1	The multi-peak adaptive landscape of crocodylomorph body size
2	evolution
3	
4	
5	
6	Pedro L. Godoy ^{1*†} , Roger B. J. Benson ² , Mario Bronzati ³ & Richard J. Butler ¹
7	
8	
9	
10	
11	
12	¹ School of Geography, Earth and Environmental Sciences, University of Birmingham, UK.
13	² Department of Earth Sciences, University of Oxford, UK.
14	³ Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão
15	Preto, Brazil.
16	
17	*corresponding author
18	[†] current address: Department of Anatomical Sciences, Stony Brook University, Stony Brook,
19	NY, 11794, USA
20	
21	
22	
23	
24	
25	
26	

27 Abstract

28	Background: Little is known about the long-term patterns of body size evolution in
29	Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians
30	and their extinct relatives. Extant crocodylians are mostly large-bodied (3-7 m)
31	predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and
32	many of the earliest taxa were much smaller (< 1.2 m). This suggests a pattern of size
33	increase through time that could be caused by multi-lineage evolutionary trends of size
34	increase or by selective extinction of small-bodied species. In this study, we characterise
35	patterns of crocodylomorph body size evolution using a model fitting-approach (with
36	cranial measurements serving as proxies). We also estimate body size disparity through
37	time and quantitatively test hypotheses of biotic and abiotic factors as potential drivers
38	of crocodylomorph body size evolution.
39	
40	Results: Crocodylomorphs reached an early peak in body size disparity during the Late
40 41	<u>Results:</u> Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent essentially continually decreases in disparity since then. A
41	Jurassic, and underwent essentially continually decreases in disparity since then. A
41 42	Jurassic, and underwent essentially continually decreases in disparity since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted
41 42 43	Jurassic, and underwent essentially continually decreases in disparity since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the
41 42 43 44	Jurassic, and underwent essentially continually decreases in disparity since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within
41 42 43 44 45	Jurassic, and underwent essentially continually decreases in disparity since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after
41 42 43 44 45 46	Jurassic, and underwent essentially continually decreases in disparity since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find
41 42 43 44 45 46 47	Jurassic, and underwent essentially continually decreases in disparity since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e.,
41 42 43 44 45 46 47 48	Jurassic, and underwent essentially continually decreases in disparity since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope's rule), or strong correlations of body size with climate. Instead, the intermediate

E.	n
Э	Z

53	Conclusions: Shifts between macroevolutionary regimes provide a better explanation of
54	crocodylomorph body size evolution than do climatic factors, suggesting a central role
55	for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger
56	body sizes occurred in most aquatic and semi-aquatic groups. This, combined with
57	extinctions of groups occupying smaller body size regimes (particularly during the Late
58	Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of
59	extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.
60	
61	Keywords: Crocodylomorpha, Crocodyliformes, body size evolution, adaptive
62	landscape, phylogenetic comparative methods, Ornstein–Uhlenbeck models.
63	
64	
65	
66	
67	Background
68	Body size influences many aspects of ecology, physiology and evolutionary history [1,
69	2, 3, 4, 5, 6], and patterns of animal body size evolution are a long-standing subject of
70	macroevolutionary investigation (e.g., [7, 8, 9, 10, 11]). As a major focus of natural
71	selection, it is expected that significant variation should occur in the body size of
72	animals, although confined within biological constraints, such as skeletal structure,
73	thermoregulation and resource availability [4, 5, 12]. Furthermore, body size can often
74	be easily measured or estimated from both fossil and modern specimens, and has
75	

76 14, 15, 16, 17].

77	With few exceptions (e.g., [18, 19]), previous studies of tetrapod body size
78	evolution have focused on mammals (e.g., [14, 15, 16, 20, 21, 22, 23, 24]) and
79	dinosaurs or birds (e.g., [25, 26, 27, 28, 29, 30, 31, 32, 33]). Little is known, however,
80	about other diverse and morphologically disparate clades. Among those,
81	Crocodylomorpha represents an excellent group for studying large-scale evolutionary
82	patterns, with a rich and well-studied fossil record covering more than 200 million
83	years, as well as living representatives [34, 35, 36]. Previous work has investigated
84	multiple aspects of crocodylomorph macroevolution, including spatial and temporal
85	patterns of diversity [35, 36, 37], as well as morphological variation, disparity, and
86	evolution, with a particular focus on the skull [38, 39, 40, 41, 42, 43, 44].
87	Nevertheless, studies quantitatively investigating macroevolutionary patterns of
88	body size in crocodylomorphs have been restricted to particular time periods (e.g.,
89	Triassic-Jurassic body size disparity [45]) or clades (e.g., metriorhynchids [46]),
90	limiting broader interpretations. For instance, the impact of environmental temperature
91	on the growth and adult body size of animals has long been acknowledged as an
92	important phenomenon [4] and has been considered to have a significant influence on
93	the physiology and distribution of crocodylians [47, 48]. There is also strong evidence
94	for climate-driven biodiversity patterns in the group (e.g., [36, 37]). Nevertheless, it
95	remains unclear whether extrinsic factors, such as temperature and geographic
96	distribution, have impacted long-term patterns of crocodylomorph body size evolution
97	[49].
98	Most of the earliest crocodylomorphs, such as Litargosuchus and
99	Hesperosuchus, were small-bodied animals (with estimated total lengths of less than 1
100	metre [50, 51]), contrasting with some giant forms that appeared later, such as
101	Sarcosuchus and Deinosuchus (possibly more than 10 metres long [52, 53]), as well as

102	with the intermediate to large sizes of extant crocodylians $(1.5-7 \text{ m } [54, 55])$. The
103	absence of small-bodied forms among extant species raises questions about what long-
104	term macroevolutionary process (or processes) gave rise to the prevalence of larger
105	body sizes observed in the present. Directional trends of increasing body size through
106	time (see [56]), differential extinction of small bodied taxa, or other factors, such as
107	climate- or environment-driven evolutionary change could explain this. However,
108	because patterns of body size evolution along phylogenetic lineages of
109	crocodylomorphs have not been characterised, its causes are unaddressed.
110	
111	Model-fitting approach
112	Since the end of the last century, palaeontologists have more frequently used
113	quantitative comparative methods to investigate the tempo and mode of evolution along
114	phylogenetic lineages [57, 58, 59], including studies of body size evolution [5, 14, 27,
115	29, 15, 60]. More recently, numerous studies have employed a phylogeny-based model-
116	fitting approach, using a maximum-likelihood or Bayesian framework to identify the
117	best-fitting statistical macroevolutionary model for a given phylogenetic comparative
118	dataset [31, 33, 61, 62, 63, 64, 65]. Many of those works have tested the fit of a uniform
119	macroevolutionary model, with a single set of parameters applied across all branches of
120	a phylogeny (e.g., [46, 64, 66, 67]). Uniform models are important for describing many
121	aspects of phenotypic evolution and are often the null hypothesis in such studies.
122	However, if the dynamics of evolutionary trends vary in more complex ways through
123	time and space and among clades and environments [e.g., 68, 69, 70, 71, 72], then
124	uniform models might not be adequate to characterise this variation.
125	Because we aim to characterise variation in body size among many subgroups
126	inhabiting different environments and encompassing substantial variation in

127	morphology, we approach the study of crocodylomorph body size evolution using non-
128	uniform models. We focus on the concept of a Simpsonian Adaptive Landscape [73,
129	74], which has proved to be a fruitful conceptual framework for characterizing
130	macroevolutionary changes, encompassing ideas such as adaptive zone invasion and
131	quantum evolution [71, 75, 76]. Macroevolutionary landscapes provide a conceptual
132	bridge for dialogues between studies of micro- and macroevolution, and have benefitted
133	from the subsequent advancements of molecular biology and genetics [77]. Within this
134	paradigm, uniform models primarily represent static macroevolutionary landscapes,
135	with unchanged peaks (or maximum adaptive zones [11]) persisting through long time
136	intervals and across the phylogeny [71, 74, 75].
137	Incorporating biological realism into statistical models of evolution is
138	challenging [78]. Many existing models are based on a Brownian motion (BM) process
139	resulting from random walks of trait values along independent phylogenetic lineages
140	[57, 75, 79]. Uniform Brownian motion has many interpretations. For example, it can be
141	used as a model of drift, or of adaptive evolution towards lineage-specific selective
142	optima that undergo random walks through time, and seems reasonable for describing
143	undirected and unconstrained stochastic change [57]. Elaborations of BM models
144	include the "trend" model, which incorporates a tendency for directional evolution by
145	adding a parameter μ [80. The multi-regime "trend-shift" model has also been proposed,
146	in which the trend parameter (μ) undergoes clade-specific or time-specific shifts (G.
147	Hunt in [33]).
148	The Ornstein–Uhlenbeck (OU) process [58, 61, 64, 81, 82] is a modification of
149	Brownian motion that incorporates attraction (α) to a trait 'optimum' (θ). OU models
150	describe the evolution of a trait towards or around a stationary peak or optimum value,
151	at a given evolutionary rate. Thus, multi-regime OU models can account for the

152	existence of multiple macroevolutionary regimes (similar to adaptive zones, in the
153	Simpsonian Adaptive Landscape paradigm). Even though many OU-based models
154	typically require a priori adaptive hypotheses for inferring the trait optima of regimes
155	[61], more recent methods attempt to solve this problem by estimating location, values
156	and magnitudes of regime shifts without a priori designation of selective regimes [71,
157	78, 83]. In particular, the SURFACE method [83] aims to identify shifts in
158	macroevolutionary regimes, identified using AICc (Akaike's information criterion for
159	finite sample sizes [84]). Originally designated to identify "convergent" trait evolution
160	across phylogenetic lineages, the SURFACE algorithm makes use of a multi-peak OU-
161	model and can be a tool to determine heterogeneity of macroevolutionary landscapes
162	[33, 85, 86]. In this work, we employ a model-fitting approach, using non-uniform
163	macroevolutionary OU-based models (SURFACE), to characterize the adaptive
164	landscape of body size evolution in Crocodylomorpha. This represents the first
165	comprehensive investigation of large-scale patterns of body size evolution across the
166	entire evolutionary history of crocodylomorphs.
167	

168 Methods

169 *Proxy for body size*

Extinct Crocodylomorpha are morphologically diverse, and frequently known from
incomplete remains. Therefore, precise estimation of their body sizes, and those of
comparable fossil groups, can be challenging (see [87, 88] for related considerations).
There are many methods and equations for estimating crocodylomorph body size (either
body mass or length) available in the literature. The most frequently used equations are
derived from linear regressions based on specimens of modern species, using both

176	cranial [53, 89, 90, 91, 92, 93] and postcranial [94, 95] measurements as proxies, even
177	though some inaccuracy is expected (see Additional file 1 for further discussion).
178	We sought an appropriate proxy for studying body size across all
179	crocodylomorph evolutionary history that also maximised available sample size, to
180	allow as comprehensive a study of evolutionary history as possible. Thus, we decided to
181	use two cranial measurements as proxies for total body length: total dorsal cranial
182	length (DCL) and dorsal orbito-cranial length (ODCL), which is measured from the
183	anterior margin of the orbit to the posterior margin of the skull. By using cranial
184	measurements instead of estimated total body length, we are ultimately analysing
185	patterns of cranial size evolution in crocodylomorphs. Nevertheless, by doing this we
186	also avoid the addition of errors to our model-fitting analyses, since previous works
187	have reported problems when estimating total body length from cranial measurements,
188	particularly skull length (e.g., [46, 88, 96, 97]), as the equations were formulated using
189	modern species and different crocodylomorph clades are likely to have body
190	proportions distinct from those of living taxa (see Additional file 1). Furthermore, the
191	range of body sizes among living and extinct crocodylomorphs is considerably greater
192	than variation among size estimates for single species. Therefore, we expect to recover
193	the most important macroevolutionary body size changes in our analyses even when
194	using only cranial measurements. The use of ODCL, in addition to DCL, is justified as
195	it allows us to examine the sensitivity of our results to changes in proportional snout
196	length, as a major aspect of length change in crocodylomorph skulls results from
197	proportional elongation or shortening of the snout [98, 99, 100]. Also, more taxa could
198	be included in our analyses when doing so, because ODCL can be measured from some
199	incomplete skulls.

200	The DCL dataset includes 219 specimens (representing 178 taxa), whereas the
201	ODCL dataset includes 240 specimens (195 taxa). In total, measurements from 118
202	specimens (83 taxa) were collected via first-hand examination from specimens, using
203	callipers and measuring tape. The remaining information was collected from the
204	literature (98 specimens) or photographs (21 specimens) supplied by other researchers,
205	and measurements were estimated using the software ImageJ (see Additional file 2 for
206	the complete list of sampled specimens). We used mean values in those cases where we
207	had cranial measurements for multiple specimens of the same taxon. For both the
208	model-fitting and correlation analyses, we used log-transformed skull measurements in
209	millimetres. However, to help us further interpret and discuss our results, total body
210	length was subsequently estimated using the equations presented by [91].
211	
212	Phylogenetic framework
212 213	<i>Phylogenetic framework</i> For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon
213	For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon
213 214	For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon inclusion and to use a phylogenetic hypothesis that best represents the current
213 214 215	For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon inclusion and to use a phylogenetic hypothesis that best represents the current consensus. We primarily used an informally modified version of the supertree presented
213 214 215 216	For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon inclusion and to use a phylogenetic hypothesis that best represents the current consensus. We primarily used an informally modified version of the supertree presented by Bronzati et al. [35], which originally contained 245 taxa. We added recently
213 214 215 216 217	For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon inclusion and to use a phylogenetic hypothesis that best represents the current consensus. We primarily used an informally modified version of the supertree presented by Bronzati et al. [35], which originally contained 245 taxa. We added recently published species, and removed taxa that have not yet received a formal description and
213 214 215 216 217 218	For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon inclusion and to use a phylogenetic hypothesis that best represents the current consensus. We primarily used an informally modified version of the supertree presented by Bronzati et al. [35], which originally contained 245 taxa. We added recently published species, and removed taxa that have not yet received a formal description and designation. Also, species not previously included in phylogenetic studies but for which
213 214 215 216 217 218 219	For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon inclusion and to use a phylogenetic hypothesis that best represents the current consensus. We primarily used an informally modified version of the supertree presented by Bronzati et al. [35], which originally contained 245 taxa. We added recently published species, and removed taxa that have not yet received a formal description and designation. Also, species not previously included in phylogenetic studies but for which we had body size data were included based on the phylogenetic positions of closely
213 214 215 216 217 218 219 220	For the phylogenetic framework of Crocodylomorpha, the aim was to maximise taxon inclusion and to use a phylogenetic hypothesis that best represents the current consensus. We primarily used an informally modified version of the supertree presented by Bronzati et al. [35], which originally contained 245 taxa. We added recently published species, and removed taxa that have not yet received a formal description and designation. Also, species not previously included in phylogenetic studies but for which we had body size data were included based on the phylogenetic positions of closely related taxa (see Additional file 1 for more information on the supertree construction).

224	To accommodate major uncertainties in crocodylomorph phylogeny, we also
225	constructed two other supertrees, with alternative topologies, varying the position of
226	Thalattosuchia. Thalattosuchians are Jurassic-Early Cretaceous aquatic
227	crocodylomorphs, some of which were probably fully marine [101]. They have
228	classically been placed within Neosuchia, as the sister taxon of Tethysuchia [99].
229	Nevertheless, some authors have argued that this close relationship may result from the
230	convergent acquisition of longirostrine snouts in both groups [98, 102], and some recent
231	works have suggested alternative positions for Thalattosuchia, within or as the sister
232	group of Crocodyliformes (i.e., only distantly related to Neosuchia [100, 103, 104,
233	105]). Accordingly, to test the influence of uncertainty over the phylogenetic position of
234	Thalattosuchia, we performed our macroevolutionary analyses using three distinct
235	phylogenetic scenarios of Crocodylomorpha (Fig. 1). In the first, the more classic
236	position of Thalattosuchia was maintained (Thalattosuchia as the sister taxon of
237	Tethysuchia and within Neosuchia; as in the original supertrees of Bronzati et al. [34,
238	35]). In the two alternative phylogenetic scenarios, Thalattosuchia was placed as the
239	sister group of either Crocodyliformes (as non-crocodyliform crocodylomorphs),
240	following the position proposed by Wilberg [100], or Mesoeucrocodylia (as the sister
241	group of the clade formed by Neosuchia + Notosuchia in our topologies), following
242	Larsson & Sues [106] and Montefeltro et al. [104]. Discrepancies among competing
243	phylogenetic hypotheses do not concern only the "thalattosuchian problem" described
244	above. However, our decision to further investigate only the impact of the different
245	positions of Thalattosuchia is based on its high taxic diversity and the impact that its
246	phylogenetic position has on branch lengths across multiple parts of the tree, factors that
247	can substantially alter macroevolutionary patterns detected by our analyses.

Time-scaling method

250	Calibration of the phylogeny to time [107] is a crucial step in comparative analyses of
251	trait evolution, and the use of different methods may impact upon the inference of
252	evolutionary models and the interpretation of results [108, 109]. As such, we decided to
253	use a tip-dating approach using the fossilised birth-death (FBD) model [110]. The FBD
254	method is a Bayesian total-evidence dating approach which uses a birth-death process
255	that includes the probability of fossilization and sampling to model the occurrence of
256	fossil species in the phylogeny and estimate divergence times (=node ages) [111, 112,
257	113, 114]. Information on occurrence times of all species in the supertree (=tip ages)
258	were initially obtained from the Paleobiology Database, but were then checked using
259	primary sources in the literature. Fossil ages were represented by uncertainty bounds of
260	their occurrences. We then generated an "empty" morphological matrix for performing
261	Bayesian Markov chain Monte Carlo (MCMC) analyses in MrBayes version 3.2.6
262	[115], following the protocol within the R package <i>paleotree</i> version 3.1.3 [116]. We
263	used our supertree topologies (with alternative positions of Thalattosuchia) as
264	topological constraints and set uniform priors on the age of tips based on the occurrence
265	dates information. We used a uniform prior for the root of the tree (for all three
266	topologies/phylogenetic scenarios), constrained between 245 and 260 Myr ago. This
267	constraint was used because the fossil record indicates that a crocodylomorph origin
268	older than the Early Triassic is unlikely [117, 118]. For each topology, 10,000,000
269	generations were used, after which the parameters indicated that both MCMC runs
270	seemed to converge (i.e., the Potential Scale Reduction Factor approached 1.0 and
271	average standard deviation of split frequencies was below 0.01).
272	For each topology, we randomly sampled 20 trees (henceforth: FBD trees) from
273	the posterior distribution after a burn-in of 25%. This resulted in 60 time-scaled,

274	completely resolved crocodylomorph trees that were used in our macroevolutionary
275	model comparisons. Similar numbers of trees were used in previous work on dinosaurs
276	[33], mammals [24] and early sauropsids [87]. Analyses across these 60 trees allowed
277	us to characterise the influence of topological and time-scale uncertainty on our results.
278	Previous studies have demonstrated that time-calibration approaches can impact
279	phylogenetic comparative methods (e.g., [119]). Therefore, we also used other three
280	different time-scaling methods (minimum branch length, cal3 and Hedman methods).
281	Differently from the FBD tip-dating method, these three methods belong to the category
282	of a posteriori time-scaling (APT) approaches (sensu Lloyd et al. [120]), and were used
283	as a sensitivity analysis (see Additional file 1 for further details on the employment of
284	these methods). These additional time-scaling approaches were used only for our initial
285	model comparisons (see below). APT methods were performed in R version 3.5.1 [121],
286	using package <i>paleotree</i> [116] (<i>mbl</i> and <i>cal3</i> methods) and the protocol published by
287	Lloyd et al. [120] (Hedman method). Results from macroevolutionary analyses using
288	these APT methods were similar to those using the FBD trees (see the "Results"
289	section) and are therefore not discussed further in the main text (but are included in
290	Additional file 1).

292 Macroevolutionary models

We applied a model-fitting approach to characterize patterns of body size evolution in
Crocodylomorpha, with an emphasis on evolutionary models based on the OrnsteinUhlenbeck (OU) process [33, 58, 61, 64, 83]. The first formulation of an OU-based
model was proposed by Hansen (1997), based on Felsenstein's [81] suggestion of using
the Ornstein-Uhlenbeck (OU) process as a basis for comparative studies [61, 82]. OUbased models (also known as "Hansen" models) express the dynamics of a quantitative

299	trait evolving along the branches of a phylogeny as the result of stochastic variation
300	around a trait "optimum" (expressed as theta: θ), towards which trait values are
301	deterministically attracted (the strength of attraction is given by alpha: α). The constant
302	σ^2 , describes the stochastic spread of the trait values over time (i.e., under a Brownian
303	motion process). Accordingly, the OU model can be formulated as:

$$dX(t) = \alpha \left[\theta - X(t)\right] dt + \sigma dB(t)$$

307 This equation expresses the amount of change in trait X during the infinitesimal 308 time interval from t to t + dt. As expressed above, the formulation includes a term 309 describing trait attraction towards θ , which is the product of α and the difference between X(t) and θ . The term $\sigma dB(t)$ describes stochastic evolution in the form of 310 Brownian motion (BM), with random variables of mean zero and variance of dt (thus, 311 σ^2 is the rate of stochastic evolution). In this sense, if α is zero, the attraction term 312 313 becomes zero, and the result is evolution by BM as a special case of OU [33, 61, 64]. 314 The OU model can also simulate trait evolution patterns similar to that observed under 315 other evolutionary models, such as BM with a trend incorporated, and "white noise" or stasis [33, 58, 64]. Thus, examination of the fitted parameters of the OU model is 316 crucial for interpreting the mode of evolution [58, 61]. For example, the estimated 317 ancestral trait value (i.e., the value of θ at the root of the tree) is given by the parameter 318 319 Z_0 . Also, by obtaining ln (2)/ α , we are calculating the time taken for a new 320 macroevolutionary regime to become more influential than the ancestral regime (i.e., 321 how long it takes to θ to be more influential than Z₀). This parameter is often called the 322 phylogenetic half-life (or $t_{0.5}$) [58].

323	Among the methods that attempt to model adaptive evolution under the
324	framework of an Ornstein-Uhlenbeck process (e.g., [78, 82, 122]), the SURFACE
325	algorithm [83] estimates the fit of a non-uniform OU-based model by allowing shifts in
326	trait optima (θ) among macroevolutionary regimes. SURFACE locates regime shifts
327	using stepwise AICc (Akaike's information criterion for finite sample sizes [84, 123,
328	124]), with a forward phase (that searches for all regime shifts in the phylogeny) and a
329	backward phase (in which improvements of AICc scores merge similar regimes,
330	detecting "convergent" evolution). Although it allows θ to vary among regimes,
331	SURFACE assumes fixed whole-tree values of σ^2 and α [83].
332	We compared the performance of two different OU-based models, one with a
333	single trait optimum or a single macroevolutionary regime ("OU model") and another
334	non-uniform model with multiple regimes ("SURFACE model"). To test if other
335	macroevolutionary models could provide a better description of the observed patterns of
336	crocodylomorph body size evolution, we also compared the OU-based models with
337	other models. First, a uniform Brownian motion (BM model), which describes diffusive,
338	unconstrained evolution via random walks along independent phylogenetic lineages,
339	resulting in no directional trend in trait mean, but with increasing trait variance
340	(=disparity) through time [57, 62, 63, 64]. Second, the "early burst" (EB model; also
341	known as "ACDC model" [125]), in which the lineages experience an initial maximum
342	in evolutionary rate of change, that decreases exponentially through time according to
343	the parameter r [126]. This results in a rapid early increase in trait variance followed by
344	deceleration [125, 126].
345	We also fitted a uniform (single-regime) and non-uniform (multi-regime) trend-
346	like models. In the uniform "trend" model the parameter $\boldsymbol{\mu}$ is incorporated into the BM

347 model to describe directional multi-lineage increase or decrease in trait values through

348	time in the entire clade [62, 63, 80]. Non-uniform "trend" models allow for shifts in the
349	parameter μ , which can be explored in two different ways according to the non-uniform
350	trend models formulated by G. Hunt and presented in Benson et al. [33]: temporal shifts
351	in µ across all contemporaneous lineage ("time-shift trend models"), or shifts at specific
352	nodes of the tree, modifying μ in the descendent clade ("node-shift trend models"). In
353	time-shift trend models, shifts to a new value of μ occurs at time-horizons and are
354	applied to all lineages alive at that time. In node-shift trend models, values of $\boldsymbol{\mu}$ can vary
355	among contemporaneous lineages. In a similar approach to the forward phase of
356	SURFACE, the shifts in these non-uniform trend-like models are detected via stepwise
357	AICc. In both time-shift and node-shift models, the Brownian variance (σ^2) is constant
358	across all regimes [33]. For our macroevolutionary analyses with the entire
359	crocodylomorph phylogeny, we fitted trend-like models that allowed up to three time-
360	shifts and 10 node-shifts to occur, given that analyses with more shifts are
361	computationally intensive and often receive significantly weaker support (following
362	results presented by Benson et al. [33]).
363	
364	Initial model comparison
365	Our initial model comparison involved a set of exploratory analyses to test which
366	evolutionary models (SURFACE, OU, BM, EB and trend-like models) offered the best
367	explanation of our data, using log-transformed cranial measurements (for both DCL and
368	ODCL). To reduce computational demands, we used only one position of
369	Thalattosuchia (i.e., with the group positioned within Neosuchia). The aim here was to
370	compare the performance of the OU-based models, particularly the SURFACE model,
371	against the other BM-based evolutionary models, but also to evaluate possible

372 influences of the different time-scaling methods (we used four different approaches as a

- sensitivity analysis) and body size proxies. Maximum-likelihood was employed to fit
 these models to our body size data and the phylogeny of Crocodylomorpha, and we
 compared the AICc scores of each model.
- 376
- 377 Appraisal of spurious model support

378 Previous works suggested caution when fitting OU models in comparative analyses,

379 since intrinsic difficulties during maximum-likelihood fits can lead to false positives

and spurious support to overly complex models [e.g., 127, 128]. This issue may be

reduced when using non-ultrametric trees (as done here), as it improves identifiability of

the parameters of OU models [64, 127]. We also addressed this by using the

383 phylogenetic Bayesian information criterion (pBIC: proposed by Khabbazian et al. [72])

during the backward phase of model simplification in all our analyses (using the

implementation for SURFACE from Benson et al. [33]). The pBIC criterion is more

conservative than AICc, in principle favouring simpler models with fewer regimes with

lower rates of false positive identification of regime shifts. Although these models were

fit using pBIC, they were compared to other models (such as BM, EM and trend-like

389 models) using AICc because pBIC is not implemented for most other models of trait

390 evolution.

