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Abstract

Coincidence detector neurons transmit timing information by responding preferentially
to concurrent synaptic inputs. Principal cells of the medial superior olive (MSO) in the
mammalian auditory brainstem are superb coincidence detectors. They encode sound
source location with high temporal precision, distinguishing submillisecond timing
differences among inputs. We investigate computationally how dynamic coupling
between the “input” region (soma and dendrite) and the spike-generating “output”
region (axon and axon initial segment) can enhance coincidence detection in MSO
neurons. To do this, we formulate a two-compartment neuron model and characterize
extensively coincidence detection sensitivity throughout a parameter space of coupling
configurations. We focus on the interaction between coupling configuration and two
currents that provide dynamic, voltage-gated, negative feedback in subthreshold voltage
range: sodium current with rapid inactivation and low-threshold potassium current,
IKLT . These currents reduce synaptic summation and can prevent spike generation
unless inputs arrive with near simultaneity. We show that strong soma-to-axon coupling
promotes the negative feedback effects of sodium inactivation and is, therefore,
advantageous for coincidence detection. Furthermore, the “feedforward” combination of
strong soma-to-axon coupling and weak axon-to-soma coupling enables spikes to be
generated efficiently (few sodium channels needed) and with rapid recovery that
enhances high-frequency coincidence detection. These observations detail the functional
benefit of the strongly feedforward configuration that has been observed in physiological
studies of MSO neurons. We find that IKLT further enhances coincidence detection
sensitivity, but with effects that depend on coupling configuration. For instance, in
weakly-coupled models, IKLT in the spike-generator compartment enhances coincidence
detection more effectively than IKLT in the input compartment. By using a minimal
model of soma-to-axon coupling, we connect structure, dynamics, and computation.
Here, we consider the particular case of MSO coincidence detectors. In principle, our
method for creating and exploring a parameter space of two-compartment models can
be applied to other neurons.
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Author summary

Brain cells (neurons) are spatially extended structures. The locations at which neurons
receive inputs and generate outputs are often distinct. We formulate and study a
minimal mathematical model that describes the dynamical coupling between the input
and output regions of a neuron. We construct our model to reflect known properties of
neurons in the auditory brainstem that play an important role in our ability to locate
sound sources. These neurons are known as “coincidence detectors” because they are
most likely to respond when they receive simultaneous inputs. We use simulations to
explore coincidence detection sensitivity throughout the parameter space of input-output
coupling and to identify the coupling configurations that are best for neural coincidence
detection. We find that strong forward coupling (from input region to output region),
enhances coincidence detection sensitivity in our model and that low-threshold
potassium current further improves coincidence detection. Our study is significant in
that we detail how cell structure affects neuronal dynamics and, consequently, the
ability of neurons to perform as temporally-precise coincidence detectors.

Introduction 1

Neurons that spike selectively to multiple subthreshold inputs that arrive within brief 2

time windows are coincidence detectors. Coincidence detection is a fundamental neural 3

computation that allows the brain to extract information from the temporal patterns of 4

synaptic inputs. In the cortex, neurons have biophysical specializations compatible with 5

coincidence detection [1–7], but some have questioned whether temporally-precise 6

computations are possible in cortex due to highly variable neural activity therein [8, 9]. 7

In the early auditory pathway, the existence of coincidence detector neurons and their 8

functional importance are widely valued [10–12]. Principal cells of the medial superior 9

olive (MSO) in the mammalian auditory brainstem are a canonical example: they 10

receive inputs originating from both ears [13,14] and are sensitive to microsecond-scale 11

differences in the timing of arriving inputs [15–18]. These coincidence detector neurons 12

are critical for sound-source localization [19, for review] and likely play important roles 13

in other aspects of binaural (“two-eared”) hearing such as sensitivity to interaural 14

correlation [20,21] 15

Temporally-precise neural coincidence detection requires specialized neural dynamics 16

and circuitry. Coincidence detector neurons should have fast membrane dynamics with 17

time-scales of integration shorter than the intervals between volleys of synaptic 18

inputs [2, 22]. Inputs to coincidence detectors should also be brief and well-timed to 19

precisely convey timing information. The requirements for effective coincidence 20

detection in the auditory system are exceptionally stringent because auditory neurons 21

must process inputs with temporal information at kilohertz-scale and higher [23–25]. 22

Auditory brainstem circuitry is equipped with a suite of specializations to promote 23

coincidence detection [26]. Afferent inputs to MSO cells are reliable and 24

temporally-precise [27,28], dendritic processing in MSO further enhances coincidence 25

detection [25,29–31], and voltage-gated currents that are partially active near resting 26

voltage make MSO cells extremely fast and precise processors [25,32]. Voltage-gated 27

currents are also sources of dynamic negative feedback that contribute to the 28

remarkable coincidence detection capabilities of these neurons. In MSO neurons, 29

activation of low-threshold potassium (KLT) current and inactivation of sodium current 30

are two identified sources of dynamic negative feedback [33–36]. In response to, say, a 31

pair of brief excitatory inputs, these feedback mechanisms will transiently raise the 32

spiking threshold after the first input, and thereby reduce the chance that the neuron 33

will spike in response to the second input unless the inputs arrive nearly synchronously 34
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(within a coincidence detection “time window”). 35

We investigate the extent to which a “structural” specialization – namely, the 36

coupling between the input region (soma and dendrite) and the output region (axon and 37

axon initial segment) – can further optimize coincidence detection sensitivity. To do 38

this, we develop a two-compartment neuron model as a minimal description of 39

input-output coupling and systematically explore the effects of coupling configuration 40

on coincidence detection sensitivity. 41

The two-compartment formulation is motivated by observations that spike 42

generation in MSO likely occurs in the axon or axon initial segment [37,38]. 43

Furthermore, sodium channels in the soma are inactivated near resting potentials [39] 44

and spikes are small and graded in the soma [37], suggesting the soma does not 45

participate in spike generation. Indeed, an absence (or small amount) of sodium in the 46

soma appears as a general design principle for temporally-precise auditory neurons [40]. 47

Studies of coincidence detector cells in the avian auditory brainstem have shown that a 48

passive soma can enhance coincidence detection [41] and that the distribution of 49

voltage-gated channels in the axon initial segment undergoes activity-dependent 50

modulation [42,43] to improve coincidence detection, perhaps in an optimal manner [44]. 51

A two-compartment formulation neglects the helpful contributions of dendritic 52

processing to coincidence detection, but the role of dendrites has been considered in 53

detail in previous studies [25,29–31]. 54

In this study, we systematically relate forward coupling (soma-to-axon) and 55

backward coupling (axon-to-soma) strengths to model parameters. We explore this 56

parameter space and find the coupling configurations that enhance coincidence 57

detection sensitivity. Specifically, we identify strong soma-to-axon coupling as a 58

“natural” configuration for neural coincidence detection because it engages sodium 59

inactivation as a mechanism that transiently increases spike threshold on the time-scale 60

of synaptic inputs and prevents firing to inputs that do not arrive concurrently. 61

Moreover, the combination of strong soma-to-axon and weak axon-to-soma coupling 62

generate spikes more efficiently (requires fewer sodium channels) and with shorter 63

refractory periods than other models. This “feedforward” configuration enhances 64

high-frequency coincidence detection and represents distinct advantages over 65

one-compartment “point neuron” models that cannot exhibit this asymmetric coupling 66

configuration. We observe that KLT current provides additional benefits for coincidence 67

detection sensitivity, but these benefits depend on coupling configuration and where 68

KLT current is located in the two-compartment structure. For instance, coincidence 69

detection sensitivity in neurons with weak soma-to-axon coupling can be substantially 70

improved if KLT current is co-localized with spike-generating currents. 71

We select passive properties to match known physiological characteristics of MSO 72

neurons, so our observations apply directly to those canonical coincidence detectors. 73

Nonetheless, our method for systematically exploring the parameter space of coupling 74

configurations can be applied to study the relationships between structure, dynamics, 75

and computation in other neurons that are well-described by a two-compartment 76

idealization [24,45–50]. In particular, a useful aspect of our work is that we show how 77

to explicitly construct two-compartment models that satisfy the constraint of having 78

(nearly) identical passive dynamics in the input compartment. 79

Materials and methods 80

Two-compartment model parameterized by coupling strength 81

We construct and analyze a minimal description of a neuron that separates the input 82

region (soma and dendrites) from the spike generating region (axon and axon initial 83
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segment) of a cell. This “two-compartment model” [45] has the form: 84

A1CmV
′
1 = −A1G1(V1 − Elk)− gc(V1 − V2)− IKLT,1 − Iin

A2CmV
′
2 = −A2G2(V2 − Elk)− gc(V2 − V1)− IKLT,2 − INa.

