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Abstract 

Motivation: The presence of missing values is a frequent problem encountered in genomic 

data analysis. Lost data can be an obstacle to downstream analyses that require complete data 

matrices. State-of-the-art imputation techniques including Singular Value Decomposition (SVD) 

and K-Nearest Neighbors (KNN) based methods usually achieve good performances, but are 

computationally expensive especially for large datasets such as those involved in pan-cancer 

analysis. 

Results: This study describes a new method: a denoising autoencoder with partial loss (DAPL) 

as a deep learning based alternative for data imputation. Results on pan-cancer gene expression 

data and DNA methylation data from over 11,000 samples demonstrate significant improvement 

over standard denoising autoencoder for both data missing-at-random cases with a range of 

missing percentages, and missing-not-at-random cases based on expression level and GC-

content. We discuss the advantages of DAPL over traditional imputation methods and show that 

it achieves comparable or better performance with less computational burden. 

Availability: https://github.com/gevaertlab/DAPL 

Contact: ogevaert@stanford.edu 
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Introduction 

 The Cancer Genome Atlas (TCGA) project has provided researchers a rich database to 

study the molecular basis of cancer (Cancer Genome Atlas Research, et al., 2013). Pan-cancer 

analyses enable a better understanding of the genomic commonalities and differences across 

tumor types and subtypes, which makes it possible to extend diagnosis and treatment from one 

cancer type to another with a similar genomic profile (Cline, et al., 2013). RNA sequencing data 

and DNA methylation data have been widely investigated in pan-cancer analyses to identify 

cancer driver genes or biomarkers (Byron, et al., 2016; Gevaert, et al., 2015; Kulis and Esteller, 

2010; Litovkin, et al., 2015; Tomczak, et al., 2015). Many such studies on pan-cancer genomics 

require complete datasets (Champion, et al., 2018). However, missing values are frequently 

present in these data due to various reasons including low resolution, missing probes, and 

artifacts (Baghfalaki, et al., 2016; Libbrecht and Noble, 2015). Therefore, practical methods to 

handle missing data in pan-cancer genomic datasets are needed for effective downstream 

analyses.  

 

One way to complete the data matrices is to ignore missing values by removing the entire 

feature if any of the samples has a missing value in that feature, but this is usually not a good 

strategy as the feature may contain useful information for other samples. The most preferable 

way to handle missing data is to impute their values in the pre-processing step. Many approaches 

have been proposed for this purpose, including replacement using average values, estimation 

using weighted K-nearest neighbor (KNN) method (Faisal and Tutz, 2017; Troyanskaya, et al., 

2001), and estimation using singular value decomposition (SVD) based methods (Troyanskaya, 

et al., 2001). In recent years, a branch of machine learning which emerged based on big data and 
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deep artificial neural network architectures, usually referred to as deep learning, has advanced 

rapidly and shown great potential for applications in bioinformatics (Min, et al., 2017). Deep 

learning has been applied in areas including genomics studies (Chen, et al., 2016; Leung, et al., 

2014), biomedical imaging (Chen, et al., 2016), and biomedical signal processing (Wulsin, et al., 

2011). Deep learning based methods have also been proposed to solve the missing data problems 

in various contexts and shown promising results (Beaulieu-Jones and Moore, 2017; Jaques, et al., 

2018; Vincent, et al., 2008). Among the competitor algorithms for genomic data imputation, 

KNN and SVD are still considered the de facto standard because they can be easily implemented 

and have been reported to achieve best performances in missing value estimation problems 

(Aghdam, et al., 2017). However, when applied to very large datasets, KNN and SVD have 

severe drawbacks in computational overhead. Both methods are not model based and hence 

require significant computation at evaluation time, which makes them less practical in large-

scale genomic data imputation.   

In this study, we propose to leverage the denoising autoencoder (DAE) structure to 

predict missing values in pan-cancer genomic analysis. We demonstrate that by using a 

denoising autoencoder with partial loss (DAPL), it is possible to achieve significant 

improvement over a standard denoising autoencoder. We also show that the performance is on a 

par with the most state-of-the-art competitor algorithms while requiring less computational cost 

at evaluation time, for both data missing-at-random cases across a range of missing percentages, 

and missing-not-at-random cases based on expression level and GC-content.  
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Materials and Methods 

Datasets 

We used the pan-cancer RNA sequencing data and DNA methylation data from TCGA. 

We preprocessed the raw RNA sequencing data by removing the genes with NA values, and 

doing a log transformation followed by z-score transformation. The resulting matrix has 11069 

samples and 17175 genes. We used the pan-cancer DNA methylation data to validate the 

algorithm on a larger and wider (feature dimension >> sample size) dataset. The validation data 

was processed in the same way as the RNA sequencing data, which resulted in a matrix with 

9664 samples and 269273 features (CpG sites).  

