistently 0%.  423 

The unidirectional segmentation module (Figure 1-figure supplement 2B) was trained with 424 

batches comprising 20 randomly selected kymographs from our training set (example in 425 

Figure 1-figure supplement 3B). We applied the following image transformations: Random 426 

reflections along either axis, random 180-degree rotations, random cropping to 128x80 427 

pixels (approximately the size of our smallest kymograph), random gaussian and uniform 428 

noise, and random background gradients. Note that we did not apply any resizing to the raw 429 

kymograph since that generally decreased net performance. Additionally, we added Dropout 430 

Layers (10-20%) along the contracting path of our custom U-Net to improve regularisation. 431 

Each kymograph in this training set was generated by hand with KymographTracker 432 

(Chenouard et al. 2010), but to increase dataset variability we took the line profiles from 433 

KymographTracker and generated kymographs with a custom Mathematica script that 434 

applied wavelet filtering to the plotted profiles. The resulting kymographs have a slightly 435 

different appearance than the ones created with KymographTracker and are thus useful to 436 
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regularize our training process. Several modules were trained until convergence and the 437 

best performing one (according to the validation score) was selected (ADAM optimiser, initial 438 

learning rate of 0.001, learning rate schedule = '()*�!+, - 4000, 1 , .5/).  439 

The bidirectional segmentation module (Figure 1-figure supplement 2C, example data Figure 440 

1-figure supplement 3C) was trained in the same way as the unidirectional segmentation 441 

module, with the exception of a slightly different learning rate schedule ('()*�!+, - 3000, 1,442 

.5/). Additionally, since we did not have access to many of the original movies from which the 443 

kymographs were generated, we could not generate kymographs with different algorithms as 444 

done for the unidirectional module. 445 

Training data for the decision module (Figure 1-figure supplement 2D) was obtained from the 446 

bidirectional (synthetic + real) kymographs by first finding all the branch points in a given 447 

ground truth or manually annotated image. Then, each track was separated into multiple 448 

segments, that go from its start point to a branching point or its end point. For each 449 

branchpoint encountered while following a track, all segments that ended within 3 pixels of 450 

the branchpoint were selected. Then, (1) a 48x48 pixel crop of the raw kymograph around 451 

the branchpoint, (2) a binary map representing the track segment upstream of the branching 452 

point (centred with its end in pixel coordinates 25,25, with image padding applied if the end 453 

was close to an image corner), and (3) the corresponding 48x48 pixel region in the binary 454 

image representing all possible paths were used as inputs to the decision module. The 455 

binary image representing the ground truth or annotated future segment downstream of the 456 

branchpoint was used as the target image (see Figure 1-figure supplement 3D for an 457 

example training set). Thus, the training set comprised three input images and one output 458 

image which we used to train the decision module. To increase the module’s focus on the 459 

non-binary raw kymograph crop, we applied 50% dropout to the full skeletonised input and 460 

5% dropout to the input segment. As explained above, we used random image augmentation 461 

steps like reflections, rotations, gaussian + uniform noise. Additionally, we employed random 462 

morphological thinning to the binary input/output images to simulate artefacts. Several 463 
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networks were trained until convergence (pixel wise cross entropy loss, ADAM optimiser, 464 

initial learning rate 0.001, batch size 50, learning rate schedule '()*�!+, - 8000, 1, .5/), and 465 

the best performing one was selected.  466 

Synthetic Data 467 

Synthetic data was generated by simulating individual particles on a stationary path of length 468 

300 pixels for 300 frames to generate 300x300 pixel kymographs. To obtain unidirectional 469 

particles we seeded 30+30 particles with negative or positive slope at random 470 

timepoints/positions. Next, a random velocity between 1-3 pixels/frame was chosen for all 471 

particles in the movie, with a random noise factor to allow slight changes in velocity, and a 472 

particle PSF between 3-6 pixels. Each particle was assigned a survival time drawn from an 473 

exponential distribution with scale 0.01, after which it would disappear. Gaps of random 474 

length (exponentially distributed) were subsequently assigned to each track individually. 475 