(1)

The dynamical variables Vi (i = 1, 2) describe the membrane potential in each 85

compartment. Passive parameters in the model are membrane capacitance per area 86

(Cm), axial conductance (gc), reversal potential of leak current (Elk), compartment 87

surface area (Ai), and membrane leak conductance density (Gi). Parameters 88

subscripted with i can take different values in the two compartments (i = 1, 2). To 89

simplify notation, we will often omit the explicit reference to membrane area and 90

instead use the notation ci = AiCm and gi = AiGi for i = 1, 2. The first compartment 91

(abbreviation: Cpt1) receives input current (Iin) and the second compartment 92

(abbreviation: Cpt2) is the site of spike-generating sodium current (INa). In some 93

simulations we also include dynamic (voltage-gated) low-threshold potassium current 94

(IKLT ). These currents are described in more detail below. 95

We use standard neurophysiological measures of passive activity in the soma to 96

determine some parameters, and vary other parameters to create a “family” of 97

two-compartment models distributed in a two-dimensional parameter space. We select 98

model parameters so that, regardless of coupling configuration, the passive dynamics in 99

Cpt1 are nearly identical regardless of the strength of coupling between compartments. 100

This novel formulation allows us to meaningfully and systematically probe the dynamics 101

of the model. The two parameters that define coupling configuration are introduced 102

below. They describe strength of “forward” coupling (Cpt1 to Cpt2) and “backward” 103

coupling (Cpt2 to Cpt1). 104

The properties we match to experimental measurements include resting potential in 105

the soma (Vrest), input resistance for input to the soma (Rin), and exponential time 106

constant (τexp) with which soma voltage returns to rest following a brief perturbation. 107

We use the following values based on in vitro measurements of gerbil MSO neurons [32]: 108

Vrest = −58 mV, Rin = 8.5 MΩ, and τexp = 340 µs. We first match these properties 109

using a model with passive dynamics (by setting INa and IKLT to zero). After 110

identifying parameter relations that satisfy these constraints, we discuss how to 111

introduce sodium and KLT currents. 112

In the passive model, the resting potential is identical to the reversal potential and 113

we have Vrest = Elk. We now determine the remaining parameters based on the values 114

of Rin and τexp. It is convenient to rescale the voltage equations by gi + gc and to 115

introduce terms that represent the deviation of voltage from rest: Ui = Vi − Elk (for 116

i = 1, 2). This yields the following equations for passive and subthreshold dynamics 117

(INa and IKLT removed, for now): 118

τ1U
′
1 = −U1 + κ2→1U2 − Jin

τ2U
′
2 = −U2 + κ1→2U1

(2)

The rescaled input current is denoted Jin = Iin/(g1 + gc). The time constants 119

τi = ci/(gi + gc) describe the passive dynamics of the ith compartment (i = 1, 2) when 120

the other compartment is held at its resting voltage. 121

We have also introduced in Eq. 2 the two parameters that describe coupling strength. 122

The forward coupling parameter is κ1→2. Formally, it is the ratio of voltages U2/U1 at 123

steady state in response to a constant current applied to Cpt1. Similarly, the backward 124

coupling parameter is κ2→1. It is the ratio U1/U2 at steady state in response to 125

constant current applied to Cpt2. These quantities are attenuation factors that take 126

values between zero (complete attenuation) and one (no attenuation). We find it more 127
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intuitive to refer to these constants as measures of coupling strength – values near zero 128

represent weak coupling, values near one indicate strong coupling. We will refer 129

throughout to κ1→2 as the forward coupling parameter (“soma-to-axon” coupling) and 130

κ2→1 as the backward coupling parameter (“axon-to-soma” coupling). The relationship 131

between coupling parameters and conductance parameters in Eq. 1 are: 132

κ1→2 =
gc

g2 + gc

κ2→1 =
gc

g1 + gc
.

(3)

Next, we will show how to invert these equations to simply and uniquely define all 133

passive model parameters for any combination of κ1→2 and κ2→1. We only require prior 134

knowledge of Rin and τexp (experimentally measurable parameters) and the assumption 135

that the area of Cpt1 is much larger than the area of Cpt2. We denote the ratio of 136

compartment areas as α = A2/A1. We will always use α = 0.01 in this study. This 137

assumption is plausible for cells with input regions that are much larger than 138

spike-generating regions, and is consistent with previous models of auditory coincidence 139

detector neurons [24,38]. 140

We find the axial conductance (gc) by expressing it in terms of input resistance and 141

the coupling coefficients. By setting U ′1 = U ′2 = 0 in Eq. 2, we find the steady state 142

relations Uss1 = κ2→1U
ss
2 − Jin and Uss2 = κ1→2U

ss
1 . From these relations, and the 143

steady-state input resistance (applying Ohm’s Law), it follows that 144

Rin = −Uss1 /Iin = 1/[(1− κ1→2κ2→1)(g1 + gc)]. Solving for gc and after some 145

substitutions we find 146

gc =
κ2→1

Rin (1− κ1→2κ2→1)
. (4)

The remaining parameters determine the passive dynamics of V1, so they depend on 147

τexp. In a one-compartment passive model, τexp is identical to the membrane time 148

constant and its value is c1/g1. In a two-compartment model, coupling between the 149

compartments introduces a second time-scale that can influence the rate at which V1 150

returns to rest after a brief perturbation (Rall’s equalization time constant [51], and see 151

also [52]). Some additional analysis is required, therefore, to relate τexp to model 152

parameters. 153

We invoke the assumption that the input region is much larger than the output 154

region (A1 � A2, or, equivalently, take 0 < α� 1) and observe that this can create a 155

separation of time-scales in the passive dynamics of U1 and U2. The ratio of time 156

constants in the two compartments is τ2/τ1 = (c2/c1)[(g1 + gc)/(g2 + gc)]. After some 157

substitutions, and using the assumption that Cm is identical in both compartments, we 158

find that 159

τ2
τ1

= α
κ1→2

κ2→1
(5)

We restrict ourselves to coupling configurations for which κ1→2/κ2→1 does not exceed 160

ten, so that τ1 is an order of magnitude larger than τ2 (recall we use α = 0.01). In this 161

scenario, we can segregate the passive dynamics into a slow variable (U1) and a fast 162

variable (U2). The ratio of time-constants is a small parameter which we denote by 163

ε = ακ1→2

κ2→1
. For ε close to zero, we can make the approximation that U2 evolves 164

“instantaneously” (on the fast time-scale) to its U1-dependent steady-state value of 165
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Uss2 = κ1→2U1. On the slow-time scale, U2 takes this instantaneous value and the 166

dynamics of U1 are (to leading order in the small parameter ε): 167

τ1U
′
1 = −(1− κ2→1κ1→2)U1 + Jin +O(ε) (6)

In other words, in cases when τ1 � τ2, the passive dynamics in Cpt1 are approximately 168

linear and one can match the time-scale of U1 to the experimentally-observed membrane 169

decay time by setting τ1 = τexp(1− κ1→2κ2→1). This “slaving” of U2 to U1 is valid for 170

describing passive subthreshold dynamics. If sodium current is included, then the 171

dynamics are non-linear and spike-generation is possible. On the slow time-scale, 172

spike-generation is represented by a discontinuous “jump” to a fixed point at higher 173

values of U1 and U2. 174

To summarize our method: we use values for three standard neurophysiological 175

measures of (passive) soma dynamics (Rin, τexp and Elk), we choose α (the ratio of 176

surface areas A2/A1) to be small (α = 0.01 in all simulations), and we let the two 177

coupling constants define a two-dimensional parameter space of soma-axon coupling. 178

For any coupling configuration, we can then uniquely determine the passive parameters 179

in Eq. 1. The parameter relationships, described above, are: 180

gc =
κ2→1

Rin(1− κ1→2κ2→1)

g1 = gc

(
1

κ2→1
− 1

)
g2 = gc

(
1

κ1→2
− 1

)
c1 = τexp(1− κ1→2κ2→1)(g1 + gc)

c2 = ατ1
κ1→2

κ2→1
(g2 + gc).

(7)

Using these parameter relations guarantees that passive dynamics in Cpt1 remain nearly 181

identical as we explore neural dynamics and coincidence detection sensitivity in the 182

two-dimensional parameter space of coupling strengths. 183

We only consider coupling configurations in which forward coupling is stronger than 184

backward coupling ( κ1→2 ≥ κ2→1). This corresponds to an assumption that signals 185

propagate forward from the soma to the axon with less attenuation than signals that 186

backpropagate from the axon to the soma. This condition is appropriate for MSO 187

neurons, since in vitro recordings show weak backpropagation of action potentials to the 188

soma and dendrites [31,37]. 189

Low-threshold potassium model 190

A voltage-gated low-threshold potassium current (IKLT ) is prominent in MSO neurons 191

and thought to improve coincidence detection sensitivity [53]. We model IKLT in the 192

ith compartment with the equation 193

IKLT,i(Vi, wi) = gKLTw
4
i z∞(Vi)(Vi − EK)− gKLTw4

∞(Vrest)z∞(Vrest)(Vrest − EK),
(8)

where the reversal potential is EK = −106 mV. We include the second term so that the 194

addition of KLT current does not alter the resting potential (IKLT,i = 0 when 195

Vi = Vrest, for i = 1 or 2.). Equivalently, one could adjust Elk to counterbalance the 196
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amount of KLT current active at rest, and omit this correction term. The dynamics of 197

the activation variable wi are as in [32] at a temperature of 35◦C: 198

w′i =
w∞(Vi)− wi

τw(Vi)

w∞(Vi) =
1

1 + e(Vi+65)/6

τw(Vi) = 0.46

(
100

6e(Vi+75)/12.15 + 24e−(Vi+75)/25 + 0.55

) (9)

The inactivation variable is slow (time-scale of several hundred milliseconds), so we 199

make the simplification that its value is fixed at the steady state z∞(Vrest) where the 200

steady state function is [32] 201

z∞(V ) =
0.78

1 + e(V+57)/5.44
+ 0.22. (10)

Next we discuss how we include dynamic IKLT in the two-compartment model. We 202

omit subscripts, for ease of presentation, but the same method applies for dynamic KLT 203

current in either compartment. We first find the passive leak conductance in the 204

relevant compartment using Eq. 7. Call this glk. We then reduce this conductance by 205

some amount, typically 10%. In other words, we set the leak conductance in the 206

relevant compartment (gi) to 0.9glk. Lastly, we set gKLT to the value that preserves the 207

total conductance in the compartment at the resting potential. In some simulations, we 208

leave the KLT conductance fixed at its resting value. We refer to this case as “frozen” 209