Furthermore, to evaluate the influence of spurious support for complex OU models, we simulated data under BM once on each of our 20 phylogenies, using the parameter estimates obtained from the BM model fits to those phylogenies. We then fitted both BM and SURFACE models to the data simulated under BM, and compared several aspects of the results to those obtained from analysis of our empirical body size data (using the ODCL dataset). Specifically, we compared delta-AICc (i.e., the difference between AICc scores received by BM and SURFACE models for each tree),

398	the number of regime shifts obtained by SURFACE, and the values of α obtained by
399	SURFACE. This allowed us to assess whether the results of SURFACE analyses of our
400	empirical data could be explained by overfitting of a highly-parameterised non-uniform
401	model to data that could equally be explained by an essentially uniform process.
402	
403	Further SURFACE analyses
404	Our initial model comparisons provided strong support for the SURFACE model (see
405	the "Results" section). Subsequent analyses therefore focussed on SURFACE, which is
406	particularly useful because it identifies macroevolutionary regimes that provide a
407	simplified map of the major patterns of body size evolution in crocodylomorphs. This
408	second phase of analyses made use of all three alternative phylogenetic scenarios
409	(varying the position of Thalattosuchia) to test the influence of phylogeny in
410	interpretations of evolutionary regimes for body size in Crocodylomorpha. We fitted
411	SURFACE to 20 FBD trees, of each alternative topology, using body size data from the
412	ODCL dataset (our initial model comparisons indicated that both our size indices
413	yielded essentially identical results, and ODCL is available for more taxa). As before,
414	we performed our SURFACE analyses using pBIC [72] during the backward-phase of
415	the algorithm.
416	
417	Clade-specific analyses with Notosuchia and Crocodylia
418	Two well-recognized crocodylomorph subclades, Notosuchia and Crocodylia, returned
419	a relatively high frequency of macroevolutionary regime shifts, representing an
420	apparently complex evolutionary history under the SURFACE paradigm. However, the
421	SURFACE algorithm fits a single value of α to all regimes, and therefore could
422	overestimate the strength of evolutionary constraint within regimes, and consequently

423	miscalculate the number of distinct regimes within clades showing more relaxed
424	patterns of trait evolution. We investigated this possibility by fitting the initial set of
425	evolutionary models (SURFACE, OU, BM, EB and trend-like models) to the
426	phylogenies of these two subclades (using 50 FBD trees for each clade, sampled from
427	the posterior distribution of trees time-scaled with the FBD method) and their body size
428	data (using only the ODCL dataset, since it includes more species). Differently from
429	what was done for the entire crocodylomorph phylogeny, for Notosuchia we fitted
430	trend-like models with up to 2 time-shifts and 5 node-shifts, whereas for Crocodylia we
431	allowed up to 3 time-shifts and 7 node-shifts to occur, given that these two clades
432	include fewer species (70 crocodylians and 34 notosuchians were sampled in our ODCL
433	dataset) and fewer shifts are expected.
434	In addition, for these same clades, we also employed the OUwie model-fitting
435	algorithm [82], fitting different BM and OU-based models which allow all key
436	parameters to vary freely (since SURFACE allows only θ to vary, whereas it assumes
437	fixed values of σ^2 and α for the entire tree). However, differently from SURFACE,
438	OUwie needs a priori information on the location of regime shifts in order to be
439	implemented. Thus, we incorporated the regime shifts identified by SURFACE into our
440	phylogenetic and body size data (by extracting, for each tree, the regime shifts from
441	previous SURFACE results) to fit four additional evolutionary models using the OUwie
442	algorithm: BMS, which is a multi-regime BM model that allows the rate parameter σ^2 to
443	vary; OUMV, a multi-regime OU-based model that allows σ^2 and the trait optimum θ to
444	vary; OUMA, also a multi-regime OU model, in which θ and the constraint parameter α
445	can vary; and OUMVA, in which all three parameters (θ , α and σ^2) can vary. Since
446	computing all these parameter estimates can be an intensively demanding task [82],
447	some of the model fits returned nonsensical values and were, therefore, discarded.

448 Nonsensical values were identified by searching for extremely disparate parameter

449	estimates, among all 50 model fits (e.g., some model fits found σ^2 values higher than
450	100,000,000 and α lower than 0.00000001).

451 All macroevolutionary analyses were performed in R version 3.5.1 [121].

452 Macroevolutionary models BM, trend, EB, and OU with a single regime were fitted

using the R package *geiger* [122]. The SURFACE model fits were performed with

454 package *surface* [83]. Implementation of pBIC functions in the backward-phase of

455 SURFACE model fits, as well as the functions for fitting non-uniform trend-like

456 models, were possible with scripts presented by Benson et al. [33]. Simulated data

under BM (for assessing the possibility of spurious support to the SURFACE model)

458 was obtained with package *mvMORPH* [129]. The additional clade-specific model-

459 fitting analyses, using the OUwie algorithm, were implemented with the package

460 *OUwie* [130].

461

462 *Correlation with abiotic and biotic factors*

To test whether abiotic environmental factors could be driving the evolution and 463 464 distribution of body sizes in crocodylomorphs, we extracted environmental information from the literature. As a proxy for palaeotemperature, we used δ^{18} O data from two 465 466 different sources. The dataset from Zachos et al. [131] assembles benthic foraminifera isotopic values from the Late Cretaceous (Maastrichtian) to the Recent. The work of 467 468 Prokoph et al. [132] compiled sea surface isotopic values from a range of marine 469 organisms. Their dataset is divided into subsets representing palaeolatitudinal bands. 470 For our analyses, we used the temperate palaeolatitudinal subset, which extends from the Jurassic to the Recent, but also the tropical palaeolatitudinal subset, which extends 471 472 back to the Cambrian. For the correlation analyses, we used 10 Myr time bins (see

473	Additional file 1 for information on time bins), by taking the time-weighted mean $\delta^{18}O$
474	for data points that fall within each time bin. For the body size data used in the
475	correlation tests, we calculated maximum and mean size values for each time bin, using
476	both DCL and ODCL datasets. Correlations between our body size data and the proxies
477	for palaeotemperature were first assessed using ordinary least squares (OLS)
478	regressions. Then, to avoid potential inflation of correlation coefficients created by
479	temporal autocorrelation (the correlation of a variable with itself through successive
480	data points), we used generalised least squares (GLS) regressions with a first-order
481	autoregressive model incorporated (see e.g., [36, 133, 134, 135]). Furthermore, to test
482	the possible differential influence of temperature on marine versus continental
483	(terrestrial and freshwater) animals, we also created two additional subsets of our data,
484	one with only marine and another with only non-marine crocodylomorphs (ecological
485	information for each taxon was obtained from the PBDB and the literature, e.g., [36,
486	136]).
487	We also collected palaeolatitudinal data for every specimen in our dataset from
100	the Palachiology Database (PRDR) and the literature, and tested the correlation between

488 the Paleobiology Database (PBDB) and the literature, and tested the correlation between 489 these and our body size data (DCL and ODCL datasets). To test whether our body size data is correlated with palaeolatitudinal data, we first applied OLS regressions to 490 untransformed data. Then, to deal with possible biases generated by phylogenetic 491 492 dependency, we used phylogenetic generalized least squares regressions (PGLS [137]), 493 incorporating the phylogenetic information from the maximum clade credibility (MMC) 494 tree, with Thalattosuchia placed within Neosuchia, obtained from our MCMC tip-dating results. For this, branch length transformations were optimised between bounds using 495 496 maximum-likelihood using Pagel's λ [138] (i.e., argument λ = "ML" within in the function pgls() of the R package *caper* [139]). As for the correlation analyses between 497

20

498	our body size data and palaeotemperature, we also analysed marine and only non-
499	marine taxa separately. To explore the effects of these two abiotic factors on the
500	distribution of body sizes at more restricted levels (temporal and phylogenetic), we
501	repeated our regression analyses using subsets of both ODCL and DCL datasets,
502	including body size data only for species of Crocodylia, Notosuchia, Thalattosuchia,
503	and Tethysuchia. For crocodylians, correlations with paleotemperature were restricted
504	to the Maastrichtian until the Recent (i.e., data from [131]).
505	We also explored the possible impact of clade-specific evolutionary transitions
506	between the environments on crocodylomorph body size evolution. For that, we
507	obtained ecological information for each taxon from the PBDB and the literature (e.g.,
508	[36, 136]), subdividing our body size data (from the ODCL dataset, since it included
509	more taxa) into three discrete categories to represent different generalised ecological
510	lifestyles: terrestrial, semi-aquatic/freshwater, and aquatic/marine. We then used
511	analysis of variance (ANOVA) for pairwise comparisons between different lifestyles.
512	We also accounted for phylogenetic dependency by applying a phylogenetic ANOVA
513	[140], incorporating information from the MCC tree with Thalattosuchia placed within
514	Neosuchia. For both ANOVA and phylogenetic ANOVA, Bonferroni-corrected p-
515	values (q-values) for post-hoc pairwise comparisons were calculated. Phylogenetic
516	ANOVA was performed with 100,000 simulations.
517	All correlation analyses (with abiotic and biotic factors) used log-transformed
518	cranial measurements (DCL or ODCL) in millimetres and were performed in R version
519	3.5.1 [121]. GLS regressions with an autoregressive model were carried out using the
520	package <i>nlme</i> [141], PGLS regressions used the package <i>caper</i> [139], whereas

521 phylogenetic ANOVA was performed using the package *phytools* [142].

522

523 Disparity estimation

524	Important aspects of crocodylomorph body size evolution can be revealed by
525	calculating body size disparity through time. There are different methods and metrics
526	for quantifying morphological disparity (e.g., [143, 144, 145, 146]), and in the present
527	study disparity is represented by the standard deviation of log-transformed body size
528	values included in each time bin. We also plotted minimum and maximum sizes for
529	comparison. Our time series of disparity used the same time bins as for the correlation
530	analyses, with the difference that only time bins with more than three taxa were used for
531	calculating disparity (time bins containing three or fewer taxa were lumped to adjacent
532	time bins; see Additional file 1 for information on time bins). Disparity through time
533	was estimated based on the ODCL dataset (since it includes more taxa).
534	

535 **Results**

536 Initial model comparison

Comparisons between the AICc scores for all the evolutionary models fitted to our 537 crocodylomorph body size data (Fig. 2a and b; see Additional file 1: Figures S5 for 538 539 results of the sensitivity analysis using different time-scaling methods) show extremely 540 strong support (i.e. lower AICc values) for the SURFACE model. This is observed for both body size proxies (DCL and ODCL) and independently of the time-scaling method 541 542 used. All uniform models exhibit relatively similar AICc scores, including the OU 543 model with a single macroevolutionary regime, and all of these are poorly supported 544 compared to the SURFACE model. For trees calibrated with the FBD methods, all trend-like models (i.e., either uniform or multi-trend models) received very similar 545 546 support, using both size proxies, and have AICc values that are more comparable to the set of uniform models than to the SURFACE model. Even the best trend-like model 547

548	(usually the models with two or three node-shifts, which are shown as the "best trend"
549	model in Fig. 2a and b) have significantly weaker support than SURFACE, regardless
550	of the time-calibration method used (see Additional file 3 for a complete list of AICc
551	scores, including for all trend-like models).
552	
553	Appraising spurious support to the SURFACE model
554	SURFACE models were generally favoured by AICc compared to a single-regime BM
555	model for our simulated trait data, even though these data were simulated under BM.
556	This is consistent with previous observations of spurious support and high false positive
557	rates for SURFACE models based on stepwise AICc methods [127, 128]. Nevertheless,
558	our results indicate substantially stronger support for SURFACE models based on our
559	empirical data compared to that for the data simulated under BM (Fig. 2a and b).
560	Median delta-AICc between SURFACE and BM models for the simulated data were
561	60.38, compared to 157.93 for the empirical data, and the distributions of these delta-
562	AICc values are significantly different according to a Wilcoxon-Mann-Whitney test (p
563	< 0.001). Furthermore, the number of regime shifts detected and the values of α
564	estimated are significantly higher ($p < 0.001$) when using the empirical data (Fig. 2c-e;
565	median values of α estimated of 0.009 and 0.09, for simulated and empirical data,
566	respectively; median number of regimes detected: 17.5 compared to 24.5).
567	These results suggest that the support for SURFACE models as explanations of
568	our empirical data goes beyond that anticipated simply due to false positives expected
569	for these complex, multi-regime models [127]. Furthermore, the SURFACE model fits
570	represent a useful simplification of major patterns of body size evolution in a group, and
571	particularly the shifts of average body sizes among clades on the phylogeny. Thus,
572	although we acknowledge that some model fits might be suboptimal or could be

returning some unrealistic parameter estimates, we use our SURFACE results to
provide an overview of crocodylomorph body size evolution that is otherwise lacking

575 from current literature.

576

577 Describing the body size macroevolutionary patterns in Crocodylomorpha

578 The use of alternative positions of Thalattosuchia (see the "Methods" section) allowed 579 us to further examine the impact of more significant changes to tree topologies on our 580 SURFACE results. In general, similar model configurations were found for all tree 581 topologies (Figs. 3, 4, and 5; see Additional file 4 for all SURFACE plots), with 582 numerous regime shifts detected along crocodylomorph phylogeny. However, simpler 583 model fits (i.e., with significantly less regime shifts) are relatively more frequent when Thalattosuchia is placed as the sister group of Crocodyliformes. To further investigate 584 585 this, we recalibrated the same tree topologies with other time-scaling methods (i.e., mbl 586 and *cal3* methods), and applied SURFACE to those recalibrated trees. Some of these trees returned more complex models, with a greater number of regime shifts and better 587 pBIC scores. This indicates that some of the simpler model configurations might be 588 589 suboptimal, given that AIC procedures might face difficulties [147], which have 590 previously demonstrated for other datasets (e.g., in dinosaurs [33]). 591 Overall, most SURFACE model fits identified more than five main macroevolutionary regimes (i.e., "convergent" regimes, identified during the backward-592 593 phase of SURFACE), independently of the position of Thalattosuchia (Figs. 3, 4, and 594 5). Those are distributed along crocodylomorph phylogeny by means of numerous 595 regime shifts, usually more than 20. Trait optima values for these regimes varied

- significantly among different crocodylomorph subclades and are described in detail
- 597 below. Overall, regime shifts are frequently detected at the bases of well-recognised

598	clades, such as Thalattosuchia, Notosuchia and Crocodylia. Nevertheless, shifts to new
599	regimes are not restricted to the origins of these diverse clades, since many other regime
600	shifts are observed across crocodylomorph phylogeny, including regimes containing
601	only a single species.
602	Our SURFACE results indicate an ancestral regime of small body sizes for
603	Crocodylomorpha, regardless of the position of Thalattosuchia (Figs. 3, 4, and 5). This
604	is consistent with the small body sizes of most non-crocodyliform crocodylomorphs
605	such as Litargosuchus leptorhynchus and Hesperosuchus agilis [50, 51]. The vast
606	majority of the model fits show trait optima for this initial regime (Z_0) ranging from 60
607	to 80 cm (total body length was estimated only after the SURFACE model fits, based on
608	the equation from [91]; see the "Methods" section). Very few or no regime shifts are
609	observed among non-crocodyliform crocodylomorphs (Figs. 3, 4, and 5b). The possible
610	exception to this is in Thalattosuchia, members of which occupy large body sized
611	regimes ($\theta = 500-1000$ cm), and which is placed outside Crocodyliformes in some of
612	our phylogenies (Fig. 5a). Regardless of the position of Thalattosuchia, the ancestral
613	regime of all crocodylomorphs (Z_0) was inherited by protosuchids (such as
614	Protosuchus, Orthosuchus, and Edentosuchus) and some other non-mesoeucrocodylian
615	crocodyliforms (e.g., Shantungosuchus, Fruitachampsa, Sichuanosuchus and
616	Gobiosuchus).
617	Mesoeucrocodylia and Hsisosuchus share a new evolutionary regime of slightly
618	larger body sizes ($\theta = 130-230$ cm) in most model fits. This is usually located at the end
619	of the Late Triassic (Rhaetian), and the recovery of this shift is independent of the
620	phylogenetic position of Thelattocuchia (Figs. 3.4 and 5). The regime that originates at

- 620 phylogenetic position of Thalattosuchia (Figs. 3, 4, and 5). The regime that originates at
- 621 the base of Mesoeucrocodylia ($\theta = 130-230$ cm) is often inherited by Notosuchia and
- 622 Neosuchia, even though many regime shifts are observed later on during the evolution

623	of these two clades. Within Notosuchia, although some taxa inherit the same regime of
624	smaller sizes present at the base of the clade ($\theta = 130-230$ cm), many regime shifts are
625	also observed (often more than four). Regime shifts to smaller sizes ($\theta = 60-100$ cm)
626	are often seen in uruguaysuchids (including all Araripesuchus species), Anatosuchus,
627	Pakasuchus and Malawisuchus. Shifts towards larger sizes are seen among peirosaurids
628	($\theta = 210-230$ cm) and, more conspicuously, in sebecosuchids and sometimes in the
629	armoured sphagesaurid Armadillosuchus arrudai ($\theta = 330-350$ cm).
630	Independent regime shifts to much smaller sizes ($\theta = 40-60$ cm) are present
631	among non-eusuchian neosuchians (excluding Thalattosuchia and Tethysuchia),
632	particularly in atoposaurids, Susisuchus, and Pietraroiasuchus, whereas shifts to larger
633	sizes ($\theta = 300-850$ cm) are also detected, often in <i>Paralligator major</i> and in some
634	goniopholidids. Within both Tethysuchia and Thalattosuchia, most taxa occupy a
635	regime of relatively large body sizes ($\theta = 500-1000$ cm). When these two clades are
636	sister taxa (Figs. 3 and 4) they usually inherit a same body size regime ($\theta = 500-550$
637	cm), which originated during the Early Jurassic (Hettangian). In contrast, when
638	Thalattosuchia is placed as sister to Crocodyliformes or Mesoeucrocodylia (Fig. 5), the
639	regime shifts to larger sizes are often independent, and occur at the base of each clade
640	(also with θ values around 500 cm) or later on during their evolutionary history (e.g.,
641	some model fits show Tethysuchia with regime shifts to larger sizes only at the base of
642	Dyrosauridae [$\theta \approx 500$ cm] and the clade formed by <i>Chalawan</i> and <i>Sarcosuchus</i> [$\theta =$
643	800–1000 cm]). Both groups also exhibit regime shifts to smaller sizes ($\theta = 100-150$
644	cm) in some lineages, such as those leading to Pelagosaurus typus and Teleosaurus
645	cadomensis within Thalattosuchia, and Vectisuchus within Tethysuchia. Among
646	thalattosuchians, a conspicuous shift towards larger body sizes ($\theta = 800-1000$ cm) is
647	frequently observed in the teleosaurid clade formed by Machimosaurus and

Steneosaurus, whereas within Metriorhynchidae, a shift to smaller sizes ($\theta = 230-350$

649 cm) is often detected in Rhacheosaurini.

650	Crocodylia is also characterized by a predominance of macroevolutionary
651	regimes of relatively large sizes, such as in Thalattosuchia and Tethysuchia. Indeed,
652	regimes of larges sizes are frequently associated with clades of predominantly aquatic or
653	semi-aquatic forms, although not strictly restricted to them. Regarding Crocodylia, a
654	Cretaceous regime shift is usually detected at the base of the clade (Figs. 3, 4, and 5),
655	changing from the macroevolutionary regime of smaller sizes ($\theta = 130-180$ cm) found
656	for non-crocodylian eusuchians (such as hylaeochampsids and some allodaposuchids) to
657	a regime of larger trait optimum ($\theta = 280-340$ cm). This same ancestral regime to all
658	crocodylians is inherited by many members of the clade, particularly within
659	Crocodyloidea and Gavialoidea. Although some model fits show Crocodylia inheriting
660	the same regime as closely related non-crocodylian eusuchians (more frequently when
661	Thalattosuchia is placed outside Neosuchia), shifts towards larger body sizes are seen in
662	members of Crocodyloidea and Gavialoidea, but they only occur later in time and arise
663	independently. In comparison to the other two main lineages of Crocodylia,
664	Alligatoroidea is characterized by a regime of lower trait optima values ($\theta = 210-230$
665	cm), which frequently occurs as a Late Cretaceous shift at the base of the clade. But
666	Alligatoroidea is also distinct from the other two clades by exhibiting more regime
667	shifts, reflecting its great ecological diversity and body size disparity (ranging from very
668	small taxa, such as the caimanine Tsoabichi greenriverensis, to the huge Purussaurus
669	and Mourasuchus).
670	

673 Modes of body size evolution within Notosuchia and Crocodylia

674	The significant number of regime shifts that occur within both Notosuchia and
675	Crocodylia led us to more deeply scrutinise the modes of body size evolution in these
676	two clades. We therefore conducted another round of model-fitting analyses, initially
677	fitting the same evolutionary models (SURFACE, OU, BM, EB and trend-like models)
678	to subtrees representing both groups. In addition, we used the same regime shifts
679	identified by the SURFACE algorithm to fit four additional models using the OUwie
680	algorithm (BMS, OUMV, OUMA and OUMVA), which allow more parameters to vary,
681	but need regime shifts to be set a priori.
682	The results of these analyses indicate different modes of body size evolution
683	during the evolutionary histories of these two groups. In Crocodylia (Fig. 6; see
684	Additional file 3 for a complete list of AICc scores), AICc scores indicate a clear
685	preference for OU-based models, with highest support found for the SURFACE model,
686	but also strong support for the uniform OU model, as well as OUMA and OUMVA
687	models. The SURFACE algorithm frequently identified at least three main (i.e.
688	"convergent") macroevolutionary regimes for crocodylians (with θ values around 200,
689	350 and 750 cm, respectively), usually with α ranging from 0.02 to 0.2 and σ^2 between
690	0.0007 and 0.02. When allowed to vary among regimes (i.e., in models OUMA and
691	OUMVA), ranges of both parameters increase significantly, with some model fits
692	displaying extremely unrealistic parameter values, which might explain the stronger
693	support found for SURFACE compared to these latter models. Even though the
694	relatively small number of taxa included in these analyses (i.e. $N = 70$) suggests caution
695	when interpreting the higher support for OU-based models [128], BM-based models
696	received consistently worse support than any of the four OU-based models mentioned

above, even the best trend-like model (usually the one with the best AICc scores among

698 BM-based models).

699	Our results show a different scenario for Notosuchia, for which we found
700	comparable support for all evolutionary models analysed (Fig. 6). Among OU-based
701	models, slightly better AICc scores were found for the SURFACE model. However, this
702	model received virtually the same support as the BMS model, the best of the BM-based
703	models. BMS is a multi-regime BM model that allows the rate parameter (σ^2) to vary,
704	and, as α is effectively set to zero, represents diffusive model of evolution. The support
705	found for this model might suggest a more relaxed mode of body size evolution in
706	notosuchians, which is consistent with the wide range of body sizes observed in the
707	group, even among closely-related taxa. Although OU-based models (including
708	SURFACE) are not favoured over other evolutionary models, we can use some
709	SURFACE model to further explore body size evolutionary patterns among Notosuchia.
710	For example, even though we sampled twice as many crocodylians $(N = 70)$ as
711	notosuchians (N = 34), many SURFACE model fits found three main
712	macroevolutionary regimes for notosuchians, similar to what was found for Crocodylia
713	(although model fits with less regimes were more frequent for Notosuchia than
714	Crocodylia). For these, θ values were usually around 80, 150 and 320 cm, with α
715	usually ranging from 0.008 to 0.05 and σ^2 between 0.0007 and 0.005. When the same
716	regimes detected by the SURFACE algorithm were used by the OUwie algorithm to fit
717	the BMS model, values of σ^2 rarely varied significantly from the range of whole-tree σ^2
718	estimated for the SURFACE model fits. The few exceptions were usually related to
719	regimes with unrealised θ values, as in the case of the armoured sphagesaurid
720	Armadillosuchus arrudai (probably with more than 2 metres in total length, whereas
721	other sampled sphagesaurids reach no more than 1.2 m [148]), and sebecosuchians (top

722	predators of usually more than 2.5 metres [97]), even though these values might still be
723	realistic when simulating trend-like dynamics (i.e., in a single lineage with extremely
724	disparate trait values [19, 57]).
725	
726	The influence of palaeolatitude and palaeotemperature
727	Most of the correlation analyses between our body size data and the different datasets of
728	the abiotic factors palaeotemperature and palaeolatitude yielded weak (coefficient of
729	determination R^2 usually smaller than 0.2) or non-significant correlations (see
730	Additional file 1 for all regressions and further results). This is consistent with the
731	distribution of crocodylomorph body size through time (Fig. 7), as well as with the
732	results from our macroevolutionary analyses, which found strong support for a multi-
733	regime OU model (SURFACE). This suggests that shifts between macroevolutionary
734	regimes (which we interpret as "maximum adaptive zones" sensu Stanley [11]) are more
735	important in determining large-scale macroevolutionary patterns of crocodylomorph
736	body size evolution than these abiotic factors, at least when analysed separately.
737	However, one important exception was found: a correlation between mean body
738	size values and palaeotemperatures from the Late Cretaceous (Maastrichtian) to the
739	Recent (data from [131]). Using either all taxa in the datasets or only non-marine
740	species, we found moderate to strong correlations (R^2 ranging from 0.376 to 0.635),
741	with higher mean body size values found in time intervals with lower temperatures (i.e.,
742	positive slopes, given that the δ^{18} O proxy is inversely proportional to temperature). The
743	correlation was present even when we applied GLS regressions with an autoregressive
744	model (Table 1), which returned near-zero or low autocorrelation coefficients (phi =
745	0.01–0.15). This suggests that temperature might have had an influence in determining
746	the body size distribution of crocodylomorphs at smaller temporal and phylogenetic

747	scales. For this reason, we decided to further scrutinise the relationships between the
748	distribution of body sizes and these abiotic factors at these smaller scales, repeating our
749	regression analyses using only data for Crocodylia, Notosuchia, Thalattosuchia, and
750	Tethysuchia (see the "Methods" section).
751	These additional regressions corroborate the hypothesis that at least some
752	crocodylomorph subclades show a correspondence between body size and global
753	palaeotemperature. Although most of the regressions provided non-significant or
754	weak/very weak correlations (see Additional file 1 for all regression results), including
755	all regressions of body size on palaeolatitudinal data, both maximum and mean body
756	size values of Crocodylia are moderately to strongly correlated to palaeotemperature
757	through time (Table 2). The positive slopes and coefficients of determination (R^2
758	ranging from 0.554 to 0.698) indicate that the lowest temperatures are associated with
759	the highest body size values in the crown-group. However, correlations with data from
760	other subclades (Notosuchia, Thalattosuchia and Tethysuchia) were mostly non-
761	significant, suggesting that this relationship between body size and temperature was not
762	a widespread pattern among all groups.
763	
764	
765	
766	
767	
768	
769	
770	
771	

Dataset		Gl	LS			OLS (untra	unsformed))
ODCL	Phi	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
with all taxa	-0.046	2.022	0.055 (0.002)	-31.576	0.635	2.023	0.054 (0.003)	-33.557
DCL	Phi	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
with all taxa	0.014	2.433	0.081 (0.011)	-19.577	0.527	2.433	0.081 (0.01)	-21.575
ODCI	Phi	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
ODCL non-marine	-0.157	1.964	0.06 (0.007)	-24.96	0.502	1.965	0.06 (0.013)	-26.706
DCL	Phi	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
non-marine	-0.089	2.345	0.07 (0.027)	-16.045	0.376	2.346	0.07 (0.034)	-18.272

Table 1. Regression results of mean values of body size values on palaeotemperature.

