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ABSTRACT 

 

Bulk chromatin motion has not been analysed at high resolution. We present Hi-D, a method to 

quantitatively map dynamics of chromatin and abundant nuclear proteins for every pixel 

simultaneously over the entire nucleus from fluorescence image series. Hi-D combines reconstruction 

of chromatin motion, and classification of local diffusion processes by Bayesian inference. We show 

that DNA dynamics in the nuclear interior are spatially partitioned into 0.3 – 3 μm domains in a mosaic-

like pattern, uncoupled from chromatin compaction. This pattern was remodelled in response to 

transcriptional activity. Hi-D can be applied to any dense and bulk structures opening new perspectives 

towards understanding motion of nuclear molecules.  
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INTRODUCTION 

Spatial organization and dynamics of chromatin correlate with cell function and fate [1]. On the 

coarsest level, chromosomes occupy territories in mammalian cells [2]. The relative proportion of 

dense heterochromatin and open euchromatin regions reflect cellular activity [3]. Transitions within 

and between eu- and heterochromatin involve the remodeling of multiple hierarchical levels of 

chromatin organization from domain folding and long-range looping to nucleosome density to adapt 

to and enable DNA processing [4]. Structural models derived from contact and crosslinking frequencies 

[5–7] are consistent with the view that the genome is partitioned into functional compartments and 

sub-compartments [8]. It is now becoming increasingly clear that such nuclear compartments are also 

dynamic entities whose conformational changes impact mechanisms and function of genome folding 

[9]. Tracking of labelled single DNA loci [10–14] or chromatin domains [15,16] demonstrated that 

chromatin motion is highly heterogeneous at short time intervals. Sparse loci, however, are difficult 

to place in the context of global chromatin organization [17] and locally restrained genomic processes 

can also not be inferred from quantities averaged over the entire nucleus [18,19]. A first study 

analyzing bulk chromatin motion at nanoscale resolution revealed dynamic partitioning of chromatin 

into a number of nuclear sub-regions with correlated motion of chromatin in the micrometer range 

[20]. However, the cause and/or effect of (correlated) chromatin dynamics is not yet clear. Likewise, 

whether compaction of chromatin determines its spatial coherence or whether chromatin dynamics 

are distinct in open and closed chromatin is still a matter of debate.  

To tackle this need, we developed a new approach called High-resolution Diffusion mapping (Hi-D) 

that overcomes the limitations of sparse and ensemble approaches. Hi-D combines a dense Optical 

Flow reconstruction to first quantify the local motion of chromatin and other abundant nuclear 

constituents at sub-pixel accuracy within a series of images, and a Bayesian inference approach in the 

second step to precisely classify local types of diffusion. Biophysical properties such as diffusion 

constants and anomalous exponents are determined for each pixel to create two dimensional maps 
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of chromatin dynamics at single pixel resolution in living single cells. Hi-D created spatially resolved 

maps show that DNA compaction and dynamics do not necessarily correlate. Instead, the maps 

suggest that chromatin dynamics are dictated by DNA-DNA contacts and protein binding to DNA, 

rather than chromatin density. 

 

RESULTS 

Hi-D maps genome dynamic properties at nanoscale resolution in living cells 

Motion of densely distributed fluorescent molecules was quantitatively reconstructed from a series 

of conventional confocal fluorescence microscopy images by a dense Optical Flow method [20]. By 

integrating the resulting flow fields, a trajectory was computed for each pixel (Fig 1a; Additional file 1: 

Note S1; Additional file 1: Fig S1). The type of diffusion characterizing each pixel’s chromatin motion 

was chosen in an unbiased manner using a Bayesian inference from a set of five common models to 

fit each trajectory’s Mean Squared Displacement (MSD) [21] (Fig 1b, left panel; Additional file 1: Fig 

S2). The best fitting models were directly mapped onto the nucleus (Fig 1b; right panel) (Methods 

section). We found that only a small fraction of trajectories displayed directed diffusion (Fig 1b), while 

the bulk of chromatin exhibited sub-diffusive behaviour. Distinguishing  between the comparable 

cases of anomalous and confined diffusion is a challenging task, given the limited duration of the 

experiment. After examination of a range of parameters governing these different types of diffusion, 

our results suggest that chromatin diffusion in human U2OS cells can be adequately described as 

anomalous to avoid misinterpretation (Additional file 1: Note S2; Additional file 1: Fig S3). The resulting 

biophysical parameters calculated for each pixel by Hi-D (diffusion constant 𝐷, anomalous exponent 

𝛼 and drift velocity 𝑉)  are presented in color-coded 2D heat-maps (Fig 1c) (Methods section). They 

are distributed in a mosaic of irregular shape and dimensions of similar values (Fig 1c). These 

parameter maps clearly demonstrate that chromatin dynamics are spatially heterogeneous and 
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partitioned. These maps also illustrate the notion that chromatin dynamics are spatially correlated in 

the micrometer-range [18,20]. To further characterize this heterogeneous distribution, the parameter 

distributions were deconvolved into discrete sub-populations using a General Mixture model (GMM) 

(Fig 1c; Methods; and Additional file 1: Fig S4). The GMM identified three populations of chromatin 

mobility referred to as slow, intermediate and fast (Methods; exemplary in Fig 1c), irrespective of the 

parameter under consideration (diffusion constant or anomalous exponent) or transcriptional state of 

the cell. We found that chromatin dynamics characterized by directed motion involving a drift velocity 

(V) was less present than free and anomalous diffusion and provided significantly less data for V than 

for the other two parameters (Fig 1c). Hence, drift velocity was not retained for further analysis. 

Validation of the Hi-D approach in simulation and experiment 

In order to examine the suitability of calculated trajectories and associated diffusion constants by Hi-

D to whole-chromatin imaging conditions, we compared Hi-D to dynamic multiple-target tracing 

(MTT), a Single Particle Tracking (SPT) method which is commonly used for dense molecule tracking 

[22] (Fig 2a,b; Additional file 1: Note S3; Additional file 1: Fig S5; Additional file 1: Fig S7). While the 

SPT method outperforms the Hi-D approach in scenarios of sparsely labelled molecules (Fig 2a), Hi-D 

analysis provided considerably more accurate estimates of local diffusion constants than SPT in 

scenarios of densely labelled molecules or structures of heterogeneous label density such as 

chromatin (Fig 2b). Hi-D therefore constitutes an approach to extract dynamic parameters of 

biomolecules with dense labeling where SPT is unsuitable.  One should, however, keep in mind that 

SPT and Hi-D are meant to analyze images from drastically different labeling conditions and should 

thus refrain from a direct comparison between single-locus dynamics analyzed by SPT and local bulk 

chromatin dynamics by Hi-D (Additional file 1: Note S4; Additional file 1: Movie S1). 

