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Abstract – The expansion of a population into new habitat is a transient process that leaves

its footprints in the genetic composition of the expanding population. How the structure of

the environment shapes the population front and the evolutionary dynamics during such a range

expansion is little understood. Here, we investigate the evolutionary dynamics of populations con-

sisting of many selectively neutral genotypes expanding on curved surfaces. Using a combination of

individual-based o↵-lattice simulations, geometrical arguments, and lattice-based stepping-stone

simulations, we characterise the e↵ect of individual bumps on an otherwise flat surface. Com-

pared to the case of a range expansion on a flat surface, we observe a transient relative increase,

followed by a decrease, in neutral genetic diversity at the population front. In addition, we find

that individuals at the sides of the bump have a dramatically increased expected number of de-

scendants, while their neighbours closer to the bump’s centre are far less lucky. Both observations

can be explained using an analytical description of straight paths (geodesics) on the curved sur-

face. Complementing previous studies of heterogeneous flat environments, the findings here build

our understanding of how complex environments shape the evolutionary dynamics of expanding

populations.

The expansion of a population into new habitat links
population growth with spatial structure. From a demo-
graphic perspective, such a range expansion is a transient
event whose dynamics is governed by population growth
at the frontier and thus is closely linked to studies of
front propagation [1]. From an evolutionary perspective,
a range expansion has lasting consequences, with the evo-
lutionary dynamics at the front being imprinted into the
population at long times [2]. Many works have studied
this e↵ect over the last 15 years with the key finding that
a range expansion leads to a small e↵ective population size
at the front and thus amplifies the e↵ects of randomness,
leading to a decline in genetic diversity and, possibly, the
formation of monoclonal regions (see, e.g., Ref. [2–6]).

The majority of these studies focuses on homogeneous

environments. The e↵ects of environmental heterogene-
ity on the evolutionary dynamics in two dimensions is
only beginning to be understood, mostly in simulation ap-
proaches. The environments considered range from very
regular and simplistic – useful for illuminating general ef-
fects, e.g., Ref. [7–9] – to real-world patterns that allow
description of past or future evolutionary dynamics facili-
tated by dedicated simulation packages [10, 11].

In both types of studies, the role of topography on the
evolutionary dynamics has so far attracted less attention.
We thus know very little about the e↵ect of a surface’s
shape on the evolutionary dynamics of a range expan-
sion. Recent work examining radially symmetric popu-
lations expanding in a time-dependent manner could be
generalised to understand spread on radially symmetric
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surfaces [12]. More general scenarios have not been con-
sidered explicitly, to our knowledge.
Here, we consider an initially linear population front,

with a large number of selectively neutral genotypes, en-
countering an isolated topographical feature. Starting
with individual-based o↵-lattice simulations, we show how
geodesics on the curved surfaces a↵ect the structure of
the population through the phenomenon of topographic

lensing. We then introduce a lattice-based simulation ap-
proach to quantitatively study the consequences of this
lensing on the evolutionary dynamics.

Results. –

Individual-based simulations. To explore the e↵ects
of curved surfaces on a population expansion, we use an
o↵-lattice simulation of individuals undergoing spatial dif-
fusion and birth-and-death processes, following the work
by Pigolotti et al. [13], generalized to a surface embed-
ded in three dimensions described by a height function
z = f(x, y) (Fig. 1A).
Individuals are duplicated at a birth rate µ. A cor-

responding death rate, simulating competition within an
interaction range �, is given by the number n of other indi-
viduals within a square with edge length � on the projected
xy plane, multiplied by a factor � · cos�, where � is the
angle between the vertical direction and the curved sur-
face’s local unit normal vector at the location of the disap-
pearing particle (Fig. 1A). The factor cos� occurs because
the corresponding region on the surface has a larger area,
�
2
/ cos�. Since the birth event is a purely local process,

this rescaling of area does not a↵ect the birth rate.
In addition, particles di↵use on the surface. Di↵usion

during a time step dt is implemented as two steps of sizep
2Ddt⌘i(t), i = 1, 2, along two orthogonal directions ~n1,

~n2 spanning the tangent plane, where the ⌘i(t) are inde-
pendent white noise factors and D is the di↵usion coef-
ficient. The particle’s new z position is then adjusted so
that it lies on the surface, z = f(x, y). Note that this sim-
ulation scheme for curved topographies requires f(x, y) to
vary su�ciently slowly, a condition that is not satisfied
everywhere. We will comment on this aspect below.