773 Results of GLS (with an autoregressive model) and OLS (untransformed data) regressions.

774 Mean body size represented by mean values of log-transformed cranial measurements (DCL and

ODCL), in millimetres. Data from both ODCL and DCL datasets was divided into subsets with

all crocodylomorphs or only non-marine species. N = 10 in all four subsets (number of time bins

analysed). Palaeotemperature data from [131], represented by δ^{18} O data from the Late

778 Cretaceous to Recent. Only significant correlations (p < 0.05) are shown.

779

780

Table 2. Regression results of maximum and mean crocodylian body size values on

Dataset	GLS OLS (untransformed))			
ODCL	Phi	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
	0.19	2.133	0.121	-11.989	0.554	2.124	0.127	-13.662
maximum size			(0.017)				(0.008)	
ODCI	Phi	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
ODCL	-0.297	1.98	0.075	-29.953	0.698	1.987	0.07	-31.137
mean size			(0.0003)				(0.001)	
DCI	Phi	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
DCL	-0.215	2.618	0.165	-10.724	0.632	2.627	0.157	-12.355
maximum size			(0.001)				(0.003)	
DCI	Phi	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
DCL	-0.235	2.386	0.105	-20.748	0.647	2.395	0.098	-22.325
mean size			(0.0007)				(0.003)	

782 palaeotemperature.

783 Results of GLS (with an autoregressive model) and OLS (untransformed data) regressions.

784 Mean and maximum body size only for members of the crown-group Crocodylia, represented

by mean and maximum values of log-transformed cranial measurements (DCL and ODCL), in

millimetres. N = 10 in all four datasets (number of time bins analysed). Palaeotemperature data

from [131], represented by δ^{18} O data from the Late Cretaceous to Recent. Only significant

788 correlations (p < 0.05) are shown.

790 <i>Cor</i>	relation	between	bodv	size	and	habitat	choice
----------------	----------	---------	------	------	-----	---------	--------

We initially found a relationship between lifestyle (i.e., terrestrial, semi-aquatic/freshwater, and aquatic/marine) and body size using ANOVA. However, a phylogenetic ANOVA [140] returned non-significant results (Table 3). Phylogenetic ANOVA asks specifically whether evolutionary habitat transitions are consistently associated with particular body size shifts as optimised on the phylogeny. This indicates that, although crocodylomorphs with more aquatic lifestyles (particularly marine species) tend to be large-bodied, the evolutionary transitions between these lifestyle categories were probably not accompanied by immediate non-random size changes. Furthermore, the smaller body sizes of some aquatic or semi-aquatic lineages (e.g., atoposaurids, *Tsoabichi* and *Pelagosaurus*) show that adaptive peaks of smaller sizes are also viable among aquatic/semi-aquatic species. This suggests that, even though there seems to be an ecological advantage for larger-sized freshwater/marine crocodylomorphs, the lower limit of body size in aquatic species was comparable to that of terrestrial species.

814	Table 3. Pairwise comparison betwee	n body size of	crocodylomorphs subdi	vided into three
-----	-------------------------------------	----------------	-----------------------	------------------

Category	Mean	Std. Deviation	Std. Error	Pairwise comparisons	t-value	ANOVA q-value	Phylo ANOVA q-value	
Terrestrial	1.854	0.223	0.0333	Terrestrial – Freshwater	4.196	< 0.001*	1	
Semi-aquatic/ freshwater	2.026	0.249	0.0249	Terrestrial – Marine	8.721	< 0.001*	0.085	
Aquatic/	2.263	0.185	0.0261	Freshwater –	5.997	< 0.001*	0.412	

815 lifestyle categories.

816 Body size data from the ODCL dataset (log-transformed cranial measurement, in millimetres).

Marine

817 Number of species in each category: 45 (terrestrial), 100 (semi-aquatic/freshwater), and 50

818 (aquatic/marine). Results from ANOVA, without accounting for phylogenetic dependency, and

819 phylogenetic ANOVA [140] with 100,000 simulations. *Bonferroni-corrected p-values (q-

820 values) significant at alpha = 0.05

821

822

823 Discussion

marine

824 The adaptive landscape of crocodylomorph body size evolution

825 Crocodylomorph body size disparity increased rapidly during the early evolution of the

group, from the Late Triassic to the Early Jurassic (Hettangian–Sinemurian), which is

mostly a result of the appearance of the large-bodied thalattosuchians (Fig. 8b). After a

decline in the Middle Jurassic, body size disparity reaches its maximum peak in the Late

Jurassic, with the appearance of atoposaurids, some of the smallest crocodylomorphs, as

830 well as large teleosaurids (such as *Machimosaurus*). This increase in disparity may have

831 occurred earlier than our results suggest, given that Middle Jurassic records of

atoposaurids [149] could not be included in our analyses due to their highly incomplete

833 preservation.

834 Since this peak in the Middle/Late Jurassic, crocodylomorphs underwent an

essentially continuous decline in body size disparity, with some short-term fluctuations

related to the extinction or diversification of particular lineages. The Early Cretaceous

837	witnessed the extinction of thalattosuchians, and a sharp decrease in disparity is seen
838	from the Berriasian to the Barremian (although this time interval is also relatively
839	poorly sampled in our dataset). A subsequent increase in disparity is seen in the Aptian,
840	probably reflecting the appearance of small-bodied crocodylomorphs (such as
841	susisuchid eusuchians). Nevertheless, this is followed by a continuing decline for the
842	remainder of the Cretaceous (in spite of the occurrence of highly disparate
843	notosuchians). The Cenozoic is also characterised by an overall decrease in disparity,
844	even though some short-term increases in disparity do occur, mostly related to the
845	presence of smaller-bodied crocodylians in the Palaeogene (such as Tsoabichi [150]).
846	We characterised the macroevolutionary patterns that gave rise to these patterns
847	of body size disparity through time, by performing comparative model-fitting analyses.
848	Our results indicate a strong support found for a multi-peak OU model (i.e., the
849	SURFACE model; Fig. 2a and b). Within the concept of adaptive landscape [73, 74,
850	75], we can interpret the SURFACE regimes, with different trait optima, as similar to
851	shifts to new macroevolutionary adaptive zones [11, 151]. Thus, the support found for
852	the SURFACE model indicates that lineage-specific adaptations related to body size
853	play an important role in determining the patterns of crocodylomorph body size
854	evolution. Our comparative model-fitting analyses also indicate that uniform OU
855	models, BM models, and both uniform and multi-regime trend models provide poor
856	explanations for the overall patterns of crocodylomorph body size evolution.
857	Our findings reject the hypothesis of long-term, multi-lineage trends during the
858	evolution of crocodylomorph body size. This is true even for Crocodylia, which shows
859	increases in maximum, minimum and mean body sizes during the past 70 million years
860	(Fig. 8a), a pattern that is classically taken as evidence for trend-like dynamics [56]. In
861	fact, explicitly phylogenetic models of the dynamics along evolving lineages reject this.

862	We can also reject diffusive, unconstrained Brownian-motion like dynamics for
863	most of Crocodylomorpha, although Notosuchia might be characterised by relatively
864	unconstrained dynamics (Fig. 6). Single-regime (=uniform) models received poor
865	support in general, which might be expected for long-lived and disparate clades such as
866	Crocodylomorpha, which show complex and non-uniform patterns of body size
867	evolution (see [5, 11, 58, 61]). Although multi-regime trend-like models received
868	stronger support than uniform models for most phylogenies (Fig. 2a and b), multi-peak
869	OU models (SURFACE) received overwhelmingly still greater support. This suggests
870	that the macroevolutionary landscape of crocodylomorph body size evolution is best
871	described by shifts between phylogenetically defined regimes that experience
872	constrained evolution around distinct trait optima [61, 71, 75, 83].
873	The success of a multi-peak OU model indicates that, in general, a significant
874	amount of crocodylomorph body size variance emerged through pulses of body size
875	variation, and not from a gradual, BM-based dispersal of lineages through trait (body
876	size) space. These pulses, represented by regime shifts, represent excursions of single
877	phylogenetic lineages through body size space, resulting in the founding of new clades
878	with distinct body size from their ancestors. This indicates that lineage-specific
879	adaptations (such as those related to ecological diversification; see below) are an
880	important aspect of the large-scale patterns of crocodylomorph body size evolution.
881	This can also explain the weak support found for the early burst (EB) model in
882	our analyses. The early burst model attempts to simulate Simpson's [73] idea of
883	diversification through "invasion" of new adaptive zones (niche-filling). It focuses on a
884	particular pattern of adaptive radiation, with evolutionary rates higher in the early
885	evolution of a clade and decelerating through time [126]. Other models have also been
886	proposed to better represent the concept of pulsed Simpsonian evolution (e.g., [152]).

887	Our results show that, overall, the EB model offers a poor explanation for the evolution
888	of body size in crocodylomorphs, in agreement with previous works that suggested that
889	early bursts of animal body size receive little support from phylogenetic comparative
890	methods ([126], but see [153] for intrinsic issues for detecting early bursts from extant-
891	only datasets). However, rejection of an early burst model does not reject Simpson's
892	hypothesis that abrupt phenotypic shifts along evolving lineages ("quantum evolution")
893	results from the distribution of opportunities (adaptive zones, or unfilled niches).
894	Patterns of crocodylomorph body size evolution could still be explained by this "niche-
895	filling" process if opportunities were distributed through time rather than being
896	concentrated early on the evolution of the clade. This is one possible explanation of the
897	pattern of regime shifts returned by our analyses, and might be particularly relevant for
898	clades with long evolutionary histories spanning many geological intervals and
899	undergoing many episodes of radiation.
900	Bronzati et al. [35] examined variation in rates of species diversification among
901	clades using methods based on tree asymmetry. They found that most of crocodyliform
902	diversity was achieved by a small number of significant diversification events that were
903	mostly linked to the origin of some subclades, rather than via a continuous process
904	through time. Some of the diversification shifts from Bronzati et al. [35] coincide with
905	body size regime shifts found in many of our SURFACE model fits (such as at the base
906	of Notosuchia, Eusuchia and Alligatoroidea; Fig. 9). However, many of the shifts in
907	body size regimes detected by our analyses are found in less-inclusive groups (as in the
908	case of "singleton" regimes, that contain only a single taxon).
909	

911 Ecological diversification and its implications for crocodylomorph body size

912 *distribution*

913	Ecological factors seem to be important for the large-scale patterns of body size in							
914	crocodylomorphs. Many of the regime shifts to larger sizes detected by our SURFACE							
915	analyses occur at the base of predominantly aquatic or semi-aquatic clades, such as							
916	Thalattosuchia, Tethysuchia and Crocodylia (Figs. 3, 4, and 5), although small-bodied							
917	aquatic/semi-aquatic clades also occur, such as Atoposauridae. Some terrestrial clades							
918	also display relatively large sizes (such as sebecosuchians and peirosaurids, within							
919	Notosuchia). However, most terrestrial species are small-bodied (Fig. 10b), including							
920	many of the earliest crocodylomorphs (such as Litargosuchus leptorhynchus and							
921	Hesperosuchus agilis [50, 51]; Fig. 10a), and are within body size regimes of lower							
922	values of θ (< 150 cm; Figs. 3, 4, and 5). In contrast, the regimes with the highest values							
923	of θ (> 800 cm) are almost always associated with aquatic or semi-aquatic							
924	crocodylomorphs (e.g., the tethysuchians Sarcosuchus imperator and Chalawan							
925	thailandicus, the thalattosuchians Machimosaurus and Steneosaurus, and the							
926	crocodylians Purussaurus and Mourasuchus).							
927	Previous studies have investigated a possible link between an aquatic/marine							
928	lifestyle and larger body sizes in other animals, particularly in mammals (e.g., [17, 21,							
929	24]). For instance, it has been previously shown that aquatic life in mammals imposes a							
930	limit to minimum body size [24, 154] and relaxes constraints on maximum size [155].							
931	Therefore, aquatic mammals (especially marine ones) have larger body sizes than their							
932	terrestrial relatives [21, 156]. We document a similar pattern in crocodylomorphs (Table							
933	3), although the phylogenetic ANOVA results revealed that changes in size are not							
934	abrupt after environmental invasions (as also suggested by the diminutive size of some							
935	semiaquatic lineages, such as atoposaurids and some crocodylians). Animals lose heat							

936	faster in water than in air (given the different rates of convective heat loss in these two
937	environments), and it has demonstrated that thermoregulation plays an important role in
938	determining the larger sizes of aquatic mammals [24, 154, 157]. Although mammals
939	have distinct thermal physiology to crocodylomorphs (which are ectothermic
940	poikilotherms), it has been reported that American alligators (Alligator mississippiensis)
941	heat up more rapidly than cool down, and that larger individuals are able to maintain
942	their inner temperature for longer than smaller ones [158]. Thus, given that both heating
943	and cooling rates are higher in water than in air [158], larger aquatic/semi-aquatic
944	animals could have advantages in terms of physiological thermoregulation. If extinct
945	crocodylomorphs had similar physiologies, this could provide a plausible explanation
946	for the larger sizes of non-terrestrial species.
947	
948	Cope's rule cannot explain the evolution of larger sizes in Crocodylomorpha
949	Previous interpretations of the fossil record suggest a dominance of small sizes during
950	the early evolution of crocodylomorphs [45, 117], inferred from the small body sizes of
951	most early crocodylomorphs. Consistent with this, our SURFACE results revealed a
952	small-bodied ancestral regime for Crocodylomorpha (Z_0 between 66 and 100 cm),
953	which was inherited virtually by all non-crocodyliform crocodylomorphs. Larger non-
954	crocodyliform crocodylomorphs have also been reported for the Late Triassic (e.g.,
955	Carnufex carolinensis and Redondavenator quayensis, with estimated body lengths of
956	approximately 3 metres [159]), but the fragmentary nature of their specimens prevented
957	us from including them in our macroevolutionary analysis. Nevertheless, given the
958	larger numbers of small-bodied early crocodylomorphs, taxa like Carnufex and
959	Redondavenator probably represent derived origins of large body size and their
960	inclusion would likely result in similar values of ancestral trait optima (= Z_0).

961	The small ancestral body size inferred for crocodylomorphs, combined with the
962	much larger sizes seen in most extant crocodylians and in some other crocodylomorph
963	subclades (such as thalattosuchians and tethysuchians), suggests a pattern of increasing
964	average body size during crocodylomorph evolutionary history. This idea is reinforced
965	by the overall increase in crocodylomorph mean body size through time, particularly
966	after the Early Cretaceous (Fig. 8a). The same pattern also occurs within Crocodylia
967	during the past 70 million years (Fig. 8a), as some of the earliest taxa (such as
968	Tsoabichi, Wannaganosuchus and Diplocynodon deponiae) were smaller-bodied (< 2m)
969	than more recent species, such as most extant crocodylians (usually > 3m). Cope's rule
970	is most frequently conceived as the occurrence of multi-lineage trends of directional
971	evolution towards larger body sizes [7, 8, 11], and this can be evaluated using BM-
972	based models that incorporate a directional trend (parameter μ [80]; see e.g., [33, 62]).
973	We find little support for trend-like models as a description of crocodylomorph
974	or crocodylian body size evolution. Therefore, we reject the applicability of Cope's rule
974 975	or crocodylian body size evolution. Therefore, we reject the applicability of Cope's rule to crocodylomorph evolution. This reinforces previous works suggesting that multi-
975	to crocodylomorph evolution. This reinforces previous works suggesting that multi-
975 976	to crocodylomorph evolution. This reinforces previous works suggesting that multi- lineage trends of directional body-size evolution are rare over macroevolutionary time
975 976 977	to crocodylomorph evolution. This reinforces previous works suggesting that multi- lineage trends of directional body-size evolution are rare over macroevolutionary time scales [33, 67, 160, 161] (but see [19]). Furthermore, our SURFACE model fits indicate
975 976 977 978	to crocodylomorph evolution. This reinforces previous works suggesting that multi- lineage trends of directional body-size evolution are rare over macroevolutionary time scales [33, 67, 160, 161] (but see [19]). Furthermore, our SURFACE model fits indicate that regime shifts towards smaller-bodied descendent regimes occurred approximately
975 976 977 978 979	to crocodylomorph evolution. This reinforces previous works suggesting that multi- lineage trends of directional body-size evolution are rare over macroevolutionary time scales [33, 67, 160, 161] (but see [19]). Furthermore, our SURFACE model fits indicate that regime shifts towards smaller-bodied descendent regimes occurred approximately as frequently (12–13 times) as shifts to regimes of larger body sizes (10–14 times; Fig.
975 976 977 978 979 980	to crocodylomorph evolution. This reinforces previous works suggesting that multi- lineage trends of directional body-size evolution are rare over macroevolutionary time scales [33, 67, 160, 161] (but see [19]). Furthermore, our SURFACE model fits indicate that regime shifts towards smaller-bodied descendent regimes occurred approximately as frequently (12–13 times) as shifts to regimes of larger body sizes (10–14 times; Fig. 11), when considering shifts that led to both clades containing multiple and single taxa.
975 976 977 978 979 980 981	to crocodylomorph evolution. This reinforces previous works suggesting that multi- lineage trends of directional body-size evolution are rare over macroevolutionary time scales [33, 67, 160, 161] (but see [19]). Furthermore, our SURFACE model fits indicate that regime shifts towards smaller-bodied descendent regimes occurred approximately as frequently (12–13 times) as shifts to regimes of larger body sizes (10–14 times; Fig. 11), when considering shifts that led to both clades containing multiple and single taxa. Together, these results indicate that long-term increases in the average body size of

985	Instead, the apparent trend towards larger body sizes can be explained by
986	extinctions among small-bodied regimes. Crocodylomorph body size disparity
987	decreased gradually through the Cretaceous (Fig. 8b). This occurred due to the
988	decreasing abundance of small-bodied species. Despite this, our SURFACE model fits
989	mostly indicate the survival of clades exhibiting small-bodied regimes ($\theta < 200 \text{ cm}$)
990	until approximately the end of the Mesozoic, (e.g., gobiosuchids, uruguaysuchids,
991	sphagesaurids, hylaeochampsids and some allodaposuchids; Figs. 3, 4, and 5). Many of
992	these small-bodied clades became extinct at least by the Cretaceous/Palaeogene (K/Pg)
993	boundary, resulting in a substantial reduction of small-bodied species. Further
994	reductions among the crown-group (Crocodylia) occurred by the Neogene, from which
995	small-bodied species are absent altogether (Figs. 3, 4, and 5).
996	This predominance of regimes of large sizes today results from the occurrence of
997	large body sizes in the crown-group, Crocodylia. Our SURFACE analyses focusing on
998	Crocodylia indicate ancestral body size regimes with relatively high values of θ (Z ₀
999	between 220 and 350 cm). The shift to a larger-sized regime (when compared to
1000	smaller-bodied eusuchian regimes) probably occurred at the Late Cretaceous (Figs. 3, 4,
1001	and 5), and this same regime was inherited by many members of the clade
1002	(predominantly semi-aquatic species). During the Palaeogene, however, shifts to
1003	regimes of smaller sizes also occurred (such as in Tsoabichi greenriverensis,
1004	Diplocynodon deponiae and planocraniids), increasing total body size disparity (Fig.
1005	8b). The crocodylian body size distribution shifted upwards mainly during the latter part
1006	of the Cenozoic (from the Miocene; Fig. 8b), when even larger-bodied animals occurred
1007	(e.g., Purussaurus and Mourasuchus), combined with the disappearance of lineages of
1008	smallest species.

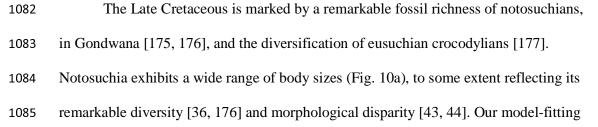
1010 *Correlation of crocodylian body size with global cooling*

1011	Our time series regressions demonstrate a moderate to strong correlation between
1012	crocodylian size and palaeotemperature (from the Late Cretaceous until the Recent;
1013	Table 2). This results from the upward-shift of the crocodylian body size distribution,
1014	coinciding with cooling global climates in the second half of the Cenozoic [131, 162].
1015	Even though this is an apparently counter-intuitive relationship, we do not interpret it as
1016	a result of direct causation. Previous studies have shown that crocodylian species
1017	richness decreased with declining global temperatures of the Cenozoic [36, 37].
1018	Furthermore, the palaeolatitudinal ranges of both marine and continental
1019	crocodylomorphs have contracted as temperatures decreased (Fig. 7b; see also [36, 37]).
1020	Therefore, the temperatures experienced by evolving lineages of crocodylians are not
1021	equivalent to global average temperatures. We propose that the association between
1022	global cooling and increasing crocodylian body size results from a systematic reduction
1023	of available habits/niches (due to a more restricted geographical distribution), with
1024	differential extinction of smaller-bodied species. The hypothesis of selective extinction
1025	is also consistent with the decreasing in crocodylian body size disparity during the
1026	Cenozoic (Fig. 8b).
1027	
1020	Padu size a clastivity and diversification general Magazoia hour danies

1028 Body size selectivity and diversification across Mesozoic boundaries

1029 Numerous comparative studies have investigated a possible link between extinction risk

1030 and animal body size (e.g., [163, 164, 165, 166, 167]). For example, larger body sizes,


- 1031 in association with dietary specializations, might increase susceptibility to extinction in
- some animal groups, such as hypercarnivorous canids [168, 169]. On the other hand, the
- 1033 recovery of some animal clades after extinction events can also be associated with a
- 1034 subsequent increase in diversity and morphological disparity (e.g., Palaeogene
- 1035 mammals [14]), potentially leading to the exploration of new regions of body size space

(i.e., invasions of new body size regimes). Thus, although for some groups (and for
some extinctions) body size might play an important role, this is evidently not a
generalised pattern across all animals.

1039 For crocodylomorphs, little is known about possible influence of body size on 1040 differential extinction. In one of the few studies to quantitatively investigate this, Turner 1041 & Nesbitt [45], using femoral length as a proxy for total body size, recognized a drop in 1042 mean body size of crocodylomorphs across the Triassic-Jurassic (T–J) boundary. Our 1043 SURFACE results, however, indicate otherwise, as all Triassic crocodylomorphs are 1044 within a macroevolutionary regime of smaller sizes ($\theta < 100$ cm) when Thalattosuchia 1045 is placed within Neosuchia (Fig. 3 and 4). In the other two phylogenetic scenarios, the 1046 origin of thalattosuchians (which are predominantly large-bodied animals) is placed 1047 either at the middle of the Late Triassic or closer to the T–J boundary (Fig. 5). However, 1048 as the first records of thalattosuchians only occur in the Early Jurassic, mean body size 1049 increases immediately after the boundary (Fig. 8a). The differences between our results 1050 and those found by Turner & Nesbitt [45] might be related to the distinct body size proxies used or to the different taxon sample used, as those authors also included non-1051 1052 crocodylomorph pseudosuchians in their analysis. In this context, we acknowledge that 1053 the inclusion in our analyses of larger non-crocodyliform crocodylomorphs, such as 1054 *Carnufex carolinensis* (~ 3 metres [159]), might change our results. Thus, at the 1055 moment we do not have empirical or statistical evidence to demonstrate selectivity of 1056 body sizes in crocodylomorphs during the end-Triassic extinction. 1057 The Early Jurassic was characterized by key events of crocodylomorph 1058 diversification [35] and an increase in morphological disparity [42], following the end-1059 Triassic extinction. Similarly, our body size data suggests an increase in body size disparity after the T-J boundary (Fig. 8b). Although a decrease in disparity is observed 1060

subsequently, this is probably due to the relatively few crocodylomorphs known for the
latest Early Jurassic and the Middle Jurassic (Sinemurian–Aalenian [36]). Subsequently,
the diversification of thalattosuchians during the Late Jurassic, together with the
occurrence of smaller- to intermediate-bodied neosuchians (such as atoposaurids and
goniopholidids), created the greatest observed disparity of crocodylomorph body sizes
during their evolutionary history (Fig. 8b).

1067 Recent studies [170, 171, 172] suggested that a combination of environmental 1068 perturbations occurred during the Jurassic-Cretaceous (J/K) transition, which might 1069 have led to the extinction of some tetrapod lineages. For crocodylomorphs the boundary 1070 is characterised by a decrease in marine diversity [36, 171, 172], highlighted by declines 1071 in thalattosuchian diversity, especially among teleosaurids, which suffered widespread 1072 extinction (except, apparently, at lower palaeolatitudes [173]). Nevertheless, Wilberg 1073 [43] did not find evidence for a substantial decrease in crocodylomorph cranial disparity 1074 across the J/K boundary. Similarly, our SURFACE results do not suggest dramatic 1075 changes in body size space exploration immediately before or after the J/K boundary 1076 (Figs. 3, 4, and 5), and there seems to be no defined body size selectivity across this 1077 boundary, as the multiple survivor crocodylomorph lineages were within regimes of 1078 very disparate optima values. Furthermore, the decrease in disparity observed in the 1079 middle of the Early Cretaceous (i.e., Valanginian–Barremian) is likely due to poor 1080 sampling [174], resulting in the scarcity of more completely preserved crocodylomorphs 1081 during these stages.

analyses using only notosuchian data suggest more relaxed modes of body size
evolution in Notosuchia (Fig. 6), which is consistent with their high species richness
and morphological disparity. This could be explained by a combination of intrinsic (i.e.,
innovations and/or adaptations, such as a highly modified feeding apparatus [178, 179])
and extrinsic factors (i.e., specific environmental conditions, such as the predominantly
hot and arid climate of the Gondwanan landmasses occupied by notosuchians [36,

1092 175]).