To ensure that the calculated dynamics are not a consequence of imaging noise, we experimentally 

validated the sensitivity of the approach by calculating the MSD for formaldehyde fixed and living 
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U2OS cells labelled by DNA-SiR in quiescence (- serum) or normal growth (+ serum). Diffusion 

constants derived from the MSD curves by Bayesian inference were about two orders of magnitude 

greater in living cells than in fixed cells (Fig 2c) confirming that Hi-D enables quantifying DNA dynamics 

well above the noise background. To confirm the robustness of extracted parameter values with 

respect to varying levels of imaging noise, Hi-D was applied to nuclei to which noise was artificially 

added. The signal-to-noise ratio (SNR) of the original nuclei were about 26 dB and subsequently 

reduced stepwise down to 16 dB. The distributions of computed diffusion constants were consistent 

up to a lower limit of about 20 dB, below which the distribution is considerably biased towards larger 

values and broadens (Fig 2d, Additional file 1: Fig S8). Likewise, features of the spatial map of diffusion 

constants were equally conserved for SNR values as low as 20 dB, demonstrating the robustness of Hi-

D for varying imaging noise (Additional file 1: Fig S8). In analogy to the robustness to varying SNR 

levels, Hi-D is thus robust to photobleaching effects (if SNR ≥ 20dB) since flow fields are only estimated 

between consecutive images, for which illumination changes due to photobleaching are usually 

negligible. Furthermore, Hi-D was also shown to be robust to small variations in time intervals of 

acquired time series as long as the expected motion between frames was in the order of the pixel size 

(Additional file 1:  S9). We further validated Hi-D against iMSD, a well-established method to extract 

dynamic information of dense molecules, based on the spatial correlation function of intensity 

fluctuations caused by diffusing molecules, which are recorded using camera-based systems [23]. 

Using successive calculations of iMSD to overlap regions of interest, we computed a diffusion map 

similar to Hi-D derived maps (Additional file 1: Note S5). Quantitatively, both methods yield diffusion 

constants of the same order of magnitude (Hi-D (1.6 ± 0.8) ⋅ 10−3 𝜇𝑚2/𝑠 , iMSD (2.2 ± 4.5) ⋅

10−3 𝜇𝑚2/𝑠, mean ± standard deviation), which are consistent with reported values using SPT and 

correlation spectroscopy methods applied to interphase chromatin [14,18] . However, the distribution 

of values derived by iMSD was considerably broader than the distribution revealed by Hi-D (Fig 2f). 

The distribution of anomalous exponents computed by iMSD showed many spurious values at the limit 

of the scale, while Hi-D consistently returns reasonable values (Fig 2g). We thus conclude that Hi-D 
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reveals dynamic parameters of the same order of magnitude as iMSD but is advantageous in the 

estimation of multiple parameters simultaneously, by virtue of the featured Bayesian model selection. 

Hi-D is thus an accurate, robust, fast and easy to use tool to determine dynamics of macromolecules 

nucleus-wide. 

Single-cell biophysical property maps of genome conformation and behaviour 

To concomitantly monitor position and distribution of the DNA mobility populations under different 

biological conditions, we determined Hi-D maps of the same serum-starved and then stimulated cell 

(Fig 3a). Transcription is largely inhibited in cell-cycle arrested cells grown in a serum-free medium 

(Additional file 1: Fig S10). Adding serum to the medium stimulates mRNA production through 

transcriptional activity  [20,24–26]. As above, diffusion constants of DNA motion were calculated for 

each pixel based on the model selected by Bayesian inference. Small diffusion constants characterized 

motion of chromatin prominently located at the nuclear envelope (dark blue). Plotting the average 

diffusion constants versus the distance from the nuclear periphery showed that the mobility within a 

rim of 1 µm from the periphery increases linearly before adopting a nearly constant value in the inner 

volume of the nucleus (Additional file 1: Fig S11).  At numerous sites across the remaining nuclear 

volume, fast diffusive areas of irregular dimensions spanning 0.3 − 3 𝜇𝑚 in diameter (yellow areas in 

Fig 3a) are embedded in the bulk of moderately dynamic chromatin. Areas of different parameter 

values seamlessly transition into one another without clearly defined boundaries, reminiscent of 

spatially correlated chromatin dynamics [20]. Upon serum stimulation, the spatial distribution of high 

and low diffusion constants was largely conserved (compare the presence of yellow regions in the 

quiescent and serum stimulated cell in Fig 3a), but the diffusion constant was globally strongly reduced 

by nearly one order of magnitude. Deconvolution of the distribution of diffusion constants and 

labelling of pixels according to the mobility population determined by the GMM (Fig 3b; slow - red, 

intermediate – orange and fast - yellow) yields a map in agreement with this observation. 

Deconvolution hence classifies regions according to the values of a given parameter compared to 
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other regions within the same nucleus.  When nuclear activity is modulated, changes in this 

classification can be measured. In particular, the fast diffusing population with respect to the bulk 

chromatin in quiescent cells is reduced upon serum stimulation (Fig 3c) and re-classified as 

intermediate population. Connected areas with high mobility appear eroded (Fig 3b). In contrast, the 

slow population occupying ~ 6 % of the nuclear area, which is almost exclusively located at the nuclear 

periphery, was invariant to transcriptional changes (Fig 3b, c). Despite considerable reorganization of 

the relative distribution of mobility populations and overall reduced intensity of motion, the type of 

diffusion governing the nuclear parameter maps showed only moderate changes upon stimulation of 

transcriptional activity (Fig 3d).  

Anomalous diffusion dominated across the entire nucleus (0.3 ≤ 𝛼 ≤ 0.73) forming a mosaic-like 

pattern, which underwent, compared to maps of diffusion constants, considerable remodeling upon 

transcriptional activation (Fig 3e, f). Within this pattern, patches of super-diffusive (red: 𝛼 > 1) 

motion segregated into distinct islands which became more fragmented upon serum stimulation. 

Random contacts or re-distribution of existing contacts of the chromatin with itself may give rise to 

such variations in anomalous exponent upon serum stimulation [27].  Because the diffusion constant 

of chromatin fibers appears unaffected for moderate degrees of cross-linking [28], we expect that 

association of proteins with DNA upon serum stimulation could favor global decrease of mobility in 

vivo. Hi-D reveals high-resolution spatial changes in mobility and in anomaly of chromatin diffusion in 

single cells. Further investigation may tell us if all or a subset of visible physical domains correspond 

to the ones determined using chromosome conformation capture (Hi-C). 