KLT – the KLT current acts as a leak current and the subthreshold dynamics are the 210

same as the original passive model. In other simulations, we allow KLT conductance to 211

depend on voltage. We refer to this case as “dynamic” KLT. To include dynamic KLT 212

in Cpt1, for example, we would choose gKLT so that it satisfies the equation 213

g1 + gKLTw
4
∞(Vrest)z∞(Vrest) = glk and allow the KLT activation variable w to evolve 214

according to Eq. 9. 215

Sodium current model 216

The second compartment represents regions of the cell in which spikes are generated, 217

presumably the axon initial segment or other excitable regions in the axon [38]. We use 218

a reduced model of sodium current, adapted from earlier models of auditory brainstem 219

neurons [32,54], to produce spikes: 220

INa(V2, h) = gNam
3
∞(V2)h(V2 − ENa)− gNam3

∞(Vrest)h∞(Vrest)(Vrest − ENa), (11)

where the sodium reversal potential is ENa = 55 mV. The second term is included so 221

that INa = 0 when V2 is at its resting value. Equivalently, one could adjust Elk to 222

counterbalance the amount of sodium current active at rest, and omit this correction 223

term. Setting INa = 0 at rest simplifies analysis of the model and is appropriate for 224

MSO neurons since most sodium channels are inactivated for membrane potential near 225

rest [39]. We assume that activation of sodium is sufficiently fast to justify the 226

approximation that the gating variable m instantaneously reaches its voltage-dependent 227

equilibrium value m∞(V2) [34]. The gating variable h governs inactivation of the 228

sodium current and has dynamics as in [32]: 229
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h′ =
h∞(V2)− h
τh(V2)

h∞(V2) =
1

1 + e(V2+65)/6

τh(V2) = 0.24

(
100

7e(V2+60)/11 + 10e−(V2+60)/25
+ 0.6

) (12)

These are the same as in [54], but with temperature adjusted to 35◦C, and also note the 230

resting membrane potential in our model is -58 mV as opposed to -65 mV in [54] 231

Our primary objective is to determine the effects of coupling configuration on 232

coincidence detection. Maximal conductance gNa determines excitability and spike 233

threshold in the model neuron and thus also influences coincidence detection 234

sensitivity [22]. Rather than setting gNa to an arbitrarily chosen value, we explore a 235

range of gNa to determine the best possible coincidence detection sensitivity over this 236

range of gNa, for each coupling configuration. We explain our method for choosing gNa 237

values in more detail below. 238

Synaptic input model 239

We generate synaptic inputs to the two-compartment model using a model of the 240

auditory periphery [55]. This model includes the effects of cochlear filtering and 241

nonlinearities, inner hair cell activity, and synaptic transmission, and generates auditory 242

nerve spike trains. As inputs to this model, we use sine waves that represent pure tone 243

sounds. We perform simulations with frequencies ranging from 200 Hz to 700 Hz at a 244

level of 70 dB. The neuron model receives two streams of auditory nerve inputs 245

representing (conceptually) inputs from the two ears, see the schematic in Fig. 1. The 246

sine waves to the two “ears” are presented either with identical timing to generate 247

“coincident” inputs, or with a time delay to simulate “non-coincident” inputs. 248

Fig 1. Schematic of simulations to test coincidence detection sensitivity of
two-compartment neuron model. Stimulus is a pair of sine-wave inputs
(frequencies range from 200 Hz to 700 Hz) that are presented either in phase with one
another (“coincident inputs”) or with a time delay (“non-coincident inputs”, indicated
by ∆t in this figure). Sine-wave inputs are delivered to a model of the auditory
periphery [55]. We extract from this model simulated spiking responses of five auditory
nerve fibers for each sine-wave. These simulated spike trains are used to create
excitatory current (Iin in this figure) that is delivered to Cpt1.

MSO coincidence detectors receive a small number of synaptic inputs [56], so we use 249

the auditory nerve model to simulate five independent input sequences of spike times 250

per “ear.” Each auditory nerve spike time creates an excitatory post-synaptic 251

conductance (EPSG) described by a double exponential function [18]: 252

Gsyn(t) = 125.25
(
e−t/0.18 − e−t/0.1

)
. (13)

and these EPSGs are transformed into synaptic current (EPSCs) according to the 253

equation 254

Isyn(t) = Gsyn(t)(V1 − Esyn), (14)
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where the reversal potential for the excitatory current is Esyn = 0 mV. We set the 255

constant scaling factor in the definition of Gsyn(t) (Eq. 13) so that a single excitatory 256

input depolarizes V1 by roughly 6 mV, a value consistent with measurements of MSO 257

neurons’ responses to synaptic excitation in vitro [57]. 258

We view this as an adequate input for probing coincidence detection in a MSO-like 259

two-compartment model using quasi-realistic stimuli. It is not meant to be a “complete” 260

description of neural processing in the MSO-pathway. Notably, we do not include 261

spherical bushy cells in the cochlear nucleus that may enhance temporal precision of 262

afferent inputs to MSO neurons [27], nor do we include inhibitory inputs that appear to 263

modify time-difference tuning of MSO coincidence detectors [57–63], but see also [18]. 264

In some simulations, as we will make clear in the context of the Results, we use more 265

simplistic inputs such as steps or ramps of current injected directly into the input 266

compartment to study response characteristics of the model. 267

Measure of coincidence detection sensitivity 268

We measure firing rate (spikes per second) generated by the two-compartment model in 269

response to “coincident” inputs (identical sine wave stimuli to the two “ears” of the 270

auditory nerve model) and “non-coincident” inputs. In some simulations we generate 271

“non-coincident” inputs by using sine wave stimuli that were anti-phase to the two “ears” 272

of the auditory nerve model. For example, for a 500 Hz stimuli, the two sine waves 273

would have a 1 ms time difference. In this construction of non-coincident inputs, the 274

time difference between the sine waves shortens with increasing frequency. To confirm 275

that this dependence of time difference on frequency does not bias our results, we also 276

perform simulations in which we generate non-coincident inputs by using sine wave 277

stimuli to the auditory nerve model with a fixed time difference of 500 µs. 278

To measure coincidence detection sensitivity, we compute the difference in firing 279

rates for responses to coincident and non-coincident inputs. We compute firing rates 280

(spikes per second) by counting the number of spikes generated in trials of length 281

250 ms. We then calculate mean and standard error of firing rates from 100 repeated 282

trials. Large-scale calculations to sweep over parameter space were performed using 283

Matlab simulation code executed on computers managed by the Ohio Supercomputer 284

Center. The ordinary differential equations defining the two-compartment model were 285

solved numerically using the Matlab command ode15s (a variable-step, variable-method 286

solver useful for stiff systems). Simulation code is available at 287

https://github.com/jhgoldwyn/TwoCompartmentModel. 288

A “good” coincidence detector neuron would be one with a large difference in firing 289

rates for these two conditions. Firing rate difference measures of coincidence detection 290

sensitivity have been used in related studies [64,65]. Other measures have been 291

considered, including Fisher information [38], width of time-difference tuning curves [62], 292

and quality factor (similar to d-prime) [22]. The “right” measurement of coincidence 293

detection sensitivity remains, as these alternatives reveal, an open question (and one 294

wrapped up in ongoing debates regarding the nature of the neural code for sound source 295

location [67]). 296

One justification for comparing in-phase to out-of-phase firing rates is that it is 297

relevant to a system that uses a “two channel” representation of auditory space in which 298

sound location is represented by the difference in firing rates between two populations of 299

cells tuned to distinct time-differences [66]. We suggest an additional perspective based 300

on an analogy to signal classification theory and the receiver operating characteristic 301

(ROC) [68]. 302

Consider a coincidence detector neuron responding to a periodic (sine wave) 303

stimulus. Each cycle of the stimulus evokes a volley of synaptic inputs that may or may 304

not be temporally aligned with one another. The task of the coincidence detector 305
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neuron is to respond (generate a spike) if the synaptic inputs arrive within a brief time 306

window and to not respond (not spike) if the synaptic inputs are dispersed in time. 307

From this perspective, a coincidence detector neuron is an “observer” of its own 308

synaptic inputs and it signals the presence of coincident inputs by generating a spike. 309

Chance [69] has articulated a similar approach for measuring synaptic efficacy. 310

Extending the analogy, for each two-compartment model (parameterized by coupling 311

configuration), we construct ROC curves by plotting “hit” rate (firing rate to coincident 312

inputs) against “false alarm” rate (firing rate to non-coincident inputs) for varying 313

values of the sodium conductance gNa. Sodium conductance controls the overall 314

excitability of the model and operates as the threshold parameter in ROC analysis. To 315

compare coincidence detection sensitivity across coupling configurations, we simulate 316

the model for a range of gNa values and define coincidence detection sensitivity to be 317

the maximum firing rate difference. In this way, we identify the gNa level for which the 318

neuron, acting as an observer of its inputs, is the best possible coincidence detector. In 319

other words, we identify the gNa value that maximizes “hits” (spikes generated in 320

response to coincident inputs) while minimizing “false alarms” (spikes generated in 321

response non-coincident inputs), for a given coupling configuration and stimulus. 322

Fig. 2A illustrates this calculation (illustration only, not actual simulation data). 323

The gNa values that produced similar spiking activity for different coupling 324

configurations could vary by orders of magnitude, so we required a reasonable way to 325

determine the appropriate range of gNa values to use. For each coupling configuration, 326

we set a reference value for gNa, denoted grefNa , by finding the smallest gNa value for 327

which a pair of coincident EPSGs could evoke a spike. The rationale for this definition 328

of grefNa is that, for any gNa value larger than grefNa , the model neuron could possibly 329

spike in response to two non-coincident EPSGs. For gNa significantly larger than grefNa , 330

the model neuron could even spike in response to a single EPSG. By restricting gNa to 331

values near grefNa , we ensured that the model neurons were operating as coincidence 332

detectors and not responding to multiple inputs that lacked temporal alignment. Values 333

of grefNa in the parameter space of forward and backward coupling strengths are shown in 334

Fig. 2B. Values of grefNa increase if dynamic KLT current is present in the model. 335

Replacing 10% of glk with KLT conductance increased reference gNa values by 5% to 336

30% higher depending on coupling configuration, see S1 Fig. 337

Fig 2. Coincidence detection sensitivity measurement and grefNa values. A:
Firing rate to coincident inputs and non-coincident inputs increase with gNa (cartoon,
not actual data). We sweep across a range of gNa values and quantify coincidence
detection sensitivity as the maximum firing rate difference across all gNa values used
(inset). We draw an analogy to the signal receiver operating characteristic (ROC) curve:
coincident firing rate is the “hit” rate, non-coincident firing rate is the “false alarm”
rate, and gNa sets the detection threshold. This panel is for illustration only and does
not portray actual simulation data. B: Reference values for sodium conductance (grefNa ;
the smallest value of gNa at which a pair of simultaneous EPSG events evokes a spike).