1093 Even though our body size data show no specific pattern at the K/Pg boundary, a 1094 decline in body size disparity is present through the Late Cretaceous, combined with an 1095 increase in mean body size (Fig. 8), a pattern that generally continued through the 1096 Cenozoic (although with some short-term fluctuations). This supports the hypothesis 1097 that the K/Pg extinction had only minor impacts on crocodylomorphs [35, 36, 37, 43, 1098 181]. Although subsampled estimates of genus richness suggest a decline in terrestrial 1099 crocodylomorph diversity during the Late Cretaceous, this occurred prior to the K/Pg 1100 boundary, between the Campanian into the Maastrichtian, in both Europe and North 1101 America [36]. Indeed, several crocodylomorph subclades lost several species prior to 1102 the end of the Cretaceous (in particular notosuchians and non-crocodylian eusuchians 1103 [35, 36]; Figs. 3, 4, and 5), and multiple lineages within other groups, such as 1104 dyrosaurid tethysuchians and crocodylians, crossed the boundary with little change [37, 1105 180, 181] (Figs. 3, 4, and 5). Our data suggest a long-term pattern of selective 1106 extinctions of small-bodied crocodylomorphs, starting from the Late Cretaceous and 1107 continuing to the Recent. This may have resulted from a longstanding trend of global 1108 cooling [131, 162], resulting in more restricted geographical distributions, and reducing niche availability for crocodylomorphs. This is consistent with our SURFACE results 1109 (Figs. 3, 4, and 5), that show very few smaller-bodied regimes ($\theta < 150$ cm) during the 1110

1111	Palaeogene and a complete absence after the Neogene. This pattern strikingly contrasts
1112	with that proposed for mammals, which may have experienced selectivity against larger
1113	bodied taxa across the K/Pg boundary [182], although an increase in body size occurred
1114	observed subsequently, during the Palaeogene [14, 15]. The pattern of survival in
1115	crocodylomorphs also differs from that suggested for squamates (lizards and snakes), in
1116	which small-bodied taxa show evidence of preferential survival [183].
1117	
1118	Conclusions
1119	After an early increase (with the highest peak in the Late Jurassic), crocodylomorph
1120	body size disparity experienced sustained decline during virtually its entire evolutionary
1121	history. This disparity decrease is combined with an increase of average body size
1122	through time, with highest peaks in the Middle Jurassic and today. In particular, the
1123	increase in mean body size seen during the Cenozoic (mostly related to crocodylians)
1124	co-occurs with an overall decrease in global temperatures.
1125	To further characterise these patterns, we used comparative model-fitting
1126	analyses for assessing crocodylomorph body size evolution. Our results show extremely
1127	strong support for a multi-peak Ornstein-Uhlenbeck model (SURFACE), rejecting the
1128	hypothesis of evolution based on Brownian motion dynamics (including those
1129	representing the concept of Cope's rule). This suggests that crocodylomorph body size
1130	evolution can be described within the concept of a macroevolutionary adaptive
1131	landscape, with a significant amount of crocodylomorph body size variance evolving
1132	from pulses of body size changes, represented by shifts between macroevolutionary
1133	regimes (similar to adaptive zones or "maximum adaptive zones" of Stanley [11]). This
1134	is reflected in the regime shifts frequently detected at the base of well-recognised and
1135	diverse crocodylomorph subclades such as Notosuchia, Thalattosuchia, and Crocodylia.

1136	We did not find strong correlations between our body size data and abiotic
1137	factors, indicating that shifts between macroevolutionary regimes are more important
1138	for determining large-scale patterns of crocodylomorph body size than isolated climatic
1139	factors. However, at more refined temporal and phylogenetic scales, body size variation
1140	may track changes in climate. In the case of Crocodylia, a global cooling event might
1141	explain the long-term increases in body size, as a result of systematic reduction of
1142	available habits/niches (due to a more latitudinally-restricted geographical distribution
1143	during cooler global climates), with preferential extinction of smaller-bodied species.
1144	Shifts towards larger sizes are often associated with aquatic/marine or semi-
1145	aquatic subclades, indicating that ecological diversification may also be relevant, and
1146	suggesting a possible link between aquatic adaptations and larger body sizes in
1147	crocodylomorphs. These shifts to larger sizes, occurred throughout crocodylomorph
1148	evolutionary history, combined with the extinction of smaller-sized regimes,
1149	particularly during the Late Cretaceous and Cenozoic, explain the overall increase in
1150	mean body size, as well as the large-bodied distribution of extant crocodylians (all of
1151	which are aquatic or semi-aquatic) compared to smaller-bodied early taxa.
1152	
1153	
1154	
1155	
1156	
1157	
1158	
1159	
1160	

- 1162 <u>Cranial measurements</u>:
- **DCL:** dorsal cranial length
- **ODCL:** orbito-cranial length
- 1165 <u>Evolutionary models</u>:
- **BM:** Brownian motion
- **EB:** Early burst
- **OU:** Ornstein-Uhlenbeck
- **BMS:** multi-regime BM model that allows parameter σ^2 to vary
- **OUMV:** multi-regime OU model that allows θ and σ 2 to vary
- **OUMA:** multi-regime OU model in which θ and α can vary
- **OUMVA:** OU model in which all three parameters (θ , α and σ 2) can vary
- 1173 <u>Model parameters</u>:
- θ : trait optimum of OU-based models
- *α*: attraction parameter of OU-based models;
- σ^2 : Brownian variance or rate parameter of BM or OU-based models
- **μ**: evolutionary trend parameter of BM-based models
- Z_0 : estimated trait value at the root of the tree of OU-based models
- 1179 <u>Optimality criteria</u>:
- 1180 AIC: Akaike's information criterion
- 1181 AICc: Akaike's information criterion for finite sample sizes
- **BIC:** Bayesian information criterion
- **pBIC:** phylogenetic Bayesian information criterion

1186 **Declarations**

1187 Acknowledgements

- 1188 Access to fossil collections was possible thanks to Lorna Steel (NHMUK), Eliza
- 1189 Howlett (OUMNH), Matthew Riley (CAMSM), Zoltán Szentesi (MTM), Attila Ősi
- 1190 (MTM), Ronan Allain (MNHN), Rainer Schoch (SMNS), Erin Maxwell (SMNS),
- 1191 Marisa Blume (HLMD), Eberhard Frey (SMNK), Oliver Rauhut (BSPG), Max Langer
- 1192 (LPRP/USP), Sandra Tavares (MPMA), Fabiano Iori (MPMA), Thiago Marinho (CPP),
- 1193 Jaime Powell (PVL), Rodrigo Gonzáles (PVL), Martín Ezcurra (MACN), Stella Alvarez
- 1194 (MACN), Alejandro Kramarz (MACN), Patricia Holroyd (UCMP), Kevin Padian
- 1195 (UCMP), William Simpson (FMNH), Akiko Shinya (FMNH), Paul Sereno (UCRC),
- 1196 Tayler Keillor (UCRC), Mark Norell (AMNH), Carl Mehling (AMNH), Judy Galkin
- 1197 (AMNH), Alan Turner (SUNY), Liu Jun (IVPP), Corwin Sullivan (IVPP), Zheng Fang
- 1198 (IVPP), Anna K. Behrensmeyer (USNM), and Amanda Millhouse (USNM). Felipe
- 1199 Montefeltro, Andrew Jones and Giovanne Cidade also provided photographs of many
- 1200 crocodylomorph specimens.
- 1201 We are thankful to Gene Hunt, whose R functions and scripts (particularly for
- 1202 fitting multi-trend models and SURFACE with pBIC) greatly benefited this study. We
- 1203 further thank Gemma Benevento, Luke Parry, Dave Bapst, and Alan Turner for
- assistance with the FBD tip-dating method. We also thank Emma Dunne, Daniel
- 1205 Cashmore, and Andrew Jones for help and discussion at different stages of this project,
- 1206 especially related to the use of R. Thorough reviews by two anonymous reviewers
- 1207 helped improve the manuscript. We thank the editor R. Alexander Pyron for handling
- 1208 the manuscript. Silhouettes of crocodylomorph representatives in figures are from
- 1209 illustrations by Dmitry Bogdanov, Smokeybjb, and Nobumichi Tamura, hosted at
- 1210 Phylopic (http://phylopic.org), where license information is available.

1211

1212 Funding

- 1213 PLG was supported by a University of Birmingham-CAPES Joint PhD Scholarship
- 1214 (grant number: 3581-14-4). Additional funding for data collection was provided by the
- 1215 Doris O. and Samuel P. Welles Research Fund of the University of California's Museum
- 1216 of Paleontology (UCMP). MB was supported by the Conselho Nacional de
- 1217 Desenvolvimento Científico e Tecnológico (CNPq; grant number: 170867/2017-0).
- 1218 Parts of this work were funded by the European Union's Horizon 2020 research and
- innovation programme 2014–2018, under grant agreement 677774 (ERC Starting Grant:
- 1220 TEMPO) to RBJB and grant agreement 637483 (ERC Starting Grant: TERRA) to RJB.
- 1221 The funders had no role in the design of the study, data collection, analysis and
- 1222 interpretation of data, or in writing the manuscript.
- 1223

1224 Availability of data and material

- 1225 The data generated and/or analysed during the current study, as well as R codes used for
- 1226 macroevolutionary analyses and supplementary results, are included within the article
- 1227 and its additional files.
- 1228

1229 Authors' contributions

- 1230 PLG, RBJB and RJB designed the study. PLG and MB collected the data. PLG analysed
- 1231 the data. All authors participated in drafting the manuscript. All authors read and
- 1232 approved the final manuscript.

1233

1234 Competing interests

1235 The authors declare that they have no competing interests.

1236							
1237	Conse	nt for publication					
1238	Not ap	plicable.					
1239							
1240	Ethics	approval and consent to participate					
1241	Not applicable.						
1242							
1243	Refere	ences					
1244	1.	Hutchinson GE, MacArthur RH. A theoretical ecological model of size					
1245	distribu	utions among species of animals. Am Nat. 1959;93:117–25.					
1216	2						
1246	2.	Peters RH: The Ecological Implications of body size. New York: Cambridge					
1247	Univer	sity Press; 1983.					
1248	3.	Calder WAI: Size, Function, and Life History. Cambridge: Harvard University					
1249	Press;	1984.					
1250	4.	Schmidt-Nielsen K: Scaling: Why is animal size so important? Cambridge:					
1251	Cambridge University Press; 1984.						
1252	5.	McKinney ML. Trends in body size evolution. In: McNamara KJ, editor.					
1253	Evolut	ionary trends. Tucson: University of Arizona Press; 1990. p. 75–118.					
1254	6.	McClain CR, Boyer AG. Biodiversity and body size are linked across					
1255	metazo	oans. Proc R Soc B-Biol Sci. 2009;276:2209–15.					
1256	7.	Cope ED. The origin of the fittest: essays on evolution. New York: D. Appleton					
1257		ompany; 1887.					

- 12588.Cope ED. The primary factors of organic evolution. Chicago: Open Court Press;
- 1259 1896.
- 1260 9. Depéret CJJ. The transformations of the animal world. New York: D. Appleton1261 and Company; 1909.
- 1262 10. Newell ND. Phyletic size increase, an important trend illustrated by fossil
- invertebrates. Evolution. 1949;3:103–24.
- 1264 11. Stanley SM. An explanation for Cope's rule. Evolution. 1973;27:1–26.
- 1265 12. Price SA, Hopkins SS. The macroevolutionary relationship between diet and
- body mass across mammals. Biol J Linnean Soc. 2015;115:173–84.
- 1267 13. Raup DM. Testing the fossil record for evolutionary progress. In: Nitecki MH,
- editor. Evolutionary progress. Chicago: University of Chicago Press; 1988. p. 293–317.
- 1269 14. Alroy J. Cope's rule and the dynamics of body mass evolution in North
- 1270 American fossil mammals. Science. 1998;280:731–4.
- 1271 15. Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SM, Evans AR,
- 1272 Fortelius M, Gittleman JL, Hamilton MJ, et al. The evolution of maximum body size of
- terrestrial mammals. Science. 2010;330:1216–9.
- 1274 16. Venditti C, Meade A, Pagel M. Multiple routes to mammalian diversity. Nature.
 1275 2011;479:393–6.
- 1276 17. Heim NA, Knope ML, Schaal EK, Wang SC, Payne JL. Cope's rule in the
- 1277 evolution of marine animals. Science. 2015;347:867–70.

1278 18. Laurin M. The evolution of body size, Cope's rule and the origin of amniotes.

1279 Syst Biol. 2004;53:594–622.

1280	19.	Benson RBJ, Frigot RA, Goswami A, Andres B, Butler RJ. Competition and				
1281	const	raint drove Cope's rule in the evolution of giant flying reptiles. Nat Commun.				
1282	2014;5:3567.					
1283	20.	Alberdi MT, Prado JL, Ortiz-Jaureguizar E. Patterns of body size changes in				

- 1284 fossil and living Equini (Perissodactyla). Biol J Linnean Soc. 1995;54:349–70.
- 1285 21. Smith FA, Lyons SK. How big should a mammal be? A macroecological look at
- 1286 mammalian body size over space and time. Philos Trans R Soc Lond B-Biol Sci.

1287 2011;366:2364–78.

- 1288 22. Saarinen JJ, Boyer AG, Brown JH, Costa DP, Ernest SM, Evans AR, Fortelius
- 1289 M, Gittleman JL, Hamilton MJ. Harding LE, et al. Patterns of maximum body size
- 1290 evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing.
- 1291 Proc R Soc B-Biol Sci. 2014;281:20132049.
- 1292 23. Churchill M, Clementz MT, Kohno N. Cope's rule and the evolution of body
- size in Pinnipedimorpha (Mammalia: Carnivora). Evolution. 2015;69:201–15.

- distribution of aquatic mammals. Proc Natl Acad Sci USA. 2018;115:4194–9.
- 1296 25. Burness GP, Diamond J, Flannery T. Dinosaurs, dragons, and dwarfs: the
- evolution of maximal body size. Proc Natl Acad Sci USA. 2001;98:14518–23.
- 1298 26. Hone DWE, Dyke GJ, Haden M, Benton MJ. Body size evolution in Mesozoic1299 birds. J Evol Biol. 2008;21:618–24.

^{1294 24.} Gearty W, McClain CR, Payne JL. Energetic tradeoffs control the size

1300	27.	Carrano MT. Body	v-size evolution	in the Dinos	auria. In:	Carrano MT.	Blob RW.
TOOO	<i>,</i> .	Culture for the bou		m une Dinos	autian III.	Culturio Ini I	, DIOO IC.,

- 1301 Gaudin T, Wibble JR, editors. Amniote paleobiology: perspectives on the evolution of
- mammals, birds, and reptiles. Chicago: University of Chicago Press; 2006. p. 225–68.
- 1303 28. Turner AH, Pol D, Clarke JA, Erickson GM, Norell MA. A basal dromaeosaurid
- and size evolution preceding avian flight. Science. 2007;317:1378–81.
- 1305 29. Butler RJ, Goswami A. Body size evolution in Mesozoic birds: little evidence
- 1306 for Cope's rule. J Evol Biol. 2008;21:1673–82.
- 1307 30. Lee MS, Cau A, Naish D, Dyke GJ. Sustained miniaturization and anatomical
- innovation in the dinosaurian ancestors of birds. Science. 2014;345:562–566.
- 1309 31. Benson RBJ, Campione NE, Carrano MT, Mannion PD, Sullivan C, Upchurch
- 1310 P, Evans DC. Rates of dinosaur body mass evolution indicate 170 million years of
- 1311 sustained ecological innovation on the avian stem lineage. PLoS Biol.
- 1312 2014;12:e1001853.
- 1313 32. Carballido JL, Pol D, Otero A, Cerda IA, Salgado L, Garrido AC, Ramezani J,
- 1314 Cúneo NR, Krause JM. A new giant titanosaur sheds light on body mass evolution
- among sauropod dinosaurs. Proc R Soc B-Biol Sci. 2017;284:20171219.
- 1316 33. Benson RBJ, Hunt G, Carrano MT, Campione N. Cope's rule and the adaptive
- 1317 landscape of dinosaur body size evolution. Palaeontology. 2018;61:13–48.
- 1318 34. Bronzati M, Montefeltro FC, Langer MC. A species-level supertree of
- 1319 Crocodyliformes. Hist Biol. 2012;24:598–606.

- 1320 35. Bronzati M, Montefeltro FC, Langer MC. Diversification events and the effects
- 1321 of mass extinctions on Crocodyliformes evolutionary history. R Soc Open Sci.
- 1322 2015;2:140385.
- 1323 36. Mannion PD, Benson RBJ, Carrano MT, Tennant JP, Judd J, Butler RJ. Climate
- 1324 constrains the evolutionary history and biodiversity of crocodylians. Nat Commun.
- 1325 2015;6:8438.
- 1326 37. Markwick PJ. Crocodilian diversity in space and time: the role of climate in
- 1327 paleoecology and its implication for understanding K/T extinctions. Paleobiology.
- 1328 1998;24:470–97.
- 1329 38. Langston W. The crocodilian skull in historical perspective. In: Gans C, Parsons
- 1330 TS, editors. Biology of the Reptilia. London: Academic Press; 1973 p. 263–84.
- 1331 39. Brochu CA. Crocodylian snouts in space and time: phylogenetic approaches
- toward adaptive radiation. Am Zool. 2001;41:564–85.
- 1333 40. Sadleir RW, Makovicky PJ. Cranial shape and correlated characters in
- 1334 crocodilian evolution. J Evol Biol. 2008;21:1578–96.
- 1335 41. Stubbs TL, Pierce SE, Rayfield EJ, Anderson PS. Morphological and
- 1336 biomechanical disparity of crocodile-line archosaurs following the end-Triassic
- 1337 extinction. Proc R Soc B-Biol Sci. 2013;280:20131940.
- 1338 42. Toljagić O, Butler RJ. Triassic–Jurassic mass extinction as trigger for the
- 1339 Mesozoic radiation of crocodylomorphs. Biol Lett. 2013;9:20130095.
- 1340 43. Wilberg EW. Investigating patterns of crocodyliform cranial disparity through
 1341 the Mesozoic and Cenozoic. Zool J Linn Soc. 2017;181:189–208.

- 1342 44. Godoy PL, Ferreira GS, Montefeltro FC, Vila Nova BC, Butler RJ, Langer MC.
- 1343 Evidence for heterochrony in the cranial evolution of fossil crocodyliforms.
- 1344 Palaeontology. 2018;61:543–58.
- 1345 45. Turner AH, Nesbitt SJ. Body size evolution during the Triassic archosauriform
- 1346 radiation. Geol Soc Spec Publ. 2013;379:573–97.
- 1347 46. Young MT, Bell MA, Andrade MB, Brusatte SL. Body size estimation and
- 1348 evolution in metriorhynchid crocodylomorphs: implications for species diversification
- and niche partitioning. Zool J Linn Soc. 2011;163:1199–216.
- 1350 47. Allsteadt J, Lang JW. Incubation temperature affects body size and energy
- 1351 reserves of hatchling American alligators (*Alligator mississippiensis*). Physiol Zool.
- 1352 1995;68:76–97.
- 1353 48. Markwick PJ. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic
- 1354 climates: implications for using palaeontological data in reconstructing palaeoclimate.
- 1355 Palaeogeogr Palaeocl. 1998;137:205–71.
- 1356 49. Delfino M, de Vos J. A giant crocodile in the Dubois Collection from the
- 1357 Pleistocene of Kali Gedeh (Java). Integr Zool. 2014;9:141–7.
- 1358 50. Clark JM, Sues HD. Two new basal crocodylomorph archosaurs from the Lower
- 1359 Jurassic and the monophyly of the Sphenosuchia. Zool J Linn Soc. 2002;136:77–95.
- 1360 51. Clark JM, Sues HD, Berman DS. A new specimen of *Hesperosuchus agilis* from
- the Upper Triassic of New Mexico and the interrelationships of basal crocodylomorph
- archosaurs. J Vertebr Paleontol. 2001;20:683–704.

- 1363 52. Erickson GM, Brochu CA. How the 'terror crocodile' grew so big. Nature.
- 1364 1999;398:205–6.
- 1365 53. Sereno PC, Larsson HC, Sidor CA, Gado B. The giant crocodyliform
- 1366 *Sarcosuchus* from the Cretaceous of Africa. Science. 2001;294:1516–19.
- 1367 54. Ross JP. Crocodiles: Status survey and conservation action plan 2nd ed. Gland
- 1368 (Switzerland), Cambridge (UK): IUCN/SSC Crocodile Specialist Group; 1998.
- 1369 55. Grigg GC, Seebacher F, Franklin CE. Crocodilian Biology and Evolution.
- 1370 Chipping Norton: Surrey Beatty & Sons; 2001.
- 1371 56. McShea DW. Mechanisms of large scale evolutionary trends. Evolution.
- 1372 1994;48:1747–63.
- 1373 57. Felsenstein, J. Phylogenies and the comparative method. Am Nat. 1985;125:1–
 1374 15.
- 1375 58. Hansen TF. Stabilizing selection and the comparative analysis of adaptation.
 1376 Evolution; 1997;51:1341–51.
- 1377 59. Pennell MW, Harmon LJ. An integrative view of phylogenetic comparative
- 1378 methods: connections to population genetics, community ecology, and paleobiology.
- 1379 Ann NY Acad Sci. 2013;1289:90–105.
- 1380 60. MacFadden BJ. Fossil horses from "Eohippus" (*Hyracotherium*) to *Equus*:
- scaling, Cope's law, and the evolution of body size. Paleobiology. 1986;12:355–69.
- Butler MA, King AA. Phylogenetic comparative analysis: a modeling approach
 for adaptive evolution. Am Nat. 2004;164:683–95.

1384	62.	Hunt G, Carrano MT. Models and methods for analyzing phenotypic evolution
1385	in line	ages and clades. In: Alroy J, Hunt G, editors. Quantitative methods in

- 1386 Paleobiology. New Haven: The Paleontological Society Papers; 2010. p. 245–69.
- 1387 63. Hunt G. Measuring rates of phenotypic evolution and the inseparability of tempo
- 1388 and mode. Paleobiology. 2012;38:351–73.
- 1389 64. Slater GJ. Phylogenetic evidence for a shift in the mode of mammalian body size
- evolution at the Cretaceous Palaeogene boundary. Methods Ecol Evol. 2013;4:734–44.
- 1391 65. Slater GJ. Iterative adaptive radiations of fossil canids show no evidence for
- diversity-dependent trait evolution. Proc Natl Acad Sci USA. 2015;112:4897–902.
- 1393 66. Cooper N, Purvis A. Body size evolution in mammals: complexity in tempo and
 1394 mode. Am Nat. 2010;175:727–38.
- 1395 67. Sookias RB, Butler RJ, Benson RBJ. Rise of dinosaurs reveals major body-size
 1396 transitions are driven by passive processes of trait evolution. Proc R Soc B-Biol Sci.
 1397 2012;279:2180–7.
- 1398 68. Hunt G. Evolutionary patterns within fossil lineages: model-based assessment of

1399 modes, rates, punctuations and process. In: Bambach RK, Kelley PH, editors. From

1400 Evolution to geobiology: research questions driving Paleontology at the start of a new

- 1401 century. New Haven: The Paleontological Society Papers; 2008. p. 117–31.
- 1402 69. Hunt G. Gradual or pulsed evolution: when should punctuational explanations be1403 preferred? Paleobiology. 2008;34:360–77.

1 1

C . . .

1404	70. Hunt G, Hopkins MJ, Lidgard S. Simple versus complex models of trait
1405	evolution and stasis as a response to environmental change. Proc Natl Acad Sci USA.
1406	2015;112:4885–90.

10 0'

- 1407 71. Mahler DL, Ingram T. Phylogenetic comparative methods for studying clade-
- 1408 wide convergence. In: Garamszegi LZ, editor. Modern phylogenetic comparative
- 1409 methods and their application in evolutionary biology. Berlin: Springer; 2014. p. 425–
- 1410 50.

. . . .

.

1.

3 6T T 1

- 1411 72. Khabbazian M, Kriebel R, Rohe K, Ané C. Fast and accurate detection of
- 1412 evolutionary shifts in Ornstein–Uhlenbeck models. Methods Ecol Evol. 2016;7:811–24.

1413 73. Simpson GG. Tempo and mode in evolution. New York: Columbia University1414 Press; 1944.

- 1415 74. Simpson GG. Major features of evolution. New York: Columbia University1416 Press; 1953.
- 1417 75. Hansen TF. Adaptive landscapes and macroevolutionary dynamics. In: Svensson
 1418 E, Calsbeek R, editors. The adaptive landscape in evolutionary biology. Oxford: Oxford
 1419 University Press; 2012. p. 205–26.
- 1420 76. Arnold SJ. Phenotypic evolution: the ongoing synthesis (American Society of
 1421 Naturalists Address). Am Nat. 2014;183:729–46.
- 1422 77. Arnold SJ, Pfrender ME, Jones AG. The adaptive landscape as a conceptual
 1423 bridge between micro-and macroevolution. Genetica. 2001;112: 9–32.

1424	78.	Uyeda JC, Harmon LJ. A novel Bayesian method for inferring and interpreting
1425	the dyr	namics of adaptive landscapes from phylogenetic comparative data. Syst Biol.
1426	2014;6	3:902–18.

- 1427 79. Hansen TF, Martins EP. Translating between microevolutionary process and
- 1428 macroevolutionary patterns: the correlation structure of interspecific data. Evolution.

1429 1996;50:1404-17.

- 1430 80. Pagel M. Modelling the evolution of continuously varying characters on
- 1431 phylogenetic trees. In: MacLeod N, Forey PL, editors. Morphology, shape and
- 1432 phylogeny. London: Taylor & Francis; 2002. p. 269-86.

1433 81. Felsenstein J. Phylogenies and quantitative characters. Annu Rev Ecol Syst. 1434 1988;19:445–71.