 

Autoencoder 

 An autoencoder is an unsupervised deep neural network that is trained to reconstruct an 

input ! by learning a function ℎ#,%(!) ≈ !. This is done by minimizing the loss function 

between the input ! and the network’s output !):	+ !, !) . The most common loss function is 

the root mean squared error:  

+ !, !) = |! − !)| / 

 

 An autoencoder consists of an encoder and a decoder. The encoder transforms the input 

to a latent representation, often such that the latent representation is in a much smaller dimension 

than the input (Ballard, 1987). The decoder then maps the latent embedding to the reconstruction 

of !. An autoencoder is often used as a dimensional reduction technique to learn useful 

representation of data (Sakurada and Yairi, 2014).  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406066doi: bioRxiv preprint 

https://doi.org/10.1101/406066
http://creativecommons.org/licenses/by-nc/4.0/


 A denoising autoencoder (DAE) aims to recover the noise-free, original input through 

deep networks given a noisy input (Vincent, et al., 2008). In each iteration of training, noise is 

added to the input ! to obtain !. The loss is computed between the original X and the 

reconstructed !). 

 

Denoising autoencoder with partial loss 

 When the added noise to DAE is in the form of masking noise, i.e., a random fraction of 

the input is set to 0, the DAE can be trained to estimate missing values (Vincent, et al., 2010). 

The 0s in the training data simulate the missing elements and the reconstructed noise-free data 

will fill those positions with estimated values. However, a standard DAE aims to reproduce the 

whole dataset without focusing on the missing elements, while some of the other state-of-the-art 

imputing methods, such as SVD, focus on learning the missing elements iteratively. As a result, 

the performance of a standard DAE in estimating missing values is not on par with SVD, or 

KNN based methods.  

 

To ameliorate this problem, we implemented a denoising autoencoder with partial loss 

(DAPL) to focus the neural network’s learning on the missing positions. We minimized the root 

mean square error (RMSE) loss only on the missing values between the original input !, and the 

reconstructed !): 

 

+ !, !) = |![1233245] − !)[1233245]|
/
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Missing data simulations  

With the TCGA RNA sequencing dataset, we only used the features that have values for 

every sample to construct a ground truth complete data. Then the complete data was split 

60/15/25% for training, validation, and testing. 

 

We simulated two missingness scenarios: at random and not at random. In the missing at 

random case, missing values in the testing data are in this form: a fixed fraction of elements at 

random positions were masked by setting their values to NA. We experimented with a range of 

missing fraction: 5%, 10%, 30%, 50% and 80%.  We artificially introduced missingness to the 

complete training data by masking certain values. The autoencoder was initially trained such that 

the training data was masked to have the same fraction of random missingness as the testing data 

it was applied on. Then it was also trained on training data masked at different fraction of 

missingness than the testing data for comparisons. We then computed the RMSE error between 

the test ground truth and the imputed values. In the missing not at random case, we implemented 

two scenarios for missing. The first one was based on gene expression level (Conesa, et al., 

2016). We tested on cases where a random half of the genes with expression level at the lowest 

5% or 10% are missing. The autoencoder was trained on the same simulated scenario, where a 

random half of the genes with expression level at the lowest 5% or 10% were masked as missing 

during training. The second scenario was based on GC content, the percentage of nitrogenous 

bases on a RNA fragment that are either guanine(G) or cytosine(C). Too high or too low GC 

content influences RNA sequencing coverage, and potentially results in missing values (Chen, et 

al., 2013). We tested on cases where a random half of the genes with GC-content at the highest 

5% or 10% are missing. Similarly, training was done on the same simulated scenarios.  
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Evaluation methods 

The model hyper parameters we tested include number of hidden layers, node size and 

dropout. We evaluated twelve autoencoder structures including three different number of layers 

(Figure 1, Table 1): 1) three layers with a layer-wise size reduction factor of 2, 4, 8 and 16-folds; 

2) five layers with a layer-wise size reduction factor of 2, 3, 5, 8 and 10-folds; 3) seven layers 

with a layer-wise size reduction factor of 2, 3 and 4-folds.  Layer-wise size reduction factor is the 

amount of reduction in the number of nodes in one layer of an autoencoder compared to its 

previous layer in the encoder portion. For example, a reduction factor of two means one layer has 

approximately half of the number of nodes than its previous layer. Due to the symmetric 

architecture of autoencoders, the reduction factor in the encoder is the same as the layer-wise 

increase factor in the decoder. We will refer to this number as the layer-wise reduction factor. 

Dropout is a regularization technique to reduce autoencoder overfitting (Srivastava, et al., 2014). 

At training stage, individual units were dropped out of the network with a probability called 

dropout rate.  