We then measure coincidence detection sensitivity using gNa values that ranged from 338

0.2 to 2.2 times grefNa , in increments of 0.05 times grefNa . From the firing rate differences 339

measured across this range of gNa values, we identify the maximum firing rate difference 340

and use this as our measure of coincidence detection sensitivity. As a result of this 341

process, we obtain different “best” gNa values depending on input frequency, coupling 342

configuration, and KLT currents. An implication of this approach is that neurons 343

should modulate sodium conductance based on stimulus parameters and physiological 344

conditions. We do not pursue this idea here, but see [42, 44] for relevant studies and S2 345

Fig for supporting results showing changes of “best” gNa with stimulus frequency. 346
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Results 347

Parameterization of a family of two-compartment models by 348

coupling strength 349

As discussed in Materials and methods, the forward coupling parameter (soma-to-axon, 350

κ1→2) and backward coupling parameter (axon-to-soma, κ2→1) characterize the passive 351

dynamics of a two-compartment model (see Eq. 3). By defining model parameters 352

according to Eq. 7, we construct a family of models with (nearly) identical passive 353

dynamics in Cpt1. Recall we select model parameters based on reported properties of 354

MSO neurons: steady state input resistance is 8.5 MΩ, the decay time constant is 355

340 µs, and the resting potential is −58 mV [32]. We also assume the capacitance per 356

unit area is the same in both compartments and that the surface area of Cpt1 was 100 357

times larger than the surface area of Cpt2 (α = 0.01). Using a typical value of 358

membrane capacitance Cm = 0.9 pF/cm2 [70], we find that capacitance in Cpt1 is 359

C1 = 40 pF. The area of Cpt1 is A1 = 4444 µm2, which is a plausible value for the 360

surface area of the soma and dendrite regions of an MSO neuron [31,71]. 361

In order to maintain identical passive dynamics in Cpt1 across coupling 362

configurations, the leak conductance (g1, g2) and axial conductance (gc) vary with the 363

values of the coupling parameters as shown in Fig. 3. Leak conductance in Cpt1 364

increases as forward coupling strength increases but decreases as backward coupling 365

strength increases (Fig. 3A). Leak conductance in Cpt2 exhibits the opposite 366

dependence on coupling strength: g2 decreases as forward coupling strength increases 367

and increases as backward coupling strength increases (Fig. 3B). The axial conductance 368

connecting the two compartments depends primarily on the strength of backward 369

coupling – the contour lines in Fig. 3C are nearly horizontal except in cases of strong 370

forward and backward coupling (upper right corner). The upper left in each panel of 371

Fig. 3 is empty because we only consider coupling configurations for which forward 372

coupling is not weaker than backward coupling (κ1→2 ≥ κ2→1). 373

Fig 3. Passive parameters as a function of forward and backward coupling
strength. Parameter values derived using Eq. 7 and the assumptions that the decay
time constant for V1 is τexp = 0.34 ms, input resistance in Cpt1 is Rin = 8.5 MΩ, and
the surface area of Cpt1 is one hundred times larger than the surface area of Cpt2. The
upper left half of the parameter space is empty because we did not consider models for
which forward coupling was weaker than backward coupling. Colored stars mark the
locations of three configurations we examine in detail below: the weakly-coupled model
(κ1→2 = 0.3, κ2→1 = 0.2; blue), the forward-coupled model (κ1→2 = 0.8, κ2→1 = 0.2;
green), and the strongly-coupled model (κ1→2 = 0.8, κ2→1 = 0.7; red).

To explore how coupling configuration modifies neural dynamics, we will often 374

compare three models near the edges of the coupling parameter space. These are a 375

weakly-coupled model (κ1→2 = 0.3, κ2→1 = 0.2), a strongly-coupled model 376

(κ1→2 = 0.8, κ2→1 = 0.7), and a forward-coupled model (κ1→2 = 0.8, κ2→1 = 0.2). The 377

locations of these three models in the coupling parameter space are shown as colored 378

stars in Fig. 3. We remark that “complete” coupling (κ1→2 = κ2→1 = 1) is equivalent to 379

a one-compartment “point” neuron model because voltages in the two compartments 380

are the same in this case. 381
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Passive dynamics in first compartment are nearly identical 382

across coupling configurations 383

Our parameterization method is designed to maintain the same voltage response in Cpt1 384

(V1) regardless of the coupling configuration. In fact, due to the strong separation of 385

time scales between the two compartments (recall Eq. 5), the voltage in Cpt1 is 386

governed approximately by linear dynamics with time constant τexp (see Eq. 6) and the 387

voltage in Cpt2 is V2 ≈ Elk + κ1→2(V1 − Elk). These approximations are valid to 388

leading order in the small parameter ε = ακ1→2

κ2→1
. We remind the reader that these 389

calculations are performed in the case of passive dynamics — i.e. for a model without 390

spike-generating sodium current (gNa = 0) and with “frozen” low-threshold potassium 391

current (IKLT acts as a leak current, and in fact is equivalent to gKLT = 0, see 392

Materials and methods). 393

Simulations of passive two-compartment models illustrate how the parameterization 394

method results in models with nearly identical V1 dynamics (Fig. 4B). We use darker 395

colors to show time-courses of voltage in Cpt1 (V1) and lighter colors to show 396

time-courses of voltage in Cpt2 (V2). V1 responses are nearly identical regardless of 397

coupling configuration and attenuation of V2 responses depends on κ1→2. Time-courses 398

of V1 and V2 shown here are responses to 500 Hz coincident inputs. The three coupling 399

configurations in this figure are indicated in the schematic in the top row (from left to 400

right in Fig. 4A: weakly-coupled, forward-coupled, and strongly-coupled, as defined 401

previously). 402

Fig 4. Responses of two-compartment models to 500 Hz coincident inputs.
A: Schematic diagrams indicating coupling configurations for the weakly-coupled (left
column), forward-coupled (middle column), and strongly-coupled (right column) models.
B: Responses of passive models (gNa=0 nS). Darker colors indicate V1 (responses in
Cpt1) and lighter colors indicate V2 (responses in Cpt2). V1 dynamics are nearly
identical for all coupling configuration, as expected from our parameterization method.
C: Responses of two-compartment models with gNa = grefNa . Occurrence and shape of
spikes depends on coupling configuration, even though inputs are identical in all
simulations. Notice the difference in y-axes; amplitude of V2 spikes is largest in the
weakly-coupled model.

Spiking dynamics depend on coupling configuration 403

We include spiking in the model by adding sodium current to Cpt2 (see Eq. 11). As 404

described in Materials and methods, we define grefNa for each coupling configuration as 405

the minimum level of gNa at which two coincident inputs evoke a spike. We find it 406

helpful to normalize gNa to these reference values when comparing across coupling 407

configurations. In Fig. 4C, we show responses to 500 Hz coincident inputs with gNa set 408

to grefNa . This results in gNa = 6291 nS for the weakly-coupled model, gNa = 398 nS for 409

the forward-coupled model, and gNa = 2003 nS for the strongly-coupled model. We do 410

not include dynamic KLT current in these simulations. We use darker colors to show 411

time-courses of voltage in Cpt1 (V1) and lighter colors to show time-courses of voltage 412

in Cpt2 (V2). 413

These responses to identical inputs (same trains of synaptic inputs for each model, 414

regardless of coupling configuration) reveal that spiking dynamics differ depending on 415

coupling configuration. Coupling configuration dramatically changes the amplitude and 416

shapes of spikes - the peaks of V2 in the weakly-coupled model are near 40 mV whereas 417

the peaks of V2 in the forward-coupled and strongly-coupled models are near 0 mV 418

(note the different axes). Spikes in the weakly-coupled model tend to be “all-or-none,” 419
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but the forward-coupled and strongly-coupled models can have more graded spike 420

amplitudes. Not surprisingly, amplitudes of backpropagated spikes in Cpt1 depend on 421

κ2→1. For models with weak backward coupling (the weakly-coupled and 422

forward-coupled models), it is difficult to discern any changes in V1 due to spike 423

generation in V2. For the strongly-coupled model, in contrast, V1 tracks V2 more closely 424

and shows larger amplitude backpropagated spikes in Cpt1. 425

Importantly, the number and timing of spikes also changes with coupling 426

configuration. In these traces, the forward-coupled model has two more spikes than the 427

weakly-coupled and strongly-coupled models (see the “extra” spikes at 10 ms and 20 ms 428

for the forward-coupled model). This anticipates our main result: coupling 429

configuration affects spike generation and can alter the sensitivity of neurons to 430

coincident inputs. If we view this example simulation using the analogy to signal 431

detection theory and ROC analysis, described previously, we can say that the 432

forward-coupled model correctly identifies two more coincident events (has two more 433

“hits”) than the weakly-coupled and strongly-coupled models. 434

Optimal coupling configuration for coincidence detection in 435

two-compartment models with frozen KLT current 436

In a first set of simulations, we study the two-compartment model with passive 437

subthreshold dynamics. The low-threshold potassium (KLT) current is “frozen” and 438

included as part of the leak current (see Materials and methods). The only 439

voltage-gated current in this set of simulations is the spike-generating sodium current in 440

Cpt2. We quantify coincidence detection sensitivity by finding the maximum firing rate 441

difference between coincident and non-coincident inputs for each coupling configuration 442

(as described in Materials and methods). In Fig. 5, we report results for three stimulus 443

frequencies (from left to right: 300 Hz, 500 Hz, and 700 Hz). We construct 444

non-coincident inputs in two ways: in Fig. 5A we use out-of-phase sine wave inputs to 445

the auditory nerve model. Time delays for out-of-phase inputs vary with frequency, so 446

we also test coincidence detection sensitivity using sine wave inputs that are misaligned 447

in time by a fixed 500 µs time difference in Fig. 5B. 448

Fig 5. Coincidence detection sensitivity throughout parameter space of
soma-axon coupling. A: Coincidence detection sensitivity measured as the
maximum firing rate difference between responses to in-phase and out-of-phase stimuli.
B: Coincidence detection sensitivity measured as the maximum firing rate difference
between responses to in-phase stimuli and those with a 500 µs time difference. In both
rows: coincidence detection sensitivity is measured using three different stimulus
frequencies (from left to right: 300 Hz, 500 Hz, 700 Hz). Color scheme in each panel is
normalized so that the “lowest color” (dark blue) is the firing rate difference that is 65%
of the highest value in that panel. In many panels these values are not reached and
range of colors presented does not include these “low” blue colors.