From these tracks we then generated a kymograph with gaussian noise, used for neural 476 

network training, and a 20x300 pixel movie with 300 frames for benchmarking. The resulting 477 

kymographs and movies had an average signal-to-noise ratio of 1.2 (calculated as the 478 

average intensity of the signal, divided by the average intensity of the background). Finally, 479 

we removed tracks that overlapped for the whole duration of their lifetime. 480 

To obtain synthetic data of complex bidirectional particle movements, we generated datasets 481 

with either 15 tracks (for benchmarking) or 30 tracks (for training) per movie. The maximum 482 

velocity was set to 3 pixels/frame, as above this velocity it became hard to manually 483 

segment tracks from kymographs. Each movie was assigned a random velocity noise factor 484 

between 0 and 1.5 pixels/frame, a random switching probability between 0 and 0.1 (to switch 485 

between stationary and directed movement) and a random velocity flipping factor between 0 486 

and 0.1 (to flip the direction of the velocity). Individual particles were simulated by first 487 

calculating their lifetime from an exponential distribution with scale 0.001. Then, a random 488 

initial state, moving or stationary, was selected as well as a random initial velocity and a 489 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/405183doi: bioRxiv preprint 

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

particle size between 1-6 pixel. In the simulation, particles could randomly switch between 490 

different modes of movement (stationary/directed), flip velocities and were constantly 491 

subjected random velocity noise (movie specific). Finally, tracks that were occulted by other 492 

tracks were removed, and a movie (used for benchmarking) and a kymograph (used for 493 

training) were generated. The resulting kymographs and movies had an average signal-to-494 

noise ratio of 1.4. 495 

Benchmarking 496 

In order to benchmark the performance of software and manual predictions, we implemented 497 

a custom track F1 score which was calculated as the geometric mean of track recall and 498 

track precision. To calculate track recall, each ground truth track was first compared to its 499 

corresponding predicted track, and the fractional overlap between them was calculated. 500 

Since predicted tracks do not necessarily follow the exact same route through a kymograph, 501 

but frequently show small deviations from the ground truth (see Figure 3 and Figure 3-figure 502 

supplement 1) we allowed for a 3.2-pixel deviation from the ground truth (2 diagonal pixels). 503 

The maximum fractional overlap was then selected and stored as the track recall. The recall 504 

was thus 1 when the full length of a ground truth track was predicted, and 0 if the track was 505 

not found in the prediction. We would like to highlight that this criterion is very strict: if a 506 

ground truth track is predicted to be 2 tracks (for example, by failing to bridge a gap along 507 

the track), the recall fraction would decrease by up to 50%, even if most of the pixels are 508 

segmented correctly and belong to predicted tracks. 509 

Track precision was calculated by finding the largest ground truth track that corresponded, 510 

i.e. had the largest overlap, to each prediction, and then calculating the fraction of the 511 

predicted track that overlapped to the ground truth track. Therefore, a track precision of 1 512 

corresponded to a predicted track that was fully part of a ground truth track while a precision 513 

of 0 meant that the predicted track was not found in the ground truth. In general, increasing 514 
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precision leads to a lower recall and vice versa, so that taking the track F1 score as the 515 

geometric mean between the two is a good measure of overall prediction performance. 516 

To quantify gap performance, we searched for track segments within 3 pixels of the gap for 517 

each frame, to allow for predictions that deviated slightly from the ground truth. Once each 518 

frame of the gap was assigned to a corresponding predicted segment, the gap was deemed 519 

resolved. If one or more frames of the gap had no overlapping segment to the prediction, the 520 

gap was labelled unresolved. Our synthetic tracks had 954 gaps in the 10 kymographs of 521 

unidirectional data, and 840 gaps in the 10 kymographs of bidirectional data, and the largest 522 

gap size was 6 pixels. For each kymograph, we then calculated the fraction of gaps resolved. 523 