Kinks in fronts and lensing of lineages. We first
simulate an expanding population, starting from an ini-
tially populated area with a linear front, encountering a
Gaussian-shaped bump; see Fig. 1B,C and Video 1. While
the propagating front approximately maintains its linear
shape for some time, upon encountering the bump the
front appears perturbed as seen in projection. After the
front has passed the top of the bump, a kink forms and
then gradually heals. This behaviour is reminiscent of the
front perturbations induced by obstacles, where a similar
formation and healing of a kink in the front could be ex-
plained using a constant-speed propagation argument [7].
Below, we will test whether an analogous argument can
describe front dynamics in the case of non-flat surfaces.
We give each individual in the initial population a dis-

tinct “genotype”, represented as colours in Fig. 1B,C, and

Fig. 1: Simulating population expansions on Gaussian-
shaped bumps. (A) Schematic of the individual-based sim-

ulation on a curved surface, with birth rate µ, a death process

simulating competition between particles within an interaction

area of �
2
on the projected xy plane, and di↵usion coe�cient

D. (B) Snapshot of a simulation starting from a linear ini-

tial population front, in which each individual carries a dis-

tinct genotype marked by a distinct colour. (C,D) Top view

of the same simulation as in panel (B) at equal time intervals,

showing (C) genotypes and (D) black dots marking the birth

locations of ancestors of the individuals currently at the front.

Collectively these dots trace out the lineages. See Appendix

for simulation details and Videos 1,2 for all frames and side

views.

inherited without mutation by all descendants. As the
front advances, single-colour sectors form which coarsen
with time, due to the small number of individuals con-
tributing to the advancing front [2, 6]. While boundaries
between sectors generically display lateral fluctuations, in
the absence of selection their average direction is, by sym-
metry, that of the population front’s movement, as long as
the sector remains present in the front. On the curved sur-
face, a kink that develops in the front traces out a curve
where sectors are rapidly removed from the front. The
instance depicted in Fig. 1C shows that sectors traversing
the bump are squeezed out at the kink, while sectors on
the flank are broadened. For topographic bumps, as for
obstacles [7], the fates of genotypes in a front depend on
their locations relative to the heterogeneity, a scenario we
call “geometry-enhanced genetic drift”.

In addition to the genotype, we also track the sequence
of birth events connecting each individual at the front
to its ancestor in the initial population. The locations
of these birth events collectively trace out coalescing lin-
eage trees with roots at the locations of all original an-
cestors still represented in the front by surviving descen-
dants. The study of population genetics in this reverse-
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time view is known as coalescent theory [14], and as the
‘structured coalescent’ for spatially structured populations
[15]. Fig. 1D and Video 2 display these lineage trees for a
simulated expansion over the Gaussian-shaped bump.
Like the sector boundaries, these lineage curves fluc-

tuate transversely about the front’s propagation direc-
tion. We will show below that the strong bending of lin-
eages passing over the bump toward the bump’s centre, as
viewed in projection from above (Fig. 1D, third and fourth
panels), is a consequence of the topographic curvature.

Geodesics and equal-time fronts on conical bumps. We
are interested in the population’s expansion over a bump
rising out of a planar surface, with constant propagation
speed as measured locally in the curved surface. This
propagation is amenable to analytical solution for certain
special bump geometries. One such geometry is the cone,
for which this problem was studied previously [16] in the
context of smectic liquid crystals, materials in which rod-
like particles organize into equally spaced layers, which
may be curved with a finite energetic cost (Fig. 2A, left
panel) [17]. With the spacing from one smectic layer to the
next reinterpreted as propagation during a fixed time in-
terval, the ideal smectic layers are the same as wavefronts
of constant speed propagation within the surface, in the
idealization of geometrical optics (Fig. 2A, middle panel).
The smectic layer normals’ integral curves, like the imag-
ined light rays, are geodesics, curves that provide shortest
paths within the surface. For the range expansion, if we
assume a constant speed of propagation along the popula-
tion front’s local normal direction in the surface, then at
equal time intervals the fronts are constructed in exactly
the same way as the geometrical optics wavefronts and
the idealized smectic layers, with the local front normal
direction following geodesics (Fig. 2A, right panel).
In understanding how curved topographies a↵ect these

geodesics, we will see that a central role is played by
the surface’s Gaussian curvature, K(x, y) = [fxxfyy �
f
2
xy]/[(1 + f

2
x + f

2
y )

2], where again the surface is given by
the height function z = f(x, y), and the subscripts de-
note spatial derivatives. The importance of the Gaussian
curvature can be seen in its e↵ect on the change in spac-
ing ⇠ between (infinitesimally) nearby geodesics as they
propagate forward with time t:

d
2
⇠/dt

2 = �K⇠ . (1)