Larger firing rate differences reflect better coincidence detection. In our analogy to a 449

signal classification task, we say a large firing rate difference indicates a detector with a 450

high “hit rate” in response to coincident inputs and a low “false alarm” rate in response 451

to non-coincident events. We make two observations that we will explore in greater 452

detail below. First, coincidence detection sensitivity improves with increases in forward 453

coupling strength. That is to say, as one moves from left-to-right within each panel, the 454

firing rate difference increases. Second, the combination of strong forward coupling 455

(large κ1→2) and weak backward coupling (small κ2→1) enhances coincidence detection 456

for high-frequency stimuli (notice the large firing rate differences in the lower right 457

corner of panels for 500 Hz and 700 Hz stimuli). 458
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In Fig. 6, we further detail how coincidence detection sensitivity changes with 459

stimulus frequency. Strong forward coupling enhances coincidence detection for all 460

frequencies above 200 Hz (the weakly-coupled model has the smallest firing rate 461

difference across these frequencies). An advantage for the forward coupling 462

configuration (combination of strong forward coupling and weak backward coupling) 463

emerges for stimulus frequencies above about 400 Hz. These observations hold 464

(qualitatively) regardless of whether we use out-of-phase stimuli for non-coincident 465

inputs (Fig. 6A) or time-delayed stimuli (Fig. 6B). We provide tuning curves in S3 Fig 466

for additional views of how coincidence detections sensitivity depends on stimulus 467

frequency, gNa, and coupling configuration. 468

Fig 6. Dependence of coincidence detection sensitivity on stimulus
frequency. A: Coincidence detection sensitivity measured as the maximum firing rate
difference between responses to in-phase and out-of-phase stimuli. B: Coincidence
detection sensitivity measured as the maximum firing rate difference between responses
to in-phase stimuli and those with a 500 µs time difference. In both panels: coincidence
detection sensitivity is measured from responses to a range of frequencies (200 Hz to
700 Hz, in increments of 100 Hz), using the weakly-coupled (blue), forward-coupled
(green), and strongly-coupled (red) models (see text, and Fig. 4 for definition of these
models). Firing rates are computed from spikes counted in simulations with durations of
250 ms. Plotted values are the mean values computed from 100 repeated simulations,
and error bars are standard errors in the means.

Why does strong forward coupling improve coincidence detection? And why does the 469

specific combination of strong forward and weak backward coupling (the 470

“forward-coupled” model) enhance high-frequency coincidence detection? We provide 471

explanations below. First, we will demonstrate that strong forward coupling endows the 472

two-compartment model with two properties that are advantageous for neural 473

coincidence detection: phasic firing and sensitivity to input slope. Second, we will show 474

that the specific combination of strong forward coupling and weak backward coupling 475

shortens the refractory period of the two-compartment model. Neurons with short 476

refractory periods can faithfully and rapidly respond to high-frequency sequences of 477

coincident inputs. Neurons with longer refractory periods are disadvantaged when 478

performing high-frequency coincidence detection, because they may “miss” 479

opportunities to generate spikes in response to coincident inputs, and thus their “hit 480

rate” (when thinking of these neurons as signal detectors) may be depressed. 481

Strong forward coupling ensures phasic firing 482

Here we show that coupling configuration determines whether two-compartment models 483

respond to steps of current injection with a single spike (phasic firing) or periodic spike 484

trains (tonic firing). Phasic firing is advantageous for coincidence detection because it 485

allows neurons to respond to rapid changes in stimuli – the concurrent arrival of several 486

synaptic inputs, e.g. – and remain insensitive to slower changes in stimulus level that do 487

not signal coincident inputs. 488

In these simulations we use direct current injection (not synaptic inputs) and frozen 489

KLT current. See Fig. 7A for example waveforms of injected current. In Fig. 7B-D, we 490

show time-courses of voltage in Cpt2 to these step current inputs, with gNa set to grefNa . 491

As the amplitude of the applied current increases, the weakly-coupled model exhibits a 492

transition from quiescence (no firing) to periodic firing (Fig. 7B). The transition occurs 493

via a Hopf bifurcation and is a tonic firing pattern. The forward-coupled and 494

strongly-coupled models do not fire repetitively in these simulations. Instead, they 495

transition from quiescence to a single spike elicited at the onset of the current injection 496
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(Fig. 7C and Fig. 7D). This response pattern is defined as phasic firing. We remind 497

readers familiar with the Rothman-Manis [54] model that, in addition to introducing a 498

two-compartment structure, we have also made changes to parameter values to reflect 499

MSO physiology (time constant, input resistance, and resting potential). Thus, our 500

observation of phasic firing in the strongly-coupled model does not contradict the 501

observation by [36] of tonic firing in a Rothman-Manis-like model with frozen KLT, 502

even though a one-compartment model can be viewed as an “extreme” case of a 503

two-compartment model with κ1→2 = κ2→1 = 1. 504

Fig 7. Responses of two-compartment models to constant current inputs.
A: Waveforms of constant current steps, and V2 responses in panels B-D. B: Tonic
firing in the weakly-coupled model. C: Phasic firing in the forward-coupled model. D:
Phasic firing in the strongly-coupled model. E: Two-parameter bifurcation plot for the
weak, forward, and strong coupling configurations. Models exhibit tonic firing for
parameters within the U-shaped boundaries. The gNa values on the y-axis are
normalized to reference values grefNa . Stars indicate parameter values used in panels
A-D. F: The lowest values of gNa at which tonic firing is possible is gtonicNa . Models
with strong forward coupling and weak backward coupling (lower right region in this
panel) exhibit phasic firing over the largest range of (normalized) gNa values.

We explore a range of gNa values and trace out the boundary in parameter space 505

between tonic and phasic firing. For each coupling configuration, we vary gNa and the 506

amplitude of the steady current (Istep). We performed a two-parameter bifurcation 507

analysis using the Auto feature in XPPAUT. The regions within the U-shaped curves in 508

Fig. 7E are parameter combinations (gNa and current levels) that produce repetitive 509

firing. 510

The two-compartment model exhibits a tonic firing pattern if gNa is set to a 511

sufficiently large value. We identify the smallest values of gNa at which repetitive firing 512

to steady current can be observed (the lowest point on each U-shaped curve), and label 513

these values gtonicNa . For example, the weakly-coupled model can exhibit tonic firing for 514

values of gNa larger than 0.5grefNa , roughly. The forward-coupled and strongly-coupled 515

models are phasic unless gNa is larger than 3.3grefNa or 2.7grefNa , respectively. Values of 516

the ratio gtonicNa /grefNa for all coupling configurations are shown in Fig. 7F. The value of 517

this ratio increases with forward coupling strength. Phasic dynamics are closely 518

associated with temporally-precise neural coincidence detection [34,35]. This result 519

indicates that phasic dynamics in models with stronger forward coupling are robust, in 520

the sense that this coupling configuration can allow neurons to maintain phasic 521

dynamics over a larger range of gNa and input levels. 522

Strong forward coupling enhances slope sensitivity 523

Another property associated with coincidence detection is slope sensitivity. 524

Slope-sensitive neurons are those for which the rate of increase (slope) of an input – not 525

just the input amplitude – can determine whether the neuron generates a spike [34]. As 526

we now demonstrate, models with strong forward coupling are responsive to inputs with 527

fast-rising inputs, whereas models with weak forward coupling can respond to inputs 528

with slow-rising slopes. This is a second indication that strong forward coupling benefits 529

neural coincidence detection. 530

We vary the slope of inputs using “ramps” of current, as shown in Fig. 8A. 531

Time-courses of V2 In response to these three ramps are shown in Fig. 8B-D. We fix the 532

maximum amplitude at 2500 pA for these inputs, and let the duration of the ramp vary 533

with ramp slope. 534
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These simulations demonstrate that the forward-coupled model is the most 535

slope-sensitive, as it only generates an action potential in response to the ramp with the 536

steepest slope. In contrast, the weakly-coupled model spikes in response to all three 537

ramps, and the strongly-coupled model spikes in response to two out of the three ramps. 538

We measure slope sensitivity by finding the smallest gNa at which each model spikes 539

in response to ramps of varying slopes (Fig. 8E). We again fix the amplitude of the 540

current ramp at 2500 pA. The stars in Fig. 8E mark the parameter values used in 541

Fig. 8B-D. For the weakly-coupled model, this measure of slope threshold is relatively 542

constant as a function of ramp slope. In contrast, gNa at firing threshold decreases 543

dramatically for the forward-coupled and strongly-coupled models. This confirms that 544

the forward-coupled and strongly-coupled models are more sensitive to input slopes 545

than the weakly-coupled model. By setting gNa appropriately, for example gNa ≈ grefNa , 546

the forward-coupled and strongly-coupled models can be tuned to selectively spike in 547

response to rapidly-rising inputs but not gradually-rising inputs. 548

To compare slope-sensitivity across all coupling configurations, we measured gNa at 549

firing thresholds in response to slow and fast rising ramps (500 pA/ms and 550

1000 pA/ms) and defined ∆gNa to be the ratio of these values. A large value of ∆gNa 551

indicates that the model neuron can be made to fire selectively to steeply-rising ramps 552

only (a slope-sensitive neuron), whereas values of ∆gNa near one indicate that the 553

model neuron responds similarly to ramps regardless of input slope. By this measure, 554

models with strong forward coupling are more slope-sensitive than models with weak 555

forward coupling. Moreover, the forward-coupled configuration (lower right corner of 556