To quantify KymoButler performance on crossings, we first generated binary images for 524 

each ground truth track and calculated overlaps with other ground truth tracks by multiplying 525 

those images with each other. The resulting images had white dots wherever two tracks 526 

crossed. Those dots were then dilated by a factor of 16 to generate circles and overlaid with 527 

the original single-track binary image to generate binary maps that contain segments of 528 

ground truth tracks that cross/merge with other tracks. Next, we generated dilated (factor 1) 529 

binary maps for each predicted track and multiplied them with each of those cross segments 530 

to obtain the largest overlapping track for each segment. We then visually inspected a few 531 

examples and determined that an overlap of 70% corresponds to a correctly resolved 532 

crossing and allowed for slight variations in predicted tracks when compared to ground truth. 533 

Finally, we calculated the fraction of crossings resolved per kymograph. 534 

All statistical analysis was carried out in MATLAB (http://mathworks.com).  535 

Module performance evaluation 536 

To benchmark the unidirectional segmentation module of KymoButler, we generated 10 537 

synthetic movies of the dynamics of particles that move with uniform speed and do not 538 

change direction as described in the section about synthetic data generation. We then 539 
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imported these movies into ImageJ (http://imagej.nih.gov ) via the Kymograph Clear package 540 

(Mangeol et al. 2016), drew a profile by hand and generated kymographs from them. These 541 

kymographs were then imported into the KymographDirect software package (also (Mangeol 542 

et al. 2016)), Fourier filtered and thresholded to extract individual particle tracks. This 543 

approach required manual selection of the threshold for each individual kymograph. We 544 

additionally traced the same kymographs by hand in ImageJ to compare software 545 

performance to expert analysis. To find a suitable range of binarization thresholds for our 546 

unidirectional segmentation module we calculated the track wise F1 score on the 10 547 

kymographs for thresholds between 0.05 and 0.5 (Figure 1-figure supplement 4). We 548 

observed the highest scores between 0.1 and 0.3 for both our synthetic data and other 549 

unpublished kymographs and also deemed these thresholds best by visual inspection of 550 

predicted kymograph tracks. Hence, we chose 0.2 as the segmentation map threshold to 551 

benchmark our predictions at. 552 

In order to benchmark the bidirectional segmentation module and the decision module we 553 

generated 10 synthetic movies of the dynamics of complex bidirectional particles. These 554 

movies were imported into ImageJ with the KymographClear package and kymographs 555 

extracted. We subsequently tried to use the edge detection option in KymographDirect to 556 

extract individual tracks but were unable to obtain meaningful tracks (Figure 3-figure 557 

supplement 1). We also tried other options in the package but could not get good results on 558 

our synthetic data without substantial manual labor for each kymograph, defeating the goal 559 

of a fully automated analysis. Therefore, we wrote a custom script to carry out automated 560 

bidirectional kymograph analysis. We experimented with a few different approaches (for 561 

example fourier-filtering and customized edge detection) and settled on wavelet coefficient 562 

filtering as it gave the highest F1 score on our test dataset. This algorithm applied a 563 

stationary wavelet transformation with Haar Wavelets (Mathematica wavelet package) to 564 

each kymograph to decompose the image into different coefficient images that highlight 565 

different details (for example vertical or horizontal lines). We then selected only those 566 
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coefficient images that recapitulated particle traces in our synthetic kymographs. These 567 

images are overlaid and thresholded with an optimized threshold to generate binary maps 568 

that can be iteratively thinned to obtain a skeletonized “trackness” map similar to the outputs 569 

of our segmentation modules. This map was then traced with the same algorithm as in our 570 

decision module. However, while the KymoButler decision module used a neural network to 571 

predict path crossings, the wavelet filtering algorithm performed simple linear prediction by 572 

taking the dilated (factor 1) binary segment of a track and rotating it by 180 degrees. Then 573 

the “prediction” was multiplied with the skeletonized trackness map and the largest 574 

connected component selected as the future path. In contrast to the original decision module, 575 

this approach does not yield any information about decision “confidence”. Thus, to resolve 576 

track overlaps at the end of the algorithm, we randomly assigned each overlap to one track 577 

and deleted them from the others. Note that the wavelet approach was heavily optimized on 578 