Eq. 1 is the geodesic deviation equation expressed for two-
dimensional manifolds [18,19]. It shows that geodesics en-
countering positive Gaussian curvature will be squeezed
together, whereas geodesics encountering negative Gaus-
sian curvature will spread apart. Because of the second
derivative, this squeezing or spreading continues beyond
the region of non-zero Gaussian curvature. A bump thus
behaves like a lens for geodesics [19] (Figs. 1B-D, 2B-D),
and the e↵ect is termed “topographic lensing”.
Using conical bumps as prototypical curved surfaces

makes the problem analytically tractable by concentrating

Fig. 2: Equal-time fronts and geodesics on conical
bumps. (A) Schematic illustrations of smectic liquid crystals

(left), geometrical optics (centre), and the propagating front

of a range expansion (right). (B) Left: Schematic of a conical

bump indicating radius R and height H as well as locations

of non-vanishing Gaussian curvature. Right: Conical bump

with H = R, with geodesics (blue), fronts (red), and caustic

(black dashed line), following Ref. [16]. (C) Ensemble averages

of lineages from individual-based simulations (black dots) and

geodesics (blue lines) for two positions of the front for a con-

ical bump with H = R = 1. (D) Illustration of the stepping-

stone simulation (the arrow indicates a “birth event” where a

marker is copied onto a neighbouring lattice site) as well as a

comparison of ensemble-averaged lineages derived from these

simulations (black dots) and geodesics (blue lines) for a conical

bump with H = R.

all of the Gaussian curvature at the cone apex (K > 0) and
edge (K < 0), as depicted in the left panel of Fig. 2B. The
geometrical optics front profiles at various times, starting
with a flat front on the left, are indicated by red lines in the
right panel of Fig. 2B, with the corresponding geodesics
shown in blue, following Ref. [16]. When geodesics enter-
ing the cone encounter the cone edge, which is a source of
negative Gaussian curvature, they begin to spread apart
according to Eq. 1. The rate of spreading is larger the
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further away the geodesics are from the symmetry axis.
When geodesics exiting the cone encounter the edge a sec-
ond time, spreading is accelerated. Geodesics that never
enter the cone remain straight lines in the plane.
How can geodesics that encounter the cone be contin-

ually spreading apart from one another, while they are
bounded on either side by straight-line geodesics con-
tinuing unperturbed? The answer is that the spreading
geodesics end, one after another, on a caustic extending
from the cone apex down the cone and onto the plane in
the direction of propagation (black dashed line in Fig. 2B).
The caustic is the trace of the kink in the propagating
front. Because the front normal is discontinuous there, the
geodesics collide with their mirror-image geodesics from
the other side of the cone. Unlike light waves, the popu-
lation fronts (like smectic layers) cannot have one portion
passing through another. Instead, a geodesic encounter-
ing the caustic simply ends, and an element of the front is
lost to the caustic. All geodesics that enter the cone are
doomed to eventually end on the caustic.

Ensemble-averaged lineages on a conical bump. The
geodesics provide a deterministic prediction for the front
normal directions, about which lineages and sector bound-
aries are expected to fluctuate, as argued above. While
each instance of a simulation as depicted in Fig. 1B,C is a
stochastic process, we can test whether there is predictable
deterministic behaviour that can be described by the ge-
ometrical optics approach illustrated in Figs. 2A,B. We
argue that the deterministic behaviour is revealed by the
ensemble average of lineages (see Appendix).
We compute ensemble-averaged lineage trajectories as

follows: For all the lineage realizations ending at a given
position on the final-time front, we calculate the “cen-
ter of mass” of those lineages’ constituent points within a
given time bin. On the curved surface, the centre of mass
calculation generalises the arithmetic mean, seeking the
point on the surface that minimises the sum of squared
in-surface distances to the set of points (see Appendix).
As Fig. 2C illustrates, the ensemble-averaged lineages

terminating at di↵erent front positions are indeed well-
described by the analytically calculated geodesics. This
heuristically justifies our application of a simulation
scheme designed for slowly changing surfaces to the con-
ical bump, whose surface normal is discontinuous at the
cone edge and apex. We will see below how this average
propagation along geodesics is key to understanding the
e↵ects of the bump on genetic diversity.

Stepping-stone simulations. To explore the evolution-
ary consequences of traversing the bump for a range of
parameters, we introduce a coarse-grained, lattice-based
simulation scheme that is far more computationally ef-
ficient than the individual-based approach. Following a
series of work investigating the evolutionary consequences
of range expansions on flat surfaces (e.g., [20]) we describe
the spread of the population by a variant of the stepping-
stone model [21] with one organism per deme (site). In-

dividual sites on a hexagonal lattice can be unoccupied
(population not present) or occupied and associated with
a genotype. A site does not change its state after becoming
occupied. The front propagates as lattice sites copy their
genotype markers onto empty neighbours (“daughters”).

