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Abstract	

Most	 human	 genetic	 studies	 assume	 that	 connections	 between	 genomic	 regions	 are	 adequately	 captured	 by	
linkage	disequilibrium	(LD).	LD	reflects	historical	events	that	shaped	the	individuals	in	a	sample,	and	LD	patterns	
are	consistent	in	DNA	sampled	from	essentially	any	cell	at	any	point	in	development	from	embryonic	stem	cells	to	
highly	 specialized	 post-mitotic	 neurons.	 LD-based	 studies	 have	 been	 highly	 useful	 in	 identifying	 genetic	
associations	for	 idiopathic	maladies	 like	schizophrenia;	however,	even	as	LD	is	fundamental	to	these	successes,	
LD	confounds	attempts	 to	derive	confident	biological	 insights	 from	genetic	 results	as	 it	 imperfectly	 reflects	 the	
functional	state	of	DNA	in	cell	nuclei.	Interpretation	of	most	genetic	findings	for	schizophrenia	is	complicated	by	
the	presence	of	many	 significant	and	highly	 correlated	associations	 in	non-coding	 regions.	Here,	we	created	a	
high-resolution	map	of	three-dimensional	genome	architecture	by	applying	Hi-C	to	adult	and	fetal	brain	cortex	
with	 concomitant	 RNA-seq,	 ATAC-seq,	 and	ChIP-seq	 data	 (CTCF,	H3K27ac,	 and	H3K4me3).	 An	 extensive	 set	 of	
analyses	established	 the	quality,	 information	 content,	and	 salience	of	 these	new	Hi-C	data.	We	used	 these	3D	
data	 to	 functionally	 connect	 genetic	 results	 for	 schizophrenia	 to	 specific	 genes.	 We	 show	 that	 LD-based	
approaches	provide	a	limited	view	of	the	complexity	of	schizophrenia	GWAS	findings.	Gene	set	analyses	based	on	
functional	 genomic	 data	 provide	 an	 expanded	 view	 of	 the	 biological	 processes	 involved	 in	 the	 etiology	 of	
schizophrenia.		

Introduction	

In	 the	 last	 decade,	 detailed	 genome-wide	 searches	 for	 genetic	 variation	 fundamental	 to	 human	maladies	 of	
exceptional	 public	 health	 importance	 became	 feasible	 1.	 Genomic	 studies	 are	 particularly	 important	 for	
idiopathic	disorders	 like	 schizophrenia	 that	have	 few	proven	biological	 risk	 factors	despite	 twin-family	 studies	
conclusively	establishing	a	role	for	inheritance	2.	Hopes	that	exon	variation	would	provide	a	key	to	schizophrenia	
3,4	have	not	eventuated	as	exome	sequencing	studies	have	identified	only	two	genes	to	date	5,6	(for	comparison,	
exome	 sequencing	 studies	 of	 autism	 identified	 over	 60	 genes	 with	 about	 half	 the	 number	 of	 cases	 as	 for	
schizophrenia	 7,8).	 The	 lack	 of	 exonic	 findings	 for	 schizophrenia	 is	 unfortunate	 given	 the	 available	 tools	 for	
experimental	modeling	of	single	genes.		

In	 contrast,	 genome-wide	 association	 studies	 (GWAS)	 of	 common	 genetic	 variation	 in	 schizophrenia	 have	
yielded	 more	 findings.	 A	 landmark	 GWAS	 in	 2014	 identified	 108	 significant	 loci	 for	 schizophrenia	 9,	 and	 a	
subsequent	study	found	145	loci	10.	Most	of	the	“genetic	architecture”	of	schizophrenia	lies	in	common	variants	
of	 relatively	 subtle	 effects	 identifiable	 by	 GWAS	 11,	 and	 other	 complex	 human	 diseases	 have	 analogous	
conclusions	(e.g.,	type	2	diabetes	mellitus)	12.	As	of	08/2018,	there	have	been	3,029	GWAS	paper	that	identified	
31,976	genome-wide	 significant	 associations	 for	2,520	diseases,	disorders,	 traits,	 or	 lab	measures	 (URLs),	 and	
these	are	almost	always	common	variants	of	subtle	effects	(median	odds	ratio,	OR,	1.22)	and	ORs	infrequently	
exceed	2	13.		

Although	GWAS	 findings	 are	 surprisingly	 informative	 in	 aggregate	 9,10,14,15,	 delivering	 strong	hypotheses	 about	
their	 connections	 to	 specific	 genes	 has	 proven	 difficult.	 For	 schizophrenia,	 fewer	 than	 10%	of	 the	GWAS	 loci	
have	 been	 connected	 to	 specific	 genes	 via	 gene	 expression	 quantitative	 trait	 loci	 (eQTL),	 SNP	 prioritization	
algorithms,	chromatin	 interactions,	or	other	approaches	10,16-19.	 Investigators	often	rely	on	genomic	 location	to	
connect	 significant	 SNPs	 to	 genes	but	 this	 is	problematic	because	GWAS	 loci	 usually	 contain	many	 correlated	
and	highly	significant	SNP	associations	over	hundreds	of	Kb	and	multiple	genes	expressed	in	tissues	of	interest.	
The	 lack	 of	 direct	 connections	 to	 genes	 constrains	 subsequent	 experimental	modeling	 and	efforts	 to	 develop	
improved	therapeutics.		

The	three-dimensional	(3D)	arrangement	of	chromosomes	enables	physical	and	regulatory	interactions	between	
genomic	regions	located	far	apart	20.	Chromosome	conformation	capture	(3C)	methods	enable	identification	of	
3D	 interactions	 in	 vivo	 21,22	 and	 can	 clarify	 GWAS	 findings.	 For	 example,	 an	 intergenic	 region	 associated	with	
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multiple	cancers	was	shown	to	be	an	enhancer	for	MYC	via	a	long-range	chromatin	loop	23,24,	and	intronic	FTO	
variants	 are	 robustly	 associated	 with	 body	 mass	 but	 influence	 expression	 of	 distal	 genes	 via	 long-range	
interactions	25.	Roussos	et	al.	 17	used	3C	methods	to	 identify	an	 intergenic	chromatin	 loop	for	CACNA1C	 (from	
intronic	 GWAS	 associations	 for	 schizophrenia	 and	 bipolar	 disorder	 to	 its	 promoter).	Won	 et	 al.	 used	 Hi-C	 to	
assess	 the	 3D	 chromatin	 interactome	 in	 fetal	 brain,	 and	 asserted	 connections	 of	 some	 schizophrenia	
associations	to	specific	genes	18.		

These	examples	suggest	that	knowledge	of	the	3D	chromatin	interactome	in	human	brain	could	help	clarify	the	
meaning	of	the	many	GWAS	findings	for	schizophrenia	10.	Because	3D	interactome	data	from	human	brain	are	
limited,	we	 sequenced	 adult	 and	 fetal	 cortical	 samples	 to	 greater	 depth	 than	 in	 any	 prior	 study	 of	 a	 human	
tissue	 to	enable	 a	detailed	portrait	 of	 the	brain	3D	 chromatin	 interactome.	After	 establishing	 the	quality	 and	
informativeness	of	these	new	brain	Hi-C	data,	we	contrasted	LD-based	gene	identification	with	those	from	high-
confidence	regulatory	chromatin	interactions.	We	show	what	LD-based	approaches	provide	a	limited	view	of	the	
functional	 complexity	 of	 schizophrenia	 GWAS	 findings.	 Gene	 set	 analyses	 based	 on	 functional	 genomic	 data	
provide	an	expanded	view	of	the	biological	processes	involved	in	the	etiology	of	schizophrenia.		

Results	

Description	and	general	properties	of	chromatin	organization	in	brain	

To	 gain	 further	 understanding	 of	 3D	 chromatin	 organization	 of	 the	 brain	 and	 to	 evaluate	 relevance	 to	
schizophrenia,	we	applied	“easy	Hi-C”	(eHi-C)	26	to	six	postmortem	samples	(N=3	adult	temporal	cortex	and	N=3	
fetal	 cortex).	 We	 generated	 10.4	 billion	 reads	 and,	 following	 quality	 control,	 there	 were	 1.323	 billion	 high-
confidence	 cis-contacts	 to	 enable	 a	 kilobase	 resolution	 map	 of	 the	 chromatin	 interactome	 (i.e.,	 uniquely	
mapped,	PCR-duplicates	removed,	intra-chromosomal	reads	>20	Kb	and	≤2	Mb	apart).	To	our	knowledge,	these	
are	 the	 deepest	 Hi-C	 data	 on	 any	 human	 tissue	 (Figure	 1a).	 We	 also	 processed	 all	 human	 Hi-C	 tissue	 data	
publicly	available	in	01/2018	for	a	total	of	25	Hi-C	datasets	from	human	tissues	and	cell	lines	(Table	S1)	18,27.	We	
generated	22.5X	as	many	cis-contacts	for	adult	cortex	and	1.56X	as	many	for	fetal	cortex	compared	to	the	next	
largest	datasets	18,27.	We	generated	four	Hi-C	readouts.	Compartments	(100	kb	resolution)	are	“A”	(active)	or	“B”	
(inactive)	28.	Topologically	associating	domains	(TADs,	Mb-scale)	29,30	segment	the	genome	into	block-like	regions	
within	which	chromatin	interactions	have	a	strong	tendency	to	occur	29,30.	Frequently	interacting	regions	(FIREs,	
40	Kb)	are	regions	with	significantly	greater	cis-connectivity	 than	expected	under	a	null	hypothesis	of	 random	
collisions.	 27,31	FIREs	can	exist	 in	 isolation	or	 in	contiguous	blocks	called	super	FIREs	 32.	Chromatin	 interactions	
identify	genomic	regions	that	are	physically	proximal	in	the	nuclear	3D	space	despite	being	far	apart	in	genomic	
location	20,31-37.	Chromatin	interactions	in	this	study	consisted	of	two	10	Kb	anchors	that	were	from	20	Kb	to	2	
Mb	apart.	Some	chromatin	interactions	occur	transiently,	randomly,	or	in	subsets	of	cells,	but	many	others	are	
stable	 structural	 or	 regulatory	 features	 of	 cells	 in	 a	 tissue.	 To	 aid	 interpretation	 of	 the	 eHi-C	 readouts,	 we	
generated	or	assembled	RNA-seq,	ATAC-seq,	and	ChIP-seq	data	(CTCF,	H3K27ac,	and	H3K4me3)	from	adult	and	
fetal	cortex	(Table	S2)	32,38-40.	Figure	S1	shows	a	circular	genome	plot	of	all	eHi-C	readouts.		