Transcription modulates chromatin and RNA polymerase II motion 

To further explore the relationship between global chromatin dynamics and transcriptional activity, 

we examined the dynamics of RNA polymerase II (RPB1-Dendra2; RNA Pol II) in live U2OS cell nuclei 

(Fig 4a) at different transcriptional states. Hi-D analysis resolved three mobility populations of RNA 

Pol II (Fig 4b), which is consistent with the existence of three kinetically different groups of RNA Pol II 
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based on the half-life of chromatin-binding [29,30]. Diffusion constants of the three dynamic 

populations in actively transcribing cells (grown in normal condition) were significantly greater 

compared to transcriptionally less active cells (serum-starved cells) (Fig 4b). In quiescent cells, the 

fraction of quickly diffusing RNA Pol II complexes was reduced compared to actively transcribing cells. 

Upon elongation inhibition using 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB), the slowly 

diffusing fraction was greater than in untreated cells, indicating tenacious immobilization of RNA Pol 

II on the DNA template after initiation (Fig 4c). The average diffusion constants in serum starved and 

DRB treated cells stayed roughly unchanged in all three populations, suggesting that RNA Pol II is 

unbound in the absence of serum [25].  

We then compared the effect of transcriptional activity on chromatin dynamics in serum-starved and 

–stimulated cells. In contrast to RNA Pol II mobility, the average diffusion constant of DNA in serum-

starved U2OS nuclei decreased by nearly one order of magnitude for all three populations upon 

addition of serum. Arresting RNA Pol II before elongation did not change the observed diffusion 

constants, compared to undisturbed transcription (Fig 4d). These cell-population results are consistent 

with results from single-cell analyses (Fig 3) and strengthen our hypothesis that nuclear processes 

considerably hamper diffusion of chromatin. In a quiescent state, only essential nuclear processes are 

maintained. Fewer protein complexes acting upon DNA in a could facilitate motion of the chromatin 

fiber. Upon serum stimulation, binding of transcription factor complexes and other proteins to DNA 

increase crowding, reduce the freedom to move and hence the apparent chromatin dynamics, at least 

in a subset of domains. Increased DNA-protein interactions and interchromatin contacts also enhance 

spatial correlation of chromatin dynamics in serum supplemented compared to quiescent cells [20]. 

Serum addition to starved cells likely stimulated RNA Pol II binding to DNA. When inhibiting 

elongation, transcription factories are still present [24]  and, in agreement with chromatin coherence, 

DNA mobility remains constrained [20]. 
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Independently of the culture conditions, a ground-state Rouse-like behavior characterizes chromatin 

in the examined nuclei (MSD fit with 𝛼 close to 0.5 )  [31,32]. Upon serum stimulation of starved cells, 

anomalous diffusion became predominant and its value (𝛼 ~ 0.33) is indicative of entangled polymers 

[33]. This behavior was also determined for a single labelled site next to an actively transcribing gene 

[13]. Entanglement could stem from random DNA-protein contacts, a model coherent with polymer 

simulations inspired by chromosomal capture data [34]. Hindered motion of chromatin and RNA Pol 

II is thus a direct consequence of forming  transcription ‘hubs’ or factories to which chromatin is 

tethered [25].  

 

Chromatin dynamics is uncoupled from compaction  

We next asked if chromatin dynamics are influenced by the compaction of chromatin since 

heterochromatin is widely believed to be less dynamic than euchromatin [16]. Eu- and 

heterochromatin domains were determined in serum-starved and –stimulated cells by quantifying 

fluorescence intensity as described in [35] (Fig 5a). We found that the average flow magnitude 

between successive frames was independent of the compaction state of chromatin (Fig 5b). Likewise, 

the distribution of diffusion constants did not correlate with chromatin density or euchromatin and 

heterochromatin (Fig 5c). Peripheral heterochromatin overlapped with the slow motion domain at the 

nuclear rim (Fig 5d) consistent with previous findings [16]. In the inner nuclear volume however, we 

did not observe any tendency of heterochromatin being associated with a specific mobility population. 

Instead, we observed that mobility populations were distributed randomly among euchromatin and 

heterochromatin regions (Fig 5e) with the exception that in serum-starved cells, the heterochromatin 

fraction was slightly enriched in the slow diffusing population at the nuclear periphery. Furthermore, 

we found that regions characterized by a specific anomalous exponent did not preferentially overlap 

with either eu- or heterochromatin (Fig 5f, g).  These results also hold for MCF7 cells and different 

fluorescent markers for chromatin (Additional file 1: Fig S12). These findings were confirmed in NIH3T3 
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cells expressing GFP-HP1α, a well-established marker for heterochromatin (Additional file 1: Fig S13). 

In addition, Hi-D analysis of HP1α hints towards previously proposed liquid phase-separation [36]. Our 

results thus suggest that chromatin undergoes diffusion processes which are, in general, unrelated to 

the compaction level of chromatin. However, compact chromatin is characterized by increased 

contact frequency of the chromatin fiber with itself, which could enhance the extent of coherent 

chromatin motion. To test this hypothesis, we calculated Moran’s Index of Spatial Autocorrelation [37] 

for the flow magnitude assessed at different time lags in eu- or heterochromatin (Fig 5h). We found 

that heterochromatin exhibits enhanced spatial autocorrelation compared to euchromatin across all 

accessible time lags. Furthermore, the spatial autocorrelation decreases with increasing time lags in 

serum-starved cells, while in serum-stimulated cells, autocorrelation is enhanced in the long-time limit 

(over 30 seconds). This finding points to active processes establishing spatial coherence in the long-

term [18,20] while random processes such as thermal fluctuations decrease autocorrelation at time 

scales greater than 10 seconds in serum-starved cells.  

 

DISCUSSION 

Hi-D  analysing the dynamics of dense structures such as chromatin and RNA Pol II directly in single 

cells without losing active fluorophore density and with no need for prior experience in sophisticated 

labelling preparations or advanced microscopy [38]. We show that Hi-D is an accurate and robust read-

out of chromatin dynamics and that the information gain through image analysis afforded by Hi-D 

alleviates the incompatibility of conventional microscopy for nanoscale mapping of properties of 

nuclear dynamics in living cells.  