To incorporate the topographic bump, we use a hexago-
nal lattice in the projected horizontal plane with weighted
links wi!j between all occupied lattice sites at the front
and each of their unoccupied neighbours (Fig. 2D). Here,
wi!j is the probability that the next birth event will copy
the marker of filled site i into a neighbouring empty site j.
We choose wi!j / 1/(dijqi), where dij is the distance
between the two sites as measured on the surface, and
qi is the number of currently empty neighbours of site
i. Normalisation is realised by considering all possible
mother-daughter pairs. On the plane, where dij is uni-
form, this procedure reduces to the Eden or “rough-front”
growth model [22, 23]. On a general surface, the weight-
ing inversely with distance dij gives us, approximately, a
uniform speed of front propagation as measured in the
surface, allowing us to explore the e↵ects of topographic
lensing. Alternative strategies include triangulating the
curved surface; see Ref. [24] for one o↵-lattice method.

We tracked ancestral lineages as we did for the
individual-based simulation approach. Fig. 2D shows the
ensemble-averaged lineages for a cone with H/R = 1 af-
ter the front has passed the cone. While the lensing is
visible qualitatively, there is some disagreement between
predicted ensemble-averaged lineages and those obtained
from the stepping-stone simulation. We attribute this dis-
crepancy to lattice e↵ects. For this reason, care should be
taken in making quantitative comparisons between results
of these stepping-stone simulations and other approaches.

E↵ect of cone on genetic diversity. Fig. 1C illustrates
loss of genetic diversity, the reduction in number of sec-
tors (i.e., genotypes), due to the bump. This e↵ect can be
quantified in the stepping-stone model by considering the
mean number of sectors surviving at the front as a func-
tion of how far the front has progressed, Nsurv(y). Even in
the absence of curved topography, the number of sectors
decreases rapidly with time due to sector coarsening [26].
To see clearly the e↵ects of the curved surface, we nor-
malize Nsurv(y) by the mean number of surviving sectors
computed for a linear front in a flat environment that has
travelled the same distance, Nplane

surv (y). This normalisa-
tion gives the relative number of surviving sectors on the
surface (Fig. 3A). As expected, for small ratios H/R of
cone height to cone radius, the number of sectors surviv-
ing is indistinguishable from that for a flat environment.
For taller cones (larger H/R), the relative number of sur-
viving sectors first increases, then decreases, and finally
Nsurv/N

plane
surv appears to converge to a common curve.

This common curve is the same as that for a disk-shaped
obstacle (sites inaccessible to birth events) with the same
centre and radius as the cone (black curve in Fig. 3A; see
also Ref. [7]). Because sectors entering a tall cone have a
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Fig. 3: Accelerated loss of genetic diversity on a conical
bump. (A) Average number of surviving sectors Nsurv in the

front, as a function of distance y traveled by the front since first

encountering the cone edge, normalised by the corresponding

quantity on a planar surface, N
plane
surv . Di↵erent ratios of cone

height H to cone radius R are considered. Images on the right

are snapshots from simulations with cones of H/R = 1, 3. (B)

Sketches of the two mechanisms for loss of sectors: (left) co-

alescence of sector boundaries and (right) front coming to a

halt through encountering another part of the front, as well

as (centre) a cartoon of how inflation counteracts sector loss.

(C) Fraction of geodesics fsurv surviving (i.e., not ending in

the caustic) as a function of front distance travelled. H, R, y

defined as in (A).

vanishing chance of contributing to the front after it passes
the cone, the relative number of surviving sectors eventu-
ally agrees with the obstacle case, where the same sectors
are simply blocked from advancing. The gradual increase
of this common curve at late times reflects the diminishing
e↵ect of the bump or obstacle as it recedes into the past.

The decrease in sector number can result from two
sector boundaries merging and leaving a sector behind
(Fig. 3B). This is the mechanism for sector coarsening in
a flat environment [26, 27]. Inflation of the front can de-
crease the rate at which sector boundaries stochastically
encounter one another, by deterministically driving sector
boundaries apart (Fig. 3B), for example in radially grow-
ing populations [6, 20, 25]. On the conical bump, a local
inflationary e↵ect occurs when the front encounters the
cone edge and geodesics spread apart due to the negative
Gaussian curvature. In consequence, fewer sectors disap-

pear compared to the flat case, causing the (temporary) in-
crease inNsurv/N

plane
surv seen in Fig. 3A. The obstacle has no

such inflationary increase because the portion of the front
encountering the obstacle is immediately halted, whereas
even for the tallest cones the front continues to advance
after encountering the cone edge. While this inflationary
e↵ect is evident even for small cones, it is magnified sub-
stantially by larger cone height.