Before	 evaluating	 genetic	 findings	 for	 schizophrenia,	 we	 analyzed	 the	 properties	 of	 these	 brain	 eHi-C	 data.	
Because	 these	 analyses	 are	 foundational	 to	 our	 goal	 of	 furthering	 understanding	 of	 schizophrenia,	 we	
summarize	 the	 analyses	 here	 with	 fuller	 details	 in	 the	 Supplemental	 Note.	 First,	 we	 compared	 our	 eHi-C	
readouts	 to	 external	 Hi-C	 datasets	 (including	 brain	 samples)	 for	 A/B	 compartments	 (Figures	 S2a-b),	 TAD	
boundaries	 (Figures	 S3a-b),	 FIREs	 (Figures	 S4a-b),	 and	 chromatin	 interactions	 (Figure	 S5).	 We	 found	 good	
agreement	with	 external	 Hi-C	 data.	 Second,	we	 evaluated	whether	 these	 Hi-C	 readouts	 captured	 biologically	
relevant	 information	 (summary	 in	 Table	 1,	 details	 in	 Table	 S3).	 We	 found	 that	 FIREs	 and	 super	 FIREs	
recapitulated	key	functions	of	the	source	tissues:	 fetal	results	pointed	at	differentiation	and	neurogenesis	and	
adult	at	core	neuronal	functions.	As	a	non-brain	control,	analysis	of	FIREs	and	super	FIREs	from	heart	ventricle	
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Hi-C	 data	 were	 consistent	 with	 basic	 myocardial	 functions.	 GREAT	 analyses	 of	 fetal	 chromatin	 interactions	
enriched	 for	 transcriptional	 regulation	 and	 core	 functions	 of	 the	major	 cell	 types	 (glia,	 oligodendrocytes,	 and	
neurons),	and	the	adult	results	pointing	at	postsynaptic	density	and	excitatory	synapse.	TAD	boundaries	showed	
no	 enrichment	 consistent	with	 their	 cell	 type-independent	 insulative	 and	 structural	 roles.	 Third,	we	 assessed	
enrichment	of	functional	genomic	features	(Tables	1	and	S4).	As	expected	27,	adult	FIREs	were	enriched	in	adult	
cortical	H3K27ac	histone	marks,	the	presence	of	an	enhancer,	and	open	chromatin	while	depleted	in	H3K4me3	
histone	 marks.	 Fetal	 brain	 FIREs	 were	 enriched	 for	 fetal	 H3K27ac	 histone	 marks	 and	 CTCF	 binding	 sites.	
Chromatin	interactions	were	enriched	for	open	chromatin,	typical	enhancer,	CTCF,	and	H3K27ac	in	adult	cortex	
along	with	protein-coding	TSS	while	depleted	in	H3K4me3	in	adult	cortex.	In	fetal	cortex,	chromatin	interactions	
were	enriched	for	H3K27ac	and	CTCF	with	depletion	of	H3K4me3	and	gene	expression.	TAD	boundaries	in	adult	
and	fetal	brain	were	enriched	for	CTCF	and	TSS	of	protein	coding	genes,	as	expected	29.	Fourth,	we	evaluated	the	
relation	between	TADs	and	LD	given	that	TADs	and	LD	41	are	both	on	the	scale	of	105-106	bases	and	segment	the	
genome	 into	blocks.	 TADs	are	defined	 via	observations	of	 3D	 chromatin	 interactions	 in	 samples	of	 cell	 nuclei	
whereas	LD	reflects	historical	events	for	a	given	human	sample.	Consistent	with	prior	studies	18,42,	we	found	that	
TADs	 and	 LD	 blocks	 identify	 different	 regions.	 This	 conclusion	 is	 consistent	 with	 observations	 of	 inbred	
laboratory	mice	that	have	chromosome	scale	LD	blocks	but	far	smaller	TADs	that	are	conserved	between	mouse	
and	 human	 29.	 Fifth,	 given	 the	 importance	 of	 brain	 FIREs,	 we	 conducted	 a	 set	 of	 evolutionary	 analyses.	 The	
findings	 were	 coherent:	 brain	 FIREs	 have	 stronger	 evidence	 for	 ancient	 and	 recent	 positive	 selection,	 less	
population	 differentiation,	 and	 fewer	 singleton/doubleton	 single	 nucleotide	 variants.	 These	 observations	
suggest	 that	 brain	 FIREs	 are	 important	 genomic	 regions	 under	 stronger	 population	 genetic	 constraints.	 Sixth,	
given	 the	 role	 of	 the	 chromatin	 interactome	 on	 transcriptional	 regulation,	 we	 evaluated	 the	 importance	 of	
chromatin	 interactome	 features	 on	 gene	 expression	 in	 fetal	 and	 adult	 brain	 and	 found:	 (a)	 developmentally	
specific	adult	vs	fetal	FIREs	had	a	strong	relation	to	gene	expression;	(b)	in	a	multivariable	model,	we	found	that	
variables	 assessing	 A/B	 compartment,	 FIREs,	 and	 chromatin	 interaction	 were	 significant	 predictors	 of	 gene	
expression	 (while	 controlling	 for	 H3K27ac	 and	 H3K4me3	 marks)	 with	 model	 R2	 0.0475	 (Figure	 S6)	 –	 thus,	
chromatin	 interactome	data	provide	orthogonal	 information	 compared	 to	 epigenetic	 data	predicting	dynamic	
gene	 expression;	 and	 (c)	we	 found	 a	 strong	 overlap	 of	 adult	 cortex	 chromatin	 interactions	with	 adult	 cortex	
eQTLs	(from	CommonMind	Consortium	16),	particularly	for	chromatin	interactions	whose	anchors	coincided	with	
eQTL	SNP-gene	pairs	that	also	had	H3K27ac	or	H3K4me3	marks	(Figure	1b).		

In	conclusion,	the	brain	eHi-C	data	we	generated	were	consistent	with	prior	Hi-C	datasets.	Although	Hi-C	data	
directly	 incorporate	few	genome	annotations,	Hi-C	readouts	appear	to	be	a	particularly	 informative	functional	
genomic	datatype.	These	readouts	are	often	orthogonal	 to	other	datatypes	 (e.g.,	histone	marks	and	LD-based	
location)	 but	 have	 a	 strong	 relation	 to	 brain	 gene	 expression.	 Evaluation	of	 the	 relation	of	 eHi-C	 readouts	 to	
genetic	risk	for	schizophrenia	is	thus	logical	and	empirically-grounded.		

Hi-C	readouts	and	the	genetic	architecture/SNP-heritability	of	schizophrenia	

GWAS	data	can	capture	the	common	variant	genetic	architecture	of	a	trait	via	a	direct,	SNP-based	assessment	of	
heritability	from	genome-wide	data	43.	A	more	refined	question	can	also	be	posed	44:	to	what	extent	is	a	specific	
genome	 annotation	 enriched	 for	 SNP-heritability?	 This	 addresses	 the	 heterogeneous	 impact	 of	 different	
annotations	on	disease	risk.	We	determined	SNP-heritability	enrichment	using	partitioned	LD	score	regression	
44.	 As	 its	 name	 indicates,	 this	 technique	 leverages	 LD;	 we	 believe	 that	 it	 is	 a	 valid	 way	 to	 understand	 the	
importance	 of	 3D	 Hi-C	 readouts	 given	 its	 genome-wide,	 gigabase	 focus.	 As	 we	 show	 below,	 LD	 and	 3D	
approaches	can	yield	different	when	used	to	dissect	individual	loci	at	a	scale	of	100s	of	Kb.	The	largest	published	
study	 of	 the	 genetic	 architecture	 of	 schizophrenia	 is	 the	 CLOZUK	 GWAS	 that	 identified	 145	 genome-wide	
significance	loci	(40,675	cases	and	64,643	controls)	10.	We	included	large	GWAS	from	multiple	brain-related	and	
somatic	traits,	and	contrasted	Hi-C	readouts	from	six	datasets	along	with	multiple	other	functional	annotations.		
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The	 results	 are	 summarized	 in	 Figure	 2	 (Table	 S5).	 The	 A	 compartment	 annotation	 comprised	 ~40%	 of	 the	
genome	and	showed	considerable	SNP-heritability	enrichment	that	was	not	specific	to	the	Hi-C	tissue	source	or	
to	 any	 GWAS.	 FIREs	 (~5%	 of	 the	 genome)	 and	 super	 FIREs	 (~2%	 of	 the	 genome)	 showed	 more	 limited	
enrichments	but	were	only	moderately	 specific	 to	a	 tissue.	TAD	boundaries	 (1.6%	of	 the	genome)	 showed	no	
SNP-heritability	enrichments.	There	were	far	more	chromatin	interactions	in	fetal	than	adult	brain	(52%	vs	40%	
of	the	genome)	but	similar	numbers	of	regulatory	chromatin	 interactions	(~10%	in	both	fetal	and	adult	brain),	
and	these	showed	SNP-heritability	enrichments	that	were	relatively	specific	to	brain	traits	 (recalling	that	body	
mass	has	functional	genomic	brain	connections	45).	Gene	expression	in	liver	was	enriched	for	SNP-heritability	for	
body	mass	and	height,	 and	gene	expression	 in	blood	was	particularly	enriched	 for	 SNP-heritability	 for	height,	
inflammatory	 bowel	 disease,	 and	 total	 cholesterol.	 For	 CLOZUK,	 21	 of	 44	 comparisons	 showed	 significant	
enrichment	 (Bonferroni	 correction	 for	 P<0.001).	 The	 functional	 annotations	 that	 showed	 the	 most	 specific	
connections	 to	 schizophrenia	 and	 brain	 traits	were	 open	 chromatin	 in	 adult	 cortex	 and	 regulatory	 chromatin	
interactions.	 Thus,	 across	 the	 genome,	 annotations	 that	 capture	 dynamic	 genome	 processes	 central	 to	 gene	
regulation	in	brain	have	particular	salience	to	genetic	risk	for	schizophrenia.		