Hi-D analysis revealed that DNA dynamics can roughly be classified into three sub-populations within 

the mammalian nucleus. The use of three distinct populations does not reflect real, likely fluctuating 

transitions between the populations, but is a handy means to characterize the highly complex and 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 19, 2020. ; https://doi.org/10.1101/405969doi: bioRxiv preprint 

https://doi.org/10.1101/405969


11 
 

heterogeneous dynamic landscape of chromatin. The first population, a slow mobility fraction 

prominently located at the nuclear rim, is reminiscent of lamina associated domains (LADs) [39].The 

dynamic response of this population to transcriptional stimuli supports the hypothesis that LADs play 

an important role in attenuating transcription activity and in controlling gene expression [40]. 

Although less mobile chromatin at the nuclear periphery largely overlapped with long known 

perinuclear heterochromatin [41,42], Hi-D analysis remarkably points to an overall absence of 

correlation between chromatin compaction and mobility. Indeed, two non-peripheral chromatin 

subpopulations which display intermediate and highly diffusive regimes, are distributed in a mosaic-

like pattern throughout the nucleus and include sections of intranuclear heterochromatin. 

Heterochromatin therefore does not exhibit low mobility in nuclear space in general, but may be 

divided into a more viscous component with reduced mobility due to anchoring to a nuclear lamina 

and a more rigid LAD component tethered to nuclear structures [39,43–45]. These results are coherent 

with the hypothesis that heterochromatin domains are formed by a liquid phase-separation 

mechanism characteristic of mobility reduction across phase boundaries [36]. The extent of the third, 

highly mobile fraction, which dominated in the quiescent state, decreased dramatically when cells 

were serum stimulated. This switch in chromatin mobility is suggestive of altered DNA-protein 

interactions  and accrued local concentration of proteins in a highly transcribing nucleus [25]. 

Heterogeneous chromatin motion arises due to irregular protein binding along the chromosomes and 

can lead to thermodynamic or electrostatic self-organisation of nuclear compartments [46,47]. Local 

patches of large anomalous exponents indicate super-diffusive behaviour of chromatin which may 

result, among others, from active noise acting on the chromatin fiber [48,49], even in quiescent cells. 

Chromatin patches with 𝛼 < 0.3 and 𝛼 > 1 respectively correspond in size to one or a few DNA loops 

[50]. These two types of patches are present as islands within the general chromatin fraction governed 

by an anomalous exponent 0.3 < 𝛼 < 1. This organization is also in good agreement with the 

chromosome territory – interchromatin compartment model [2]. In conclusion, the combination of 

diffusion constant and anomalous exponent maps provides an integrated view on chromatin dynamics 
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and yields insights into possible mechanisms driving dynamics as well as the local chromosomal 

organization and re-organization during genomic processes. 

Our results support the hypothesis that a short treatment of DRB is sufficient to halt most of a cell’s 

transcription [51], but it is believed to have a limited effect on chromatin configuration of promoters, 

or on upstream events and assembly dynamics of the preinitiation complex (PIC) [52]. Our results 

suggest that a few minutes of DRB treatment affects only the assembly dynamics of the RNA Pol II 

itself. In contrast, longer treatment with DRB as well as prolonged serum starvation, are expected to 

result in massive PIC disassembly. We believe therefore that increased chromatin mobility upon serum 

starvation correlates with PIC breakdown. Conversely, when serum is present in the medium, activity 

of RNA Pol II and of PIC enzymes is restored and PIC will assemble onto DNA, both pervasively across 

the genome at background levels (pervasive transcription) and more stably at genes [53,54]. Reduced 

mobility of chromatin in the presence of serum suggests that stable PIC binding may serve as an 

anchoring function for individual chromatin fibres, on top of its essential function in transcription 

initiation.  

Hi-D can be applied to real-time imaging of any abundant fluorescent molecule to obtain 

comprehensive maps of their dynamic behaviour in response to stimuli, inhibitors or disruptors of 

nuclear functions and integrity. 

 

METHODS 

Cell Culture. A Human U2OS osterosarcoma cell line (for DNA imaging) and MCF-7 cells (ATCC) were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing phenol red-free and DMEM-

12 (Sigma-Aldrich), respectively. For RNA Pol II imaging, a U2OS cell line stably expressing RPB1 

(subunit of RNA Pol II) fused with Dendra2 was constructed as previously described in [55]. Medium 

was supplemented with Glutamax containing 50 μg/ml gentamicin (Sigma-Aldrich), 10% Fetal bovine 
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serum (FBS), 1 mM sodium pyruvate (Sigma-Aldrich) and G418 0.5 mg/ml (Sigma-Aldrich) at 37°C with 

5% CO2. Cells were plated for 24 h on 35 mm petri dishes with a #1.5 coverslip like bottom (μ-Dish, 

Ibidi, Biovalley) with a density of about 105 cells/dish. 

DNA staining. U2OS and MCF-7 cell lines were labelled by using SiR-DNA (SiR-Hoechst) kit 

(Spirochrome AG). For DNA was labelled as described in [56]. Briefly, we diluted 1 mM stock solution 

in cell culture medium to concentration of 2 μM and vortexed briefly. On the day of the imaging, the 

culture medium was changed to medium containing SiR-fluorophores and incubated at 37°C for 30-60 

minutes. Before imaging, the medium was changed to L-15 medium (Liebovitz’s, Gibco) for live 

imaging. 

Cell starvation and stimulation. For starvation mode, cells were incubated for 24 h at 37°C before 

imaging with serum-free medium (DMEM, Glutamax containing 50 μg/ml gentamicin, 1 mM sodium 

pyruvate, and G418 0.5 mg/ml). Just before imaging, cells were mounted in L-15 medium. For 

stimulation, 10% FBS was added to the L-15 medium for 10-15 minutes. 

Flow cytometry analysis with Hoechst and Pyronin Y staining: To differentiate cells in G0 versus G1, 

double staining of Hoechst 33324 and Pyronin Y was used, as previously described [26,57]. Briefly, 

U2OS cells representing each condition (with serum, without serum during 24h and without serum 

during 24h + 15 min serum) were trypsinized, cells were collected into phosphate-buffer saline (PBS) 

at a concentration of 2x106 cells/ml, then added to a fixative of ice-cold 70% ethanol. Cells were fixed 

for at least 2h and washed twice with FACS buffer (1xPBS supplemented with 2% (v/v) heat-

inactivated, sterile-filtered fatal bovine serum, 1 mM EDTA). Cells were then incubated in a water bath 

pre-adjusted to 37°C for 45 min in the dark with 2 µg/ml of Hoechst 33324  (Invitrogen, H3570) diluted 

in FACS buffer, then incubated to 37°C for 30 min in the dark with 4 µg/ml of Pyronin Y (abcam, 

ab146350), diluted in FACS buffer. The samples were kept in the dark at 4°C until analyzed using a LSR 

II flow cytometer (BD Biosciences). Hoechst 33342 and Pyronin Y staining were measured with a UV 

(350 nm) and yellow green (561 nm) lasers, respectively. DNA content was determined by Hoechst 
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33342 and RNA content was determined by Pyronin Y. Cells in G0 were identified as the population 

with 2N DNA content and RNA content lower than the level of cells assigned to G1 phase. Medians of 

Pyronin Y staining for each condition were compared to assess the increase in mRNA production after 

serum addition.  