What then leads to the subsequent pronounced decrease
in the relative number of surviving sectors? The answer
comes from a second mechanism for the loss of sectors: A
portion of the population front may come to a halt through
self-intersection and cease to contribute to the range ex-
pansion (Fig. 3B). This situation occurs at the kink and
corresponds, in the geometrical optics picture, to geodesics
ending in the caustic. Fig. 3C displays the fraction of sur-
viving geodesics as a function of distance y that the front
has travelled since first encountering the cone. The loss of
geodesics to the caustic begins at di↵erent y values for dif-
ferent cone heights because the kink forms later for taller
cones. As expected, the loss of geodesics occurs more grad-
ually for shorter cones, but eventually all geodesics that
encounter the cone will be lost at very large y. Note that
the limiting value fsurv ! 0.70 at large y in Fig. 3C is a
consequence of our choice of cone diameter 2R = 0.30L,
where L is the system width (size of initial population).
Likewise, the magnitude of the changes in Nsurv/N

plane
surv

seen in Fig. 3A depends on the same choice of parameters
in the stepping-stone simulation.

Comparing the computed relative number of surviving
sectors (Fig. 3A) to the analytically calculated fraction
of surviving geodesics (Fig. 3C), we observe a qualitative
agreement in the onset and strength of the increased rate
of loss of genetic diversity for various cone heights. A
quantitative comparison is not appropriate because the
simple calculation used to make Fig. 3C does not capture
inflationary e↵ects or the role of fluctuations. Future work
will seek analytical approaches incorporating these e↵ects.

For tall cones with H/R >
p
3, some geodesics turn

through an angle greater than ⇡, which sends them loop-
ing around the cone apex, as explored in Ref. [16]. The
implication for range expansions is that the front breaks
up into two disconnected portions, one ringing the apex
and advancing up the cone, the other progressing down
and past the cone as discussed. The former portion of the
front will eventually run out of new territory for expansion,
and will shrink to zero length. This prediction is confirmed
in the stepping-stone simulations for tall cones, where the
front breaks up into two disconnected portions; see Fig. 3A
bottom right panel. (Note that we define the front as the
set of occupied sites adjacent to one or more empty sites.)
Eventually the internal front disappears. This peculiarity
therefore does not play a role at long times.

Location-dependent contribution to genetic make-up at

the front. With fewer sectors surviving, the average sec-
tor size must be larger after the front has passed the bump.
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Fig. 4: Location-dependent contribution to genetic
make-up of the front. The expected number of living de-

scendants Nd(x) as a function of location after the front has

engulfed the cone, as determined (A) from stepping-stone sim-

ulations and (B) using the geodesic deviation equation, Eq. 1.

The cone edge and apex locations are indicated in green.

Fig. 1B suggests that this increase in average size is not
shared equally by all sectors, but rather that some par-
ticular sectors benefit substantially from the topography.
At a given time, an individual’s expected number of “liv-
ing descendants” in the front, Nd(x), depends strongly on
that individual’s location relative to the cone. We use
the stepping-stone simulation approach to quantify, with
Nd(x), how topography a↵ects which regions contribute
most to the genetic make-up of the front at later times.
Figure 4A shows the computed Nd(x) for a cone with

H/R = 1. Lattice sites close to the sides of the cone edge
(and their ancestors below) make a substantially enhanced
contribution to the front after it has passed the bump.
Qualitatively, this can be understood as follows: Indi-
viduals whose descendants at the front follow diverging
geodesics have a larger number of descendants at the front
at later times. This e↵ect is most pronounced for those
geodesics encountering the sides of the cone edge since the
e↵ect of divergence is largest for those. However, having
a larger number of descendants at the front is contingent
on the individuals actually contributing to the front, i.e.,
that geodesics have not ended in the caustic yet. For long
times, this is only the case for sites close to the sides of
the cone. Thus, these sites have the largest expected num-
ber of descendants at long times. Their neighbours closer
to the cone centre have dramatically fewer descendants at
the front because geometry has instead pushed their de-
scendants into the caustic. The above argument can be
made quantitative using the geodesic deviation equation
(Eq. 1). The result is illustrated Fig. 4B and predicts the
salient features of the simulation results shown in Fig. 4A.

Toward the genetic consequences of rough topographies.