Using	functional	genomic	data	to	connect	schizophrenia	GWAS	loci	to	genes	

The	CLOZUK	schizophrenia	GWAS	identified	145	genome-wide	significant	 loci.	10	These	 loci	were	defined	using	
the	standard	PGC	algorithm	of	LD-based	“clumping”	 followed	by	merging	overlapping	 loci.	The	CLOZUK	paper	
demonstrated	that	these	loci	defined	in	this	way	were	statistically	independent	of	each	other	10.		

These	LD-defined	loci	were	a	median	of	100	Kb	in	size	(interquartile	range,	IQR	40-333	Kb),	and	37	(25.5%)	were	
intergenic,	 54	 (37.2%)	 intersected	 a	 single	 protein-coding	 gene,	 and	 54	 (37.2%)	 intersected	multiple	 protein-
coding	genes.	The	intergenic	loci	were	smallest	(median	110	Kb)	and	were	a	median	of	181	Kb	from	the	nearest	
gene	(IQR	60-366	Kb).	Single-gene	loci	were	intermediate	in	size	(median	182	Kb)	and	53/54	intersected	a	brain-
expressed	 gene.	Multigenic	 loci	 were	 largest	 (median	 501	 Kb)	 and	 contained	 a	median	 of	 4	 brain-expressed	
genes	(IQR	2-10).	Most	loci	were	within	a	single	adult	cortex	TAD	but	9	loci	spanned	2	or	3	TADs.		

We	compared	three	methods	of	assigning	SNPs	to	genes:	(a)	by	gene	location	within	one	of	the	145	GWAS	loci,	
(b)	using	adult	cortex	eQTL-gene	data	from	CommonMind	and	GTEx	(q<0.05	where	the	eQTL-SNP	was	within	a	
locus)	16,46,	and	(c)	using	eHi-C	chromatin	interactions	from	adult	cortex	(Bonferroni	P<0.001,	where	at	least	one	
anchor	was	within	a	locus	and	the	other	in	a	gene).	To	increase	specificity	of	the	eHi-C	data,	we	selected	103K	
eHi-C	chromatin	interactions	that	were	regulatory	enhancer-promoter	or	promoter-promoter	loops.	A	promoter	
anchor	was	defined	as	the	intersection	of:	an	eHi-C	HindIII	 fragment,	the	start	site	of	a	transcript	expressed	in	
adult	 cortex	 (±2	Kb),	and	a	 region	of	open	chromatin	 in	adult	 cortex.	An	enhancer	anchor	was	defined	as	 the	
intersection	 of:	 an	 eHi-C	HindIII	 fragment,	 a	 region	 of	 open	 chromatin	 in	 adult	 cortex,	 and	 either	 a	 H3K27ac	
histone	 mark	 in	 adult	 cortex	 or	 the	 combination	 of	 a	 H3K4me3	 histone	 mark	 in	 adult	 cortex	 and	 a	 brain	
expressed	 transcript	 start	 site.	 We	 focused	 on	 adult	 cortex	 given	 empirical	 data	 connecting	 this	 tissue	 to	
schizophrenia	using	orthogonal	functional	genomics	data	(mRNA-seq,	single	cell	RNA-seq,	enhancer	marks,	and	
open	chromatin)	38,40,47,48		

First,	we	identified	35	genes	that	were	implicated	by	two	different	schizophrenia	loci.	We	reasoned	that	that	a	
such	a	“pincer”	(different	loci	pointing	at	the	same	gene)	increases	the	likelihood	that	a	gene	is	implicated	by	the	
genomic	findings	49.	The	large	gene	DPYD	(917	Kb)	was	implicated	by	two	statistically	independent	loci	that	were	
320	Kb	apart	(DPYD	also	has	both	eQTL	and	regulatory	loop	evidence).	Ten	genes	(CSDC2,	DESI1,	DNAH1,	EMB,	
NT5DC2,	PBRM1,	POLR3H,	SATB2,	TOB2,	and	WBP2NL)	were	the	eQTL-gene	for	eQTL-SNPs	located	in	different	
loci.	 For	 example,	 two	 statistically	 independent	 loci	 chr22:41.027-41.753	Mb	 (P=5.54e-13)	 and	 chr22:42.226-
42.689	Mb	(P=2.15e-14)	are	473	Kb	apart	but	each	contains	eQTL-SNPs	to	the	same	five	genes.	Finally,	27	genes	
contain	 an	 anchor	 for	 regulatory	 chromatin	 interaction	 with	 the	 other	 anchor	 in	 different	 significant	 loci.	
However,	17	of	these	genes	are	in	chr22:39.840-40.091	Mb	(P=1.76e-12),	chr22:41.027-41.753	Mb	(P=5.54e-13),	
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and	 chr22:42.226-42.689	 Mb	 (P=2.15e-14).	 This	 suggests	 that	 these	 statistically	 independent	 loci	 may	
nonetheless	 be	 functionally	 related	 particularly	 given	 their	 location	 within	 the	 same	 adult	 cortex	 TAD	
(chr22:38.220-43.020	Mb).		

Second,	17/37	intergenic	loci	could	be	connected	to	32	different	brain-expressed	genes	(13	genes	via	-SNP-gene	
eQTLs,	 18	 genes	 via	 Hi-C,	 and	 1	 gene	 by	 both).	 Five	 of	 the	 intergenic	 loci	 implicated	 20	 genes.	 The	 typical	
locational	 assumption	 that	 an	 intergenic	GWAS	 association	 influenced	 only	 the	 nearest	 brain-expressed	 gene	
was	supported	for	7	loci.		

Third,	51/54	of	the	single-gene	loci	could	be	connected	to	a	brain-expressed	gene.	The	typical	assumption	that	
the	GWAS	association	influenced	only	the	brain-expressed	gene	which	it	intersected	was	supported	by	eQTL	or	
Hi-C	evidence	for	only	11/51	loci	(for	11/51	additional	genes,	there	was	the	absence	of	evidence	or	no	eQTL	or	
Hi-C	 evidence	 connecting	 the	 locus	 to	 some	other	 gene).	However,	 this	 understates	 the	 complexity	 of	 single-
gene	loci	as	29/51	loci	could	be	connected	to	2-12	genes	via	eQTL	or	Hi-C	evidence.	These	genes	were	a	median	
of	243	Kb	(IQR	1.1-672	Kb)	from	the	locus.	For	example,	the	CACNA1C	intron	3	association	(P=5.63e-20)	supports	
a	connection	to	CACNA1C	via	eQTL	and	Hi-C	data	but	also	has	Hi-C	regulatory	interactions	to	CACNA2D4,	DCP1B,	
FKBP4,	LRTM2,	and	TSPAN9	 (172-672	Kb	from	the	GWAS	locus).	The	DRD2	association	has	a	similar	pattern	of	
regulatory	chromatin	interaction	to	DRD2	as	well	as	6	other	brain-expressed	genes.		

Fourth,	as	anticipated,	the	54	multigenic	loci	were	complex	with	eQTL	or	Hi-C	evidence	supporting	a	connection	
to	a	median	of	11	genes	per	locus	(IQR	6-23).	Of	these,	56.5%	of	the	genes	were	outside	the	locus	and	often	at	a	
considerable	distance	(median	291	Kb,	IQR	126-601	Kb).		

In	 summary,	of	14,890	brain-expressed	protein-coding	genes,	1,197	 (8.1%)	had	evidence	of	a	 connection	 to	a	
schizophrenia	GWAS	 locus	 (Figure	3).	The	supporting	evidence	was	by	 location	 (42.6%),	eQTL	 (41.5%),	and/or	
regulatory	 chromatin	 interactions	 (86.7%).	 Most	 of	 the	 genes	 with	 eQTL	 or	 chromatin	 interaction	 evidence	
(57.8%)	were	not	 in	 the	 locus	and	generally	at	a	considerable	distance	outside	 the	 locus	 (median	305	Kb,	 IQR	
128-620	Kb).		