1435 82. Beaulieu JM, Jhwueng DC, Boettiger C, O'Meara BC. Modeling stabilizing

- 1436 selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution.
- 2012;66:2369-83. 1437
- 83. 1438 Ingram T, Mahler DL. SURFACE: detecting convergent evolution from
- 1439 comparative data by fitting Ornstein Uhlenbeck models with stepwise Akaike
- 1440 Information Criterion. Methods Ecol Evol. 2013;4:416–25.
- 1441 84. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716-23. 1442
- 85. Mahler DL, Ingram T, Revell LJ, Losos JB. Exceptional convergence on the 1443 1444 macroevolutionary landscape in island lizard radiations. Science. 2013;341:292-5.

1445	86.	Davis AM.	Unmack PJ.	, Pusey BJ	, Pearson RG	, Morgan	DL. Evidence for a

- 1446 multi-peak adaptive landscape in the evolution of trophic morphology in terapontid
- 1447 fishes. Biol J Linnean Soc. 2014;113:623–34.
- 1448 87. Brocklehurst N. Rates and modes of body size evolution in early carnivores and
- 1449 herbivores: a case study from Captorhinidae. PeerJ. 2016;4: e1555.
- 1450 88. Young MT, Rabi M, Bell MA, Foffa D, Steel L, Sachs S, Peyer K. Big-headed
- 1451 marine crocodyliforms and why we must be cautious when using extant species as body
- length proxies for long-extinct relatives. Palaeontol Electron. 2016;19:1–14.
- 1453 89. Webb GJW, Messel H. Morphometric analysis of *Crocodylus porosus* from the
- north coast of Arnhem Land, northern Australia. Aust J Zool. 1978;26:1–27.
- 1455 90. Hall PM, Portier KM. Cranial morphometry of New Guinea crocodiles
- 1456 (*Crocodylus novaeguineae*): ontogenetic variation in relative growth of the skull and an
- assessment of its utility as a predictor of the sex and size of individuals. Herpetol
- 1458 Monogr. 1994;8:203–25.
- 1459 91. Hurlburt GR, Heckert AB, Farlow JO. Body mass estimates of phytosaurs
- 1460 (Archosauria: Parasuchidae) from the Petrified Forest Formation (Chinle Group:
- 1461 Revueltian) based on skull and limb bone measurements. New Mex Mus Nat Hist Sci
- 1462 Bull. 2003;24:105–13.
- 1463 92. Platt SG, Rainwater TR, Thorbjarnarson JB, Finger AG, Anderson TA,
- 1464 McMurry ST. Size estimation, morphometrics, sex ratio, sexual size dimorphism, and
- biomass of Morelet's crocodile in northern Belize. Caribb J Sci. 2009;45:80–93.

- 1466 93. Platt SG, Rainwater TR, Thorbjarnarson JB, Martin D. Size estimation,
- 1467 morphometrics, sex ratio, sexual size dimorphism, and biomass of *Crocodylus acutus* in
- the coastal zone of Belize. Salamandra. 2011;47:179–92.
- 1469 94. Bustard HR, Singh LAK. Studies on the Indian Gharial Gavialis gangeticus
- 1470 (Gmelin) (Reptilia, Crocodilia) I: Estimation of body length from scute length. Indian
- 1471 For. 1977;103:140–9.
- 1472 95. Farlow JO, Hurlburt GR, Elsey RM, Britton AR, Langston W. Femoral
- 1473 dimensions and body size of Alligator mississippiensis: estimating the size of extinct
- 1474 mesoeucrocodylians. J Vertebr Paleontol. 2005;25:354–69.
- 1475 96. Pol D, Leardi JM, Lecuona A, Krause M. Postcranial anatomy of Sebecus
- 1476 *icaeorhinus* (Crocodyliformes, Sebecidae) from the Eocene of Patagonia. J Vertebr
- 1477 Paleontol. 2012;32:328–54.
- 1478 97. Godoy PL, Bronzati M, Eltink E, Marsola JCA, Cidade GM, Langer MC,
- 1479 Montefeltro FC. Postcranial anatomy of Pissarrachampsa sera (Crocodyliformes,
- 1480 Baurusuchidae) from the Late Cretaceous of Brazil: insights on lifestyle and
- 1481 phylogenetic significance. PeerJ. 2016;4:e2075.
- 1482 98. Clark JM. Patterns of evolution in Mesozoic Crocodyliformes. In: Fraser NC,
- 1483 Sues HD, editors. In the shadow of the dinosaurs. early Mesozoic tetrapods. Cambridge:
- 1484 Cambridge University Press; 1994. p. 84–97.
- 1485 99. Pol D, Gasparini Z. Skull anatomy of *Dakosaurus andiniensis* (Thalattosuchia:
- 1486 Crocodylomorpha) and the phylogenetic position of Thalattosuchia. J Syst Palaeontol.

1487 2009;7:163–97.

1488 100. Wilberg EW. What's in an outgroup? The impact of outgroup choi	ce on th	ne
--	----------	----

- 1489 phylogenetic position of Thalattosuchia (Crocodylomorpha) and the origin of
- 1490 Crocodyliformes. Syst Biol. 2015;64:621–37.
- 1491 101. Herrera Y, Fernandez MS, Lamas SG, Campos L, Talevi M, Gasparini Z.
- 1492 Morphology of the sacral region and reproductive strategies of Metriorhynchidae: a
- 1493 counter-inductive approach. Earth Env Sci T R So Edinb. 2017;106:247–55.
- 1494 102. Jouve S, Iarochene M, Bouya B, Amaghzaz M. A new species of Dyrosaurus
- 1495 (Crocodylomorpha, Dyrosauridae) from the early Eocene of Morocco: phylogenetic
- 1496 implications. Zool J Linn Soc. 2006;148:603–56.
- 1497 103. Young MT, Andrade MB. What is *Geosaurus*? Redescription of *Geosaurus*
- 1498 giganteus (Thalattosuchia: Metriorhynchidae) from the Upper Jurassic of Bayern,
- 1499 Germany. Zool J Linn Soc. 2009;157:551–85.
- 1500 104. Montefeltro FC, Larsson HC, França MA, Langer MC. A new neosuchian with
- 1501 Asian affinities from the Jurassic of northeastern Brazil. Naturwissenschaften.
- 1502 2013;100:835–41.
- 1503 105. Turner AH. A review of Shamosuchus and Paralligator (Crocodyliformes,
- 1504 Neosuchia) from the Cretaceous of Asia. PLoS One. 2015;10:e0118116.
- 1505 106. Larsson HC, Sues HD. Cranial osteology and phylogenetic relationships of
- 1506 Hamadasuchus rebouli (Crocodyliformes: Mesoeucrocodylia) from the Cretaceous of
- 1507 Morocco. Zool J Linn Soc. 2007;149:533–67.

- 1508 107. Bapst DW. Preparing paleontological datasets for phylogenetic comparative
- 1509 methods. In: Garamszegi LZ, editor. Modern phylogenetic comparative methods and
- their application in evolutionary biology. Berlin: Springer; 2014. p. 515–44.
- 1511 108. Bapst DW. A stochastic rate a calibrated method for time scaling phylogenies
- 1512 of fossil taxa. Methods Ecol Evol. 2013;4:724–33.
- 1513 109. Bapst DW. Assessing the effect of time-scaling methods on phylogeny-based
- analyses in the fossil record. Paleobiology. 2014;40:331–51.
- 1515 110. Stadler T. Sampling-through-time in birth–death trees. J Theor Biol.
- 1516 2010;267:396–404.
- 1517 111. Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn
- 1518 AP. A total-evidence approach to dating with fossils, applied to the early radiation of
- 1519 the Hymenoptera. Syst Biol. 2012;61:973–99.
- 1520 112. Zhang C, Stadler T, Klopfstein S, Heath TA, Ronquist F. Total-evidence dating
- under the fossilized birth–death process. Syst Biol. 2015;65:228–49.
- 1522 113. Matzke NJ, Wright A. Inferring node dates from tip dates in fossil Canidae: the
- 1523 importance of tree priors. Biol Lett. 2016;12:20160328.
- 1524 114. Wright DF. Bayesian estimation of fossil phylogenies and the evolution of early
- to middle Paleozoic crinoids (Echinodermata). J Paleontol. 2017;91:799–814.
- 1526 115. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S,
- 1527 Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian
- 1528 phylogenetic inference and model choice across a large model space. Syst Biol.
- 1529 2012;61:539–42.

- 1530 116. Bapst DW. paleotree: an R package for paleontological and phylogenetic
- analyses of evolution. Methods Ecol Evol. 2012;3:803–07.
- 1532 117. Irmis RB, Nesbitt SJ, Sues HD. Early Crocodylomorpha. Geol Soc Spec Publ.
- 1533 2013;379:275–302.
- 1534 118. Ezcurra MD, Butler RJ. The rise of the ruling reptiles and ecosystem recovery
- 1535 from the Permo-Triassic mass extinction Proc R Soc B-Biol Sci. 2018;285:20180361.
- 1536 119. Bapst DW, Wright AM, Matzke NJ, Lloyd GT. Topology, divergence dates, and
- 1537 macroevolutionary inferences vary between different tip-dating approaches applied to
- 1538 fossil theropods (Dinosauria). Biol Lett. 2016;12:20160237.
- 1539 120. Lloyd GT, Bapst DW, Friedman M, Davis KE. Probabilistic divergence time
- 1540 estimation without branch lengths: dating the origins of dinosaurs, avian flight and
- 1541 crown birds. Biol Lett. 2016;12:20160609.
- 1542 121. R Core Team. R: a language and environment for statistical computing. Vienna:
- 1543 R Foundation for Statistical Computing; 2018. https://www.R-project.org/.
- 1544 122. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER:
- investigating evolutionary radiations. Bioinformatics. 2008;24:129–31.
- 1546 123. Sugiura N. Further analysts of the data by Akaike's information criterion and the
- 1547 finite corrections. Commun Stat–Theor M. 1978:7:13–26.
- 1548 124. Burnham KP, Anderson DR. Model selection and multimodel inference: a
- 1549 practical information-theoretic approach. 2nd ed. New York: Springer; 2002.

1550	125.	Blomberg SP,	Garland T.	Ives AR.	Testing	for phyl	ogenetic s	signal in
1000	120.	Diomicorg Dr,	Ouritaile I	, 1,00 1110	resents.	ioi pii ji	ogenere .	JISINGI III

- 1551 comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.
- 1552 126. Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL, Bryan Jennings
- 1553 W, Kozak KH, McPeek MA, Moreno-Roark F, Near TJ, et al. Early bursts of body size
- and shape evolution are rare in comparative data. Evolution. 2010;64:2385–96.
- 1555 127. Ho LST. Ané C. Intrinsic inference difficulties for trait evolution with
- 1556 Ornstein Uhlenbeck models. Methods Ecol Evol. 2014;5:1133–46.
- 1557 128. Cooper N, Thomas GH, Venditti C, Meade A, Freckleton RP. A cautionary note
- 1558 on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol J Linn Soc.
- 1559 2016;118:64–77.
- 1560 129. Clavel J, Escarguel G, Merceron G. mvMORPH: an R package for fitting
- 1561 multivariate evolutionary models to morphometric data. Methods Ecol Evol.
- 1562 2015;6:1311–9.
- 1563 130. Beaulieu JM, O'Meara BC. OUwie: Analysis of Evolutionary Rates in an OU
- 1564 Framework. R package version 1.50. 2016. https://CRAN.R-
- 1565 project.org/package=OUwie.
- 1566 131. Zachos JC, Dickens GR, Zeebe RE. An early Cenozoic perspective on
- 1567 greenhouse warming and carbon-cycle dynamics. Nature. 2008;451:279–83.
- 1568 132. Prokoph A, Shields GA, Veize, J. Compilation and time-series analysis of a
- 1569 marine carbonate δ^{18} O, δ^{13} C, 87 Sr/ 86 Sr and δ^{34} S database through Earth history. Earth–
- 1570 Sci Rev. 2008;87:113–33.

- 1571 133. Hunt G, Cronin TM, Roy K. Species–energy relationship in the deep sea: a test
- using the Quaternary fossil record. Ecol Lett. 2005;8:739–47.
- 1573 134. Marx FG, Uhen MD. Climate, critters, and cetaceans: Cenozoic drivers of the
- 1574 evolution of modern whales. Science. 2010;327:993–6.
- 1575 135. Benson RBJ, Butler RJ. Uncovering the diversification history of marine
- tetrapods: ecology influences the effect of geological sampling biases. Geol Soc Spec
- 1577 Publ. 2011;358:191–208.
- 1578 136. Wilberg EW, Turner AH, Brochu CA. Evolutionary structure and timing of
- 1579 major habitat shifts in Crocodylomorpha. Sci Rep. 2019;9:514.
- 1580 137. Martins EP, Hansen TF. Phylogenies and the comparative method: a general
- approach to incorporating phylogenetic information into the analysis of interspecific
- 1582 data. Am Nat. 1997;149:646–67.
- 1583 138. Pagel M. Inferring the historical patterns of biological evolution. Nature.
 1584 1999;401:877–84.
- 1585 139. Orme CDL, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W.
- 1586 CAPER: comparative analyses of phylogenetics and evolution in R. R package version
- 1587 1.0.1. 2018. https://CRAN.R-project.org/package=caper.
- 1588 140. Garland T, Dickerman AW, Janis CM, Jones JA. Phylogenetic analysis of
- 1589 covariance by computer simulation. Syst Biol. 1993;42:265–92.
- 1590 141. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: linear and
- 1591 nonlinear mixed effects models. R package version 3.1–131. 2017. https://CRAN.R-
- 1592 project.org/package=nlme.

- 1593 142. Revell LJ. phytools: an R package for phylogenetic comparative biology (and
- 1594 other things). Methods Ecol Evol. 2012;3:217–23.
- 1595 143. Foote M. Discordance and concordance between morphological and taxonomic1596 diversity. Paleobiology. 1993;19:185–204.
- 1597 144. Foote M. The evolution of morphological diversity. Annu Rev Ecol Syst.
- 1598 1997;28:129–52.
- 1599 145. Wills MA. Morphological disparity: a primer. In: Adrain JM, Edgecombe GD,
- 1600 Lieberman BS, editors. Fossils, phylogeny, and form. Boston: Springer; 2001. p. 55–
- 1601 144.
- 1602 146. Hopkins MJ, Gerber S. Morphological disparity. In: Nuño de la Rosa L, Müller
- 1603 GB, editors. Evolutionary Developmental Biology. Springer International Publishing;
 1604 2017. p. 1–12.
- 1605 147. Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel
- 1606 inference in behavioral ecology: some background, observations, and comparisons.
- 1607 Behav Ecol Sociobiol. 2011;65:23–35.
- 1608 148. Marinho TS, Carvalho IS. An armadillo-like sphagesaurid crocodyliform from
- the Late Cretaceous of Brazil. J S Am Earth Sci. 2009;27:36–41.
- 1610 149. Young MT, Tennant JP, Brusatte SL, Challands TJ, Fraser NC, Clark ND, Ross,
- 1611 DA. The first definitive Middle Jurassic atoposaurid (Crocodylomorpha, Neosuchia),
- and a discussion on the genus Theriosuchus. Zool J Linn Soc. 2016;176:443–62.
- 1613 150. Brochu CA. A new alligatorid from the lower Eocene Green River Formation of
- 1614 Wyoming and the origin of caimans. J Vertebr Paleontol. 2010;30:1109–26.

1615 151. Van Valen L. Adaptive zones and the orders of mammals. Evolution.

1616 1971;25:420–8.

- 1617 152. Landis MJ, Schraiber JG. Pulsed evolution shaped modern vertebrate body sizes.
- 1618 Proc Natl Acad Sci USA. 2017;114:13224–9.
- 1619 153. Slater GJ, Pennell MW. Robust regression and posterior predictive simulation
- increase power to detect early bursts of trait evolution. Syst Biol. 2013;63:293–308.
- 1621 154. Downhower JF, Blumer LS. Calculating just how small a whale can be. Nature.1622 1988;335:675.
- 1623 155. Williams TM. The evolution of cost efficient swimming in marine mammals:

limits to energetic optimization. Philos Trans R Soc Lond B-Biol Sci. 1999;354:193–

1625 201.

- 1626 156. Vermeij GJ. Gigantism and its implications for the history of life. PLoS One.1627 2016;11:e0146092.
- 1628 157. Ahlborn BK, Blake RW. Lower size limit of aquatic mammals. Am J Phys.
 1629 1999;67:920–2.
- 1630 158. Smith EN. Heating and cooling rates of the American alligator, *Alligator*
- 1631 *mississippiensis*. Physiol Zool. 1976;49:37–48.
- 1632 159. Zanno LE, Drymala S, Nesbitt SJ, Schneider VP. Early crocodylomorph
- 1633 increases top tier predator diversity during rise of dinosaurs. Sci Rep. 2015;5:9276.
- 1634 160. Sookias RB, Benson RBJ, Butler RJ. Biology, not environment, drives major
- 1635 patterns in maximum tetrapod body size through time. Biol Lett. 2012;8:674–7.

- 1636 161. Huttenlocker AK. Body size reductions in nonmammalian eutheriodont
- therapsids (Synapsida) during the end-Permian mass extinction. PLoS One.
- 1638 2014;9:e87553.
- 1639 162. Linnert C, Robinson SA, Lees JA, Bown PR, Pérez-Rodríguez I, Petrizzo MR,
- 1640 Falzoni F, Littler K, Arz JA, Russell EE. Evidence for global cooling in the Late
- 1641 Cretaceous. Nat Commun. 2014;5:4194.
- 1642 163. Alroy J. A multispecies overkill simulation of the end-Pleistocene megafaunal
- 1643 mass extinction. Science. 2001;292:1893–6.
- 1644 164. Johnson CN. Determinants of loss of mammal species during the Late
- 1645 Quaternary 'megafauna' extinctions: life history and ecology, but not body size. Proc R
- 1646 Soc B-Biol Sci. 2002;269:22213–7.
- 1647 165. Fisher DO, Owens IP. The comparative method in conservation biology. Trends
- 1648 Ecol Evol. 2004;19:391–8.
- 1649 166. Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds OR, Sechrest W,
- 1650 Orme CDL, Purvis A. Multiple causes of high extinction risk in large mammal species.
- 1651 Science. 2005;309:1239–41.
- 1652 167. Clauset A, Erwin DH. The evolution and distribution of species body size.
- 1653 Science. 2008;321:399–401.
- 1654 168. Purvis A, Gittleman JL, Cowlishaw G, Mace GM. Predicting extinction risk in
 1655 declining species. Proc R Soc B-Biol Sci. 2000;267:1947–52.
- 1656 169. Van Valkenburgh B, Wang X, Damuth J. Cope's rule, hypercarnivory, and
 1657 extinction in North American canids. Science. 2004;306:101–4.

1658 170. Tennant JP, Mannion PD, Upchurch P. Environmental drivers of crocc	crocodvlifor	s of crocody	drivers of	. Environmental	bchurch P.	. U	. Mannion PD.	nant JP	Tenna	1/0.	1658
--	--------------	--------------	------------	-----------------	------------	-----	---------------	---------	-------	------	------

- 1659 extinction across the Jurassic/Cretaceous transition. Proc R Soc B-Biol Sci.
- 1660 2016;283:20152840.
- 1661 171. Tennant JP, Mannion PD, Upchurch P. Sea level regulated tetrapod diversity
- 1662 dynamics through the Jurassic/Cretaceous interval. Nat Commun. 2016;7:12737.
- 1663 172. Tennant JP, Mannion PD, Upchurch P, Sutton MD, Price GD. Biotic and
- 1664 environmental dynamics through the Late Jurassic–Early Cretaceous transition:
- 1665 evidence for protracted faunal and ecological turnover. Biol Rev. 2017;92:776–814.
- 1666 173. Fanti F, Miyashita T, Cantelli L, Mnasri F, Dridi J, Contessi M, Cau A. The
- 1667 largest thalattosuchian (Crocodylomorpha) supports teleosaurid survival across the
- 1668 Jurassic-Cretaceous boundary. Cretaceous Res. 2016;61:263–74.
- 1669 174. Benson RBJ, Mannion PD, Butler RJ, Upchurch P, Goswami A, Evans SE.
- 1670 Cretaceous tetrapod fossil record sampling and faunal turnover: implications for
- biogeography and the rise of modern clades. Palaeogeogr Palaeocl. 2013;372:88–107.
- 1672 175. Carvalho IS, Gasparini ZB, Salgado L, Vasconcellos FM, Marinho TS. Climate's
- 1673 role in the distribution of the Cretaceous terrestrial Crocodyliformes throughout
- 1674 Gondwana. Palaeogeogr Palaeocl. 2010;297:252–62.
- 1675 176. Pol D, Leardi JM. Diversity patterns of Notosuchia (Crocodyliformes,
- 1676 Mesoeucrocodylia) during the Cretaceous of Gondwana. In: Fernández M, Herrera Y,
- 1677 editors. Reptiles Extintos–Volumen en Homenaje a Zulma Gasparini. Buenos Aires:
- 1678 Asociación Paleontológica Argentina; 2015. p. 172–86

- 1679 177. Brochu CA. Phylogenetic approaches toward crocodylian history. Annu Rev
- 1680 Earth Pl Sc. 2003;31:357–97.
- 1681 178. Ösi A. The evolution of jaw mechanism and dental function in heterodont
- 1682 crocodyliforms. Hist Biol. 2014;26:279–414.
- 1683 179. Pol D, Nascimento PM, Carvalho AB, Riccomini C, Pires-Domingues RA,
- 1684 Zaher H. A new notosuchian from the Late Cretaceous of Brazil and the phylogeny of
- advanced notosuchians. PLoS One. 2014;9:e93105.
- 1686 180. Russell AP, Wu X. The Crocodylomorpha at and between geological
- 1687 boundaries. Zoology. 1997;100:164–82.
- 1688 181. Jouve S, Bardet N, Jalil NE, Suberbiola XP, Bouya, Amaghzaz, M. The oldest
- 1689 African crocodylian: phylogeny, paleobiogeography, and differential survivorship of
- 1690 marine reptiles through the Cretaceous-Tertiary boundary. J Vertebr Paleontol.
- 1691 2008;28:409–21.
- 1692 182. Wilson GP. Mammals across the K/Pg boundary in northeastern Montana, USA:
- 1693 dental morphology and body-size patterns reveal extinction selectivity and immigrant-
- 1694 fueled ecospace filling. Paleobiology. 2013;39:429–69.
- 1695 183. Longrich NR, Bhullar BAS, Gauthier JA. Mass extinction of lizards and snakes
- at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci USA. 2012;109:21396–401.
- 1697
- 1698
- 1699
- 1700
- 1701

1702 Figure legends

1704 **Fig. 1**

- 1705 Simplified cladogram showing the phylogenetic relationships among crocodylomorphs
- and the alternative positions of Thalattosuchia (dashed red lines), following hypotheses
- proposed by [34, 35, 109, 113, 115]. Silhouettes are from phylopic.org.

1708

1709 **Fig. 2**

- 1710 (a and b) Boxplots showing AICc scores of the evolutionary models fitted to
- 1711 crocodylomorph phylogeny and body size data (using 20 trees time-calibrated with the
- 1712 FBD method). Results shown for two cranial measurements datasets: ODCL (a) and
- 1713 DCL (b). For the trend-like models, only the AICc of the best model ("best trend") is
- shown. See Additional files 1 and 3 for further results. (c-e) Comparative results of
- 1715 evolutionary models fitted to simulated data (under Brownian Motion) and our
- 1716 empirical body size data (using the ODCL dataset). Data was simulated for 20
- 1717 crocodylomorph time-scaled trees, and the same trees were used for fitting the
- 1718 evolutionary models. $c \Delta$ -AICc is the difference between AICc scores received by BM
- and SURFACE models. d Number of regime shifts detected by the SURFACE
- algorithm. **e** Values of α estimated by the SURFACE algorithm. Results shown for
- 1721 simulated and empirical data.
- 1722

1723 Fig. 3

- 1724 SURFACE model fit (using pBIC searches in the backward-phase) of tree number 2
- among crocodylomorph topologies with Thalattosuchia placed within Neosuchia, using
- the ODCL dataset and time-calibrated with the FBD method. Attraction to unrealized

1727	low or high trait optima are highlighted in blue and red, respectively. Model fits of trees
1728	sharing the same position of Thalattosuchia show very similar regime configurations,
1729	regardless of the dataset used (ODCL or DCL) and the time-calibration method (see
1730	Additional file 4 for all SURFACE plots).
1731	
1732	Fig. 4
1733	(a) SURFACE model fit (using pBIC searches in the backward-phase) of tree number
1734	18 among crocodylomorph topologies with Thalattosuchia placed within Neosuchia,
1735	using the ODCL dataset and time-calibrated with the FBD method. Attraction to
1736	unrealized low or high trait optima are highlighted in blue and red, respectively. (b)
1737	Simplified version of \mathbf{a} , with independent multi-taxon regimes collapsed to single
1738	branches.
1739	
1740	Fig. 5
1741	SURFACE model fits of trees time-calibrated with the FBD method, using the ODCL
1742	dataset. (a) Model fit of tree number 17 with Thalattosuchia as the sister group of
1743	Crocodyliformes. Some model fits of trees sharing this same position of Thalattosuchia
1744	show simpler model configurations, with significantly fewer regimes (see text for
1745	details and Additional file 4 for all SURFACE plots). (b) Model fit of tree number 18
1746	with Thalattosuchia as the sister group of Mesoeucrocodylia. (c and d) Simplified
1747	versions of a and b , respectively, with independent multi-taxon regimes collapsed to
1748	single branches.
1749	
1750	

1752	Fig.	6

1753 AICc scores of all evolutionary models fitted to the phylogenies and body size data of

1754 Crocodylia (top) and Notosuchia (bottom). For the trend-like models, only the AICc of

the best model ("best trend") is shown.

1756

1757 Fig. 7

1758 Crocodylomorph body size through time, with colours representing different mono- or

1759 paraphyletic (i.e., Crocodylomorph = non-mesoeucrocodylian crocodylomorphs,

1760 excluding Thalattosuchia; Neosuchia = non-crocodylian neosuchians) crocodylomorph

1761 groups. Body size represented by log_{10} ODCL (orbito-cranial dorsal length) in

1762 millimetres. (a) Phenogram with body size incorporated into crocodylomorph

1763 phylogeny. (b) Palaeolatitudinal distribution of extinct crocodylomorphs through time,

1764 incorporating body size information (i.e., different-sized circles represent variation in

1765 body size).