Fig. 8F) is optimal for slope-sensitivity. 557

Fig 8. Responses of two-compartment models to ramped-current inputs. A:
Waveforms of current ramps and V2 responses in panels B-D. B: The weakly-coupled
model responds with a spike in response to all ramp inputs tested. C: The
forward-coupled model responds with a spike in response to only the steepest ramp
tested. D: The strongly-coupled model responds with a spike in response to the two
ramps with steeper rising slopes. E: Sodium threshold is the smallest value of gNa
(plotted after normalization by grefNa ) for which a ramp of a given slope elicits a spike.
Threshold for the weakly-coupled model is relatively constant with ramp slope, but
decreases with ramp slope for the forward-coupled and strongly-coupled models,
indicating that these models are more slope-sensitive than the weakly-coupled model.
Stars indicate parameter values used in panels A-D. F: Slope-sensitivity measured with
∆gNa, the ratio of threshold gNa values computed from responses to input ramps with
slopes 1000 pA/ms and 500 pA/ms. Larger values of ∆gNa indicate coupling
configurations that are more sensitive to the rising slope of inputs, and are found for
models with strong forward coupling and weak backward coupling.

Comparison of models in the V2 − h phase plane 558

We gain an additional perspective on how spiking dynamics of the two-compartment 559

model depend on coupling configuration by examining the V2 − h phase plane. For the 560

weak, forward, and strong coupling configurations, we plot h and V2-nullclines in Fig. 9. 561

The h-nullcline, defined by the function h = h∞(V2), is shown in black in each panel 562

and is the same for all coupling configurations. Nullclines for V2 are shown with colored 563

lines in each panel. We calculate these nullclines by setting V1 to fixed values: -58 mV 564

(Vrest), -40 mV, and -30 mV. These curve are “sections” (at the selected V1 values) 565

through the “null surfaces” of the full three-dimensional V1 − V2 − h phase space. The 566

rationale for computing V2-nullclines for certain fixed values of V1 is that V1 can be 567

viewed as the “input” to Cpt2 (recall Eq. 1). Notice that the V2-nullclines are truncated 568
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in these figures – a “right branch” at higher values of V2 in which the V2-nullcline is an 569

increasing function of V2 is not pictured, and the local maximum (“left knee”) of the 570

V2-nullclines with V1 = −58 mV are at larger values of h than what is pictured in Fig. 9. 571

We use these phase plane diagrams to illustrate the distinction between tonic firing 572

in the weakly-coupled model and phasic firing in the strongly-coupled and 573

forward-coupled models. For all models, the V2-nullclines shift rightward as V1 increases. 574

In the case of weak coupling, the intersection between the h and V2-nullclines (the 575

V1-dependent fixed point of the system) crosses over from the left branch of the 576

V2-nullcline to the middle branch as these nullclines shift rightward. This signals the 577

destabilization of the fixed point via a Hopf bifurcation as V1 increases beyond a 578

threshold value. For the forward-coupled and strongly-coupled models, by contrast, the 579

left knee (local maximum) of the V2-nullcline disappears as V1 increases. For these 580

models, then, dynamics of the spike-generator cease to be excitable for large V1 values. 581

This prevents the possibility of repetitive (tonic) firing to steady inputs. 582

These phase plane diagrams also reveal the role sodium inactivation plays in 583

enhancing slope-sensitivity in models with strong forward coupling. In Fig. 9, we 584

observe that increases in V1 cause larger rightward shifts in the V2-nullcline for the 585

strongly-coupled and forward-coupled model, as compared to the weakly-coupled model. 586

As a result, for identical V1 values, the fixed points in the V2 − h plane are located at 587

larger V2 values and smaller h values for the models with stronger forward coupling. By 588

construction, there is less attenuation from Cpt1 to Cpt2 in the models with stronger 589

forward coupling. Thus, a given depolarization of V1 produces larger depolarizations of 590

V2 in these models compared to the weakly-coupled model. Since larger depolarizations 591

of V2 cause greater inactivation of sodium current (reducing the h gating variable), 592

inputs that elicit spikes in the strongly-coupled and forward-coupled models must 593

depolarize the cell rapidly to activate sodium current on a timescale faster than 594

inactivation of sodium by the h gating variable. In sum, slope-sensitivity in this model 595

arises from the dynamic, voltage-gated, negative feedback of sodium inactivation, and 596

models with stronger forward coupling are more effective at engaging this process. 597

Fig 9. Nullclines in the V2-h plane for fixed values of V1. The V2-nullclines
(colored curves) are sections of three-dimensional nullsurfaces at fixed values of V1: the
resting value (V1 = −58 mV for blue curve) and two depolarized values (V1 = −40 mV
for red curve, V1 = −30 mV for orange curve). The h-nullcline is identical in all models
(black curve) and given by h = h∞(V2). Coupling configurations are, from left to right,
A: weakly-coupled, B: forward-coupled, and C: strongly-coupled. Notice that
V1-dependent fixed point moves from the left to middle branch of the V2-nullcline for
the weakly-coupled model. This marks the transition to tonic firing that is absent in the
forward-coupled and strongly-coupled models. The V2-nullclines have “cubic” shapes as
is typical for excitable dynamics, but we only exhibit a small portion of the V2 and h
axes.

Combination of strong forward coupling and weak backward coupling 598

shortens the refractory period 599

We have discussed phasic firing and slope-sensitivity as factors that make models with 600

strong forward coupling more precise coincidence detectors than models with weak 601

forward coupling. We have not yet, however, established why the particular 602

combination of strong forward coupling and weak backward coupling is advantageous for 603

high-frequency coincidence detection. To do this, we investigate refractory periods and 604

post-spike recovery dynamics. Specifically, we show that models that have both strong 605
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forward coupling and weak backward coupling have short refractory periods and rapid 606

recovery after a spike. 607

The responses in Fig. 10 illustrate how refractory period changes with coupling 608

configuration. The stimuli for these simulations are a sequence of two EPSG events 609

(imagine, for example, a brief input from each of the two ears). The amplitude of each 610

EPSG event is three times the size of a unitary synaptic input from the auditory nerve 611

model. The first EPSG in the sequence evokes a spike and, depending on the time delay 612

and the coupling configuration, the trailing EPSG may or may not evoke a spike (even 613

though it is the same amplitude as the first EPSG). In the simulations shown, the 614

weakly-coupled model does not produce a second spike for a time delay of 2 ms, but the 615

forward-coupled and strongly-coupled models do (Fig. 10B-D). In all these simulations, 616

gNa was set grefNa . 617

To further investigate the effect of coupling configuration on refractory period for 618

these three models, we determined the smallest gNa value for which both EPSGs 619

produced spikes, for varying time delays (Fig. 10E). The amplitude of each EPSG in the 620

pair of inputs was three times the amplitude of a unitary auditory nerve fiber input 621

(same as in Fig. 10A). This calculation identifies the refractory period – the smallest 622

time delay for which the neuron produces a spike in response to both inputs. Refractory 623

periods in these simulations are 0.7 ms for the forward-coupled model, 0.95 ms for the 624

weakly-coupled model, and 1.1 ms for the strongly-coupled model. In addition to having 625

the smallest refractory period among these three models, the forward-coupled model also 626

has the lowest thresholds across all time-delays. This indicates that the forward-coupled 627

does not require excessive sodium conductance to respond rapidly to successive inputs. 628

To probe the refractory period across all coupling configurations, we fixed gNa at 629

reference values, and measured the smallest time delay for which the model neuron 630

could respond to both EPSGs. By this measure, models with strong forward coupling 631

and weak backward coupling have the smallest refractory period (lower right corner of 632

Fig. 10F). 633

Fig 10. Responses of two-compartment models to pairs of synaptic
excitatory inputs. A: Waveforms of excitatory post-synaptic conductances (EPSGs)
and V2 responses in panels B-D. Inputs consists of an EPSGs at t = 0 and a second
EPSG at a later time. B: The weakly-coupled model spikes in response to trailing
EPSG delayed by 3 ms. C: The forward-coupled model spikes in response to trailing
EPSGs delayed by 2 ms or 3 ms. D: The strongly-coupled model spikes in response to
trailing EPSGs delayed by 2 ms or 3 ms. E: Sodium threshold is the smallest value of
gNa (plotted after normalization by grefNa ) for which both EPSGs elicit spikes for a given
slope time delay. The smallest time delay at which two spikes can be elicited is the
refractory period (left-most point of each curve). Stars indicate parameter values used
in panels A-D. F: Refractory period is measured by finding the minimum time delay at
which the model neuron fires in response to both EPSG events (using gNa = grefNa ). The
coupling configurations with shortest refractory periods (smallest delay thresholds) are
those with strong forward coupling and weak backward coupling.