Gene	set	analyses,	location	versus	functional	genomic	connections	

Most	gene	set	analyses	incorporate	LD	62,	but	functional	genomic	readouts	(eQTL	and	Hi-C)	are	often	unrelated	
to	 LD	 (as	 shown	 above,	 chromatin	 interactions	 can	 extend	 far	 beyond	 LD-based	 loci).	 Thus,	 we	 conducted	 a	
series	of	gene	set	analyses	using	“gene2function”	hypergeometric	 tests	 in	FUMA	(URLs)	 63	We	contrasted	two	
gene	 sets:	 (a)	 the	 standard	 approach	 of	 analyzing	 brain-expressed,	 protein-coding	 genes	 within	 LD-defined	
GWAS	loci	CLOZUK	(339	genes);	and	(b)	genes	implicated	by	eQTL	and/or	regulatory	chromatin	interactions	as	
described	above	 (999	genes,	 including	314	genes	 implicated	by	 location).	We	excluded	genes	 in	 the	extended	
MHC	region	(due	to	its	complexity	and	gene	density),	and	selected	gene	sets	with	≥10	gene	overlap	and	adjusted	
P	values	<	0.001.		

The	results	are	Tables	3	and	S6.	The	functional	genomic	approach	yielded	24	significant	GO	gene	sets	whereas	
location-based	gene	 identification	yielded	only	12	gene	sets.	Six	gene	sets	were	 in	common	between	the	 two	
methods	(e.g.,	cell	and	neuron	projection).	However,	the	functional	genomic	approach	yielded	a	rather	different	
portrait.	 Specifically,	 it	 implicated	 a	 variety	 of	 regulatory	 processes,	 particularly	 chromosome	 organization,	
synaptic	transmission,	and	synaptic	plasticity.		

Rare	genetic	variation	

Exon	 variation.	 We	 evaluated	 the	 salience	 of	 Hi-C	 readouts	 for	 genes	 implicated	 in	 rare	 variant	 studies	 of	
intellectual	 disability	 (i.e.,	 the	 lower	 tail	 of	 the	 cognitive	 ability	 distribution).	 We	 compiled	 a	 gene	 set	 from	
literature	reviews,	OMIM,	and	exome	sequencing	studies	50-52.	We	could	not	analyze	schizophrenia	because	too	
few	genes	have	been	 identified.	 Full	 details	 of	 this	 analysis	 are	 in	Table	 S7.	 There	were	 significant	 univariate	
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associations	between	the	implication	of	a	gene	in	intellectual	disability	via	exonic	variation	and	its	intersection	
with	FIREs,	TAD	boundaries,	or	the	number	of	chromatin	interactions	in	both	adult	and	fetal	eHi-C	datasets.	In	a	
multivariable	model	for	the	adult	eHi-C	data,	intersection	with	a	TAD	boundary	increased	the	odds	of	being	an	
intellectual	disability	gene	by	54%	(OR=1.54,	P=2.56e-4)	as	did	the	number	of	chromatin	interactions	(OR=1.26	
for	each	doubling	of	the	number	of	interactions,	P=6.61e-11).	Intersection	with	an	adult	FIRE	was	not	significant	
in	this	model.	In	a	multivariable	model	for	the	fetal	eHi-C	data,	the	odds	of	being	an	intellectual	disability	gene	
increased	markedly	with	 the	number	of	 chromatin	 interactions	 (OR=4.11	 for	 each	doubling	of	 the	number	of	
interactions,	P=8.0e-13)	but	fetal	FIRE	and	TAD	boundary	intersections	were	not	significant	in	this	model.		

Copy	 number	 variation	 (CNVs).	 Cases	 with	 schizophrenia	 have	 more	 rare	 CNVs	 than	 controls	 53.	 Excess	 CNV	
“burden”	in	cases	can	be	attributed	to	genic	CNVs	with	greater	effects	for	deletion	than	duplication	CNVs	54,55.	
Greater	CNV	burden	in	cases	persists	after	removing	~10	large	CNVs	individually	associated	with	schizophrenia	
(e.g.,	22q11	or	16p11)	 54.	 It	 is	plausible	 that	a	CNV	that	disrupts	a	FIRE	or	a	TAD	56	could	explain	 some	of	 the	
excess	CNV	burden.	We	evaluated	this	hypothesis	using	carefully	curated	CNVs	in	4,719	schizophrenia	cases	and	
5,917	controls	 55,57.	We	excluded	 large	CNVs	known	to	be	associated	with	schizophrenia	 54,	and	controlled	 for	
genotyping	batch	and	ancestry.	The	presence	of	a	CNV	deletion	intersecting	one	or	more	adult	brain	FIREs	was	
significantly	associated	with	schizophrenia	(OR=1.72,	P=3.27e-6)	whereas	CNV	duplications	were	not	associated	
(OR=1.10,	 P=0.17).	 The	 presence	 of	 a	 CNV	 deletion	 intersecting	 one	 or	more	 fetal	 brain	 FIREs	was	modestly	
associated	 with	 schizophrenia	 (OR=1.31,	 P=4.7e-3)	 as	 were	 CNV	 duplications	 (OR=1.22,	 P=7.9e-3).	 CNVs	 that	
intersected	 TADs	were	 not	 notably	 associated	with	 schizophrenia:	 adult	 TAD-CNV	 deletion	OR=1.08	 (P=0.60);	
adult-TAD	 CNV	 duplication	 OR=1.16	 (P=0.047);	 fetal	 TAD-CNV	 deletion	 OR=1.07	 (P=0.64);	 and	 fetal-TAD	 CNV	
duplication	OR=1.16	(P=0.042).		

Discussion	

In	 many	 respects,	 our	 understanding	 of	 the	 human	 genome	 is	 best	 at	 the	 extremes.	 At	 a	 chromosomal	 to	
megabase	 scale,	 there	 is	 considerable	 knowledge	 of	 the	 structure	 of	 the	 genome	 and	 the	 prevalence	 and	
medical	 relevance	 of	 variation	 (i.e.,	 large	 structural	 variants).	 At	 the	 base	 pair	 scale,	 we	 have	 increasingly	
detailed	surveys	of	the	nature	and	frequency	of	genetic	variation	from	studies	like	TOPMed	and	gnomAD	(URLs).	
Between	 these	extremes,	 some	annotations	 appear	 to	be	 increasingly	 complete	 for	 a	 few	 crucial	 topics	 (e.g.,	
gene	models,	variation	causal	for	Mendelian	disorders,	or	expression	patterns	in	human	tissues)	and	also	via	the	
work	 of	 ENCODE	 and	 Roadmap	 consortia.	 However,	 particularly	 for	 complex	 diseases	 of	 profound	 societal	
importance,	 there	 is	 an	unsolved	problem	at	 intermediate	 scales:	 given	 the	 typical	paucity	of	exonic	 findings,	
precisely	 how	 do	 the	 thousands	 of	 significant,	 subtle,	 and	 common	 associations	 that	 account	 for	 most	 of	
inherited	 liability	act	mechanistically	 to	 increase	 risk	 for	disease?	 In	effect,	human	genetic	 studies	of	 complex	
disease	attempt	to	provide	a	parts	list,	and	more	complete	parts	lists	and	even	wiring	diagrams	are	an	important	
next	steps.		

In	this	paper,	we	used	the	deepest	Hi-C	dataset	of	human	brain	to	evaluate	its	relevance	for	schizophrenia	and	
cognitive	ability.	Instead	of	considering	the	genome	as	a	1D	object,	we	used	a	3D	functional	snapshot	of	genome	
organization	in	brain	cells.	In	doing	so,	we	sought	to	identify	a	more	complete	parts	list.		

Most	 human	 genetic	 studies	 leverage	 LD.	 LD	 is	 a	 fundamental	 feature	 of	 the	 genome	 with	 a	 large	 body	 of	
supporting	 statistical	 genetic	 theory	 and	 analytical	 methods	 66,67.	 Indeed,	 LD	 has	 been	 essential	 to	 genetic	
discovery	for	decades.	LD	was	crucial	in	linkage	mapping	for	Mendelian	diseases	in	large	affected	pedigrees.	LD	
is	a	 fundamental	 reason	why	GWAS	“works”	at	all:	 there	are	millions	of	polymorphic	SNPs	 in	the	genome	but	
widespread	LD	in	humans	means	that	genotyping	a	relatively	small	number	of	SNPs	can	capture	a	large	fraction	
of	 the	 information	 contained	 in	 common	 variation.	 LD-based	 imputation,	 LD	 score	 regression,	 and	 gene	 set	
analyses	 are	 essential	 parts	 of	 the	 GWAS	 toolkit	 43,62,68.	 However,	 LD	 is	 a	 double-edged	 sword:	 following	
identification	 of	 a	 significant	 locus	 for	 a	 complex	 disease,	 LD	 almost	 always	 confounds	 attempts	 to	 identify	
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specific	 genes.	 There	 usually	 are	 many	 loci	 with	 approximately	 the	 same	 significance	 values	 and,	 even	 with	
dense	 additional	 genotyping,	 rarely	 can	 a	 single	 variant	 with	 markedly	 greater	 significance	 be	 identified.	 1D	
epigenetic	information	certainly	can	help	in	prioritization	69	although	many	epigenetic	marks	are	common	(e.g.,	
brain	open	chromatin	regions	are	about	as	large	as	the	exome)	38.	LD	remains	a	problem	with	large	number	of	
significant	SNPs	in	high	LD	that	overlap	promoters,	open	chromatin,	and	certain	histone	marks.		