1766

1767 Fig. 8

1768 (a) Crocodylomorph body size and palaeotemperature through time. Mean log_{10} ODCL

1769 represented by dashed black line, shaded polygon shows maximum and minimum

1770 values for each time bin. Continuous light green displays mean log_{10} ODCL values only

1771 for Crocodylia. Palaeotemperature (δ^{18} O) illustrated by red line (data from [132]). (**b**)

1772 Body size disparity through time. Disparity is represented by the standard deviation of

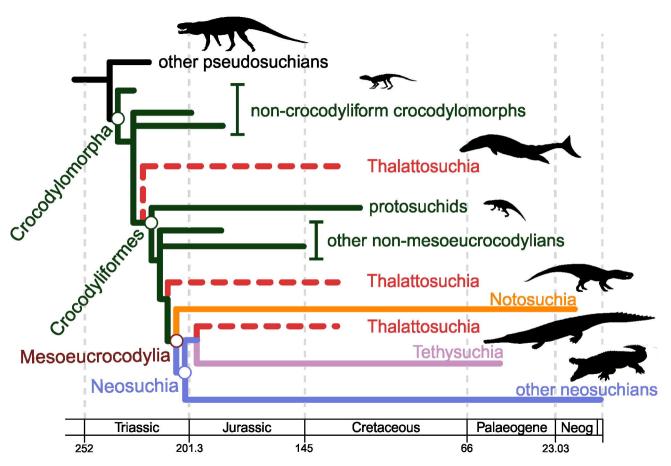
1773 \log_{10} ODCL values for each time bin (only time bins with more than 3 taxa were used

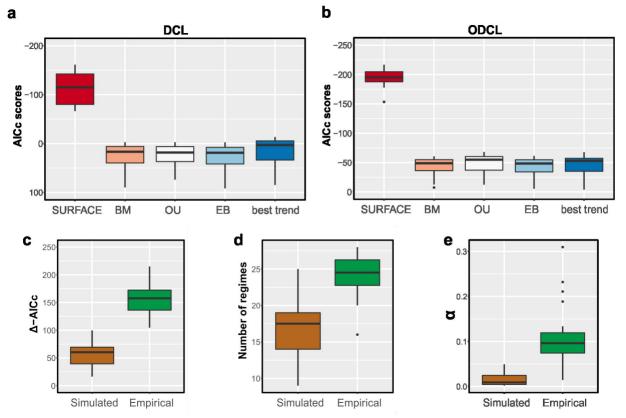
1774 for calculating disparity). Error bars are accelerated bias-corrected percentile limits

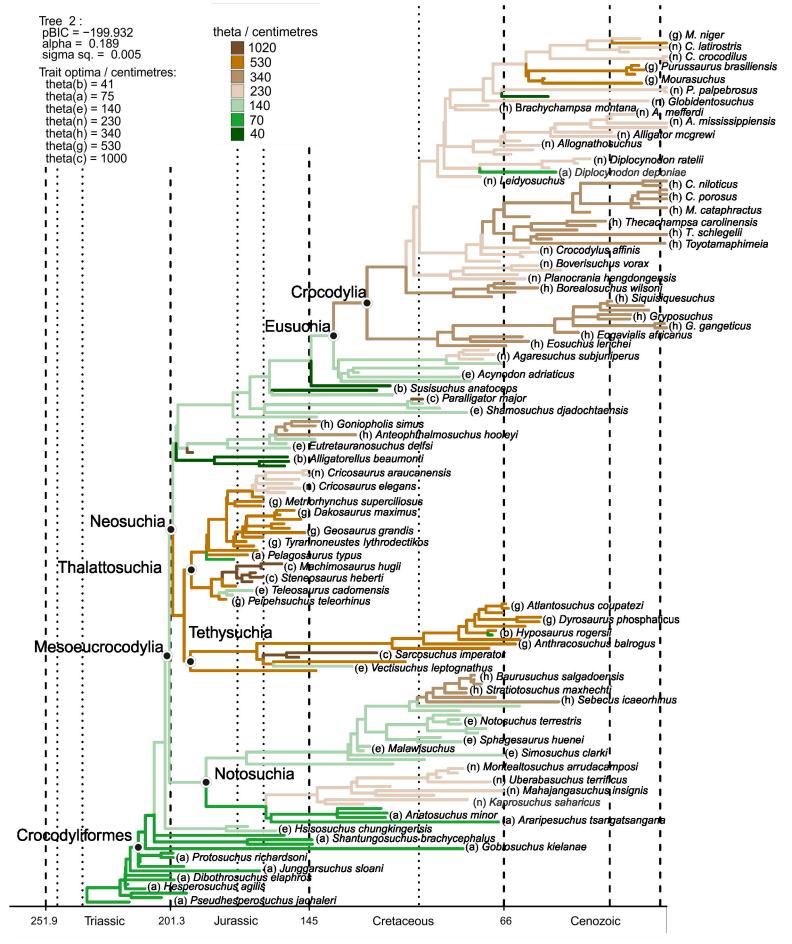
1775 (BCa) of disparity from 1,000 bootstrapping replicates. Asterisks mark the events of

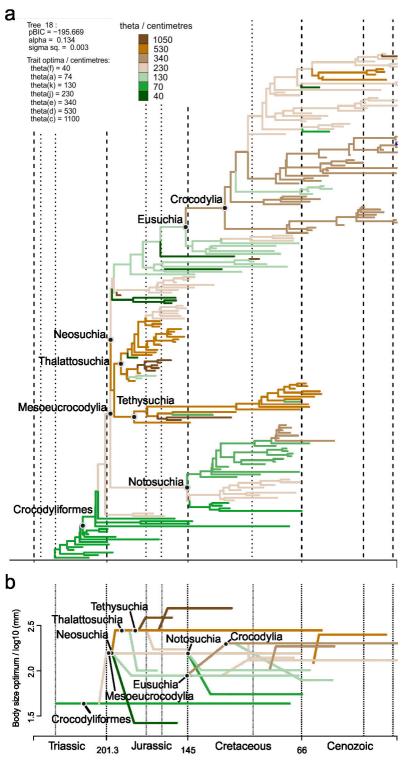
1776 largest interval-to-interval changes in disparity.

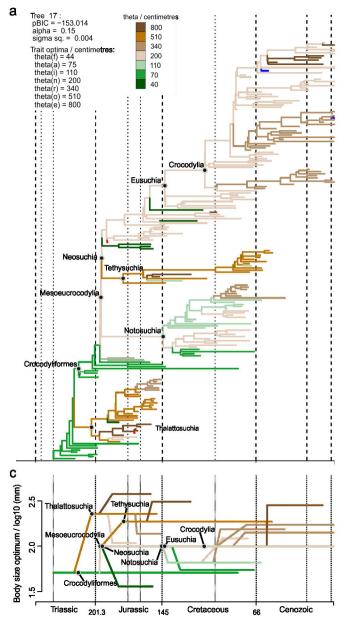
75

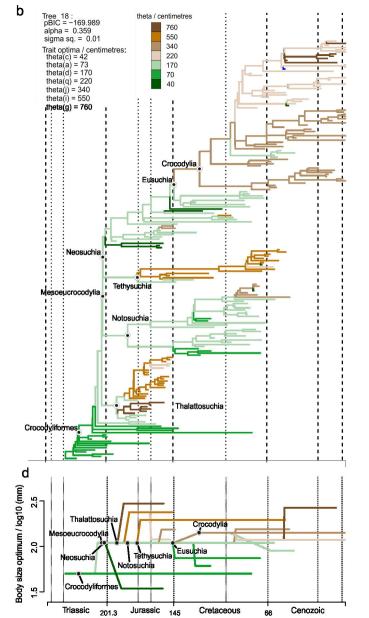

1777

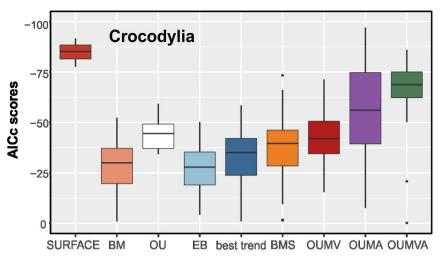

Fig. 9
Fig. 9

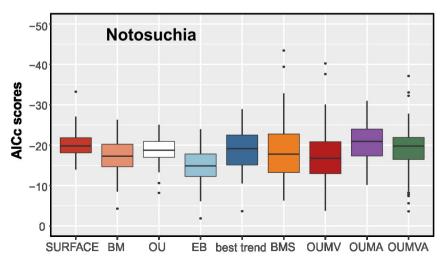

1779	Summary of our SURFACE results combined with the crocodylomorph diversification
1780	shifts found by Bronzati et al. [35]. Nodes with diversification shifts are indicated by
1781	arrows, the colours of which represent distinct trait optima values (total body length in
1782	centimetres, after applying formula from [91]), of different body size regimes. Black
1783	arrows indicate nodes for which diversification shifts were identified, but no body size
1784	regime shift was found by any of our SURFACE model fits.
1785	
1786	Fig. 10
1787	(a) Body size frequency distributions of different crocodylomorph groups (mono- or
1788	paraphyletic), constructed using the full set of 240 specimens in the ODCL dataset.
1789	Underlying unfilled bars represent values for all crocodylomorphs. Filled bars represent
1790	values for Crocodylia, Notosuchia, Thalattosuchia, non-mesoeucrocodylian
1791	crocodylomorphs (excluding thalattosuchians), Tethysuchia and non-crocodylian
1792	neosuchians (excluding tethysuchians and thalattosuchians). (b) Body size distributions
1793	of different crocodylomorph lifestyles, shown with box-and-whisker plots (on the left)
1794	and a mosaic plot (on the right). The 195 species from the ODCL dataset were
1795	subdivided into terrestrial, semi-aquatic/freshwater and aquatic/marine categories (N =
1796	45, 100 and 50, respectively) based on the literature. Body size is represented by log_{10}
1797	cranial length (ODCL, orbito-cranial length, in millimetres).
1798	
1799	Fig. 11
1800	Distribution of regime shifts represented by the difference between descendant and
1800	Distribution of regime shifts represented by the difference between descendar

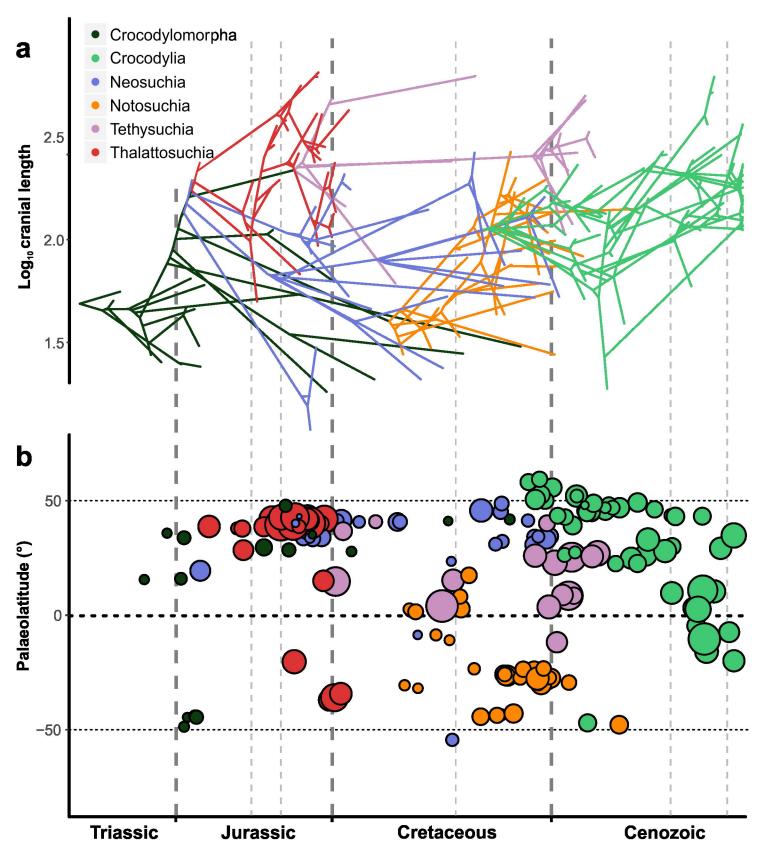

ancestral regimes trait optima values (θ) plotted against the θ of the ancestral regime.

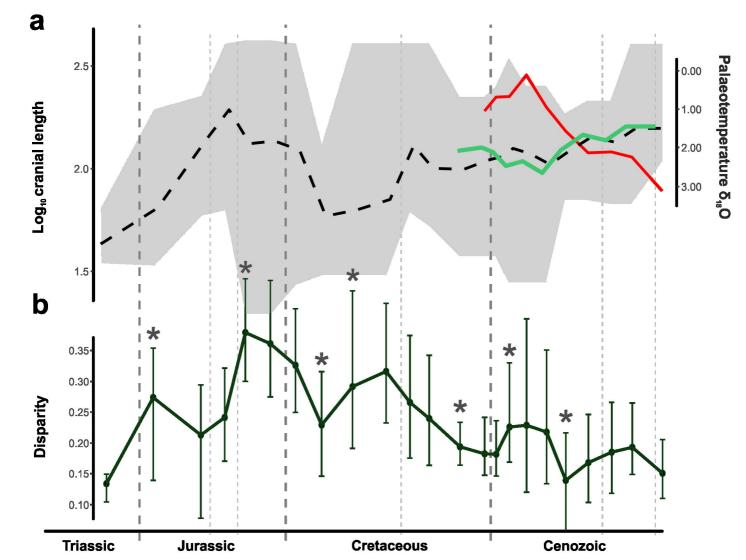

1802	Large red circles represent shifts that led to clades containing multiple taxa, while
1803	smaller pink circles represent "singleton" regimes, containing only single taxa. Vertical
1804	dashed line indicates the ancestral regime for all crocodylomorphs (Z_0), while horizontal
1805	dashed line can be used as a reference to identify regime shifts giving rise to larger
1806	(circles above the line) or smaller-bodied (circles below the line) descendants. Circles at
1807	the exact same position (i.e., shifts with the same θ values for both ancestral and
1808	descendant regimes) were slightly displaced in relation to one another to enable
1809	visualization. This plot was constructed using the θ values from trees with different
1810	positions of Thalattosuchia: (a) Tree number 2, with Thalattosuchia within Neosuchia;
1811	(b) Tree number 17, with Thalattosuchia as the sister group of Crocodyliformes; (c)
1812	Tree number 18, with Thalattosuchia as the sister group of Mesoeucrocodylia. θ values
1813	in log_{10} mm, relative to the cranial measurement ODCL (orbito-cranial dorsal length).

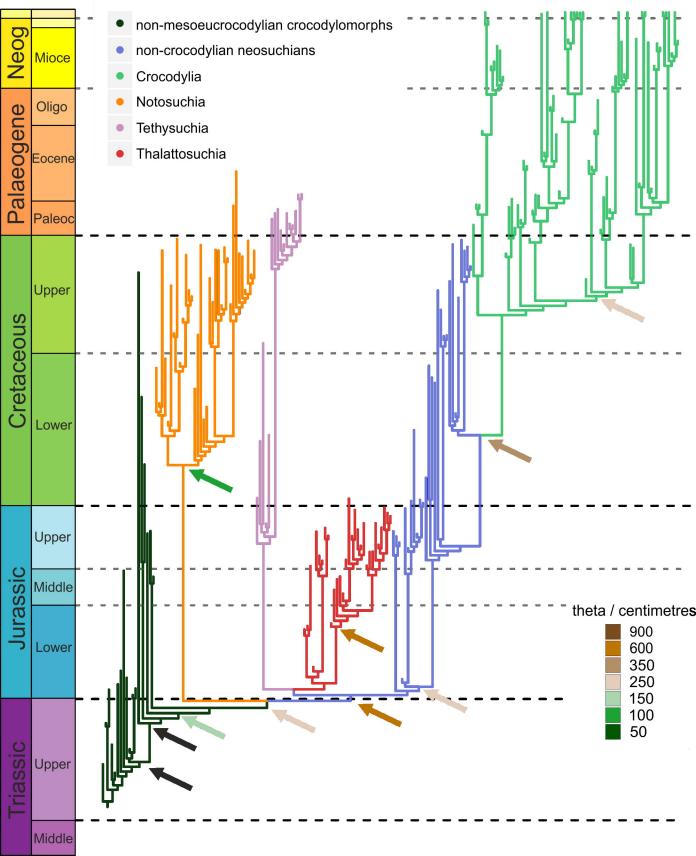


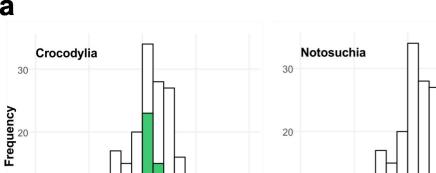


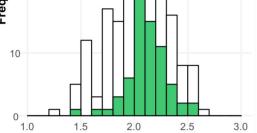


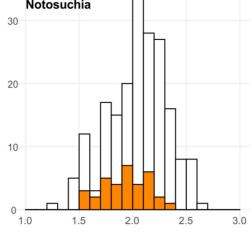


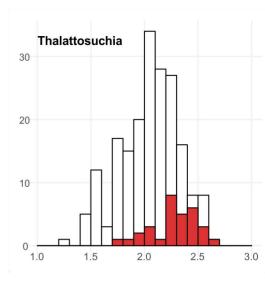


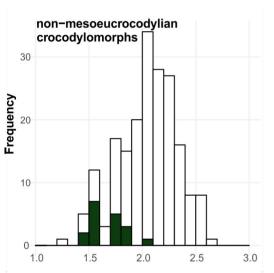


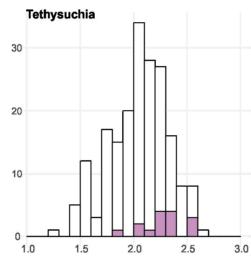


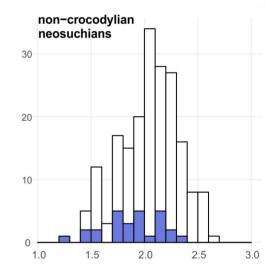


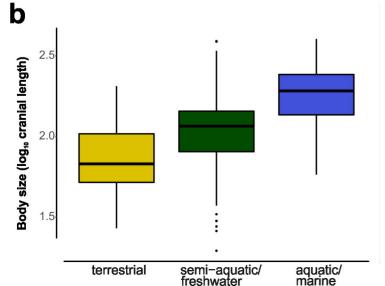


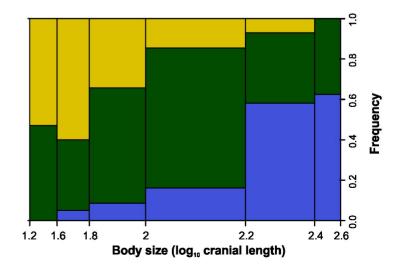


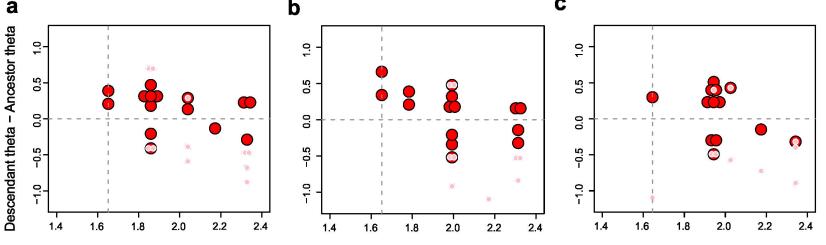












Ancestor theta

С

The multi-peak adaptive landscape of crocodylomorph body size evolution

Pedro L. Godoy, Roger B. J. Benson, Mario Bronzati & Richard J. Butler

Additional file 1

Supplementary methods

Proxy for total body length

Equations based on modern species, using either cranial (e.g., Webb & Messel, 1978; Hall & Portier, 1994; Sereno *et al.*, 2001, Hurlburt *et al.*, 2003; Platt *et al.*, 2009; 2011) or postcranial measurements (e.g., Bustard & Singh, 1977; Farlow *et al.*, 2005), have predominantly been used for estimating total body size of extinct crocodylomorph species. Although some of these approaches have been claimed to work well when applied to extinct taxa (e.g., Farlow *et al.*, 2005), they are expected to be less accurate for extinct species that have different body proportions to those of extant species (e.g., Pol *et al.*, 2012; Young *et al.*, 2011; 2016; Godoy *et al.*, 2016; but see Figure S1). An alternative approach that has been suggested is to use clade-specific equations that are derived from regressions using fossil specimens with complete skeletons preserved, such as the recently proposed equations for estimating body length in the highly specialised marine clade Thalattosuchia (Young *et al.*, 2011; 2016). Nevertheless, using this approach for the entire Crocodylomorpha would require numerous different equations and, consequently, complete specimens for all desired subclades.

Furthermore, Campione & Evans (2012) demonstrated a universal scaling relationship between proximal (stylopodial) limb bone circumferences and the body masses of terrestrial tetrapods. For instance, their equations, using both femur and humerus circumference, have been applied to estimate body mass of fossil dinosaurs (e.g., Benson *et al.* 2014; 2018; Carballido *et* *al.*, 2017). However, due to a historical neglect of crocodylomorph postcranial anatomy, especially for Mesozoic taxa (Godoy *et al.*, 2016), relatively less information is available on this part of the skeleton. Based on data collected for the present study, total or partial skull lengths (i.e., complete skulls or lacking only the snouts) can be measured in fossil specimens of approximately 50% of crocodylomorph species, whereas femoral and humeral shaft circumferences or lengths can only be measured in 35% of species. This greatly reduces the number of taxa that can be sampled and limits the utility of using postcranial elements as a proxy for body size. Similar problems exist for other methods, such as the "Orthometric Linear Unit" proposed by Romer & Price (1940) that uses dorsal centrum cross section (Currie, 1978), as well as volumetric reconstructions (e.g., Colbert, 1962; Hurlburt, 1999; Motani, 2001; Bates *et al.*, 2009; Sellers *et al.*, 2012), since relatively complete postcranial specimens are required.

Thus, aiming for a proxy (or proxies) for total body size that could maximised sample size (for a study encompassing the entire evolutionary history of Crocodylomorpha), we decided to use two cranial measurements: total dorsal cranial length (DCL) and dorsal orbito-cranial length (ODCL), which is measured from the anterior margin of the orbit to the posterior margin of the skull. By using actual cranial measurements, rather than estimated total body length, we avoid the addition of possible errors to our model-fitting analyses (Figure S1). Furthermore, the range of body sizes among living and extinct crocodylomorphs is considerably greater than variation among size estimates for single species. Therefore, we expect to recover the most important macroevolutionary body size changes in our analyses even when using only cranial measurements.

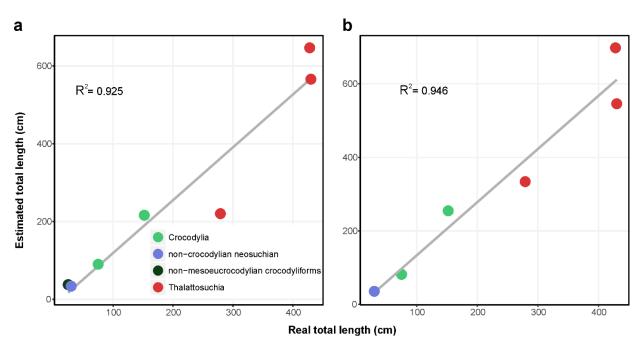


Figure S1. Expected error for total body length estimated from cranial measurements. Real total body length, measured from some complete fossil crocodylomorph specimens, is plotted against total length estimated from the cranial measurements DCL (**a**) and ODCL (**b**) (equations from Hurlburt *et al.*, 2003), exemplifying the amount of error expected when using cranial measurements to estimate total body length of crocodylomorphs. R^2 value illustrates the strength of the correlation between real and estimated total lengths. Colours represent different mono- or paraphyletic crocodylomorph groups. See Table S1 for information on the specimens used for the construction of these plots.

Table S1. List of fossil specimens with complete skeleton preserved which data was used for creating Figure S1 of the manuscript. "DCL" is the total length estimated using the cranial measurement dorsal cranial length, "ODCL" is the total length estimated when using dorsal orbito-cranial length, and "Real TL" is the real total body length measured from the specimen. All measurements in centimetres.

Species (specimen)	DCL	ODCL	Real TL	Source of information
Shantungosuchus chuhsienensis (IVPP V2484)	37.66	N/A	25	First-hand observation
Alligatorellus beaumonti (BSPG 1937 I 26)	33.77	35.72	30	First-hand observation
Diplocynodon ratelii (MNHN.F SG 13728ab)	216.15	254.74	152	First-hand observation
Diplocynodon darwini (HLMD-Me 10262)	90.02	81.86	75	First-hand observation
Platysuchus multiscrobiculatus (SMNS 9930)	220.22	334.08	279	Young <i>et al.</i> (2016)
Steneosaurus bollensis (SMNS 54063)	565.97	545.90	430	Young <i>et al.</i> (2016)
Steneosaurus leedsi (NHMUK R 3806)	646.58	698.01	428	Young <i>et al.</i> (2016)

Supertree construction and alternative topologies

The supertree used as the phylogenetic framework for the macroevolutionary analyses was constructed using an informal approach. For such, we started with the MRP (matrix representations with parsimony) supertree of Bronzati *et al.* (2015), and then used some recently published phylogenetic hypotheses to create and updated version, by manually modifying the tree using the software Mesquite (Version 3.51; Maddison & Maddison, 2018). For this updated version, we added some taxa, removed others, and also changed the position of a few more, always aiming to include as many species as possible (especially the ones for which we had body size data available), but also to incorporate more well-resolved relationships from recent studies.

The supertree presented by Bronzati *et al.* (2015) is restricted to Crocodyliformes, which is less inclusive than Crocodylomorpha. Thus, we added non-crocodyliform crocodylomorphs taxa following the phylogenetic hypotheses presented by Pol *et al.* (2013) and Leardi *et al.* (2017). Within Crocodyliformes, as in Bronzati *et al.* (2015) and other recent studies (e.g., Andrade *et al.*, 2011; Montefeltro *et al.*, 2013; Pol *et al.*, 2014; Turner & Pritchard, 2015; Buscalioni, 2017), taxa classically associated to "Protosuchia" are paraphyletic arranged in relation to Mesoeucrocodylia, with smaller subgroups displayed following Bronzati *et al.* (2015) (but see below for differences in this region of the tree in the alternative topologies). Accordingly, *Hsisosuchus* is the sister-group of Mesoeucrocodylia (as in Clark, 2011, Pol *et al.*, 2014; Buscalioni, 2017) and the following groups represent taxa successively more distant to Mesoeucrocodylia: Shartegosuchidae (following Clark 2011); an unnamed clade composed by taxa such as *Sichuanosuchus* and *Shantungosuchus*; an unnamed clade composed by *Zaraasuchus* and *Gobiosuchus* (following Pol *et al.*, 2014); Protosuchidae (following Clark 2011); Potosuchidae (f

Within Mesoeucrocodylia, Notosuchia corresponds to the sister group of all the other mesoeucrocodylians (= Neosuchia in our topology), similar to what is presented by Andrade *et al.* (2011), Pol *et al.* (2014), and Turner & Pritchard (2015). Yet, Notosuchia comprises forms such as baurusuchids, sebecosuchians, peirosaurids, sphagesaurids, uruguaysuchids, and *Araripesuchus*. The relationships among taxa within Notosuchia follow the general arrangement presented by Pol *et al.* (2014).