our synthetic kymographs and performed poorly on generic real kymographs. We also traced 579 

the same 10 kymographs by hand in ImageJ. To find a suitable range of binarization 580 

thresholds for our bidirectional segmentation module we calculated the track wise F1 score 581 

for thresholds between 0.05 and 0.5 (Figure 1-figure supplement 4) and observed the same 582 

optimal range as the unidirectional segmentation module (0.1-0.3) for both our synthetic data 583 

and other unpublished kymographs. Hence, we chose 0.2 as the threshold score to 584 

benchmark our predictions. 585 

 586 

 587 

Key resources table 588 

Resource Designation. Source. Identifiers. Additional Information. 

Software, MATLAB MATLAB RRID:SCR_0 Used for statistical 
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algorithm 01622 

 

analysis 

Software, 

algorithm 

Fiji Fiji is Just 

ImageJ  

(https://fiji.sc) 

 

RRID:SCR_0

02285 

 

Used to generate and 

analyse kymographs with 

KymographClear/Direct 

https://sites.google.com/si

te/kymographanalysis/  

Software, 

algorithm 

Wolfram 

Mathematica 

Wolfram 

Mathematica 

 RRID:SCR_

014448 

Code available under 

https://github.com/deepmi

rror/KymoButler   

  589 
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software for applications, in case they are not covered by our research. This software may or 615 

may not be made available on deepmirror.ai, depending on our clients’ requests.  616 

Software 617 

Quick and easy cloud platform: http://www.kymobutler.deepmirror.ai  618 

Mathematica notebook with examples on how to use the software offline: 619 

https://github.com/deepmirror/KymoButler  620 
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Figure legends 698 

Figure 1: Kymograph generation and KymoButler 699 

(A) Schematic of kymograph generation from live imaging data. A cell and four particles are 700 

shown at 3 different timepoints (top row). A temporal projection of this cell highlights how 701 

each particle moves along a stationary path. It is possible to track the path (magenta line), 702 

and then extract the intensity of the particle in subsequent frames in a 2D kymograph image, 703 

where the horizontal and vertical axes represent space and time, respectively. Individual 704 

lines in a kymograph represent several particles moving along the same path. (B) 705 

Functionality of KymoButler. A kymograph, here the motion of mitochondria along neuronal 706 

dendrites adapted from (Faits et al. 2016), is uploaded via drag & drop to the cloud interface 707 

at http://www.kymobutler.deepmirror.ai, where the noise-dependent sensitivity can be 708 

manually adjusted. The outputs are: an overlay highlighting all the tracks found in different 709 

(random) colours, a .csv file with the time and space coordinates for each track, and a .csv 710 

file containing the summary of the direction and velocity of each track. (C) KymoButler image 711 

outputs from two example kymographs. Left: dynamics of fluorescently labelled Rab11a in 712 

rat cortical axons (adapted from (Koseki et al. 2017), bidirectional movement as Rab11a can 713 

move both ways in the axon or become stationary). Right: dynamics of fluorescently labelled 714 

microtubule plus-ends in mouse dorsal root ganglion axons (adapted from (Lazarus et al. 715 

2013), unidirectional movement since microtubule growth is continuous). The top row depicts 716 

the raw kymographs as taken from the published manuscripts. The middle row shows the 717 

identified tracks as dilated coloured lines. The bottom row depicts an overlay of the raw 718 

kymograph with the KymoButler prediction. Further examples from published work are 719 

shown in Figure 1-figure supplement 1A. 720 

Figure 1-figure supplement 1: Example kymographs and software workflow 721 

(A) Three example kymographs from published manuscripts. Example 1: In vitro dynamics of 722 

single cytoplasmic dynein proteins adapted from (Tanenbaum et al. 2013).  Example 2: EB1-723 
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GFP labelled growing microtubule plus-ends in mouse dorsal root ganglion axons (Lazarus 724 

et al. 2013). Example 3: Mitochondria dynamics in mouse retinal ganglion cell dendrites 725 