We	suggest	that	difficulties	of	LD-based	approaches	following	 locus	 identification	 in	complex	disease	warrants	
incorporation	of	more	 informative	data	 types.	 LD	arises	 from	historical	population	genetic	processes	whereas	
the	chromatin	interactome	captures	the	functional	organization	of	cells	in	a	disease-relevant	tissue.	These	two	
sets	 of	 features	 do	 not	 overlap	 well.	 Our	 results	 provide	 support	 for	 the	 idea	 that,	 following	 genetic	
identification	of	a	locus	for	a	complex	disease	like	schizophrenia,	it	is	essential	to	incorporate	knowledge	of	the	
3D	interactome	in	the	appropriate	tissue.	Connecting	GWAS	findings	to	genes	using	1D-based	methods	like	LD	is	
often	misleading	given	that	the	genes	implicated	by	3D	interactome	are	not	in	LD	or	not	the	nearest	gene.		

Figure	legends	

Figure	1	shows	comparisons	of	high-level	Hi-C	metrics	and	features.	Figure	1a:	Metrics	for	25	Hi-C	datasets.	The	
X-axis	is	the	total	number	of	reads	passing	quality	control	(uniquely	mapped,	PCR	duplicates	removed),	and	the	
Y-axis	 is	 the	number	of	 informative	cis-reads	 (uniquely	mapped,	PCR	duplicates	 removed,	 intra-chromosomal,	
>15kb	apart).	Point	sizes	are	proportional	to	the	numbers	of	informative	cis-reads.	Red	diamonds	show	data	we	
generated	 in	human	brain	using	eHi-C:	 filled	red	diamond	 is	adult	 temporal	cortex	 (Adult,	N=3),	and	open	red	
diamond	 is	 fetal	cortex	 (Fetal,	N=3).	Yellow	open	circles	show	fetal	germinal	zone	(GZ,	N=3)	and	cortical	plate	
(CP,	N=3)	18.	From	Schmitt	et	al.	27,	filled	grey	circles	show	14	human	tissues	and	7	cell	lines.	Tissues:	AD=adrenal	
gland;	AO=aorta;	BL=bladder;	DLPFC=brain	dorsolateral	prefrontal	cortex;	Hippo=brain	hippocampus;	LG=lung;	
LI=liver;	 LV=heart	 left	 ventricle;	 OV=ovary;	 PA=pancreas;	 PO=psoas	 skeletal	 muscle;	 RV=heart	 right	 ventricle;	
SB=small	 intestine;	 SX=spleen.	 Cell	 lines:	 GM12878=lymphoblast;	 H1=human	 embryonic	 stem	 cell	 (hESC);	
IMR90=lung	 fibroblast;	 MES=mesoderm;	 MSC=mesenchymal	 stem	 cell;	 NPC=neural	 progenitor	 cell;	
TRO=trophoblast-like	cell.	Figure	1b:	Brain	eQTLs	and	chromatin	 interactions.	Scatter	plot	of	genomic	distance	
between	 chromatin	 interaction	 anchors	 (X-axis)	 and	 mean	 Hi-C	 contact	 frequency	 (Y-axis).	 Using	 the	
CommonMind	DLPFC	eQTL	dataset,	we	stratified	by	these	data	when	the	chromatin	interaction	anchors	did	not	
overlap	 an	 eQTL	 (red),	 when	 they	 did	 overlap	 an	 eQTL	 (blue).	 The	 subset	 of	 the	 chromatin	 interaction-eQTL	
overlapping	which	have	H3K27ac	or	H3H4me3	mark	are	in	green.		

Figure	2	depicts	a	heat	map	for	results	of	partitioned	LD	score	regression	for	seven	large	GWAS	for	functional	
genomic	readouts	 (Hi-C,	ChIP-seq,	gene	expression,	and	open	chromatin)	 for	multiple	tissues.	See	Figure	1	 for	
tissue	identifiers.		

Figure	3	shows	a	Venn	diagram	implicating	brain-expressed	genes	in	schizophrenia.	A	gene	can	be	implicated	by	
location	in	an	schizophrenia	LD-based	GWAS	locus	(Location),	by	adult	cortex	eQTL	data,	or	via	adult	cortex	Hi-C	
regulatory	chromatin	interactions.	The	insert	shows	percentages	in	each	group.	Hi-C	dominates.		

Supplemental	figure	legends	

Figure	S1.	Circos	plot	summarizing	the	adult	and	fetal	brain	Hi-C	readouts	in	the	autosomal	genome.	From	the	
outside	inward,	the	tracks	are:	(a)	ideogram	(chr1ptel	to	22qtel	in	clockwise	direction);	(b)	gene	density	per	Mb;	
1	Mb	A	(green)	and	B	(yellow)	compartment	in	(c)	fetal	brain	and	(d)	adult	brain;	locations	of	super	FIREs	in	(e)	
fetal	brain	 (red)	and	 (f)	 adult	brain	 (green);	TAD	boundary	 locations	 in	 (g)	 fetal	brain	and	 (h)	adult	brain;	and	
chromatin	interaction	density	per	Mb	in	(i)	fetal	brain	and	(j)	adult	brain.		
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Figure	S2.	Figure	S2a:	Results	of	PCA	on	Hi-C	compartment	scores	(100	Kb	bins)	from	25	Hi-C	datasets.	X-axis	is	
PC1	(75%	of	variance)	and	Y-axis	is	PC2	(8.0%	of	variance).	The	fetal	samples	clustered	together	as	did	the	adult	
brain	 samples.	Point	 sizes	are	proportional	 to	 the	numbers	of	 informative	cis-reads.	Filled	 red	diamond	 is	our	
adult	 anterior	 temporal	 cortex	 dataset	 (Adult)	 and	 the	 open	 red	 diamond	 is	 our	 fetal	 cortex	 dataset	 (Fetal).	
Yellow	open	circles	are	fetal	brain	germinal	zone	(GZ)	and	cortical	plate	datasets	(CP).	Filled	grey	circles	show	14	
human	 tissues	 and	 7	 cell	 lines	 (see	 Figure	 1a	 legend	 for	 abbreviations).	 Figure	 S2b:	 Clustered	 heat	 map	 of	
Jaccard	index	values	describing	the	degree	of	overlap	of	compartments	across	Hi-C	datasets.		

Figure	S3.	Figure	S3a:	Results	of	PCA	on	Hi-C	TAD	boundary	scores	(40	Kb	bins)	from	25	Hi-C	datasets.	X-axis	is	
PC1	 (77%	of	 variance)	 and	Y-axis	 is	 PC2	 (5.0%	of	 variance).	All	 brain	 samples	 clustered	on	 the	dominant	PC1.	
Point	 sizes	 are	proportional	 to	 the	numbers	of	 informative	cis-reads.	 Filled	 red	diamond	 is	 our	 adult	 anterior	
temporal	cortex	dataset	(Adult)	and	the	open	red	diamond	is	our	fetal	cortex	dataset	(Fetal).	Yellow	open	circles	
are	fetal	brain	germinal	zone	(GZ)	and	cortical	plate	datasets	(CP).	Filled	grey	circles	show	14	human	tissues	and	
7	 cell	 lines	 (see	 Figure	 1a	 legend	 for	 abbreviations).	 Figure	 S3b:	 Clustered	 heat	map	 of	 Jaccard	 index	 values	
describing	the	degree	of	overlap	of	TAD	boundaries	across	Hi-C	datasets.		

Figure	S4.	Figure	S4a:	Results	of	principal	components	analysis	(PCA)	on	Hi-C	FIRE	scores	(40	Kb	bins)	from	25	Hi-
C	 datasets.	 X-axis	 is	 PC1	 (69%	 of	 variance)	 and	 Y-axis	 PC2	 which	 captured	 far	 less	 variance	 (5.4%).	 All	 brain	
samples	had	high	scores	on	PC1.	Point	sizes	are	proportional	to	the	numbers	of	informative	cis-reads.	Filled	red	
diamond	 is	 our	 adult	 anterior	 temporal	 cortex	 dataset	 (Adult)	 and	 the	 open	 red	 diamond	 is	 our	 fetal	 cortex	
dataset	(Fetal).	Yellow	open	circles	are	fetal	brain	germinal	zone	(GZ)	and	cortical	plate	datasets	(CP).	Filled	grey	
circles	 show	14	human	 tissues	and	7	 cell	 lines	 (see	 Figure	1a	 legend	 for	 abbreviations).	 Figure	 S4b:	Clustered	
heat	map	of	Jaccard	index	values	describing	the	degree	of	overlap	of	FIREs	across	Hi-C	datasets.	

Figure	S5.	Venn	diagram	of	chromatin	interactions	in	our	Adult	and	Fetal	eHi-C	datasets	and	fetal	cortical	plate	
(CP)	and	germinal	zone	(GZ).	Chromatin	interactions	are	between	10	Kb	bins	that	were	≥20	Kb	apart	and	≤2	Mb	
apart	(i.e.,	in	cis).	We	evaluated	these	four	brain	Hi-C	datasets	because	of	relatively	high	read	depths	(Figure	1a).	
All	 chromatin	 interactions	 exceeded	 a	 stringent	 P-value	 (Bonferroni	 correction	 a=0.001).	 We	 identified	
2,195,401	 chromatin	 interactions	 in	 any	of	 these	 four	brain	Hi-C	datasets.	 Fetal	 data	had	greatest	number	of	
chromatin	 interactions	 (1.25	million),	 somewhat	more	than	CP	and	GZ	 (0.998	million	each),	and	over	 twice	as	
many	as	adult	cortex	(0.509	million).		

Online	Methods	

General	&	data	availability	

All	procedures	on	data	from	human	research	subjects	were	approved	by	the	appropriate	ethical	committees.	All	
genomic	coordinates	are	given	in	NCBI	Build	37/UCSC	hg19.	Upon	acceptance	of	this	paper,	full	eHi-C	readouts	
will	be	posted	on	the	PGC	website,	the	psychENCODE	portal,	and	GEO	(URLs).		