One of the branches at the basal split of Neosuchia leads to a clade composed by longirostrine forms, which includes Thalattosuchia and Tethysuchia (i.e. Dyrosauridae and "pholidosaurids"). Arrangement between these groups (i.e. sister-group relationship between Thalattosuchia and Tethysuchia) follows that recovered in the supertree of Bronzati *et al.* (2015). Within Tethysuchia, "pholidosaurids" are paraphyletic in relation to Dyrosauridae (also found in Pol *et al.*, 2014; Young *et al.*, 2017 and Meunier & Larsson, 2017). Relationships among Dyrosauridae follow Hastings *et al.* (2015). Relationships among thalattosuchians follow Young (2014) and Herrera *et al.* (2015).

The sister-group of the longirostrine clade mentioned above contains Eusuchia and its closest relatives such as Atoposauridae and Goniopholididae. The latter is depicted as the sister group of Eusuchia, whereas the former corresponds to the sister group of Eusuchia + Goniopholididae. This arrangement follows that recovered in Pol *et al.* (2014) and Bronzati *et al.* (2015). Regarding the internal relationships of Goniopholididae, we follow the hypotheses of Martin *et al.* (2016) and Ristevski et al. (2018). For Atoposauridae, we follow the arrangements presented by Tennant *et al.* (2016) and Schwarz *et al.* (2017). For Paralligatoridae and Susisuchidae, we followed the phylogenetic hypotheses of Turner (2015) and Turner & Pritchard (2015).

In relation to non-crocodylian eusuchians, we mainly follow the topology of Bronzati *et al.* (2015), with modifications to accommodate the arrangements proposed by Turner (2015) and Turner & Pritchard (2015) within Paralligatoridae and Susisuchidae. Regarding the interrelationships of the crown-group, as well as the position of Hylaeochampsidae + Allodaposuchidae as the sister group of Crocodylia, we follow the topology of Narváez *et al.* (2015). For the relationships within the crown-group, we follow Brochu (2012), Brochu *et al.* (2012), Scheyer *et al.* (2013) and Narváez *et al.* (2015).

Additionally, two alternative topologies were also manually constructed, for testing the impact of alternative positions of Thalattosuchia. The "longirostrine problem", which mostly concerns the position of Thalattosuchia, has been largely debated in phylogenetic studies of Crocodylomorpha (e.g., Clark, 1994; Pol & Gasparini, 2009; Wilberg, 2015). Because of the possible impact that a group like Thalattosuchia (i.e. of relatively old origin and many species within it) can inflict in our model-fitting analyses, we built two alternative trees to test the effects related to this phylogenetic uncertainty. Apart from the position of Thalattosuchia described above (within Neosuchia), two main alternative scenarios for the position of the group within Crocodylomorpha were proposed (see Wilberg, 2015). The first places Thalattosuchia as the sister group of all other mesoeucrocodylians (= Notosuchia + Neosuchia) (e.g., Larsson & Sues, 2007; Montefeltro *et al.*, 2013), and was depicted in one of our alternative topologies. The other alternative topology places Thalattosuchia as the sister group of Crocodyliformes (following Wilberg, 2015). Only the position of Thalattosuchia has been altered in these alternative topologies. Relationships among other taxa, including the relationship among thalattosuchians, were kept as in the first topology, described above.

Additional time-scaling methods

For time-calibrating our trees, apart from the Bayesian tip-dating approach, we also used three different *a posteriori* time-scaling (APT) methods: the minimum branch length (*mbl*), the *cal3* and the *extended Hedman* methods. These methods were used only for the initial model comparison.

For these methods, ages (first and last occurrence dates) were initially obtained from the Paleobiology Database, but were then checked using primary sources in the literature (see Additional file 6 for ages of all taxa). To accommodate uncertainties related to the ages of terminal taxa (i.e., most taxon ages are based on single occurrences, known only within rather imprecise bounds), we treated these first and last occurrences dates as maximum and minimum possible ages and drew terminal dates for time-calibration from a uniform distribution between these.

First, the *mbl* method (Laurin, 2004), which requires a minimum branch duration to be set *a priori*, to avoid the presence of undesirable and unrealistic zero-length branches (Bapst, 2014*a*, *b*). For our analyses, the minimum of 1 Myr was set.

Second, the *cal3* method, which is a stochastic calibration method that requires estimates of sampling and diversification (branching and extinction) rates to draw likely divergence dates under a birth–death-sampling model (Bapst, 2014; Lloyd *et al.*, 2016). The fact that most crocodylomorph taxa are singletons (i.e., very few genera or species have multiple occurrences in different time intervals) prevented us from directly calculating speciation, extinction and sampling rates needed as inputs to the *cal3* method. Thus, when using this time-scaling method for our analyses, we adopted the same rates estimated for dinosaurs in Lloyd *et al.* (2016) (i.e., extinction and speciation rates = 0.935; sampling rate = 0.018), which used the apparent range-frequency distribution of dinosaurs in the Paleobiology Database for these estimates. Although

essentially different from that of dinosaurs, the crocodylomorph fossil record is arguably comparable enough to result in similar rates (i.e., in both groups, many species are based on only single occurrences, having therefore no meaningful range data; Benson *et al.*, 2018), and *a posteriori* comparison to other time-scaling methods demonstrated that results were qualitatively reasonable.

Finally, the *extended Hedman* method was proposed by Lloyd *et al.* (2016), and is expansion of the approach presented by Hedman (2010). It is a probabilistic that uses the ages of successive outgroup taxa relative to the age of the node of interest to date this node by sampling from uniform distributions (Lloyd *et al.* 2016, Brocklehurst, 2017).

Since the input phylogenies (i.e., the three alternatives topologies of the supertree, see above) were not completely resolved, we randomly resolved the polytomies, generating 20 completely resolved trees (the same number of trees was time-scaled with the FBD method) for each alternative phylogenetic scenario (i.e., with different positions of Thalattosuchia). These trees were then time-scaled using the three time-calibration methods. Time-scaling with the *mbl* and *cal3* methods were performed using the package *paleotree* (Bapst, 2012) in R version 3.5.1 (R Core Team, 2018), whilst the *Hedman* method was implemented also in R, using the protocol published by Lloyd *et al.* (2016).

LOWER LIMIT (IN MYR)	UPPER LIMIT (IN MYR)
7.246	0
15.97	7.246
23.03	15.97
33.9	23.03
40.4	33.9
48.6	40.4
55.8	48.6
61.7	55.8
66.043	61.7
70.6	66.043
84.9	70.6
94.3	84.9
99.7	94.3
112.6	99.7
125.45	112.6
136.4	125.45
145.5	136.4
155.7	145.5
164.7	155.7
171.6	164.7
183	171.6
189.6	183
201.6	189.6
205.6	201.6
221.5	205.6
235	221.5
242	235
252.3	242

Time bins used for time series correlations and disparity calculation

Supplementary results

FBD consensus trees

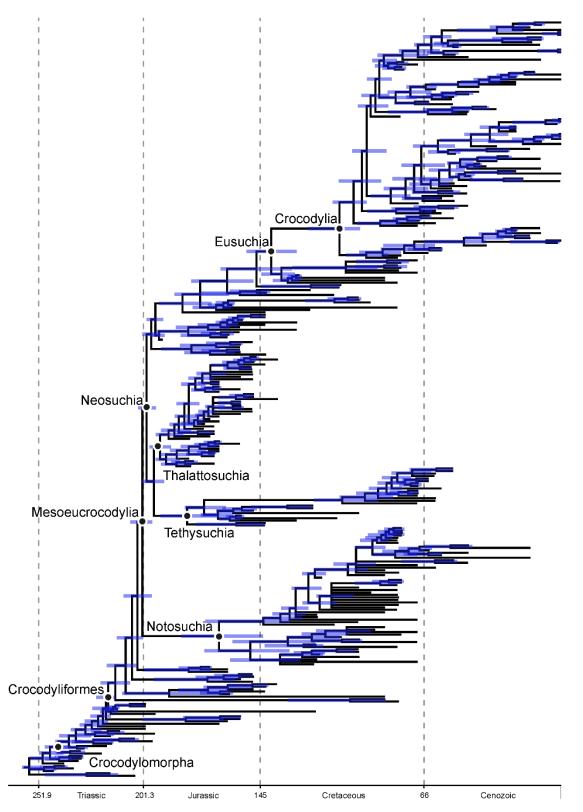


Figure S2. Consensus tree (50% majority rule tree) of Crocodylomorpha, with Thalattosuchia within Neosuchia. Node ages were inferred under a fossilized birth-death process, performing 10,000,000 generations of MCMC analyses. Blue bars indicate 95% Highest Posterior Density (HPD) time intervals.

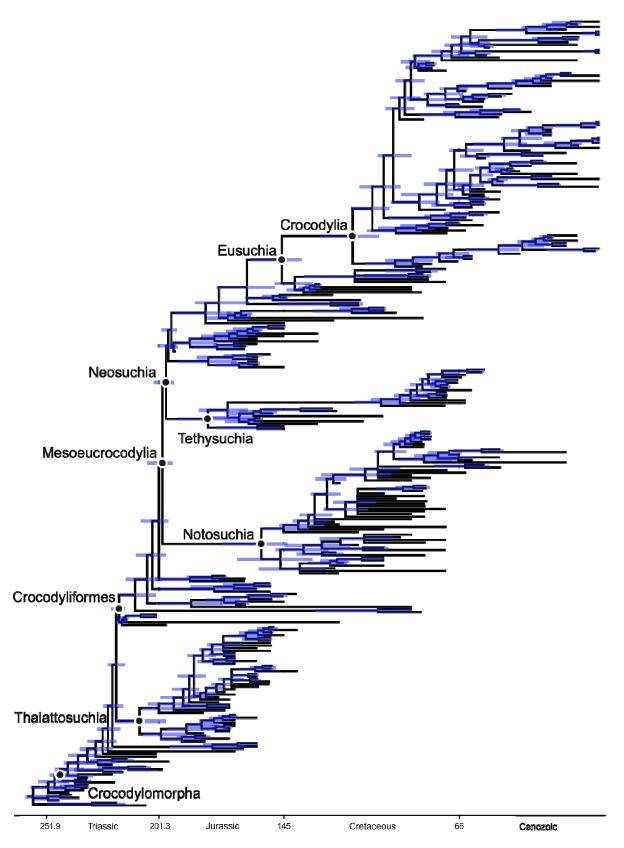


Figure S3. Consensus tree (50% majority rule tree) of Crocodylomorpha, with Thalattosuchia as the sister group of Crocodyliformes. Node ages were inferred under a fossilized birth-death process, performing 10,000,000 generations of MCMC analyses. Blue bars indicate 95% Highest Posterior Density (HPD) time intervals.

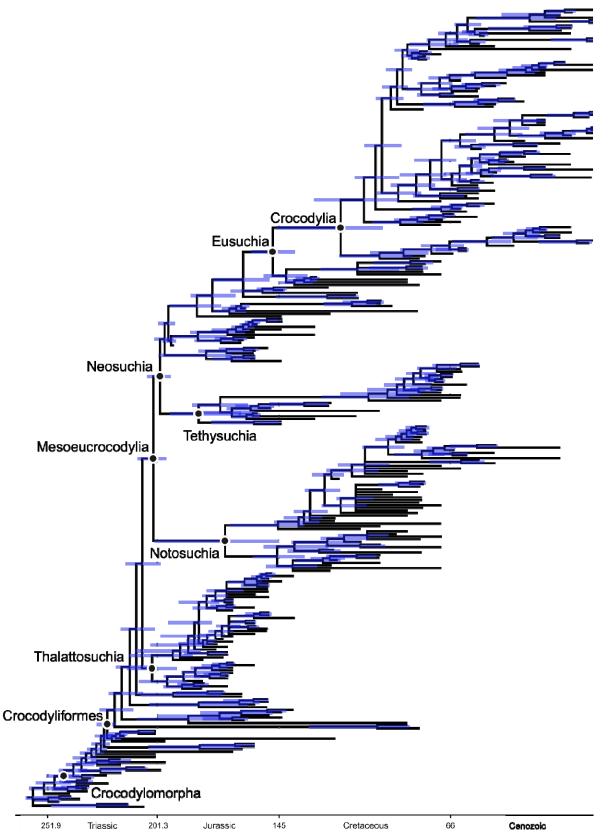
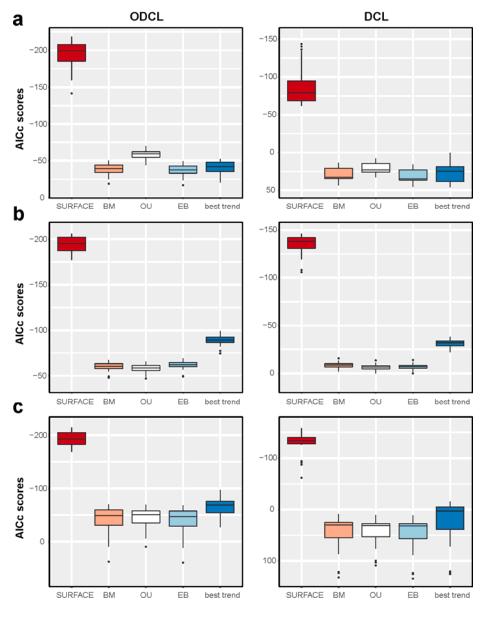



Figure S4. Consensus tree (50% majority rule tree) of Crocodylomorpha, with Thalattosuchia as the sister group of Mesoeucrocodylia. Node ages were inferred under a fossilized birth-death process, performing 10,000,000 generations of MCMC analyses. Blue bars indicate 95% Highest Posterior Density (HPD) time intervals.

Initial model comparison using APT time-scaling methods

Figure S5. AICc scores of the evolutionary models fitted to crocodylomorph phylogeny and body size data. Results shown for two cranial measurements datasets (ODCL in the left column and DCL in the right one), as well as using three different APT time-scaling (i.e., *a posteriori*) methods to time-calibrate 20 randomly resolved phylogenies of Crocodylomorpha: (a) mbl, (b) Hedman, and (c) cal3 methods. For the trend-like models, only the AICc of the best model ("best trend") is shown.

Correlations with abiotic factors

Most of the regression analyses with body size and palaeotemperature data (Tables S3– S16) revealed very weak or non-significant correlations. In some cases, we did find significant correlations, but they were frequently inconsistent (i.e., correlations did not persist in both ODCL and DCL datasets or were absent when accounting for serial autocorrelation using GLS). The only conspicuous exception was found between mean body size values and palaeotemperatures from the Late Cretaceous (Maastrichtian) to the Recent (and, in particular, when using only taxa of the crown-group Crocodylia [Tables S8 and S9]).

A similar scenario was found for the correlation test between body size and paleolatitude (Tables S17– S30), with very weak or non-significant correlations. Our phylogenetic regressions of found some significant correlations, but in all cases the coefficient of determination (\mathbb{R}^2) was very low (always smaller than 0.1), indicating that the correlation is very weak and only a small proportion (less than 10%) of the body size variation observed can be explained by the palaeolatitudinal data.

Table S3. Results of regressions of body size proxy (maximum and mean log-transformed ODCL, using all species in the dataset) on the palaeotemperature proxies (δ^{18} O data for tropical and temperate regions from Prokoph *et al.* (2008), and global δ^{18} O data from Zachos *et al.* (2008)). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

	Prokoph (Early Triassic -recent): tropical palaeotemperatures															
Ν				Maxim	um size			Mean size								
		G	LS		OLS (untransformed)					G	LS		OLS (untransformed)			
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC
26	0.643	2.363	0.019	2.565	-0.004	2.438	0.063	11.94	0.741	1.973	-0.015	-20.353	0.004	2.073	0.049	-7.032
			(0.75)				(0.359)				(0.685)				(0.299)	

Prokoph (Early Triassic -recent): temperate palaeotemperatures

N				Maxim	um size			Mean size								
		G	LS		(OLS (untransformed)				G	LS		OLS (untransformed)			
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC
23	0.241	2.428	-0.015	-15.324	-0.038	2.426	-0.017	-16.034	0.412	2.067	0.011	-22.54	-0.027	2.079	0.022	-20.973
			(0.729)				(0.671)				(0.755)				(0.529)	

Zachos (Late Cretaceous - recent): global palaeotemperatures

Ν	Maximum size									Mean size							
		G	LS		OLS (untransformed)					G	LS		OLS (untransformed)				
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	
10	0.347	2.34	0.045	-9.539	-0.016	2.346	0.039	-10.306	-0.046	2.022	0.055*	-31.576	0.635	2.023	0.054*	-33.557	
			(0.397)				(0.383)				(0.002)				(0.003)		

Table S4. Results of regressions of body size proxy (maximum and mean log-transformed DCL, using all species in the dataset) on the palaeotemperature proxies (δ^{18} O data for tropical and temperate regions from Prokoph *et al.* (2008), and global δ^{18} O data from Zachos *et al.* (2008)). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

					р	rokonh (F	'arly Triac	sic -recent). tropical	nglgantar	nnoraturo	2						
				Maxim	um size	токори (Е	any ma	nt): tropical palaeotemperatures Mean size										
Ν	GLS OLS (untransformed)									G	LS		(OLS (untr	ansformed	l)		
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC		
26	0.634	2.909	0.048	11.415	0.031	3.01	0.106	20.16	0.723	2.367	-0.029	-6.284	-0.027	2.47	0.035	7.111		
			(0.508)				(0.19)				(0.565)				(0.564)			
				J	Р	rokoph (E	arly Trias	sic -recent): tempera	ate palaeot	emperatu	res		I	J	I		
N		Maximum size									Mean size							
Ν		G	LS			OLS (untra	ansformed	l)		G	LS		OLS (untransformed)					
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC		
23	0.108	2.956	-0.025	-11.036	-0.033	2.958	-0.022	-12.782	0.505	2.468	-0.007	-6.265	-0.041	2.496	0.019	-2.48		
			(0.57)				(0.602)				(0.888)				(0.725)			
						Zachos (L	ate Cretac	eous - rece	ent): globa	l palaeote	mperature	s						
Ν				Maxim	um size				Mean size									
1	GLS OLS (untransformed)							GLS OLS (untransformed)										

N		G	LS		(OLS (untra	ansformed)		G	LS		OLS (untransformed)				
	Phi	Int.	Slope	AIC	\mathbb{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	
10	0.265	2.9	0.049	-19.517	0.27	2.898	0.052	-20.96	0.014	2.433	0.081*	-19.577	0.527	2.433	0.081*	-21.575	
			(0.126)				(0.07)				(0.011)				(0.01)		

Table S5. Results of regressions of body size proxy (maximum and mean log-transformed ODCL, using only marine species in the dataset) on the palaeotemperature proxies (δ^{18} O data for tropical and temperate regions from Prokoph *et al.* (2008), and global δ^{18} O data from Zachos *et al.* (2008)). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

					Р	rokoph (E	arly Trias	sic -recent): tropical	l palaeoter	nperature	s					
Ν	1			Maxim	um size							Mear	n size				
IN		G	LS		(OLS (untra	ansformed	l)		G	LS		OLS (untransformed)				
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	
18	0.56	2.358	-0.025	-25.542	0.201	2.276	-0.11*	-24.167	0.014	2.239	-0.017	-49.171	-0.023	2.239	-0.017	-51.167	
			(0.536)				(0.035)				(0.451)				(0.448)		
	-	l	l		P	rokoph (E	arly Trias	sic -recent): tempera	ate palaeot	emperatu	res		l	1	l.	
N				Maxim	um size							Mear	n size				
IN		G	LS		(OLS (untra	ansformed	l)	GLS OLS (untransformed)								
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	
17	0.708	2.423	0.079	-23.953	-0.066	2.398	-0.002	-16.916	0.758	2.273	0.022	-66.294	-0.027	2.273	0.011	-56.901	
			(0.059)				(0.955)				(0.058)				(0.463)		
	-	1				Zachos (La	ate Cretac	eous - rece	nt): globa	l palaeote	mperature	es		1	1	1	
	-																

N				Maxim	um size				Mean size								
1		G	LS			OLS (untra	ansformed	l)		G	LS		OLS (untransformed)				
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	
10	-0.143	2.422	-0.045	-21.432	0.22	2.417	-0.042	-23.261	0.627	2.252	-0.006	-39.327	-0.088	2.241	0.005	-38.084	
			(0.054)				(0.096)				(0.654)				(0.617)		

Table S6. Results of regressions of body size proxy (maximum and mean log-transformed DCL, using only marine species in the dataset) on the palaeotemperature proxies (δ^{18} O data for tropical and temperate regions from Prokoph *et al.* (2008), and global δ^{18} O data from Zachos *et al.* (2008)). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

					-	Prokoph (Early Tria	assic -recer	nt): tropica	al palaeote	emperatur	es							
N				Maxim	um size							Mea	an size						
Ν		G	LS		(OLS (untr	ansformed	l)		G	LS			OLS (unt	ransformed))			
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC			
18	0.601	2.936	-0.01	-35.977	-0.052	2.932	-0.015	-31.507	0.752	2.82	-0.015	-39.362	-0.004	2.862	0.04	-29.321			
			(0.714)				(0.705)				(0.545)				(0.35)				
]	Prokoph (I	Early Tria	ssic -recen	t): temper	ate palaeo	otemperati	ures							
Ν				Maxim	um size				Mean size										
IN		G	LS		(OLS (untr	ansformed	l)		G	LS		OLS (untransformed)						
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC			
18	0.449	2.984	0.055*	-40.881	0.335	2.996	0.071*	-39.789	0.657	2.865	0.052*	-45.475	0.471	2.878	0.09*	-40.862			
			(0.028)				(0.006)				(0.016)				(0.0009)				
	Zachos (Late Cretaceo								recent): global palaeotemperatures										
Ν				Maxim	um size				Mean size										
IN		G	LS		(OLS (untr	ansformed	l)		G	LS			OLS (unt	ransformed))			
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC			
10	0.208	2.906	0.042	-20.859	0.215	2.906	0.043	-22.527	0.824	2.781	0.036	-24.953	0.692	2.715	0.092*	-25.525			

(0.256)

(0.099)

(0.148)

(0.001)

Table S7. Results of regressions of body size proxy (maximum and mean log-transformed ODCL, using only non-marine species in the dataset) on the palaeotemperature proxies (δ^{18} O data for tropical and temperate regions from Prokoph *et al.* (2008), and global δ^{18} O data from Zachos *et al.* (2008)). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

					P	Prokoph (E	Early Trias	ssic -recent	:): tropical	palaeoter	nperature	s				
Ν				Maxim	um size							Mean	n size			
ΤN		G	LS			OLS (untr	ansformed	l)		G	LS		(OLS (untr	ransformed)	
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC
26	0.553	2.32	0.043	4.843	0.011	2.366	0.075	11.094	0.64	1.978	0.029	-21.012	0.049	2.023	0.065	-11.564
	(0.504) (0.264)										(0.453)				(0.142)	
	Prokoph (Early Triassic -recent): temperate palaeotemperatures															
Maximum size Mean size																
NT				Maxim	um size							Mea	n size			
Ν		G	LS	Maxim		OLS (untr	ansformed	i)		G	LS	Mean		OLS (untr	ansformed	I)
N	Phi	G Int.	LS Slope	Maxim AIC		OLS (untr Int.	ansformed Slope	l) AIC	Phi	G Int.	LS Slope	Mean		OLS (untr Int.	ansformed Slope	l) AIC
N 23	Phi 0.354					1	1		Phi 0.523	1						1
		Int.	Slope	AIC	R ²	Int.	Slope	AIC		Int.	Slope	AIC	R ²	Int.	Slope	AIC
		Int.	Slope -0.065	AIC	R² 0.022	Int. 2.291	Slope -0.06 (0.232)	AIC	0.523	Int. 1.947	Slope -0.042 (0.299)	AIC -21.071	R ²	Int.	Slope -0.017	AIC

N		Maximum size									Mean size								
1		G	LS		OLS (untransformed)					G	LS		OLS (untransformed)						
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC			
10	0.209	2.228	0.068	-0.829	-0.011	2.236	0.06	-2.397	-0.157	1.964	0.06*	-24.96	0.502	1.965	0.06*	-26.706			
			(0.366)				(0.371)				(0.007)				(0.013)				

Table S8. Results of regressions of body size proxy (maximum and mean log-transformed DCL, using only non-marine species in the dataset) on the palaeotemperature proxies (δ^{18} O data for tropical and temperate regions from Prokoph *et al.* (2008), and global δ^{18} O data from Zachos *et al.* (2008)). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

					P	rokoph (E	Carly Trias	sic -recent): tropical	palaeoter	nperatures	5				
Ν				Maxim	um size							Mean	n size			
IN		G	LS			OLS (untra	ansformed	l)		G	LS			OLS (untr	ansformed	l)
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC
26	0.563	2.753	0.024	15.858	-0.011	2.82	0.069	22.285	0.624	2.339	0.017	-8.74	-0.018	2.366	0.04	0.623
			(0.763)				(0.406)				(0.725)				(0.466)	
	Prokoph (Early Triassic -recent): temperate palaeotemperatures															
Ν				Maxim	um size							Mea	n size			
IN		G	LS			OLS (untra	ansformed	l)		G	LS			OLS (untr	ansformed	l)
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC
23	0.317	2.76	-0.071	5.801	0.003	2.762	-0.066	5.997	0.518	2.32	-0.046	-7.779	-0.033	2.335	-0.027	-4.075
			(0.312)				(0.309)				(0.387)				(0.6)	
	-					Zachos (L	ate Cretac	eous - rece	ent): globa	l palaeote	mperature	s				

Ν				Maxim	um size				Mean size								
1		G	LS		OLS (untransformed)					G	LS		OLS (untransformed)				
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	
10	-0.083	2.633	0.095	0.504	0.104	2.633	0.096	-1.426	-0.089	2.345	0.07*	-16.045	0.376	2.346	0.07*	-18.272	
			(0.172)				(0.189)				(0.027)				(0.034)		