(Faits et al. 2016). Each dilated coloured line depicts an identified track. (B) KymoButler 726 

software workflow. First, a classification module is applied to each kymograph to determine 727 

whether the kymograph is unidirectional or bidirectional. If the kymograph is deemed 728 

unidirectional the unidirectional segmentation module is applied to the image to generate two 729 

trackness maps that assign each pixel a score between 0-1, approximating the likelihood 730 

that this pixel is part of a track with negative slope (left image) or positive slope (right image). 731 

Subsequently, the trackness maps are binarized, skeletonised, and segmented into their 732 

respective connected components. Finally, those components are averaged over each row 733 

to generate individual tracks, and a dilated representation of each track is plotted in a 734 

random colour. If the kymograph is classified as bidirectional, another segmentation module 735 

is applied to the kymograph, which generates a trackness map that does not highlight any 736 

particular slope. This map is binarized with a user-defined threshold and subsequently 737 

skeletonised, resulting in a binary map that exhibits multiple track crossings. To resolve 738 

these crossings, we first apply a morphological operation that detects the starting points of 739 

tracks in the binary map (red dots). Then, the algorithm tracks each line from its starting 740 

point until a crossing is encountered. At each crossing, the decision module is called, whose 741 

inputs are (i) the raw kymograph in that region, (ii) the previous track skeleton, and (iii) all 742 

possible tracks in that region. The decision module then generates another trackness map 743 

that assigns high values to the most likely future path from the crossing. This map is then 744 

again binarized and thinned with a fixed threshold of 0.5. If the predicted path is longer than 745 

2 pixels, the path tracking continues. Once all starting points have been tracked until an end 746 

(either no prediction or no further pixels available), the algorithm again looks for starting 747 

points in the skeletonised trackness map excluding the identified tracks, and repeats the 748 

steps outlined above until all pixels are occupied by a track. The resulting tracks are then 749 

drawn with each track in a random colour. 750 
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 Figure 1-figure supplement 2: The software modules in detail  751 

(A) The class module. This module resizes any input kymograph to 64x64 pixels. It 752 

subsequently applies two convBlocks with no padding and 64 output feature maps to the 753 

image. ConvBlocks comprise a convolutional layer with 3x3 kernels followed by a 754 

BatchNormalisation Layer and a leaky Rectified Linear Unit (ReLU) activation function (leak 755 

factor 0.1). The convBlocks are followed by 2x2 max pooling to halve the feature map sizes. 756 

This is repeated another 2 times while steadily increasing the number of feature maps until 757 

the last convBlock generates 256 feature maps of size 9x9. These maps are then pooled 758 

with a final 2x2 max pool operation followed by a 4x4 mean pool operation to generate a 759 

vector of 256 features. These features are then classified with a fully connected layer with 760 

output nodes followed by another leaky Ramp and finally another fully connected layer 761 

generates 2 output values that correspond to the probability of being a 762 

unidirectional/bidirectional kymograph. (B) The unidirectional segmentation module takes 763 

and an input kymograph of arbitrary size. Subsequently two convBlocks with 64 output 764 

feature maps are applied to the image followed by max pooling. This is repeated three times 765 

while doubling the number of feature maps with each pooling operation forming the 766 

“contracting path”. To obtain an image of the same size as the input image the small feature 767 

maps at the lowest level of the network have to be deconvolved 4 times each time halving 768 

the number of feature maps and applying further convBlocks.  After each 2x2 deconvolution 769 

the resulting feature maps are catenated with the feature maps of the same size from the 770 

contracting path so that the network only learns residual alterations of the input image. The 771 

final 64 feature maps are linked to two independent convolutional layers that generate 772 

outputs that correspond to the trackness scores for positive and negative sloped lines. (C) 773 

The bidirectional segmentation module has the same architecture as the unidirectional one 774 

but only generates one output that corresponds to the trackness map for any lines in the 775 

image. (D) The decision module architecture is the same as the bidirectional segmentation 776 

module but takes three input images instead of one. 777 
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Figure 1-figure supplement 3: Synthetic training data examples 778 