Samples	

Anterior	temporal	cortex	was	dissected	from	postmortem	samples	from	three	adults	of	European	ancestry	with	
no	known	psychiatric	or	neurological	disorder	 (Dr	Craig	 Stockmeier,	University	of	Mississippi	Medical	Center).	
Cortical	 samples	 from	 three	 fetal	 brains	 were	 obtained	 from	 the	 NIH	 NeuroBiobank	 (gestational	 age	 17-19	
weeks),	and	none	were	known	to	have	anatomical	or	genomic	disease.	Samples	were	dry	homogenized	to	a	fine	
powder	using	a	 liquid	nitrogen-cooled	mortar	and	pestle.	All	 samples	were	 free	 from	 large	 structural	 variants	
(>100	Kb)	detectable	using	Illumina	OmniExpress	arrays.	Genotypic	sex	matched	phenotypic	sex	for	all	samples.		
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Easy	Hi-C	(eHi-C)	methods	

We	 used	 eHi-C	 to	 assess	 chromatin	 interactome	 26.	 The	 eHi-C	 protocol	 is	 biotin-free	 and	 uses	 sequential	
enzymatic	reactions	to	maximize	the	recovery	of	DNA	products	from	proximity	ligation.	The	main	advantage	of	
this	Hi-C	adaptation	is	that	it	can	generate	Hi-C	libraries	that	are	comparable	to	traditional	Hi-C	but	with	lower	
sample	 input	 (as	 little	as	10	mg	brain	 tissue)	and	 increased	yield.	All	of	 these	 features	of	eHi-C	are	crucial	 for	
relatively	uncommon	human	postmortem	brain	samples.		

We	 followed	 the	 protocol	 described	 in	 Lu	 et	 al.	 26.	 Pulverized	 tissue	 (~100	 mg)	 was	 crosslinked	 with	
formaldehyde	 (1%	 final	 concentration)	 and	 the	 reaction	 was	 quenched	 using	 glycine	 (150	 mM).	 We	 lysed	
samples	on	 ice	with	brain	tissue-specific	 lysis	buffer	 (10	mM	HEPES;	pH	7.5,	10	mM	KCl,	0.1	mM	EDTA,	1	mM	
dithiothreitol,	0.5%	Nonidet-40	and	protease	 inhibitor	cocktail),	Dounce	homogenized,	and	digested	using	 the	
six	base	pair	restriction	enzyme	HindIII.	This	was	followed	by	in	situ	ligation.	Samples	were	reverse	cross-linked	
with	proteinase	K	and	purified	using	phenol-chloroform.	DNA	was	then	digested	with	four	base	pair	restriction	
enzyme	 DpnII	 followed	 by	 size	 selection	 using	 PCRClean	 DX	 beads	 (Aline	 Biosciences)	 (choosing	 fragments	
between	100-1000	bp).	The	DNA	products	were	self-ligated	overnight	at	16°C	using	T4	DNA	ligase.	Self-ligated	
DNA	was	purified	with	phenol-chloroform,	digested	with	 lambda	exonuclease,	and	purified	using	PCRClean	DX	
beads.	For	re-linearization	of	circular	DNA,	bead-bound	DNA	was	eluted	and	digested	with	HindIII	and	purified	
using	PCRClean.	Bead-bound	DNA	was	eluted	in	50	µl	nuclease-free	water.	Re-linearized	DNA	(~50	ng)	was	used	
for	 library	generation	 (Illumina	TruSeq	protocol).	DNA	was	end-repaired	using	End-it	kit	 (Epicentre),	“A-tailed”	
with	Klenow	fragment	(3ʹ–5ʹ	exo–;	NEB),	and	purified	with	PCRClean	DX	beads.	The	4	µl	DNA	product	was	mixed	
with	5	µl	of	2X	quick	ligase	buffer,	1	µl	of	1:10	diluted	annealed	adapter	and	0.5	µl	of	Quick	DNA	T4	ligase	(NEB).	
Ligation	was	done	by	 incubating	at	 room	temperature	 for	15	minutes.	DNA	was	purified	using	DX	beads,	and	
eluted	using	14	µl	nuclease-free	water.	To	sequence	eHi-C	libraries,	we	used	custom	TruSeq	adapters	in	which	
the	index	is	replaced	by	6	base	random	sequences.	Libraries	were	then	PCR-amplified	and	deeply	sequenced	(2-
5	independent	libraries/sample)	using	Illumina	HiSeq4000	(50	bp	paired-end).		

Because	nearly	all	mappable	 reads	 start	with	 the	HindIII	 sequence	AGCTT,	we	 trimmed	 the	 first	5	bases	 from	
every	 read	 and	 added	 the	 6-base	 sequence	 AAGCTT	 to	 the	 5’	 of	 all	 reads.	 These	 reads	 were	 aligned	 to	 the	
human	reference	genome	(hg19)	using	Bowtie	70.	After	mapping,	we	kept	reads	where	both	ends	were	exactly	at	
HindIII	cutting	sites.	PCR	duplicates	with	the	same	positions	and	UMI	were	removed	26.	We	also	removed	read	
pairs	with	the	two	ends	within	the	same	HindIII	fragment.	To	further	filter	valid	ligation	products	from	cis-	HindIII	
pairs,	we	split	reads	into	three	classes	based	on	strand	orientation:	“same-strand”	had	both	ends	on	the	same	
strand;	“inward”	had	the	upstream	end	on	forward	strand;	and	“outward”	where	the	upstream	end	was	on	the	
reverse	strand	26.	“Outward”	read	pairs	with	gap	distance	<1	Kb	between	the	two	corresponding	fragments	were	
removed	because	they	might	originate	from	undigested	HindIII	sites.	“Inward”	read	pairs	with	gap	distance	<25	
Kb	between	the	 two	corresponding	 fragments	were	 removed	because	 they	might	come	from	self-circled	DNA	
with	undigested	HindIII	sites.	All	other	reads	are	valid	ligation	products	and	were	processed	as	described	below	
(FIREs,	chromatin	interactions,	TADs,	and	compartment	A/B	designation).		

Hi-C	readouts	

We	adapted	in-house	pipelines	to	process	eHi-C	and	conventional	Hi-C	data	from	external	datasets	as	described	
previously	27,71	with	slight	modifications.	We	used	bwa	mem	to	map	each	read	to	the	hg19	reference	genome,	
retaining	only	uniquely	mapped	reads.	For	chimeric	reads	overlapping	HindIII	cut	sites,	we	only	used	the	5’	end.	
We	 kept	 reads	within	 500	 bp	 of	 the	 nearest	HindIII	 cut	 site,	 and	 removed	 any	 intra-chromosomal	 read	 pairs	
within	15	Kb	 71.	Processed	data	 from	our	eHi-C	and	external	Hi-C	were	binned	 into	100	Kb,	40	Kb,	and	10	Kb	
resolution	contact	matrices	for	downstream	analysis.	As	shown	in	Figure	S1a,	we	evaluated	Hi-C	read	summary	
statistics	including:	total	number	of	uniquely	mapped	reads	per	sample	(PCR	duplicates	removed),	total	number	
of	 intra-chromosomal	 reads,	and	 total	number	of	 informative	 intra-chromosomal	 reads	which	are	>15	Kb.	For	
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comparison,	we	 include	 in	Table	 S1	 all	 Hi-C	 human	 tissue	 data	 available	 as	 of	 1/2018.	 Hi-C	 comparison	 data	
included	Schmitt	et	al.	27	(14	adult	tissues	and	7	cell	 lines)	and	Won	et	al.	18	(3	paired	fetal	samples	from	brain	
germinal	 zone	 and	 cortical	 plate).	Data	 quality	 from	 this	 study	was	 comparable	 to	 prior	 studies	 although	our	
read	depth	is	the	best	of	any	currently	available	Hi-C	dataset	from	human	brain	tissue.		

We	evaluated	the	reproducibility	of	the	40	Kb	bin	resolution	eHi-C	contact	matrices.	The	biological	replicates	of	
each	 sample	 showed	 high	 reproducibility	 (Pearson	 correlation	 coefficients	 >	 0.96)	 enabling	 pooling	 of	 all	
biological	 replicates	 for	 downstream	 analyses.	 eHi-C	 analyses	 are	 based	 on	 N=3	 adult	 and	 N=3	 fetal	 cortex	
samples	 for	 chr1-chr22	 and	 N=2	 male	 adult	 and	 N=2	 male	 fetal	 samples	 for	 chrX	 (given	 that	 chromatin	
interactions	are	distinctive	in	females).		

Frequently	interacting	regions	(FIREs)	

Following	our	prior	study	27,	we	applied	an	 in-house	pipeline	to	 identify	FIRE	bins.	Using	40	Kb	resolution	Hi-C	
contact	 matrix	 for	 each	 chromosome.	 For	 each	 40	 Kb	 bin,	 we	 calculated	 the	 total	 number	 of	 cis	 (intra-
chromosomal	 15-200	 Kb)	 interactions.	 We	 removed	 “bad”	 40	 Kb	 bins	 with	 low	 effective	 fragment	 size,	 GC	
content,	or	mappability	score	72.	We	also	removed	40	Kb	bins	in	the	MHC	region	(chr6:28,477,797-33,448,354).	
After	 filtering,	64,222	40	Kb	bins	 remained	for	analysis.	Next,	we	applied	HiCNormCis	 27	 to	remove	systematic	
biases	 from	 local	 genomic	 features,	 including	 effective	 fragment	 size,	 GC	 content	 and	 mappability	 72.	 The	
normalized	 total	 number	 of	 cis	 intra-chromosomal	 reads	 is	 defined	 as	 the	 FIRE	 score	 27.	We	 then	 performed	
quantile	 normalization	 of	 FIRE	 scores	 across	 all	 samples	 using	 the	 R	 package	 “preprocessCore”	 to	 remove	
potential	 batch	 effect	 among	 different	 samples.	 We	 transformed	 FIRE	 score	 using	 log2(FIRE	 score+1),	 and	
transformed	FIRE	scores	to	Z-scores	(i.e.,	mean=0	and	standard	deviation=1).	We	designated	FIRE	bins	as	40	Kb	
regions	with	FIRE	score	one-sided	P-value	<	0.05.		