So far, we have limited ourselves to isolated perturbations
of an otherwise flat environment. While an extension to
complex, rough environments is beyond the scope of this
letter, we briefly analyse simulations with one surface con-
taining a few bumps. Fig. 5 shows the lineages together
with the sectors for two instances of the simulation. For
bumps close to the initial front (bottommost circles in
Fig. 5) we observe the rapid loss of sectors in caustics

Fig. 5: E↵ect of multiple conical bumps on genetic com-
position of an expanding population. Visualisations of

two stepping-stone simulations on a surface with six conical

bumps (outlined by black circles). Colours represent geno-

types, black curves represent ancestral lineages, and brown

curves depict the position of the front at various (earlier) times.

as discussed above. For bumps passed by the front at
later times this e↵ect is less prominent, because sectors
have coarsened enough that only a few sectors encounter
each bump. Most lineages that survive for long times pass
around the edges of, rather than over, the conical bumps.
This tendency is strongest for bumps encountered longest
ago in the past. Through multiple iterations of the ef-
fect illustrated in Fig. 4, the placement of multiple bumps
can therefore favour some tortuous lineage trajectories di-
verted through the spaces between them.

Discussion. – We have applied an individual-based
simulation, a lattice-based stepping-stone simulation, and
analytical theory to explore the consequences of simple
topographic features on the evolution of populations un-
dergoing a range expansion. Any bump on an otherwise
flat surface has, for the most part, negative Gaussian cur-
vature on its outside and positive Gaussian curvature on
the inside, allowing us to generalise from our findings for
a conical bump. We expect the temporarily increased rel-
ative genetic diversity due to local inflation, followed by
decreased genetic diversity due to the formation of a kink,
to be generic features for range expansions traversing a
bump. Also expected to be seen generally is the lensing
e↵ect that enables individuals located at either side of a
bump to have an increased expected number of descen-
dants at the population front at later times. Under the
typical assumption that more distant pairs of individuals
have more genetic di↵erences, the bump’s overall e↵ect as
a converging lens serves to bring into contact more genet-
ically distinct portions of the population, more quickly.

We have made much use of shortest-path geometrical
arguments in understanding how surface curvature a↵ects
the dynamics of the range expansion. Some conditions of
validity of this approach for the case of obstacles were ex-
plored in detail in Ref. [7]. For our purposes here, the im-
portant condition is that the size scale of the topographic
features is large compared to the thickness of the front
so that the front may be approximated as curvilinear ex-
panding with constant speed. Note that geometrical op-
tics on curved surfaces in the literal sense has been studied
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for a long time [28] and is still a topic of active research
[29]. Even though the analogy to geometrical optics has
its limits (populations cannot pass through each other, for
example), exploiting this connection to the field of optics
and beyond may benefit the field of range expansions.
It is important to note that all of the e↵ects of curved

surfaces considered in this work are unchanged if the sur-
face is inverted. An isolated bump or mountain is the
same as an isolated pit or valley, from the range expan-
sion’s point of view. This fact will be important when
considering topographies of greater complexity.
Given the striking similarities between the e↵ects of

topographic bumps and nutrient-depleted obstacles, it is
natural to wonder whether propagation over an arbitrary
surface can be mapped onto propagation in a plane with
spatially varying propagation speed – variations created,
for example, by heterogeneous nutrient availability. As ex-
plained in the Appendix, to achieve the same (projected)
propagation on a planar surface as on a curved surface,
the locally defined propagation speed would have to be
not only heterogeneous but also anisotropic, a situation
unlikely to arise naturally. Qualitatively, however, the ef-
fects of obstacles and bumps in an otherwise flat environ-
ment are very similar. Specifically, the fate of individu-
als depends on the a priori random location at the front
and the resulting e↵ects can be understood as a kind of
‘geometry-enhanced genetic drift’.
In our focus on insights gained from geometrical optics

for ensemble-averaged behaviours, we have not empha-
sized transverse fluctuations of sector boundaries and lin-
eages. Fluctuations are, however, a key reason for the loss
of genetic diversity. Due to coupling with the roughness
of the front, fluctuations can be superdi↵usive [6, 20, 30].
Our findings raise the question of how to quantify the ef-
fects of fluctuations leading sector boundaries or lineages
o↵ of their initial geodesics – possibly into the caustic, and
possibly safely away from the caustic. On the plane, the
overall e↵ect of superdi↵usive fluctuations is to decrease
genetic diversity faster than in the case of di↵usive fluctua-
tions [6,20]. How this e↵ect is altered by surface curvature
remains to be understood. We have shown that geomet-
rical optics is a powerful tool for understanding the main
e↵ects of simple surface geometries, and illuminates how
topographic lensing produces geometry-enhanced genetic
drift. To understand range expansions in general complex
environments, it will be necessary to combine this geo-
metrical optics viewpoint with a quantitative description
of fluctuations, and to develop e↵ective descriptions for
roughness at small length scales, topics we aim to address
in future research.
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Appendix
Evolution of populations expanding on curved surfaces

Daniel A. Beller, Kim M. J. Alards, Francesca Tesser,
Ricardo A. Mosna, Federico Toschi, Wolfram Möbius

1 Details of simulations

In both individual-based and stepping-stone simulation schemes, we implemented peri-

odic boundary conditions in the x-direction orthogonal to front propagation, and open

boundary conditions in the y-direction parallel to front propagation.