 

To evaluate denoising autoencoder with partial loss, we compared it to the other most 

commonly used missing value estimation methods: KNN method, SVD based method, standard 

DAE without loss modification, and column average imputation. KNN selects K number of 

samples which are most similar to the target sample with a missing gene based on Euclidean 

distance, and which all have values present in that gene. Imputation is a weighted average of the 

values of that gene in those K samples. We chose K=10 in our evaluations based on a study 

which reported that K in the range of 10-25 gave the best imputation results (Troyanskaya, et al., 

2001). SVD method decomposes the data matrix to the linear combination of eigengenes and 
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corresponding coefficients. Genes are regressed against K most significant eigengenes, during 

which process the missing genes are not used (Hastie, et al., 1999). The obtained coefficients are 

linearly multiplied by eigengenes to get a reconstruction with missing genes filled. This process 

is repeated until the total change in the matrix reaches a certain threshold. The reconstruction 

performance of SVD depends on the number of eigengenes selected for regression, and we tested 

a range of values to determine the optimal K for SVD performance. Standard DAE was 

implemented as described previously, with loss defined over the entire data matrix. Column 

average imputation estimated the missing gene by taking the average of the gene in all samples 

where that gene was present.  

 

We evaluated each test sample and computed RMSE error of the missing values in that 

sample  

                           789: = (;2 − ;2))//=1233245
4>?@@?AB
2CD    

   

Where ;2 is the element in the ground truth, and is ;2)	is the element in the reconstructed data. 

Then we compared the RMSE distribution of the test samples for each of the method. Since SVD 

and KNN need to compute each time a new sample is tested, it is computationally expensive to 

evaluate all the test data. We randomly chose 100 samples from the test set for a fair comparison 

of all methods.  

 

 The method was validated on the TCGA pan-cancer DNA methylation data. Deep 

learning methods are usually faced with the challenges of severe overfitting and high-variance 

gradients when processing datasets that have a small sample size but high feature dimension 
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(Liu, et al., 2017). We chose the methylation data where feature dimension is far greater than 

sample size to validate our algorithm’s robustness and applicability in real world problems. 5%, 

30% and 80% random missing were tested on a five layers autoencoder which has a layer-wise 

size reduction of 100-fold with bottleneck size of 800. Since it requires large computation 

resource to perform competitor algorithms on this large dataset, we did not run analysis on other 

random missing percentages and missing not-at-random cases due to hardware limitations.  

 

Table 1. Autoencoder with Partial Loss (DAPL) structural variations 
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Figure 1. Schematics showing (a) a three layer autoencoder with bottleneck size of 1000. (b) a five layer autoencoders with bottleneck size of 800, and (c) a 
seven layer autoencoders autoencoder with bottleneck size of 800 
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Results 

DAPL outperforms DAE  

We compared the proposed AE models for different missingness scenarios and also 

evaluated different autoencoder structures.  First we tested missing at random cases at varying 

percentage (Figure 2). 5%, 10%, 30%, 50%, and 80% random elements in the data were masked 

respectively, and models were compared on the reconstruction root mean square errors (RMSE). 

Using a five hidden layers with 800 node bottleneck autoencoder structure, DAPL achieves 

significant improvement over the standard DAE for the comparisons between DAE and DAPL in  

all missing percentages (Wilcoxon rank sum test, P-value < 0.001).  

To determine the optimal number of eigengenes K used for regression in the SVD 

method, we experimented with 1%, 2.5%, 5%, and 10% of the eigengenes and concluded that 

2.5% - 5% gives the best imputation results. The comparisons were done with K=2.5% of 

eigengenes.  DAPL reaches an average error very close to the best performing SVD. 10-KNN 

method gives worse average error than SVD and DAPL, but slightly better than a standard 

denoising autoencoder without loss modification. Column average results in worst imputation 

performance among all methods considered. The situation does not change with changing noise 

levels.  

We tested several dropout rates and found that dropout applied to hidden layers did not 

improve imputation performance. We also tested a different way of masking at training stage: we 

randomly selected a fixed fraction of columns in the whole data set, and set the entire columns to 

zero. We found it did not improve the imputation performance of DAPL. 
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Figure 2. Comparisons of imputation methods measured in root mean square error (RMSE) for missing at random 
cases. From left to right: testing is done at 5%, 10%, 30%, 50%, and 80% random missingness. The method used 

from left to right: standard denoising autoencoder (DAE), denoising autoencoder with partial loss (DAPL), 10 
nearest neighbor method (KNN), iterative singular value decomposition (SVD), and column average estimation 

(Colave). 
 