Super	FIREs	

FIREs	often	cluster	into	contiguous	runs	of	bins	termed	super	FIREs.	We	used	an	in-house	pipeline	to	call	super	
FIREs,	motivated	by	super	enhancer	calling	algorithms	73,74.	The	method	is	also	described	in	our	previous	study	
27.	For	each	Hi-C	sample,	we	began	with	40	Kb	FIRE	bins	as	described	above.	We	then	merged	consecutive	40	Kb	
FIRE	bins	into	contiguous	FIRE	regions,	allowing	for	up	to	one	40	Kb	bin	gap.	We	ranked	these	contiguous	FIRE	
regions	by	 their	 cumulative	Z-scores,	and	plotted	 the	 ranked	FIRE	 regions	as	a	 function	of	 their	 cumulative	Z-
score.	Finally,	we	identified	the	inflection	point	of	such	plot,	and	designated	all	FIRE	regions	to	the	right	of	the	
inflection	point	as	super	FIREs.		

Chromatin	interactions	

We	 applied	 a	 combination	 of	 Fit-Hi-C	 75	 with	 default	 parameters	 and	 our	 FastHiC	 76,77	 to	 detect	 long-range	
chromatin	interactions.	Starting	from	10	Kb	bin	resolution	raw	Hi-C	contact	matrices,	we	removed	any	10	Kb	bin	
overlapping	 the	 ENCODE	 “blacklist”	 (uniquely	mappable	 regions	 that	 nonetheless	 yield	 artificially	 high	 signal,	
URLs)	or	the	MHC	region	(chr6:28,477,797-33,448,354).	We	then	ran	the	Fit-Hi-C+FastHiC	combination	caller	on	
all	 10	 Kb	 bin	 pairs	 ≥20	 Kb	 and	 ≤2	Mb	 apart,	 resulting	 in	 a	 total	 of	 43,222,677	 bin	 pairs.	 Specifically,	we	 first	
applied	Fit-Hi-C	 to	generate	 informative	 initial	 values,	 from	which	we	 ran	our	FastHiC.	We	applied	a	 stringent	
Bonferroni	 correction,	 and	 only	 considered	 10	 Kb	 bin	 pairs	 with	 P-value	 <	 0.001/43,222,677	 =	 2.31x10-11	 as	
statistically	significant	chromatin	interactions.		

Since	we	used	the	six	base	pair	restriction	enzyme	HindIII	in	eHi-C,	it	was	not	possible	to	directly	apply	HiCCUPS,	
another	method	 to	 detect	 chromatin	 interactions	 (predominantly	 CTCF-mediated	 chromatin	 loops)	 as	 it	 was	
designed	for	in	situ	Hi-C	data	with	the	four	base	pair	restriction	enzyme	MboI.	Our	approach	is	consistent	with	
the	 long-range	chromatin	 interaction	calling	algorithm	adopted	by	Won	et	al.	 18.	Because	Fit-Hi-C	and	FastHiC	
model	the	global	background,	the	resulting	chromatin	interactions	identified	(i.e.,	3D	peaks	called)	are	enriched	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Page	12	

with	long-range	enhancer/promoter	interactions.	In	contrast,	HiCCUPS	adopts	a	local	background,	and	thus	the	
resulting	peaks	are	enriched	with	CTCF	mediated	chromatin	loops.		

Topographically	associated	domains	(TADs)	

We	 identified	TAD	boundary	 regions	using	an	 in-house	pipeline	 to	 implement	 the	 insulation	score	method,	as	
described	in	Crane	et	al.	78.	Starting	from	40	Kb	bin	resolution	raw	Hi-C	contact	matrix	we	applied	HiCNorm	72	to	
obtain	the	normalized	chromatin	 interaction	frequency	matrix.	Next,	each	40	Kb	bin,	one	at	a	 time	treated	as	
the	 anchor	 bin,	 obtained	 its	 “insulation	 score”	 by	 calculating	 the	 sum	 of	 normalized	 interaction	 frequency	
between	the	anchor	bin	and	all	bins	±1	Mb	of	the	anchor	bin.	We	further	performed	quantile	normalization	on	
the	 insulation	score	across	all	 samples	using	 the	R	package	“preprocessCore”.	Finally,	we	called	a	40	Kb	bin	a	
TAD	boundary	region	if	its	insulation	score	is	the	minimal	in	its	local	neighboring	±1	Mb	region.		

A/B	compartments	

An	output	of	Hi-C	is	determination	of	“A”	and	“B”	compartments	corresponding	to	contiguous	regions	of	active	
(A)	and	inactive	chromatin	(B)	which	tend	to	self-associate.	A/B	compartment	analysis	was	accomplished	with	an	
in-house	pipeline	following	initial	paper	by	Lieberman-Aiden	et	al.	28.	Hi-C	data	from	our	adult	cortex,	our	fetal	
cortex,	fetal	germinal	zone	and	cortical	plate	samples	from	Won	et	al.	18,	and	the	21	Hi-C	datasets	from	Schmitt	
et	 al.	 27	 were	 all	 processed	 identically.	 We	 identified	 A/B	 compartments	 at	 both	 100	 Kb	 bin	 resolution.	We	
applied	quantile	normalization	using	the	R	package	“preprocessCore”	for	batch	effect	removal	across	samples.	
We	then	applied	PCA	to	the	quantile	normalized	matrix	of	compartment	scores,	and	graphed	samples	in	PC1	vs.	
PC2	plots.	The	PCA	analysis	shows	clear	distinctions	between	human	brain	and	non-brain	tissues	and	cell	lines,	
and	developmental	stage	differences	for	the	brain	samples.		

Additional	functional	genomic	data	

To	aid	in	the	interpretation	of	our	eHi-C	data,	we	generated	additional	data	from	human	brain	samples.	Table	S2	
summarizes	the	data	types	and	sample	developmental	stage/brain	region.	Methods	are	provided	below.		

RNA-sequencing	

We	 generated	 bulk-tissue	 RNA-sequencing	 data	 from	 nine	 fetal	 cortex	 and	 nine	 adult	 DLPFC	 (dorsolateral	
prefrontal	cortex)	samples.	The	collection	of	dorsolateral	prefrontal	cortex	and	the	psychiatric	characterization	
are	detailed	in	Zhu	et	al.	89.	All	controls	had	no	neurological	disease	or	severe	mental	 illness.	All	samples	were	
free	 from	 large	 structural	 variants	 (>100	 Kb)	 detectable	 using	 Illumina	 OmniExpress	 arrays.	 Genotypic	 sex	
matched	phenotypic	 sex	 for	 all	 samples.	We	extracted	 total	RNA	 from	25	mg	of	pulverized	 tissue	per	 sample	
using	Norgen’s	Fatty	Tissue	RNA	Purification	Kit	(Norgen	Biotek,	Thorold,	ON	Canada).	Extracted	RNA	from	the	
cell	 pellets	 (each	 with	 ~3-6	 million	 cells)	 using	 Norgen’s	 Total	 RNA	 extraction	 kit.	 RNA	 concentration	 was	
measured	 using	 fluorometry	 (Qubit	 2.0	 Fluorometer),	 and	 RNA	 quality	 verified	 using	 a	microfluidics	 platform	
(Bioanalyzer,	Agilent	Technologies).	Barcoded	 libraries	were	created	(Illumina	TruSeq	RNA	Sample	Preparation	
Kit	v4)	using	1	µg	of	total	RNA	as	input.	Samples	were	randomly	assigned	to	bar	codes	and	lanes.	Libraries	were	
quantified	 using	 fluorometry	 and	 equal	 amounts	 of	 all	 barcoded	 samples	 were	 pooled	 and	 sequenced	 using	
Illumina	HiSeq	2000	(100	bp	paired-end).	We	used	the	quasi-mapping-based	mode	of	Salmon	(version	0.8.2)	90	
to	 generate	 transcript-level	 counts	 from	 RNAseq	 reads	 using	 the	 GENCODE	 gene	 models	 (v26).	 We	 used	
tximport	 to	 generate	 gene-level	 counts	 91	 and	 DESeq2	 92	 for	 differential	 expression	 analysis.	 We	 used	 the	
WGCNA	R	package	93	for	co-expression	network	analysis	of	our	RNA-seq	data	from	fetal	and	adult	cortex.	