Comparison to predictions of geometrical optics is based on the distance the front has

propagated close to the system’s boundaries in y-direction (averaging over a region close

to the boundary to address fluctuations in front shape). In the case of individual-based

simulations, the simulation was run for a given simulation time and the average front

position was determined. In the case of stepping-stone simulations, the ensemble used

for ensemble averages consisted of simulations within which the front has propagated

to a given y-value height close to the system’s boundaries in the x-direction (and thus

farthest from the cone).

1.1 Individual-based simulations

Simulation parameters were set to � = 1, D = 1, µ = 1, and � = 1 and system width to

1000. The front is defined locally as the particle most advanced in the y-direction in a

given stretch of width � parallel to the y-axis.

In Fig. 1, a Gaussian-shaped bump centered at (x, y) = (500, 500) is represented by the

height function f(x, y) = 300·exp
�
�((x� 500)

2
+ (y � 500)

2
)/2/100

2
�
. We additionally

introduced a cuto↵ at a radius of 500 around the centre beyond which f(x, y) = 0. In

Fig. 2, the surface is a cone with radius R = 300 and height H = 300. To compute

ensemble-averaged lineages we averaged over 64 instances of the simulation.

Figs. 1B,C,D as well as Videos 1,2 were created using tachyon, the ray tracer in the

package VMD [3]. Note that in Fig. 1D and Video 2 past birth events are shown on top

of the population at a given time, thus combining past events with the system’s current

configuration to guide the eye.
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1.2 Stepping-stone simulations

The front is defined as the set of occupied sites with at least one free neighbouring site.

For computing ensemble-average lineages, when the front contains more than one point

at the same x-value, one of these points is chosen randomly. For each topography, 1000

simulations were run.

In Figs. 2D, 3A, 3C, and 4: In units of the lattice spacing, the cone has radius R = 150,

with centre at position (x, y) = (500, 400), and the system width is 1000. Cone height is

indicated in the caption or on the axis label. In Fig 4, the calculation of Nd(x) is made

after the front has travelled a distance 1000. In Fig. 5, the system width is 1200, and

all six cones have H = R = 125.

2 Computing ensemble-averaged lineages

For computing ensemble-averaged lineage trajectories (‘mean lineages’) it is necessary

to take distances on the curved surface into account. This requires generalising the

arithmetic mean. Given a set of trajectories ~xi(t) where i = 1 . . . N denotes the instance

of the simulation, we define the ensemble-averaged trajectory ~xm(t) as

~xm(t) = min
~x

(
X

i

d (~x, ~xi(t))
2

)
(1)

for all t, where d(~y, ~z) is the shortest distance from ~y to ~z on the surface as explained

below. We note in passing that this is the same as calculating a generalised centre of

mass of a distribution of equal-mass particles living in a curved space in the context

of gravitational physics (see, e.g., Ref. [5]). As one can easily see, this simplifies to

~xm(t) =
P

i ~xi(t)/N for flat surfaces as expected.

Going back in time, individual lineages will pass over di↵erent parts of the cone or

the flat surface and therefore experience di↵erent curvatures, see Fig. 1. For example, in

Fig. 1C, one lineage (shaded brown) traverses from the right to the left side of the cone,

and very nearly follows the ensemble-averaged lineage from a quite di↵erent starting

x-value. Therefore, this ensemble average may not represent a likely path for any one

lineage. We only expect the ensemble-averaged lineage to represent a typical lineage

trajectory minus fluctuations when the lineages remain su�ciently close. We nevertheless

plotted all ensemble-averaged lineages back to the origin.

Each individual lineage consists of a number of birth events and their corresponding

time and space coordinates. To obtain synchronous trajectories ~xi(t), we binned the birth

events in time (250 bins for individual-based simulations and 100 bins for stepping-stone

simulations, respectively) and thereby chose the birth event closest to the centre of the

bin for each trajectory if at least one birth event occurred in a time interval. Starting

from the arithmetic mean in the projected plane or from ~xm at an earlier time, we

minimised the sum of squared distances (Eq. 1) using the SciPy implementation of the

Nelder-Mead algorithm [1, 2].
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Figure 1: Individual lineages (lighter-shaded points) constituting some of the ensemble-

averaged lineages (heavier-shaded points) in Fig. 2C,D of the main text.

Colours indicate chosen starting x-value of the lineages at the front. (A)

Individual-based simulations. (B) Stepping-stone simulations. (C) Same as

(B) but viewing only one starting x-value of lineages at the front.