DRB treatment: The U2OS cells for both DNA and RNA Pol II images were treated with 100 μM 5,6 

Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB; Sigma-Aldrich) for transcription inhibition prior to 

live-cell image acquisition. DRB was diluted in the L-15 (Leibovitz) imaging medium that was 

supplemented with 10% FBS, DMEM, Glutamax containing 50 μg/ml gentamicin, 1 mM sodium 

pyruvate, and G418 0.5 mg/ml. The imaging medium was changed with fresh L-15 medium containing 

DRB and incubated under the microscope for 15 min before imaging.  

 

Cell fixation: U2OS cells were washed with a pre-warmed (37 °C) phosphate buffered saline (PBS) and 

followed by fixation with 4% (vol/vol) Paraformaldehyde in PBS for 10-20 min at room temperature. 

Images were recorded at room temperature in PBS, after washing the cells with PBS (three times, 5 

min each). 

DNA live cell imaging: Cells were placed in a 37 °C humid incubator by controlling the temperature 

and CO2 flow using H201-couple with temperature and CO2 units. Live chromatin imaging was acquired 

using a DMI8 inverted automated microscope (Leica Microsystems) featuring a confocal spinning disk 

unit (CSU-X1-M1N, Yokogawa). An integrated laser engine (ILE 400, Andor) was used for excitation 

with a selected wavelength of 647 nm and 140 mW as excitation power. A 100x oil immersion 

objective (Leica HCX-PL-APO) with a 1.4 NA was chosen for a high-resolution imaging. Fluorescence 

emission of the SiR–Hoechst was filtered by a single-band bandpass filter (FF01-650/13-25, Semrock, 

Inc.). Image series of 150 frames (5 fps), with exposure time of 150ms per frame were acquired using 

Metamorph software (Molecular Devices) and detected using sCMOS cameras (ORCA-Flash4.0 V2) and 

(1×1 binning), with sample pixel size of 65 nm. All series were recorded at 37°C. 
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RNA Pol II live cell imaging: Image series of 150 frames were recorded with an exposure time of 200 

ms using a Nipkow-disk confocal system (Revolution, Andor) featuring a confocal spinning disk unit 

(CSU22, Yokogawa). A diode-pumped solid-state laser with a single wavelength of a 488 nm (Coherent) 

at 5-10% laser power was used for excitation of RPB1 fused to Dendra2. A 100x an oil immersion 

objective (Plan Apo 1.42, Nikon) was used for imaging. The fluorescent emission signal was filtered 

through an emission filter (ET525/30-25, Semrock, Inc.), and detected at 512/18 nm on a cooled 

electron multiplying charge-coupled device camera (iXon Ultra 888), with sample pixel size of 88 nm.  

 

Image processing 

Denoising. Raw images were denoised using non-iterative bilateral filtering [58]. While Gaussian 

blurring only accounts for the spatial distance of a pixel and its neighbourhood, bilateral filtering 

additionally takes the difference in intensity values into account and is therefore an edge-preserving 

method. Abrupt transitions from high- to low-intensity regions (e.g. heterochromatin to 

euchromatin) are not over-smoothed. Images of varying noise levels were treated with a bilateral 

filter with half-size of the Gaussian bilateral filter window of 5 pixels, the spatial-domain standard 

deviation value was set to 5 pixels and the intensity-domain standard deviation was varied from 0.3 

to 0.8 for decreasing levels of the signal-to-noise ratio from 26 dB to 16 dB (𝑆𝑁𝑅 = 10 log10(𝐼2/𝜎2), 

with the signal power 𝐼2 and the noise variance 𝜎2). 

MSD analysis and model selection by using Bayesian inference 

In order to carry out a MSD analysis locally, the spatial dependency of the Mean Squared 

Displacement (MSD) can be written explicitly: 

 MSD(r⃗0, 𝜏) =  〈|𝜉𝑟𝑜
(𝑡 + 𝜏) − 𝜉𝑟0

(𝑡)|
2

〉𝑡 ,  

where 𝜉𝑟0
(𝑡) is the position at time 𝑡 of a virtual particle with initial position 𝑟0, 𝜏 =

{Δ𝑡, 2Δ𝑡, … , (𝑁 − 1)Δ𝑡} are time lags where Δ𝑡 is the time difference between subsequent images 
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and the average <⋅>𝑡 is taken over time. The resulting MSD is a function of the initial position 𝑟0 and 

the time lag 𝜏.  

MSD models: The MSD can be expressed analytically for anomalous diffusion (DA), confined diffusion 

(DR) and directed motion (V) in two dimensions as 

 𝑀𝑆𝐷𝐷𝐴(𝜏) = 4𝐷𝛼𝜏𝛼 (1) 

 𝑀𝑆𝐷𝐷𝑅(𝜏) = 𝑅𝐶
2 (1 − e

−
4𝐷𝜏

𝑅𝐶
2

) (2) 

 𝑀𝑆𝐷𝑉(𝜏) = 𝑣2𝜏2 (3) 

where 𝐷𝛼 is the diffusion constant in units of 𝜇𝑚2/𝑠𝛼  , 𝛼 is its anomalous exponent, 𝑣 [𝜇𝑚/𝑠] its 

velocity and 𝑅𝐶  [𝜇𝑚] is the radius of a sphere within the particle is confined [59]. The case 𝛼 = 1 is 

known as free diffusion, 0 < 𝛼 < 1 corresponds to anomalous diffusion and 1 < 𝛼 ≤ 2 corresponds 

to superdiffusion. Strictly speaking, each generalized diffusion constant 𝐷𝛼 has different units, 

corresponding to the specific value of 𝛼. However, we refer to it as the diffusion constant 𝐷 

throughout the text for simplicity. Additionally to eq. (1)-(3), different types of motion can appear 

overlaying, resulting in a linear combination of the equations above. For example, anomalous motion 

can be superimposed on an underlying drift and the resulting 𝑀𝑆𝐷 reads 𝑀𝑆𝐷𝐷𝐴𝑉(𝜏) = 𝑀𝑆𝐷𝐷𝐴(𝜏) +

𝑀𝑆𝐷𝑉(𝜏). We found that anomalous and confined diffusion appears very similar in experimental data 

and therefore decided in favor for anomalous diffusion to describe our data (Additional file 1: Note 

S3). The abbreviations used in this study are summarized in Table 1. As experimental data is usually 

subject to noise, a constant offset 𝜊 is added to every model. 