(A) Class module training data consisted of 64x64 pixel images that were either classified as 779 

unidirectional (example 1) or bidirectional (example 2). (B) Synthetic training data for the 780 

unidirectional segmentation module comprised 300x300 pixel kymographs with two binary 781 

ground truth maps, corresponding to particle motion with negative and positive slopes. (C) 782 

Synthetic bidirectional segmentation module training data comprises 300x300 pixel 783 

kymographs with only one ground truth image containing all ground truth tracks. (D) The 784 

decision module was trained with 48x48 pixel image crops of the raw kymograph, the 785 

previous skeletonised path, and all the skeletonised paths in the cropped region. The ground 786 

truth is simply the known future segment of the given path. 787 

Figure 1-figure supplement 4: Geometric mean of track recall and precision for 788 

different trackness thresholds  789 

(A) 10 synthetic unidirectional and bidirectional kymographs were analysed with varying 790 

trackness thresholds, and recall and precision were calculated. The geometric mean of recall 791 

and precision does not exhibit much variation between 0.1 and 0.3 but decreases at lower 792 

and higher values. 793 

 794 

Figure 2: Benchmark of KymoButler against unidirectional synthetic data 795 

(A) An example synthetic kymograph and its corresponding ground truth, manual control, the 796 

prediction by KymoButler, and the prediction by Fourier filtering. The top row depicts 797 

individual tracks in different colours and the bottom row shows the prediction overlay 798 

(magenta) with the ground truth (green) for all approaches. Discrepancies are thus 799 

highlighted in magenta (false positive) and green (false negative), while matching ground 800 

truth and prediction appears white. (B) Schematic explaining the concept of recall and 801 

precision. The top row depicts the possible deviations of the prediction from the ground truth. 802 
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The middle and bottom rows show example overlays, again in green and magenta, from the 803 

synthetic data. In the left column, the prediction is larger than the ground truth (magenta is 804 

visible) leading to false positive pixels and low track precision, but a small number of false 805 

negatives and thus high track recall. An example prediction overlay of the Fourier filter 806 

approach is shown, which tends to elongate track ends. The right column shows a shorter 807 

prediction than the ground truth, leading to green segments in the overlay. While this 808 

prediction has high track precision (low number of false positive pixels), track recall is low 809 

due to the large number of false negatives. Again, a cut-out from the Fourier filter prediction 810 

is shown, where multiple gaps are introduced in tracks, thus severely diminishing track recall 811 

(see Material and Methods for a detailed explanation of recall and precision). The middle 812 

column shows the same two cut outs analysed by KymoButler. No magenta or green 813 

segments are visible, thus leading to high recall and precision. (C) Synthetic kymograph 814 

region with four gaps highlighted (arrow heads): in one or more kymograph image rows the 815 

signal was artificially eliminated but kept in the ground truth to simulate real fluorescence 816 

data. While KymoButler efficiently connects tracks over gaps, the Fourier filter is unable to 817 

do so and breaks up those tracks into segments or incorrectly shortens these tracks (red 818 

arrow heads). Yellow arrow heads depict correct gap bridging events. (D) A synthetic 819 

kymograph with several line crossings. While KymoButler efficiently resolved all crossings, 820 

i.e. lines that cross other lines are not broken up into two segments, the Fourier filter 821 

correctly identifies the line crossing at the yellow arrow head but erroneously terminates the 822 

red and yellow tracks at the red arrow head. (E) The geometric means of recall and precision 823 

(“track F1 score”) for KymoButler, the Fourier filter approach, and manual control. Each dot 824 

represents the average track F1 score of one synthetic kymograph (� � 4 � 10��, Kruskal-825 

Wallis Test, Tukey post-hoc: manual vs KymoButler � � 0.6, manual vs Fourier Filtering 826 

� � 3 � 10��). (F) Quantification of gap bridging performance for KymoButler (89%), manual 827 

control (88%), and Fourier filter (72%); lines: medians of all 10 synthetic kymographs, 828 

� � 10��, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler � � 0.9, manual vs 829 
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Fourier Filtering � � 2 � 10��.  (G) The fraction of correctly identified crossings for 830 