 

Optimal training for missing at random  

Next, we investigated the effect of different masking percentages during training of 

DAPL for predicting at specific missing levels. For each test case from the five missingness 

levels, DAPL was trained on all masking levels to find out which training scheme gives the best 

performance. Our results show that if training is done on the same simulated scenario as the 

testing case, i.e., the same level of missingness in testing is introduced during training, the 

performance is better than if training is done on a different scenario (Figure 3). However, it is 

also shown that when the testing missingness level is smaller than 50%, training at 30% masked 

achieved reasonable performance at all levels.  
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Figure 3. Effect of different masking percentages during training of denoising autoencoder with partial loss, 
measured in root mean square error (RMSE), for predicting at each of the 5 missing levels from top left to bottom 

right: 5%, 10%, 30%, 50%, 80% missing. 
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Optimal architecture for DAPL  

We evaluated twelve autoencoder architectures including three, five and seven layer 

networks with a range of layer-wise reduction factors. We found that reduction factor has a 

noticeable effect on imputation accuracies (Figure 4). The model complexity decreases with 

increasing layerwise reduction factor. In general, the trend is that the RMSE gets higher when 

the model becomes simpler. However, this is not strictly true. The RMSE trend drops slightly at 

the beginning for five layer autoencoders, and does not increase steeply within a certain range. 

This suggests that the optimal DAPL architecture is not the most complex one, and hence it is 

possible to reduce complexity without heavily degrading performance.  

 

 

Figure 4. Results of autoencoder structural variations. Root mean square error (RMSE) is measured against 
layerwise size reduction factor for each of 3 layer, 5 layer, and 7 layer autoencoders. 

 
 

DAPL outperforms SVD for missing not at random 

Missing not at random cases include missing based on expression level where a random 

half of the genes with expression level at the lowest 5% or 10% are missing, and missing based 
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on GC content where a random half of the genes with GC-content at the highest 5% or 10% are 

missing. Both were performed with an autoencoder with five hidden layers and bottleneck size of 

800. For missing based on expression level cases, DAPL outperforms SVD, achieving the lowest 

RMSE among all methods in both missing percentages (Figure 5). For missing based on GC-

content cases, SVD has the lowest RMSE compared to other methods, followed by DAPL 

(Figure 5). 

 

 

Figure 5. Comparisons of imputation methods measured in root mean square error (RMSE) for missing not at 
random cases. Top row from left to right: a random half of the genes with expression level at the lowest 5% and 

10% are missing. Bottom row from left to right: a random half of the genes with GC-content at the highest 5% or 
10% are missing. The method used from left to right: denoising autoencoder with partial loss (DAPL), 10 nearest 

neighbor method (KNN), and iterative singular value decomposition (SVD). 
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DAPL method performs similarly on DNA methylation data 

The method is validated on the TCGA pan-cancer DNA methylation data. This is to test 

whether DAPL is robust enough to work on data where the feature space is far greater than the 

sample size, which is a scenario in neural network-based methods that usually raises issues such 

as overfitting, and hence results in poor performances. On the methylation data, we see that due 

to increased data size, all of the imputation methods have higher RMSE than in the RNA 

sequencing data. On all simulation cases SVD still outperforms others, but DAPL shows similar 

or better result than KNN (Figure 6). 

 

Figure 6. Comparisons of imputation methods measured in root mean square error (RMSE) for missing at random 

cases on DNA methylation data. From left to right: testing is done at 5%, 30%, and 80% random missing. The 

method used from left to right: denoising autoencoder with partial loss (DAPL), 10 nearest neighbor method (KNN), 

and iterative singular value decomposition (SVD). 
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DAPL is the fastest method for evaluation.  

All computations were done on a 20 core cluster with Intel Xeon 2.40GHz CPUs. In 

terms of evaluation time, the KNN method took on average 8405 seconds to estimate missing 

values for a dataset with 100 samples and 16176 genes, with 5% of the entries missing, while 

SVD took 36911 seconds and DAPL took only 60 seconds, showing that DAPL is several orders 

of magnitude faster at evaluation time. 
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Conclusion 

 We have described a new method, DAPL, on autoencoder neural network to impute 

missing data in large genomic datasets. Our results showed that with the modified partial loss it 

is possible to achieve significant improvement over standard denoising autoencoder. We have 

simulated multiple missing mechanisms including both missing-at-random cases across a range 

of missing percentages, and missing-not-at-random cases based on expression level and GC-

content. DAPL achieves similar imputation accuracies to the best performing competitor 

algorithm SVD. We also showed that imputation accuracy is not necessarily compromised by 

reducing model complexity. This is advantageous for working with large dataset such as in pan-

cancer analysis (Cline, et al., 2013; Liu, et al., 2018).  

 

 DAPL has the benefit of reducing computational cost especially at evaluation time 

compared to traditional methods such as SVD and KNN. This is because an autoencoder model 

can be pre-trained and applied directly to any given new sample to impute missing values, while 

SVD and KNN methods are not model-based, and hence need to compute all values each time a 

new sample is given. DAPL provides a strong alternative to traditional methods for estimating 

missing values in large datasets.  
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