Table S9. Results of regressions of body size proxy (maximum and mean log-transformed ODCL, using only crocodylian species in the dataset) on the palaeotemperature proxies (global δ^{18} O data from Zachos *et al.* (2008), from the Late Cretaceous to Recent). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

					1	Zachos (L	ate Cretac	eous - rece	ent): global	l palaeote	mperature	5				
Ν				Maxim	um size							Mean	ı size			
IN		G	LS		(OLS (untr	ansformed	l)		G	LS			OLS (untr	ansformed	I)
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC
10	0.19	2.133	0.121*	-11.989	0.554	2.124	0.127*	-13.662	-0.297	1.98	0.075*	-29.953	0.698	1.987	0.07*	-31.137
			(0.017)				(0.008)				(0.0003)				(0.001)	

Table S10. Results of regressions of body size proxy (maximum and mean log-transformed DCL, using only crocodylian species in the dataset) on the palaeotemperature proxies (global δ^{18} O data from Zachos *et al.* (2008), from the Late Cretaceous to Recent). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

						Zachos (L	ate Cretac	eous - rece	ent): globa	l palaeote	mperature	S				
Ν				Maxim	um size							Mean	ı size			
19		G	LS		(OLS (untra	ansformed	I)		G	LS			OLS (untr	ansformed	l)
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC
10	-0.215	2.618	0.165*	-10.724	0.632	2.627	0.157*	-12.355	-0.235	2.386	0.105*	-20.748	0.647	2.395	0.098*	-22.325
			(0.001)				(0.003)				(0.0007)				(0.003)	

Table S11. Results of regressions of body size proxy (maximum and mean log-transformed ODCL, using only notosuchian species in the dataset) on the palaeotemperature proxies (tropical δ^{18} O data from Prokoph *et al.* (2008), from the Aptian to the Eocene). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

						Prokop	h (Aptian	- Eocene):	tropical p	alaeotemp	eratures					
Ν				Maxim	um size							Mean	ı size			
19		G	LS		(OLS (untr	ansformed	l)		G	LS			OLS (untr	ansformed	l)
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC
10	0.272	2.114	-0.013	-5.557	-0.115	2.118	-0.014	-6.786	0.702	1.925	-0.029	-11.724	-0.122	1.957	-0.005	-10.071
			(0.812)				(0.798)				(0.472)				(0.904)	

Table S12. Results of regressions of body size proxy (maximum and mean log-transformed DCL, using only notosuchian species in the dataset) on the palaeotemperature proxies (tropical δ^{18} O data from Prokoph *et al.* (2008), from the Aptian to the Eocene). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

						Prokop	h (Aptian	- Eocene):	tropical p	alaeotemp	eratures					
Ν				Maxim	um size							Mean	n size			
11	GLS (untransformed) GLS (untransformed)									I)						
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC
10	0.06	2.622	-0.014	-12.63	-0.092	2.618	-0.017	-14.601	0.758	2.313	-0.055	-6.073	-0.123	2.355	-0.005	-3.54
			(0.699)				(0.64)				(0.3)				(0.928)	

Table S13. Results of regressions of body size proxy (maximum and mean log-transformed ODCL, using only thalattosuchian species in the dataset) on the palaeotemperature proxies (tropical δ^{18} O data from Prokoph *et al.* (2008), for the Jurassic). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

						Prol	koph (Jura	ssic): trop	ical palaeo	otemperat	ures					
N				Maxim	um size							Mear	n size			
Ν		G	LS		(OLS (untr	ansformed	l)		G	LS		(OLS (untr	ansformed	l)
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC
7	0.809	2.396	-0.051	-5.062	0.059	2.322	-0.11	-2.309	-0.184	2.224	-0.038	-10.311	-0.09	2.232	-0.033	-12.067
			(0.308)				(0.292)				(0.455)				(0.509)	
						Prok	oph (Jura	ssic): temp	erate pala	eotemper	atures					
Ν				Maxim	um size							Mear	n size			
1		G	LS			OLS (untr	ansformed	l)		G	LS			OLS (untr	ansformed	l)
	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC
7	0.808	2.526	0.074	-7.658	0.452	2.633	0.152	-6.096	-0.369	2.366	0.082*	-22.184	0.778	2.369	0.086*	-23.214
			(0.098)				(0.058)				(0.003)				(0.005)	

Table S14. Results of regressions of body size proxy (maximum and mean log-transformed DCL, using only thalattosuchian species in the dataset) on the palaeotemperature proxies (tropical δ^{18} O data from Prokoph *et al.* (2008), for the Jurassic). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

						Prok	oph (Jura	ssic): trop	ical palae	otemperat	ures					
Ν				Maxim	um size							Mean	n size			
IN		G	LS			OLS (untra	ansformed	l)		G	LS		(OLS (untra	ansformed	l)
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC
7	0.661	2.856	-0.054	-10.26	0.192	2.814	-0.088	-9.432	-0.124	2.727	-0.042	-10.851	-0.022	2.728	-0.041	-12.753
			(0.176)				(0.179)				(0.391)				(0.394)	
	-					Prok	oph (Jura	ssic): temp	erate pala	aeotempera	atures					
N			1	Maxim	um size	Prok	oph (Jura	ssic): temp	perate pala	aeotempera	atures	Mear	n size			
N		G	LS	Maxim		Prok DLS (untra			oerate pala	-	atures LS	Mear		DLS (untra	ansformed	l)
N	Phi	G. Int.	LS Slope	Maxim AIC					perate pala	-		Mear AIC		DLS (untra Int.	ansformed Slope	l) AIC
N 7	Phi 0.553	T			(OLS (untra	ansformed	1)		G	LS		(`	1	

Table S15. Results of regressions of body size proxy (maximum and mean log-transformed ODCL, using only tethysuchian species in the dataset) on the palaeotemperature proxies (tropical δ^{18} O data from Prokoph *et al.* (2008), from the Late Jurassic to the Eocene). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

					P	rokoph (L	ate Jurassi	ic – Eocen	e): tropica	l palaeote	mperature	8				
N				Maxim	um size							Mean	ı size			
1		G	LS		(OLS (untra	ansformed)		G	LS			OLS (unti	ansformed	l)
	Phi							AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC
13	-0.554	2.243	-0.145*	-5.113	0.138	2.288	-0.108	-2.267	-0.448	2.096	-0.154*	-15.18	0.493	2.116	-0.142*	-14.409
			(0.004)				(0.115)				(0.0002)				(0.004)	
		·			Pr	okoph (La	ate Jurassi	c – Eocene	e): temper	ate palaeo	temperatu	res				·
N				Maxim	um size							Mean	ı size			
1		G	LS		(OLS (untra	ansformed)		G	LS			OLS (unti	ansformed	l)
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	\mathbf{R}^2	Int.	Slope	AIC
13	-0.223	2.276	-0.142	-1.969	0.202	2.27	-0.15	-3.281	0.113	2.165	-0.129	-7.028	0.226	2.163	-0.127	-8.891
			(0.051)				(0.069)				(0.063)				(0.057)	

Table S16. Results of regressions of body size proxy (maximum and mean log-transformed DCL, using only tethysuchian species in the dataset) on the palaeotemperature proxies (tropical δ^{18} O data from Prokoph *et al.* (2008), from the Late Jurassic to the Eocene). Possible correlation was analysed using generalised least squares (GLS) regressions, incorporating a first-order autoregressive model, as well as ordinary least squares (OLS) regressions using untransformed data (assuming no serial correlation). *Significant at alpha = 0.05.

					P	rokoph (L	ate Jurass	ic – Eocene	e): tropica	l palaeote	mperature	es				
Ν				Maxim	um size							Mear	n size			
IN		G	LS		(OLS (untr	ansformed)		G	LS		(OLS (untra	ansformed	.)
	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC	Phi	Int.	Slope	AIC	R ²	Int.	Slope	AIC
12	0.53	3.02	-0.004	-11.772	-0.061	2.993	-0.03	-10.039	0.483	2.848	-0.045	-10.28	0.075	2.814	-0.07	-9.441
			(0.914)				(0.559)				(0.327)				(0.198)	
					Dr	okoph (I	ate Jurassi	e Focone). tommon	oto polooo	tomnorotu	roc				
					11	окори (La	ate Jui assi	c – Locene	e): temper	ate palaeo	temperatu	1105				
N	1			Maxim		окорп (La	ate Jui assi	c – Eocene	e): temper	ate palaeo	temperatu		n size			
Ν		G	LS	Maxim	um size	•	ansformed		e): temper	-	LS			OLS (untra	ansformed)
N	Phi	G Int.	LS Slope	Maxim AIC	um size	•			Phi	-	-			OLS (untra Int.	ansformed Slope) AIC
N 12	Phi 0.528	1			um size	OLS (untr	ansformed)		G	LS	Mear	(-
		Int.	Slope	AIC	um size	DLS (untr Int.	ansformed Slope) AIC	Phi	GI Int.	LS Slope	Mear AIC	\mathbf{R}^2	Int.	Slope	AIC

Palaeolatitude

Table S17. Results of regressions of log-transformed body length proxy (using all species in the ODCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν			OLS				PGLS	
105	R ²	Intercept	Slope	AIC	R ²	Intercept	Slope	AIC
195	0.013	2.13	-0.002 (0.059)	43.284	0.003	1.77	-0.001 (0.194)	-39.972

Table S18. Results of regressions of log-transformed body length proxy (using all species in the DCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν			OLS				PGLS	
170	\mathbf{R}^2	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
178	0.022	2.595	-0.004* (0.024)	150.74	0.019	2.195	-0.002* (0.034)	-19.379

Table S19. Results of regressions of log-transformed body length proxy (using only marine species in the ODCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν			OLS				PGLS	
10	\mathbf{R}^2	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
48	-0.019	2.289	-0.0008 (0.739)	-21.925	0.035	2.289	-0.003 (0.105)	-36.771

Table S20. Results of regressions of log-transformed body length proxy (using only marine species in the DCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

N			OLS			I	PGLS	
- 12	\mathbf{R}^2	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
43	0.014	2.873	-0.002 (0.211)	-28.625	-0.014	2.662	0.001 (0.53)	-45.625

Table S21. Results of regressions of log-transformed body length proxy (using only non-marine species in the ODCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν	OLS					PGLS				
1.47	\mathbf{R}^2	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC		
147	0.037	2.09	-0.003* (0.01)	14.567	0.028	1.836	-0.002* (0.023)	-48.394		

Table S22. Results of regressions of log-transformed body length proxy (using only non-marine species in the DCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν	OLS				PGLS				
125	R ²	Intercept	Slope	AIC	R ²	Intercept	Slope	AIC	
135	0.036	2.508	-0.005* (0.014)	102.424	0.06	2.259	-0.004* (0.002)	13.242	

Table S23. Results of regressions of log-transformed body length proxy (using only crocodylian species in the ODCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν	OLS					PGLS			
70	\mathbb{R}^2	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC	
70	0.175	2.265	-0.004* (0.0001)	-49.408	0.034	2.194	-0.002 (0.066)	-46.782	

Table S24. Results of regressions of log-transformed body length proxy (using only crocodylian species in the DCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν	OLS				PGLS			
	\mathbf{R}^2	Intercept	Slope	AIC	R ²	Intercept	Slope	AIC
64	0.178	2.81	-0.007* (0.0003)	8.976	0.045	2.744	-0.004 (0.05)	-6.629

Table S25. Results of regressions of log-transformed body length proxy (using only notosuchian species in the ODCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν	N OLS				PGLS				
	\mathbf{R}^2	Intercept	Slope	AIC	R ²	Intercept	Slope	AIC	
34	0.012	1.849	0.003 (0.245)	-8.644	-0.031	1.821	-0.0001 (0.951)	-20.185	

Table S26. Results of regressions of log-transformed body length proxy (using only notosuchian species in the DCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν		OLS				PGLS			
	\mathbf{R}^2	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC	
30	-0.035	2.26	0.0002 (0.945)	14.931	0.035	2.274	-0.005 (0.162)	-4.677	

Table S27. Results of regressions of log-transformed body length proxy (using only thalattosuchian species in the ODCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν	OLS				PGLS				
20	\mathbf{R}^2	Intercept	Slope	AIC	R ²	Intercept	Slope	AIC	
30	-0.019	2.115	0.004 (0.509)	-4.607	-0.035	2.156	-0.0001 (0.977)	-19.849	

Table S28. Results of regressions of log-transformed body length proxy (using only thalattosuchian species in the DCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν	OLS				PGLS			
	R ²	Intercept	Slope	AIC	R ²	Intercept	Slope	AIC
26	-0.004	2.579	0.004 (0.357)	-14.111	0.01	2.601	0.003 (0.273)	-28.503

Table S29. Results of regressions of log-transformed body length proxy (using only tethysuchian species in the ODCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

Ν	OLS					PGLS			
16	\mathbf{R}^2	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC	
16	0.251	2.468	-0.009* (0.027)	-5.781	0.444	2.54	-0.012* (0.002)	-6.853	

Table S30. Results of regressions of log-transformed body length proxy (using only tethysuchian species in the DCL cranial measurement dataset) on the palaeolatitudinal data. Possible correlation was analysed using ordinary least squares (OLS) and phylogenetic generalised least squares (PGLS) regressions. *Significant at alpha = 0.05.

N			OLS		PGLS			
14	\mathbf{R}^2	Intercept	Slope	AIC	\mathbf{R}^2	Intercept	Slope	AIC
14	-0.002	2.898	-0.004 (0.345)	-1.387	-0.084	2.904	0.001 (0.729)	-2.537

Supplementary references

- Andrade MB, Edmonds R, Benton MJ, Schouten R. 2011. A new Berriasian species of Goniopholis (Mesoeucrocodylia, Neosuchia) from England, and a review of the genus. Zoological Journal of the Linnean Society, 163S1, S66–S108.
- Bapst DW. **2012.** paleotree: an R package for paleontological and phylogenetic analyses of evolution. *Methods in Ecology and Evolution*, 3(5), 803–07.
- Bapst DW. **2013.** A stochastic rate \Box calibrated method for time \Box scaling phylogenies of fossil taxa. *Methods in Ecology and Evolution*, 4(8), 724–33.
- Bapst DW. **2014.** Preparing paleontological datasets for phylogenetic comparative methods. In: Garamszegi LZ (ed.) *Modern phylogenetic comparative methods and their application in evolutionary biology*. Berlin: Springer. p. 515–44.
- Bapst DW. **2014.** Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. *Paleobiology*, 40(3), 331–51.
- Bates KT, Manning PL, Hodgetts D, Sellers WI. **2009.** Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling. *PLoS One*, 4, e4532.
- Benson RBJ, Campione NE, Carrano MT, Mannion PD, Sullivan C, Upchurch P, Evans DC.
 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. *PLoS Biology*, 12(5), e1001853.
- Benson RBJ, Hunt G, Carrano MT, Campione N. **2018.** Cope's rule and the adaptive landscape of dinosaur body size evolution. *Palaeontology*, 61(1), 13–48.
- Brochu CA. **2012.** Phylogenetic relationships of Palaeogene ziphodont eusuchians and the status of *Pristichampsus* Gervais, 1853. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh*, 103(3-4), 521–550.
- Brochu CA, Parris DC, Grandstaff BS, Denton Jr RK, Gallagher WB. 2012. A new species of *Borealosuchus* (Crocodyliformes, Eusuchia) from the Late Cretaceous–early Paleogene of New Jersey. *Journal of Vertebrate Paleontology*, 32(1), 105–116.
- Brocklehurst N. **2017.** Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores. *PeerJ*, 5, e3200.
- Bronzati M, Montefeltro FC, Langer MC. **2015.** Diversification events and the effects of mass extinctions on Crocodyliformes evolutionary history. *Royal Society Open Science*, 2, 140385.
- Buscalioni ÁD. **2017.** The Gobiosuchidae in the early evolution of Crocodyliformes. *Journal of Vertebrate Paleontology*, 37(3), e1324459.

- Bustard HR, Singh LAK. **1977.** Studies on the Indian Gharial *Gavialis gangeticus* (Gmelin) (Reptilia, Crocodilia) I: Estimation of body length from scute length. *Indian Forester*, 103(2), 140–149.
- Campione NE, Evans DC. **2012.** A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. *BMC Biology*, 10(1), 60.
- Carballido JL, Pol D, Otero A, Cerda IA, Salgado L, Garrido AC, Ramezani J, Cúneo NR, Krause JM. 2017. A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. *Proceedings of the Royal Society B: Biological Sciences*, 284(1860), 20171219.
- Clark JM. **1994.** Patterns of evolution in Mesozoic Crocodyliformes. In: Fraser NC, Sues HD (eds.) *In the Shadow of Dinosaurs*. Cambridge: Cambridge University Press. p. 84–97.
- Clark JM. **2011.** A new shartegosuchid crocodyliform from the Upper Jurassic Morrison Formation of western Colorado. *Zoological Journal of the Linnean Society*, 163S1, S152– S172.
- Colbert EH. 1962. The weights of dinosaurs. American Museum Novitates, (2076), 1–16.
- Currie PJ. 1978. The orthometric linear unit. Journal of Paleontology, 52, 964–971.
- Farlow JO, Hurlburt GR, Elsey RM, Britton AR, Langston W. 2005. Femoral dimensions and body size of *Alligator mississippiensis*: estimating the size of extinct mesoeucrocodylians. *Journal of Vertebrate Paleontology*, 25(2), 354–369.
- Godoy PL, Bronzati M, Eltink E, Marsola JCA, Cidade GM, Langer MC, Montefeltro FC. **2016.** Postcranial anatomy of *Pissarrachampsa sera* (Crocodyliformes, Baurusuchidae) from the Late Cretaceous of Brazil: insights on lifestyle and phylogenetic significance. *PeerJ*, 4, e2075.
- Hastings AK, Bloch JI, Jaramillo CA. 2015. A new blunt-snouted dyrosaurid, *Anthracosuchus balrogus* gen. et sp. nov. (Crocodylomorpha, Mesoeucrocodylia), from the Palaeocene of Colombia. *Historical Biology*, 27(8), 998–1020.
- Hedman MM. **2010.** Constraints on clade ages from fossil outgroups. *Paleobiology*, 36(1), 16–31.
- Herrera Y, Gasparini Z, Fernández MS. 2015. Purranisaurus potens Rusconi, an enigmatic metriorhynchid from the Late Jurassic–Early Cretaceous of the Neuquén Basin. Journal of Vertebrate Paleontology, 35(2), e904790.
- Hall PM, Portier KM. **1994.** Cranial morphometry of New Guinea crocodiles (*Crocodylus novaeguineae*): ontogenetic variation in relative growth of the skull and an assessment of its

utility as a predictor of the sex and size of individuals. *Herpetological Monographs*, 203–225.

- Hurlburt G. **1999.** Comparison of body mass estimation techniques, using recent reptiles and the pelycosaur *Edaphosaurus boanerges*. *Journal of Vertebrate Paleontology*, 19(2), 338–350.
- Hurlburt GR, Heckert AB, Farlow JO. 2003. Body mass estimates of phytosaurs (Archosauria: Parasuchidae) from the Petrified Forest Formation (Chinle Group: Revueltian) based on skull and limb bone measurements. *New Mexico Museum of Natural History and Science Bulletins*, 24, 105–13.
- Laurin M. **2004.** The evolution of body size, Cope's rule and the origin of amniotes. *Systematic Biology*, 53(4), 594–622.
- Leardi JM, Pol D, Clark JM. **2017.** Detailed anatomy of the braincase of *Macelognathus vagans* Marsh, 1884 (Archosauria, Crocodylomorpha) using high resolution tomography and new insights on basal crocodylomorph phylogeny. *PeerJ*, 5, e2801.
- Lloyd GT, Bapst DW, Friedman M, Davis KE. **2016.** Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds. *Biology letters*, 12(11), 20160609.
- Maddison WP, Maddison DR. **2018.** Mesquite: a modular system for evolutionary analysis. Version 3.40. http://mesquiteproject.org
- Martin JE, De'lfino M, Smith T. **2016.** Osteology and affinities of Dollo's goniopholidid (Mesoeucrocodylia) from the Early Cretaceous of Bernissart, Belgium. *Journal of Vertebrate Paleontology*, 36(6), e1222534.
- Meunier LMV, Larsson HCE. **2017.** Revision and phylogenetic affinities of *Elosuchus* (Crocodyliformes). *Zoological Journal of the Linnean Society*, 179, 169–200.
- Montefeltro FC, Larsson HCE, França, MAG, Langer MC. **2013.** A new neosuchian with Asian affinities from the Jurassic of northeastern Brazil. *Naturwissenschaften*, 100(9), 835–841.
- Motani R. **2001.** Estimating body mass from silhouettes: testing the assumption of elliptical body cross-sections. *Paleobiology*, 27, 735–50.
- Narváez I, Brochu CA, Escaso F, Pérez-García A, Ortega F. **2015.** New Crocodyliforms from Southwestern Europe and Definition of a Diverse Clade of European Late Cretaceous Basal Eusuchians. *PLoS ONE*, 10(11), e0140679.
- Platt SG, Rainwater TR, Thorbjarnarson JB, Finger AG, Anderson TA, McMurry ST. **2009.** Size estimation, morphometrics, sex ratio, sexual size dimorphism, and biomass of Morelet's crocodile in northern Belize. *Caribbean Journal of Science*, 45(1), 80–94.

- Platt SG, Rainwater TR, Thorbjarnarson JB, Martin D. **2011.** Size estimation, morphometrics, sex ratio, sexual size dimorphism, and biomass of *Crocodylus acutus* in the coastal zone of Belize. *Salamandra*; 47, 179–92.
- Pol D, Gasparini Z. 2009. Skull anatomy of *Dakosaurus andiniensis* (Thalattosuchia: Crocodylomorpha) and the phylogenetic position of Thalattosuchia. *Journal of Systematic Palaeontology*, 7(2), 163–197.
- Pol D, Leardi JM, Lecuona A, Krause M. 2012. Postcranial anatomy of Sebecus icaeorhinus (Crocodyliformes, Sebecidae) from the Eocene of Patagonia. Journal of Vertebrate Paleontology, 32(2), 328–354.
- Pol D, Rauhut OWM, Lecuona A, Leardi JM, Xu X, Clark JM. 2013. A new fossil from the Jurassic of Patagonia reveals the early basicranial evolution and the origins of Crocodyliformes. *Biological Reviews*. 88, 862–872.
- Pol D, Nascimento PM, Carvalho AB, Riccomini C, Pires-Domingues RA, Zaher H. 2014. A New Notosuchian from the Late Cretaceous of Brazil and the Phylogeny of Advanced Notosuchians. *PLoS ONE*, 9(4), e93105.
- R Core Team. **2018.** R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.
- Ristevski J, Young MT, Andrade MB, Hastings AK. 2018. A new species of *Anteophthalmosuchus* (Crocodylomorpha, Goniopholididae) from the Lower Cretaceous of the Isle of Wight, United Kingdom, and a review of the genus. *Cretaceous Research*, 84, 340–383.
- Romer AS, Price LW. **1940.** Review of the Pelycosauria. *Geological Society of America Special Papers*, 28, 1–534.
- Scheyer TM, Aguilera OA, Delfino M, Fortier DC, Carlini AA, Sánchez R, Carrillo-Briceño JD, Quiroz L, Sánchez-Villagra MR. 2013. Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. *Nature communications*, 4, 1907.
- Schwarz D, Raddatz M, Wings O. **2017.** *Knoetschkesuchus langenbergensis* gen. nov. sp. nov., a new atoposaurid crocodyliform from the Upper Jurassic Langenberg Quarry (Lower Saxony, northwestern Germany), and its relationships to Theriosuchus. *PLoS ONE*, 12(2), e0160617.
- Sellers WI, Hepworth-Bell J, Falkingham PL, Bates KT, Brassey CA, Egerton VM, Manning PL.
 2012. Minimum convex hull mass estimations of complete mounted skeletons. *Biology Letters*, 8(5), 842–845.
- Sereno PC, Larsson HC, Sidor CA, Gado B. **2001.** The giant crocodyliform *Sarcosuchus* from the Cretaceous of Africa. *Science*, 294(5546), 1516–1519.

- Tennant JP, Mannion PD, Upchurch P. 2016. Evolutionary relationships and systematics of Atoposauridae (Crocodylomorpha: Neosuchia): implications for the rise of Eusuchia. *Zoological Journal of the Linnean Society*, 177(4), 854–936.
- Turner AH. **2015.** A review of *Shamosuchus* and *Paralligator* (Crocodyliformes, Neosuchia) from the Cretaceous of Asia. *PLoS ONE*, 10(2), e0118116.
- Turner AH, Pritchard AC. **2015.** The monophyly of Susisuchidae (Crocodyliformes) and its phylogenetic placement in Neosuchia. *PeerJ*, 3, e759.
- Webb GJW, Messel H. **1978.** Morphometric analysis of *Crocodylus porosus* from the north coast of Arnhem Land, northern Australia. *Australian Journal of Zoology*, 26(1), 1–27.
- Wilberg E. **2015.** What's in an Outgroup? The Impact of Outgroup Choice on the Phylogenetic Position of Thalattosuchia (Crocodylomorpha) and the Origin of Crocodyliformes. *Systematic Biology*, 64(4), 621–37.
- Young MT. 2014. Filling the "Corallian Gap": re-description of a metriorhynchid crocodylomorph from the Oxfordian (Late Jurassic) of Headington, England. *Historical Biology*, 26, 80–90.
- Young MT, Bell MA, Andrade MB, Brusatte SL. **2011.** Body size estimation and evolution in metriorhynchid crocodylomorphs: implications for species diversification and niche partitioning. *Zoological Journal of the Linnean Society*, 163(4), 1199–1216.
- Young MT, Rabi M, Bell MA, Foffa, D, Steel L, Sachs S, Peyer K. **2016.** Big-headed marine crocodyliforms and why we must be cautious when using extant species as body length proxies for long-extinct relatives. *Palaeontologia Electronica*, 19(3), 1–14.
- Young MT, Hastings AK, Allain R, Smith TJ. **2017.** Revision of the enigmatic crocodyliform *Elosuchus felixi* de Lapparent de Broin, 2002 from the Lower-Upper Cretaceous boundary of Niger: potential evidence for an early origin of the clade Dyrosauridae. *Zoological Journal of the Linnean Society*, 179, 377–403.