KymoButler, manual annotation, and the Fourier filter (88% KymoButler, 86% manual, 60% 831 

Fourier filter; lines: medians of all 10 synthetic kymographs, � � 10��, Kruskal-Wallis Test, 832 

Tukey post-hoc: manual vs KymoButler � � 0.9, manual vs Fourier Filtering � � 1 � 10��).  833 

 834 

Figure 3: Benchmark of KymoButler against complex bidirectional synthetic data 835 

(A) Example synthetic kymograph and its corresponding ground truth, manual control, the 836 

prediction by KymoButler, and the prediction via wavelet coefficient filtering. The top row 837 

depicts individual tracks in different colours and the bottom row shows the prediction overlay 838 

(magenta) with the ground truth (green) for all approaches. Discrepancies are highlighted in 839 

magenta (false positive) and green (false negative), while the match of ground truth and 840 

prediction appears white. (B) Example recall and precision of KymoButler and wavelet 841 

filtering. While KymoButler shows high recall and high precision, the wavelet filter approach 842 

yields significant deviations from the ground truth (green and magenta pixels). (C) Synthetic 843 

kymograph region with three artificial gaps highlighted (arrow heads). While KymoButler 844 

efficiently connects tracks over gaps, the wavelet filter is unable to do so and breaks up 845 

those tracks into segments (red arrow heads). The yellow arrow heads depict correct gap 846 

bridging events. (D) A synthetic kymograph with several line crossings. While KymoButler 847 

efficiently resolved all crossings, i.e. lines that cross other lines are not broken up into 848 

segments, the wavelet filter only resolves one crossing correctly (yellow arrow head).  (E) 849 

The geometric means of track recall and track precision (track F1 score) for KymoButler, 850 

manual control, and the wavelet filter. Each dot represents the average F1 score of one 851 

synthetic kymograph ( � � 8 � 10��, Kruskal-Wallis Test, Tukey post-hoc: manual vs 852 

KymoButler � � 0.7, manual vs wavelet filtering � � 10��). (F) Quantification of gap 853 

performance for KymoButler, manual annotation, and wavelet filter ( � � 3 � 10��, Kruskal-854 

Wallis Test, Tukey post-hoc: manual vs KymoButler � � 0.4, manual vs wavelet filtering 855 
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� � 2 � 10��). (G) The fraction of resolved crossings for KymoButler, manual control, and the 856 

wavelet filter (� � 3 � 10��, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler 857 

� � 0.4, manual vs wavelet filtering � � 2 � 10��). KymoButler identifies tracks in complex 858 

kymographs as precisely as manual annotation by an expert. 859 

Figure 3-figure supplement 1: Performance of different skeletisation techniques on a 860 

synthetic bidirectional kymograph 861 

(A) Example of a synthetic bidirectional kymograph and its corresponding ground truth, the 862 

predictions by manual annotation, KymoButler, wavelet coefficient filtering, and tracks 863 

detected through edge filtering. The top row depicts individual tracks in different colours and 864 

the bottom row shows the prediction overlay (magenta) with the ground truth (green) for both 865 

approaches. Discrepancies are highlighted in magenta (false positive) and green (false 866 

negative), while a match of ground truth and prediction appears white. 867 

Figure 2-source data 1: Table of presented data. A CSV file that contains: the average 868 

track F1 score, the average gap score, and the average crossing score for each 869 

unidirectional synthetic kymograph. 870 

Figure 2-source data 2: Synthetic kymographs and movies. A ZIP file containing all 871 

analysed synthetic unidirectional movies, their kymographs, results from KymographClear 872 

based analysis and manually annotated ImageJ rois. 873 

Figure 3-source data 1: Table of presented data. A CSV file that contains: the average 874 

track F1 score, the average gap score, and the average crossing score for each bidirectional 875 

synthetic kymograph. 876 

Figure 3-source data 2: Synthetic kymographs and movies. A ZIP file containing all 877 

analysed synthetic bidirectional movies, their kymographs, and manually annotated ImageJ 878 

rois. 879 

 880 
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