Abbreviation Model Formula 

D Free diffusion 𝑀𝑆𝐷𝐷(𝜏) = 4𝐷𝜏 + 𝑜 

DA Anomalous diffusion 𝑀𝑆𝐷𝐷𝐴(𝜏) = 4𝐷𝛼𝜏𝛼 + 𝑜 

V Drift 𝑀𝑆𝐷𝑉(𝜏) = 𝑣2𝜏2 + 𝑜 

DV Free diffusion + drift 𝑀𝑆𝐷𝐷𝑉(𝜏) = 4𝐷𝜏 + 𝑣2𝜏2 + 𝑜 
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DAV Anomalous diffusion + drift 𝑀𝑆𝐷𝐷𝐴𝑉(𝜏) = 4𝐷𝛼𝜏𝛼 + 𝑣2𝜏2 + 𝑜 

Table 1: Overview over possible Mean Squared Displacement models 

MSD model selection: The MSD is calculated for every pixel independently, resulting in a space- and 

time lag-dependent MSD. It is known that living cells can behave largely heterogeneous [3,60]. Ad-

hoc, it is not known which diffusion model is appropriate. Fitting an MSD curve with a wrong model 

might result in poor fits and highly inaccurate determination of the mentioned parameters. For this 

reason, we use a Bayesian inference approach to test different models for any given MSD curve as 

proposed by Monnier et al. [21]. Given the data 𝑌 = {𝑌1, … , 𝑌𝑛} and 𝐾 model candidates 𝑀 =

{𝑀1, … , 𝑀𝐾}, each with its own (multidimensional) parameter set 𝜃 = {𝜃1, … , 𝜃𝐾}, we want to find 

the model 𝑀𝑘(𝑌, 𝜃𝑘) such that the probability that 𝑀𝑘(𝑌, 𝜃𝑘) describes the data, given the set of 

models to test, is maximal. By Bayes’ theorem, the probability for each model is given by 

 𝑃(𝑀𝑘|𝑌) =  
𝑃(𝑌|𝑀𝑘)𝑃(𝑀𝑘)

𝑃(𝑌)
  

If there is no reason to prefer one model over the other, the prior probability of each model 𝑃(𝑀𝑘) is 

equal. The parameter set which is used to describe the data, given a fixed model, strongly influences 

the probability. Therefore, it is crucial to estimate the optimal parameters for every model in order to 

calculate the model probabilities. The probability that the data 𝑌 is observed, given the model 𝑀𝑘 

described by the model function 𝑀𝑘(𝑥; 𝜃𝑘) and any parameter set 𝜃𝑘 is approximated by a general 

multivariate Gaussian function [61] 

 

𝑃(𝑌|𝜃𝑘 , 𝑀𝑘) =  
1

√(2𝜋)𝑛 det(𝐶)

⋅ exp {−
1

2
[𝑌 − 𝑀𝑘(𝑥; 𝜃𝑘)]𝑇 ⋅ 𝐶−1 ⋅ [𝑌 − 𝑀𝑘(𝑥; 𝜃𝑘)]} 

 

where 𝐶 is the empirical covariance matrix of the data and the prefactor is a normalizing factor. This 

equation has an intuitive meaning. Assume we test a model 𝑀𝑘 parametrized by 𝜃𝑘 to find out if it 

describes the data 𝑌. The exponential function consists of the term [𝑌 − 𝑀𝑘(𝑥; 𝜃𝑘)], i.e. the residuals 

of the data and the describing model. If the residuals are small, i.e. the model describes the data well, 
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the exponent is small and the probability 𝑃(𝑌|𝜃𝑘 , 𝑀𝑘) seeks 1. On the other hand, the worse the fit, 

the greater the resulting residuals and the probability seeks asymptotically to 0. The factor 𝐶−1 

accounts for the covariance in the data. The covariance matrix for a set of MSD curves normally shows 

large values for large time lags as the uncertainty increases and MSD curves diverge. The covariance 

matrix implicitly introduces a weight to the data, which is small for large variances and large where 

the data spreads little. This fact avoids cutting of the MSD curve after a specific number of time lags, 

but instead includes all available time lags weighted by the covariance matrix. The approach is 

illustrated in (Additional file 1: Fig S2b) with the covariance matrix exemplary shown in the inset. In 

case of uncorrelated errors, non-diagonal elements are zero, but the approach keeps its validity [62] 

and follows an ordinary least-squares regression. 

Given the best estimate of the parameter set for a model, the model and its corresponding parameters 

are chosen so that their probability to describe the data is maximal: 𝜃𝑘,𝑀𝐿𝐸 = arg max
𝜃𝑘

𝑃(𝑌|𝜃𝑘 , 𝑀𝑘). 

It has to be stressed that values of the anomalous exponent scatter around 1, but do not assume the 

value 1 (e.g. Fig 1c, middle panel). This is due to the model selection procedure, selecting the simplest 

model which is consistent with the data. In the case that the underlying motion is well described by 

free diffusion, 𝛼 is inherently set to 1 and classified as free diffusion rather than anomalous diffusion. 

The descriptions of free diffusion or anomalous diffusion with 𝛼 = 1 are equivalent, but the free 

diffusion model contains one parameter less and is therefore preferred leading to ’missing’ 𝛼 values 

close to 1 in the parameter maps and histograms. To carry out the MSD analysis locally, we choose to 

take the 3x3 neighborhood of a pixel, detect possible outliers therein by the interquartile range 

criterion [63] and calculate the error covariance matrix of the data within the pixel’s neighborhood. 

The restriction to a single pixel and its neighborhood allows us to carry out the MSD analysis of 

trajectories locally, in contrast to an ensemble MSD in previous studies [18], revealing only average 

information over many trajectories. The choice of a 3x3 window is reasonable with regard to the 

equivalently chosen filter size in the Optical Flow estimation. The flow field in this region is therefore 

assumed to be sufficiently smooth. All calculations, except for the General Mixture Model analysis, 
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were carried out using MATLAB (MATLAB Release 2017a, The MathWorks, Inc., Natick, Massachusetts, 

United States) on a 64-bit Intel Xeon CPUE5-2609 1.90 GHz workstation with 64 GB RAM and running 

Microsoft Windows 10 Professional. 