3 Computing distance between two points on surface

3.1 General considerations

To compute the shortest distance d(~y, ~z) between two points ~y and ~z on a surface con-

sisting of a plane with a conical bump, we had to distinguish several cases. (i) The case

of ~y and ~z being both located on the plane is the simplest if the connecting line on the

plane does not intersect with the cone: d(~y, ~z) = |~y� ~z|. (ii) If both ~y and ~z are located

on the cone, the distance can be calculated analytically using a metric for the conical

surface, as described in Ref. [4]. (iii) If (without loss of generality) ~y is located on the

cone and ~z on the plane, the shortest path crosses the cone’s edge at some point ~v. To

find the length of the shortest path, one needs to find the minimum of the path lengths

over the full range of possible points ~v on the cone edge, on either side of which the

geodesic is a straight line, either on the plane or on the cut-disk view of the cone. It is

necessary to restrict ~v to the portion of the cone edge for which a straight line from ~v

to ~z intersects the cone edge only at ~v. (iv) If ~y and ~z are both located on the plane

but their connecting line on the plane does intersect with the cone, then the shortest

path between ~y and ~z crosses the conical portion of the surface. Finding the shortest

path requires finding two points ~v1, ~v2 where the geodesic intersects the cone edge. In

principle, ~v1 and ~v2 are determined by two rules discussed in Ref. [4]: A version of Snell’s

law requires that at each of these two points the geodesic makes the same angle with the

cone edge’s tangent both inside and outside the cone (as measured on the cone and on

the plane, respectively); and Clairaut’s relation for axisymmetric surfaces requires that

this angle be the same at both ~v1 and ~v2. These constraints together determine both ~v1

and ~v2 implicitly, and one can in principal solve for their values numerically. (A similar

procedure could also be applied in case (iii).) As in case (iii), ~v1 and ~v2 are restricted to
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the portions of the cone edge for which the lines connecting ~v1 to ~y and ~v2 to ~z intersect

the cone edge only at ~v1 and ~v2, respectively.

3.2 Numerical implementation

As indicated above, the distance between two points located in the simulation domain

can be computed either analytically (cases (i) and (ii)) or through solving an implicit

equation (cases (iii) and (iv)). Instead of numerically solving the implicit equation(s),

we minimised the total path length over all possible points ~v or ~v1 and ~v2 in the al-

lowed portions of the cone edge discussed above. Since the cone edge is a circle, the

sought-after distance-minimizing points on the cone edge can be parametrised by their

polar angle. Finding the angle(s) that minimise the distance between two points, thus

represents a one-dimensional minimisation problem for case (iii) and a minimisation in

two dimensions for case (iv).

We searched for the minimum distance using the SciPy implementation of the Nelder-

Mead algorithm [1, 2] starting from very close to the boundaries of the interval of allowed

angle(s) (2 starting conditions for case (iii), 4 starting conditions for case (iv)) and

making use of a heuristic penalty term to constrain angles to their allowed range. The

true distance was taken to be the smallest of the various local minima found using these

various starting points in the search space. As distance we used the minimum of all

minima found. To test that the global minimum has not gone undetected, we also used

a grid of 100 points of ~v (case (iii)) or 10000 pairs of (~v1,~v2) (case (iv)), computed the

resulting distance, and compared with the minimum found as described above.

3.3 Treatment of periodic boundary conditions

To take into account the periodic boundary conditions used, one of the points ~y or ~z

was translated by �L, 0, or +L in the x-direction, where L is the system width. The

distance between ~y and ~z in the presence of periodic boundary conditions then is the

minimum of all three cases considered. This can in principle result in complex paths

involving more than one cone. Computing the distance in the projected plane as a lower

limit for the distance on the surface revealed that these more complex cases did not need

to be considered in any of the scenarios presented in this work.

4 Relation to flat heterogeneous environments

To map the dynamics on the surface to a heterogeneous flat environment, the parameters

describing this environment need to be anisotropic in general. This can be seen from the

perspective of the microscopic rules, the front dynamics, and the geometry of the surface.

The algorithm used for the individual-based simulation computes particle motion in the

projected plane and this way provides the desired mapping. The isotropic di↵usion in the

tangential plane relates to anisotropic di↵usion in the projected plane. Similarly, from

the perspective of the front, isotropic propagation of a radial front in a tilted plane maps

to anisotropic propagation in the projected plane. Last but not least, a fundamental
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concept from di↵erential geometry is that a surface’s radius of curvature at a given point

generally depends on the choice of direction in the local tangent plane [6]; quantities such

as the mean and Gaussian curvatures are ways of averaging over these directions.
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