We explain the effect of coupling configuration on refractory period by examining 634

post-spike recovery for the weakly-coupled, forward-coupled, and strongly-coupled 635

models in the V2 − h phase plane (Fig. 11). The monotonically decreasing (black) curve 636

is the h-nullcline and the cubic curves (only partially shown) are the V2-nullclines for V1 637

fixed at rest and at -42 mV. These are similar to the nullclines shown in Fig. 9. The 638

thin (green) curves show trajectories of the response of each model in the V2 − h phase 639

plane to a pair of synaptic events separated by a 1.5 ms time delay. Sodium 640

conductance is set to grefNa and the first synaptic event elicits a spike. Responses of the 641

models to the trailing inputs depend on refractory period. For these parameter sets, 642
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only the forward-coupled model can respond to both inputs in the pair of successive 643

synaptic inputs. 644

To gain a qualitative sense of why the forward-coupled model spikes in response to 645

both inputs (and therefore has a shorter refractory period), we compare the state of the 646

neuron as it evolves through the V2 − h phase plane to the height of the left knee of the 647

V2-nullcline. As V1 increases in response to an excitatory input, the V2-nullcline shifts 648

downward (transition from blue to red curves). More specifically, the height of the left 649

knee of the V2-nullcline shifts downward as V1 increases. If an excitatory input (which 650

depolarizes V1) shifts the left knee of the V2-nullcline below the position of the 651

trajectory in V2 − h phase plane, then the V2 variable will move (quickly, on a fast 652

time-scale) to the right branch of the V2-nullcline. This represents the spike upstroke, 653

and is not visible in its entirety in Fig. 11 because the right branch of the V2-nullcline is 654

outside the “field of view” of these figures. In these phase plane figures, we see that the 655

second excitatory input, which depolarizes V1 to roughly -42 mV, only elicits a spike in 656

the forward-coupled model. 657

There are two factors that contribute to the short refractory period in the the 658

forward coupling model. First, observe that the height of the left knee of the 659

V2-nullclines are lower for the models with strong forward coupling (forward-coupled 660

and the strongly-coupled models) than for the weakly-coupled model. In models with 661

strong forward coupling, an increase in V1 propagates to V2 with minimal attenuation. 662

This increase in V2 activates sodium current which lowers the height of the left knee of 663

the V2-nullcline. As a consequence, models with strong forward coupling are more 664

excitable (more responsive to an excitatory input) during the recovery period than 665

models with weak forward coupling. 666

Second, observe that h (the sodium inactivation gating variable) recovers more 667

quickly in models with weak backward coupling. To see this, compare the height of the 668

lower green dot across the models (lower dots represent the state of the neuron 1.5 ms 669

after the onset of the first synaptic input). The gating variable has the value h = 0.08 670

for the weakly-coupled and forward-coupled models at that instant, whereas h = 0.05 671

for the strongly-coupled model. Sodium inactivation recovers more slowly in the 672

strongly-coupled model. Spike recovery is slow in the strongly-coupled model because 673

the spike in Cpt2 depolarizes V1 (due to the strong backward coupling), which then 674

prevents V2 from rapidly returning to rest (due to the strong forward coupling). In 675

models with weak backward coupling, by contrast, V1 does not depolarize substantially 676

during a spike, and thus Cpt1 can act as a current sink to help return V2 to rest. 677

These differences in sodium inactivation recovery are subtle, but the combination of 678

the two factors discussed above gives the forward-coupled model a double advantage in 679

responding to high-frequency inputs. Excitation in Cpt1 transfers to Cpt2 efficiently to 680

depolarize the spike-generator, and the spike-generator “resets” quickly (via recovery of 681

the h gating variable) to accommodate rapid generation of action potentials. 682

Coincidence detection sensitivity in two-compartment models 683

with dynamic KLT current 684

In the preceding sections, we have detailed the advantages of strong forward coupling 685

generally, and weak backward coupling for high-frequency stimuli, for coincidence 686

detection sensitivity in a two-compartment neuron model. With the exception of the 687

spike-generating sodium current, the two-compartment model we have considered to 688

this point has been passive. We questioned how our findings would change if additional 689

voltage-gated currents were included. Of particular interest in the context of neural 690

coincidence detection in the MSO is the low threshold potassium (KLT) current. This 691

current is prominent in MSO neurons and enhances their coincidence detection 692
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Fig 11. Nullclines in the V2-h plane for fixed values of V1 and trajectory of
response to pair of EPSGs. The V2-nullclines (colored curves) are sections of
three-dimensional nullsurfaces at fixed values of V1: the resting value (V1 = −58 mV for
blue curve) and a depolarized value of V1 = −42 mV (red curve) chosen to roughly
represent the effect of an EPSG input with amplitude three times that of a unitary
event from the auditory nerve model. The h-nullcline is identical in all models (black
curve) and given by h = h∞(V2). Coupling configurations are, from left to right, A:
weakly-coupled, B: forward-coupled, and C: strongly-coupled. In these simulations we
set gNa = grefNa . The green trajectory is the response of the model to a pair of EPSGs
with time delay of 1.5 ms and amplitude three times that of a unitary auditory nerve
fiber input. The green dots identify the onsets of each EPSG event. Only the
forward-coupled model fires in response to both events in these simulations (B). The
forward-coupled model has the shortest refractory period because excitatory inputs
recruit sodium activation to decreases the height of the left knee of the V2-nullcline, and
the post-spike dynamics of this model allow sodium inactivation (h gating variable) to
recover rapidly.

sensitivity [33]. We therefore repeated our test of coincidence detection sensitivity with 693

dynamic KLT conductance (see Materials and methods). 694

In Fig. 12 we show coincidence detection sensitivity measured from responses to three 695

input frequencies (from left to right: 300 Hz, 500 Hz, and 700 Hz). In the top row, 10% 696

of the total conductance in Cpt1 at rest is dynamic KLT conductance. In the bottom 697

row, 10% of the total conductance in Cpt2 at rest is dynamic KLT conductance. The 698

format of each panel is similar to Fig. 5 with the color scale in each panel representing 699

the maximal firing rate difference between in-phase and out-of-phase inputs. 700

Upon comparing to our previous results using a passive model (frozen KLT), we 701

observe some differences. Dynamic KLT in the input region (Cpt1, top row) improves 702

coincidence detection sensitivity for all model configurations. While models with strong 703

forward coupling and weak backward coupling (lower right corner of each panel) remain 704

as effective coincidence detectors, the optimal configuration shifts to models with 705

stronger backward coupling. For the 300 Hz stimulus, for instance, the largest firing 706

rate differences are achieved for models with strong forward and strong backward 707

coupling (upper right corner). Models with strong backward coupling can more 708

effectively “make use” of the KLT current because V2 spikes propagate back into Cpt1 709

to activate the KLT current. 710

Dynamic KLT in the output region (Cpt2, bottom row) also improves coincidence 711

detection sensitivity for all model configurations, but the greatest increases are in 712

models with weak coupling. As a result, coincidence detection sensitivity is nearly 713

uniform across all model configurations, especially in responses to lower and higher 714

frequency inputs. Dynamic KLT in Cpt2 tends to provide the most benefit for models 715

with weak coupling because it provides a secondary source of voltage-gated, dynamic, 716

negative feedback in these models for which sodium inactivation does not suffice to 717

establish dynamics conducive to coincidence detection, including phasic responses to 718

steady inputs and slope-sensitivity (recall Fig. 7 and Fig. 8). 719

We compare coincidence detection sensitivity across a range of stimulus frequencies 720

for models with the weak, forward, and strong coupling configurations and that include 721

dynamic KLT, see Fig. 13. As above, we test models with dynamic KLT conductance in 722

Cpt1 (Fig. 13A1 and B1), and models with dynamic KLT conductance in Cpt2 723

(Fig. 13A2 and B2). Results for models with dynamic KLT are shown in thick lines. For 724

reference, we also include our earlier results using the frozen KLT model (thin lines, 725

same as results shown in Fig. 6). The results are consistent with our observations from 726

Fig. 12. In particular, we find that dynamic KLT conductance improves coincidence 727
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Fig 12. Coincidence detection sensitivity in two-compartment models with
dynamic KLT. Coincidence detection sensitivity is measured using three different
stimulus frequencies (from left to right: 300 Hz, 500 Hz, 700 Hz). Color scheme in each
panel is normalized so that the “lowest color” (dark blue) is the firing rate difference
that is 65% of the highest value in that panel. In many panels these values are not
reached and range of colors presented does not include these “low” blue colors. A: 10%
of leak conductance in Cpt1 replaced with voltage-gated, low-threshold potassium
(KLT) conductance. B: 10% of leak conductance in Cpt2 replaced with voltage-gated,
low-threshold potassium (KLT) conductance.

detection sensitivity (relative to the passive model) for all coupling configurations and 728

nearly all stimulus frequencies. Moreover, the benefit of KLT depends on coupling 729

configuration. Dynamic KLT added to Cpt1 (soma) improves coincidence detection 730

sensitivity the most for the strongly-coupled model. Dynamic KLT added to Cpt2 731

(axon) improves coincidence detection sensitivity the most for the weakly-coupled model. 732

Fig 13. Dependence of coincidence detection sensitivity on stimulus
frequency for models including dynamic KLT. Firing rate differences for models
with dynamic KLT are shown in thick lines. For reference, we also show firing rate
differences for models with frozen KLT as thin lines (frozen KLT model, same as
Fig. 6A). Top row (A1 and B1): 10% of resting conductance in Cpt1 (input region) is
dynamic KLT conductance. Bottom row (A2 and B2): 10% of resting conductance in
Cpt2 (output region) is dynamic KLT conductance. Left column (A1 and A2):
Coincidence detection sensitivity measured as the maximum firing rate difference
between responses to in-phase and out-of-phase stimuli. Right column (B1 and B2):
Coincidence detection sensitivity measured as the maximum firing rate difference
between responses to in-phase stimuli and stimuli with 500 µs time difference. In all
panels: coincidence detection sensitivity is measured from responses to a range of
frequencies (200 Hz to 700 Hz, in increments of 100 Hz), using the weakly-coupled
(blue), forward-coupled (green), and strongly-coupled (red) models. Firing rates are
computed from spikes counted in simulations with durations of 250 ms. Plotted values
are the mean values computed from 100 repeated simulations, and error bars are
standard errors in the means.