Deconvolution of sub-populations 

Regarding the distribution of diffusion constants, an analytical expression can be found assuming that 

the diffusion constant was calculated from a freely diffusing particle (𝛼 = 1)[64]. However, we find 

anomalous diffusion to a large extent in our data (e.g. Fig 1c, Fig 2g, Fig 3f, Fig 4e and Fig 5g) and, to 

our knowledge, an analytical expression cannot be found for distributions of anomalous exponent, 

radius of confinement and drift velocity. We therefore deconvolved the parameter sets in a rather 

general manner, for which we use a General Mixture model (GMM), a probabilistic model composed 

of multiple distributions and corresponding weights. We describe each data point as a portion of a 

normal or log-normal distribution described by 

 𝑓𝑁(𝑌|𝜇, 𝜎2) =  
1

√2𝜋𝜎
𝑒

−
(𝑌−𝜇)2

2𝜎2  and  

 𝑓𝐿(𝑌|𝜇, 𝜎2) =  
1

𝑌√2𝜋𝑠
𝑒

−
(ln (𝑌)−𝑚)2

2𝑠2 ,  

respectively. The logarithmic mean 𝑚 and standard deviation 𝑠 are related to the mean and standard 

deviation of the normal distribution via [65]. 

 𝜇 = exp (𝑚 + 
𝑠2

2
)  

 𝜎2 = exp(2𝑚 +  𝑠2)(𝑒𝜎2
− 1)  

We consider up to three subpopulations to be found in our data and model the total density estimate 

as a superposition of one, two or three subpopulations, i.e. the Mixture Model reads 

 𝑓𝐺𝑀𝑀(𝑌) =  ∑ 𝑤𝑘  𝑓𝑘(𝑌|𝜇𝑘 , 𝜎𝑘
2)

𝑘
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for both normal and log-normal distributions, where to sum goes to 1, 2 or 3, respectively. The variable 

𝑤𝑘 describes the weights for each population (or component), which satisfy 0 ≤ 𝑤𝑘 ≤ 1 and sum up 

to unity. The weights of each component are directly proportional to the area of the histogram 

covered by this component and therefore its existence in the data set. 

General Mixture Model analysis 

Let  𝑌 = {𝑌1, … , 𝑌𝑛} denote 𝑛 data points. For the scope of this description, assume 𝑌 to be a one-

dimensional variable. Further assume that the data cannot be described by a single distribution, but 

by a mixture of distributions. A deconvolution of the data into sub-populations faces the following 

problem: Given a label for each data point, denoting the affiliation to a population, one could group 

corresponding data points and find the parameters of each population separately using a maximum 

likelihood estimation or other methods. On the other hand, if we had given the model parameters for 

each population, labels could in principle be inferred from the likelihood of a data point being 

described by a population or another. The problem can be formulated by Bayes’ rule (𝑀 indicates 

model, 𝐷 indicates data) 

 𝑃(𝑀|𝐷)𝑃(𝐷) =  𝑃(𝐷|𝑀)𝑃(𝑀).  

Here, 𝑃(𝑀|𝐷) is the posterior probability of the model given the data, which is the aim to calculate. 

We assign a data point to the component, which maximizes 𝑃(𝑀|𝐷). The probability to observe the 

data given a model is described by 𝑃(𝐷|𝑀), i.e. the likelihood function. 𝑃(𝑀) is the prior for the 

models to be chosen from. In our case, we have no prior beliefs on the models (all models are equally 

likely) such that 𝑃(𝑀) is uniform. Lastly, the probability 𝑃(𝐷) does not depend on the models and can 

therefore be dropped. 

Neither labels, that is 𝑃(𝑀|𝐷), nor model parameters and weights are known a priori. The problem 

can be approached by an Expectation-Maximization (EM) scheme: Without any prior beliefs about the 

data distribution, one starts with a simple estimate of model parameters, e.g. a k-means clustering 

estimate and iterates subsequently between the two following steps until convergence: 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 19, 2020. ; https://doi.org/10.1101/405969doi: bioRxiv preprint 

https://doi.org/10.1101/405969


21 
 

Expectation step: Calculation of the probability that the component with the current parameter 

estimate generated the sample, i.e. 𝑃(𝐷|𝑀). 

Maximization step: Update the current parameter estimate for each component by means of a 

weighted maximum likelihood estimate, where the weight is the probability that the component 

generated the sample. 

We illustrate the results of the EM algorithm exemplary in Additional file 1: Fig S4. From the input data 

(Additional file 1: Fig S4a), represented as histogram, both the likelihood 𝑃(𝐷|𝑀) (Additional file 1: 

Fig S4b) and the posterior (Additional file 1: Fig S4c) is obtained. The sum of sub-populations 

corresponds to the overall probability distribution (shown in black) with different model parameters 

and weights found by maximizing the likelihood function. The posterior describes the probability of 

data points to fall under each population, i.e. ∑ 𝑃(𝑀𝑘|𝐷) = 1𝑘 . The data points are assigned to those 

population, for which 𝑃(𝑀𝑘|𝐷) is maximum, resulting in labeled data. The labels are subsequently 

mapped in two dimensions, visualizing spatial correspondence of slow, intermediate and fast sub-

populations (Additional file 1: Fig S4d). The GMM analysis is carried out using the pomegranate 

machine learning package for probabilistic modeling in Python [66]. 

Selection of subpopulations by the Bayesian Information Criterion (BIC) 

A priori, it is not unambiguously clear from how many populations the data is sampled and which form 

the subpopulations take. We therefore assess the suitability of each model by means of the Bayesian 

Information Criterion (BIC), which is calculated by [67] 

 𝐵𝐼𝐶 =  −2 ln(𝐿̂) + 𝑝 𝑙𝑛(𝑛), (4) 

where 𝐿̂ is the maximum likelihood of the maximum likelihood estimation (MLE) estimate, 𝑝 denotes 

the number of parameters in the model and 𝑛 is the number of data points used for the fit. Among a 

family of models, the one with the lowest BIC is considered to describe the data best, taking into 

account competing complexity of models. A large likelihood of a model favors it to describe the data 

well, while on the other hand the model is penalized if many parameters are involved in the model by 
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the second term in eq. (4). Therefore, the BIC prevents overfitting. In order to judge which model is 

appropriate for our data, we tested all considered models for each histogram and assessed the optimal 

model by means of the BIC. The fraction of all histograms which described best by one of the six 

models considered is given in Table 2. Based on the objective judgement of the fit using the BIC, we 

chose for each parameter the model which best describes the largest fraction of histograms (Table 2, 

bold cells). 

 Normal distribution Log-normal distribution 

#populations 1 2 3 1 2 3 

D 0.01 0.01 0.06 0.01 0.40 0.51 

𝛼 0 0.05 0.68 0.02 0.03 0.22 

Table 2: Fraction of histograms over all parameters best described by one of the six models 
considered. The highest fraction is shown in bold. 

 

AVAILABILITY OF DATA AND MATERIALS 

Raw microscopy data is made publicly available [68]. The source code of the Hi-D method is available 

under the GNU General Public License [69]. 
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Figure Legends 

Fig 1: Hi-D enables spatially resolved mapping of genome dynamic properties at nanoscale 

resolution in living cells. Workflow: a) A series of N=150 confocal microscopy images acquired at 5 

fps (left) (here SiR DNA stained living U2OS cells).  Dense optical flow was applied to define (N-1) flow 

fields of the images (center, color coded) based on fluorescence intensity of each pixel (size = 65 nm). 

Individual trajectories are reconstructed over the duration of acquisition (right). b) MSD model 

selection (left): Trajectories of a 3x3 neighborhood of every pixel are used to calculate a mean MSD 

curve and its corresponding covariance matrix. By a Bayesian inference approach, the type of diffusion 

fitting each individual curve is chosen (free diffusion (D), anomalous diffusion (DA), directed motion 

(V) or a combination (DV) or (DAV). The spatial distribution of the selected models for each pixel is 

shown as a color map. c) Maps of biophysical parameters (𝐷, 𝛼 and 𝑉) extracted from the best 

describing model per pixel reveal local dynamic behavior of DNA in large domains. The distribution is 

deconvolved using a General Mixture Model. 

Fig 2: Experimental validation of the Hi-D approach. a) Exemplary frame of a simulated time series 

with low density (0.001/𝑝𝑥3) of emitters undergoing Brownian motion convolved by a typical point 

spread function (left). The time series is subject to Hi-D and Single Particle Tracking estimating the 

trajectories of emitters. From the estimated trajectories, the MSD is computed and compared to the 

ground truth diffusion constant. The relative error in the determined diffusion constant is shown. b) 

High density (0.02/𝑝𝑥3) of emitters with patches of super-high density (0.035/𝑝𝑥3) encircled for 

visualization, imitating regions of densely packed chromatin. Dashed lines show the optimal value, i.e. 

perfect agreement between estimation and ground truth. Red lines indicate the median value. Data 

from 10 independent simulations. Statistical significance assessed by a two-sample Kolmogorov-

Smirnov test (***: p < 0.001). c) MSD curves computed in fixed (n = 13) and living quiescent (- serum; 

n = 13) and serum stimulated (+ serum; n = 14) U2OS cells. Diffusion constants for the three average 

curves were derived by regression yielding 𝐷 = (0.87 ± 0.1) ⋅ 10−3 𝜇𝑚2/𝑠 for quiescent, 𝐷 =

(2.6 ± 0.1) ⋅ 10−4 𝜇𝑚2/𝑠 for stimulated and 𝐷 = (6.1 ± 0.1) ⋅ 10−6 𝜇𝑚2/𝑠 for fixed cells. MSD 

curves show considerably higher MSD values for living cells and diffusion constants are two orders of 

magnitude higher for living cells thus confirming the detection of motion well above noise background. 

d) Diffusion constants derived from a nucleus corrupted with varying levels of signal-to-noise ratio. 

Results are consistent up to a lower bound of ~ 20 dB. e) Map of diffusion constants computed by Hi-

D (left) and iMSD (right). Diffusion constants are color-coded from their minimum to their maximum 

value (blue to yellow; for absolute values see f)). Red arrows indicate regions of high mobility detected 

by both methods. f) Diffusion constants shown in e) and g) corresponding values of the anomalous 

exponent computed by Hi-D (blue) and iMSD (red). 
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Fig 3: Hi-D maps single-cell biophysical properties of genome conformation and behaviour. a) 

Diffusion constant spatially mapped onto the nucleus of a quiescent cell (left) and the same nucleus 

upon serum stimulation b) Spatial distribution of populations found by the GMM for the diffusion 

constant for quiescent (left) and actively transcribing cells (right). c) Relative share of populations on 

the cell volume (n = 12). Numbers in percent. d) For each population in b), the relative share of chosen 

MSD models is represented as a stacked histogram in the quiescent state (left bars) and actively 

transcribing state (right bars). e) Spatial distribution of populations for the anomalous exponent for 

quiescent (left) and actively transcribing cells (right). f) Detailed insight into the spatial patterning of 

the low population of the anomalous exponent. The intermediate and high population are shown in 

light and dark red respectively. 

Fig 4: Biophysical properties of chromatin are sensitive to transcriptional activity. a) Fluorescence 

image of RPB1, a RNA polymerase II subunit, fused to Dendra2 (left), the spatial mapping of the 

diffusion constant (middle) and population deconvolution (right). b) Violin plots of the mean diffusion 

constant of RNA Pol II for all three mobility groups in quiescent (- serum; n = 18), actively transcribing 

(+ serum; n = 20) and elongation inhibited (+ DRB; n = 21) cells are shown; dark blue, light blue and 

green denote the slow, intermediate and fast population, respectively. c) Relative share of the 

populations on the cell volume for starved (n = 13), stimulated (n = 14) and DRB-treated (n = 18) cells. 

Numbers in percent. d) As b) for the diffusion constant and d) the anomalous exponent of DNA 

dynamics (n=13 cells); red, gold and yellow denote the slow, intermediate and fast population, 

respectively. Statistical significance for assessed by a Friedman test (*: p < 0.05, **: p < 0.01, ***: p < 

0.001).  

Fig 5: Chromatin compaction and dynamics do not spatially correlate. a) Spatial classification of signal 

intensity into euchromatin and heterochromatin [35] overlaid on an exemplary fluorescence image 

for quiescent (left) and stimulated (right) cells. b) Average flow magnitude and c) diffusion constant 

(n = 12) in euchromatin and heterochromatin for starved (left) and serum stimulated cells (right). 

Statistical significance assessed by a two-sample t-test. d) Overlay with the diffusion populations 

found by Hi-D. Black solid line corresponds to eu- / heterochromatin region boundaries. e) Diffusion 

populations show a similar distribution over hetero- and euchromatin. The colors refer to the slow, 

intermediate and high population respectively and each point corresponds to one nucleus. Statistical 

significance assessed by a two-sample t-test (*: p < 0.05, **: p < 0.01, ***: p < 0.001). f-g) Anomalous 

exponent as d-e). h) Spatial autocorrelation at euchromatin (green) and heterochromatin (purple) of 

the flow magnitude between all accessible time lags in quiescent and serum-stimulated cells. 
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