Discussion 733

We systematically examined how soma-to-axon coupling affects neural coincidence 734

detection. We characterized coupling configuration by two parameters (κ1→2 and κ2→1) 735

representing strength of coupling between “input” region (soma and dendrite) and 736

“output” region of a cell (axon and axon initial segment). We also identified a separation 737

of time scales between the “slow” subthreshold dynamics in the input region and the 738

“fast” dynamics in the spike generator. We measured coincidence detection sensitivity in 739

the model neurons by viewing them as “observers” of their own synaptic inputs 740

performign a signal detection task — we interpreted spiking in response to coincident 741

inputs as a measure of correct detection (“hits”) and spiking responses to non-coincident 742

inputs as a measure of incorrect detection (“false positives”). Combining these analyses 743

enabled us to elucidate how coupling configuration (described by a few parameters) 744

affects coincidence detection properties of the two-compartment model neuron. 745

We fixed parameter values based on known properties of principal cells of the medial 746

superior olive (MSO). These neurons are among the first “binaural” neurons in the 747
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mammalian auditory brainstem. MSO neurons receive inputs that originate from both 748

ears and respond preferentially to coincident inputs. The remarkable temporal 749

sensitivity of these coincidence detector neurons is critical for sound localization 750

processing in mammals. 751

Strong soma-to-axon coupling enhances neural coincidence 752

detection 753

Specializations that support temporally-precise coincidence detection in MSO neurons 754

include voltage-gated currents active at membrane potentials near resting values [53], 755

fast and well-timed excitatory synapses [27], and dendritic structure (bipolar dendrites, 756

that segregate inputs from opposite ears onto opposite dendrites) [29,31], see also [25] 757

for review. In this work, we showed that soma-axon coupling is an additional structural 758

specialization that can enhance neural coincidence detection. 759

By performing a thorough search through the space of coupling configuration, we 760

found that strong forward (soma-to-axon) coupling improved coincidence detection 761

sensitivity. And, moreover, the asymmetric “forward-coupled” configuration of strong 762

forward coupling and weak backward coupling was the optimal configuration for 763

coincidence detection in response to higher frequency inputs (500 Hz to 700 Hz). We 764

identified advantages of strong forward coupling for neural coincidence detection 765

including phasic and slope-sensitive spiking dynamics, and (for the forward-coupled 766

model) short refractory periods. These advantages depended on the action of the 767

sodium inactivation gating variable, which is the sole source of voltage-gated, dynamic, 768

negative feedback in the version of the two-compartment model with frozen KLT. 769

Dynamic KLT current further enhances neural coincidence 770

detection 771

KLT current is an additional source of negative feedback and one known to be 772

prominent in MSO neurons in soma and dendrites regions [31], as well as axon 773

regions [38]. We found that dynamic KLT current improved coincidence detection for 774

nearly all coupling configuration and stimulus frequencies. There were notable 775

interactions between coupling configuration and KLT current. Dynamic KLT current 776

improved coincidence detection in neurons with strong forward and backward coupling 777

so that this “strongly-coupled” configuration (the configuration most similar to a 778

one-compartment model) became optimal for coincidence detection in response to 779

intermediate-frequency stimuli. In addition, dynamic KLT current localized to Cpt2 780

(the spike-generator region of the neuron model), could “rescue” coincidence detection 781

sensitivity in neurons with weak soma-axon coupling so that this “weakly-coupled” 782

configuration could exhibit coincidence detection sensitivity on par with other models. 783

There was some loss of efficiency when dynamic KLT current was included (grefNa values 784

increased by 5% to 30%), but these differences are modest compared to the order of 785

magnitude differences in grefNa across coupling configurations. 786

The picture that emerges is one in which structural and dynamical features can 787

combine to provide neurons with a suite of specializations that are useful for 788

temporally-precise coincidence detection. Strong forward coupling appears to be a 789

“natural” configuration for coincidence detection. Moreover, the specific combination of 790

strong forward coupling and weak backward coupling is advantageous for high frequency 791

coincidence detection. The benefits of these coupling configurations can be 792

supplemented with appropriately-targeted KLT current. The need for multiple, 793

complementary mechanisms that enhance coincidence detection MSO neurons has been 794

explored previously, but usually for one-compartment models (Na inactivation and KLT 795
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activation as two sources of negative feedback [36]; KLT and h currents as currents that 796

regulate input resistance [32]). The effect of KLT is considerable and well-studied, so 797

here we emphasized the role of structure (soma-to-axon coupling). The “intrinsic” 798

advantage of the forward-coupling configuration may help maintain coincidence 799

detection sensitivity in scenarios in which KLT is less effective (for instance, KLT 800

current can be inactivated on a slow time-scale not considered in our model). Other 801

features of MSO neurons are specialized for coincidence detection including inhibitory 802

synaptic inputs [57,62,63] and dendritic structure [29–31]. The variety of physiological 803

“tools” MSO neurons use to perform coincidence detection emphasizes the exceptional 804

nature of the temporally-precise computations these neurons perform. 805

We tested coincidence detection sensitivity with out-of-phase inputs and inputs with 806

a fixed 500 µs delay. We observed qualitatively similar results for both types of inputs. 807

The latter stimulus may be more relevant in studying neural coincidence in the context 808

of sound localization. Time differences in this context would be created by differences in 809

travel times of sounds arriving at the two ears (“interaural time differences”) and are 810

limited by animal head size. In humans, for instance, maximal interaural time 811

differences created by head size are approximately 700 µs. 812

MSO neurons appear “forward-coupled” 813

Our model is phenomenological – the two-compartments are “lumped” representations 814

of input and output regions. We do not, therefore, resolve structural details of dendrites 815

or spike initiation zones (see [38] for an example of the latter). Nonetheless, we can 816

make qualitative observations that relate our findings to MSO physiology. 817

Action potentials in the MSO are likely generated in a spike initiation zone near the 818

soma, and back-propagated action potentials in the soma are small and graded [37]. 819

This indicates a “strict electrical segregation of the soma and dendrites from the axonal 820

initiation zone,” (in the words of [37]). In the context of our model, this corresponds to 821

weak backward coupling (small value of κ2→1). Backpropagation of signals into the 822

dendrites is further attenuated due to the low input resistance of these neurons and the 823

strong effects of voltage-gated potassium current [31]. Additionally, current injection 824

into the soma reliably evokes action potentials that propagate into the axon [37]. This 825

suggests a configuration in which the soma has a strong effect on the spike-generator 826

(minimal attenuation, large value of κ1→2 in our model). 827

Taken together then, it appears that MSO neurons may be structured in a 828

“forward-coupled” manner, consistent with our observations that this configuration 829

confers advantages for coincidence detection by engaging sodium inactivation as 830

dynamic negative-feedback mechanism, by promoting rapid “resetting” of the spike 831

generator (shortening the refractory period, which enables high-frequency spiking), and 832

by enabling efficient spike generation (smaller sodium conductance required). 833

The complete picture of MSO excitability and axonal structure is doubtless more 834

complicated. Recent computational simulations provide evidence that spike generation 835

may occur throughout MSO axons (initial segment and multipole nodes of Ranvier) [38]. 836

Spike generation at more distal locations on the axon can preserve excitability in 837

response to high-frequency stimuli by preventing inactivation of sodium channels [38,44]. 838

Studies of coincidence detector neurons in related structures in the avian auditory show 839

that excitability of these neurons can be adjusted via modulation of ion channel density 840

in spike generator regions [42–44]. This raises intriguing questions about plasticity in 841

the spike initiation zone, and dynamic regulation of the soma-to-axon connection. 842
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A framework for investigating neural structure, dynamics, and 843

computation 844

We have formulated a family of two-compartment models to investigate neural 845

coincidence detection in MSO neurons. We showed that parameters in this 846

two-compartment framework can be chosen in a principled manner to explore the range 847

of coupling configurations, while maintaining similar passive dynamics in the input 848

region. With this approach, we identified how structure (the nature of soma-axon 849

coupling) affected dynamics in the spike-generator region, and, in turn, how these 850

differences in dynamics affect the sensitivity of coincidence detector neurons to synaptic 851

inputs. 852

Our approach provides a unifying view of structure and function in neurons 853

performing an identified computation. It is one that should find applications in studies 854

of other neurons. Coincidence detector neurons in the auditory brainstem of owls, for 855

instance, have been modeled as two-compartment structures [41]. The two-compartment 856

idealization has also been useful for investigating dynamics of bursting [45,49,72], 857

bistability [46], oscillations [47], and resonance [50] in neurons, and could also describe 858

signaling between a (large) dendrite region and a (small) dendritic spine. Our 859

framework for creating, and systematically exploring, a parameter space of soma-axon 860

coupling configurations, can be used to shed further light on the relationship between 861

structure, dynamics, and function in these and other neural systems. 862
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Supporting information 863

S1 Fig. Reference gNa for models with 10% dynamic low-threshold 864

potassium (KLT) conductance. A: Reference gNa across parameter space of 865

coupling strengths, for model without dynamic KLT. This panel reproduces Fig. 2B, see 866

text for definition of reference gNa. B: Reference gNa for two-compartment models with 867

10% of leak conductance in Cpt1 replaced by dynamic KLT conductance. C: Reference 868

gNa for two-compartment models with 10% of leak conductance in Cpt2 replaced by 869

dynamic KLT conductance. 870

S2 Fig. Effect of stimulus frequency and coupling configuration on best 871

Na conductance. The value of gNa at which the two-compartment model achieves its 872

best coincidence detection sensitivity (maximal firing rate difference between response 873

to in-phase and out-of-phase inputs) for (A) 300 Hz stimuli, (B) 500 Hz stimuli, and 874

(C) 700 Hz stimuli. D: Detailed view of these “best” gNa values for the weakly-coupled, 875

forward-coupled, and strongly-coupled models as function of input frequency. 876

S3 Fig. Coincidence detection tuning curves for the weak, forward, and 877

strong coupling models. Firing rates in response to 300 Hz (left column), 500 Hz 878

(middle column) and 700 Hz (right column) stimuli. Sodium conductance values are 879

selected so that the firing rate for coincident inputs (0 ms time difference) for each 880

model is 150 spikes/second (top row), 250 spikes/second (middle row), or 881

350 spikes/second (bottom row). 882

S1 File. Excel spreadsheet of figure data. 883
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