Total-stranded	RNA-seq	

We	also	generated	total-stranded	RNA-seq	from	one	control	DLPFC	sample	and	one	fetal	cortical	sample.	The	
purpose	 was	 to	 enable	 detection	 of	 RNA	 sequences	 that	 were	 being	 generated	 in	 brain	 but	 not	 present	 in	
GENCODE	gene	models.		
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ChIP-seq	

To	assist	in	interpreting	the	eHi-C	data,	we	generated	epigenetic	marks	using	postmortem	brain	tissue	from	fetal	
and	adult	samples.	The	marks	evaluated	were	H3K27ac	(N=4	fetal	cortex	samples),	H3K4me3	(N=3	fetal	cortex;	
N=2	adult	anterior	temporal	cortex),	and	CTCF	(N=2	fetal	cortex).	All	assays	were	done	using	the	ChIPmentation	
protocol	 94.	 Brain	 tissues	 were	 crosslinked	 with	 1%	 formaldehyde	 at	 room	 temperature	 followed	 by	 glycine	
quenching.	To	isolate	nuclei,	tissues	were	lysed	with	Lysis	buffer	I	(10	mM	HEPES;	pH	7.5,	10	mM	KCl,	0.1	mM	
EDTA,	 1	 mM	 dithiothreitol,	 0.5%	 Nonidet-40,	 and	 protease	 inhibitor	 cocktail)	 for	 10	 minutes	 at	 4°C.	 The	
collected	nuclei	were	then	washed	with	a	lysis	buffer	II	(200mM	NaCl,	1	mM	EDTA	pH	8.0,	0.5	mM	EGTA	pH8.0,	
10	mM	Tris-Cl	pH	8.0	and	protease	 inhibitor	cocktail)	 for	20	minutes	at	 room	temperature.	The	nuclei	pellets	
were	 resuspended	 in	 lysis	 buffer	 III	 (10mM	 Tris-Cl	 pH	 8.0,	 100	mM	 NaCl,	 1	 mM	 EDTA,	 0.5	 mM	 EGTA,	 0.1%	
sodium	 deoxycholate,	 0.5%	N-lauroylsarcosine,	 and	 protease	 inhibitor	 cocktail)	 for	 sonication.	 The	 chromatin	
was	sheared	for	10	cycles	(15	seconds	on	and	45	seconds	off	at	constant	power	3)	on	Branson	450	sonifier.	For	
the	pulldowns,	20-50	µl	of	chromatin	was	used	for	H3K4me3	(Abcam,	ab8580)	and	H3K27ac	(Abcam,	ab4729),	
and	 100-150	 µl	 for	 CTCF	 (Abcam,	 ab70303).	 First,	 11	 µl	 of	 Dynabeads	M-280	 (Life	 Technologies,	 Sheep	 Anti-
Rabbit	 IgG,	Cat#	11204D)	was	washed	three	times	with	0.5	mg/ml	of	BSA/PBS	on	 ice	and	then	incubated	with	
each	 designated	 antibody	 for	 at	 least	 2	 hours	 at	 4°C.	 The	 bead-antibody	 complexes	were	 then	washed	with	
BSA/PBS.	The	pulldown	was	down	in	binding	buffer	(1%	Trixon-X	100,	0.1%	sodium	deoxycholate,	and	protease	
inhibitor	cocktail	in	1X	TE)	by	mixing	the	bead-antibody	complexes	and	chromatin.	After	pulling	down	overnight,	
the	bead-antibody-chromatin	complexes	were	washed	with	RIPA	buffer	(50mM	HEPES	pH	8.0,	1%	NP-40,	0.7%	
sodium	deoxycholate,	0.5M	LiCl,	 1mM	EDTA,	and	protease	 inhibitor	 cocktail).	 The	bead	complexes	were	 then	
subjected	 to	 ChIPmentation	 by	 incubating	 with	 homemade	 Tn5	 transposase	 in	 tagmentation	 reaction	 buffer	
(10mM	Tris-Cl	pH	8.0	and	5mM	MgCl2)	for	10	minutes	at	37°C.	To	remove	free	DNA,	beads	were	washed	twice	
with	1x	TE	on	ice.	The	pulldown	DNA	was	recovered	by	reversing	crosslinks	overnight	followed	by	PCRClean	DX	
beads	purification.	To	generate	ChIP-seq	libraries,	PCR	was	applied	to	amplify	the	pulldown	DNA	with	 illumina	
primers.	Size	selection	was	then	done	with	PCRClean	DX	beads	to	choose	fragments	ranging	from	100-1000	bp.	
All	ChIP-seq	libraries	were	sequenced	on	Illumina	HiSeq2500	platform	(50	bp	single-end).		

All	ChIPmentation	reads	were	mapped	to	hg19	of	the	human	genome	using	Bowtie	70.	The	first	36	bases	of	each	
reads	 were	 applied	 for	 alignment	 with	 up	 to	 2	 mismatches	 allowed.	 To	 remove	 duplication,	 only	 uniquely	
mapped	reads	were	kept	for	further	analysis.	Peak	calling	was	performed	using	MACS2	95.		

Open	chromatin	using	ATAC-seq	

Assay	 for	 transposase-accessible	 chromatin	 sequencing	 (ATAC-seq)	 was	 used	 to	 map	 chromatin	 accessibility	
genome-wide	 96.	 This	 method	 probes	 DNA	 accessibility	 with	 hyperactive	 Tn5	 transposase,	 which	 inserts	
sequencing	adapters	 into	accessible	regions	of	chromatin.	We	used	tissue	from	adult	DLPFC	with	no	history	of	
psychiatric	or	neurological	 disorders	 (N=137)	 38.	Approximately	20	mg	of	pulverized	brain	 tissue	was	used	 for	
ATAC-seq.	Frozen	samples	were	thawed	in	1	ml	of	nuclear	isolation	buffer	(20	mM	Tris-HCL,	50	mM	EDTA,	5mM	
Spermidine,	0.15	mM	Spermine,	0.1%	mercaptoethanol,	40%	glycerol,	pH	7.5),	 inverted	 for	5	minutes	 to	mix,	
and	 samples	were	 filtered	 through	Miracloth	 to	 remove	 larger	 pieces	 of	 tissue.	 Samples	were	 centrifuged	 at	
1100	 x	 g	 for	 10	 min	 at	 4°C.	 The	 resulting	 pellet	 was	 washed	 with	 50	 µl	 RSB	 buffer,	 centrifuged	 again,	 and	
supernatant	was	 removed.	 The	 final	 crude	nuclear	pellet	was	 re-suspended	 in	 transposition	 reaction	mix	 and	
libraries	prepared	for	sequencing	as	described	in	Buenrostro	et	al.	96.	All	samples	were	barcoded,	and	combined	
into	 pools.	 Each	 pool	 contained	 8	 randomly	 selected	 samples	 (selection	 balanced	 by	 case/control	 status	 and	
sex).	Each	pool	was	sequenced	on	two	lanes	of	an	Illumina	2500	or	4000	sequencer	(San	Diego,	CA,	USA).	Raw	
fastq	 files	 were	 processed	 through	 cutadapt	 (version	 1.2.0)	 97	 to	 remove	 adaptors	 and	 low-quality	 reads.	
cutadapt-filtered	reads	were	aligned	to	hg19	using	Bowtie2	70	using	default	parameters.	In	alignment,	all	reads	
are	treated	as	single-read	sequences,	regardless	of	whether	ATAC-seq	libraries	were	sequenced	as	single-end	or	
paired-end.	 The	 aligned	 bam	 files	 were	 sorted	 using	 samtools	 (version	 0.1.18)	 98,	 duplicates	 removed	 using	
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Picard	 MarkDuplicates,	 and	 then	 converted	 to	 bed	 format	 using	 BedTools	 (version:	 v2.17.0)	 99.	 ENCODE	
“blacklist”	 regions	 (URLs)	were	 removed	 (i.e.,	 empirically	 identified	 genomic	 regions	 that	 produce	 artefactual	
high	 signal	 in	 functional	genomic	experiments).	Narrow	open	chromatin	peaks	were	called	 from	the	 final	bed	
files	using	MACS2.		

Comparing	Hi-C	readouts	to	human	genetic	results	

We	compared	the	eHi-C	readouts	to	multiple	sets	of	human	genetic	results.	We	selected	these	phenotypes	due	
to	the	availability	of	large	empirical	studies	for	common	and	rare	genetic	variation.	For	common	variation,	the	
CLOZUK	study	10	identified	145	loci	that	met	genome-wide	significance	in	40,675	schizophrenia	cases	and	64,643	
controls.	A	genome-wide	association	study	of	cognitive	ability	48	 identified	205	genome-wide	significant	 loci	 in	
269,867	individuals.		

We	evaluated	the	connection	between	Hi-C	readouts	with	schizophrenia	and	cognitive	ability	using	partitioned	
LD	 score	 regression	 100,101.	 In	effect,	we	estimate	 the	degree	 to	which	 the	SNP-heritability	of	 schizophrenia	or	
cognitive	ability	is	enriched	in	a	set	of	genomic	features	(e.g.,	adult	FIREs).	Partitioned	LD	score	regression	is	an	
extension	 of	 LD	 score	 regression	 allowing	 to	 estimate	 whether	 one	 or	 more	 sets	 of	 pre-specified	 genomic	
regions	 are	 enriched	 for	 the	 SNP-heritability	 of	 a	 trait	 based	 on	 GWAS	 summary	 statistics.	 Briefly,	 LD	 score	
regression	 43	estimates	 common-variant	SNP	heritability	by	 regressing	 the	χ2	association	 statistics	 from	GWAS	
against	the	LD	scores	(the	sum	of	r2	for	each	SNP	in	a	reference	population).	For	multigenic	traits,	SNPs	in	high	
LD	should	on	average	be	more	associated	with	 the	 trait	 than	SNPs	 in	 low	LD	as	 they	are	expected	 to	capture	
more	 of	 the	 genetic	 effects	 on	 the	 trait.	 The	 relationship	 between	 χ2	 statistics	 and	 LD	 scores	 is	 directly	
dependent	on	the	proportion	of	genetic	variance	of	the	trait,	which	allows	estimation	of	SNP-heritability	43.		

Partitioned	 LD	 score	 regression	 100	 uses	 the	 same	 principle	 except	 that	 SNPs	 are	 partitioned	 into	 diverse	
functional	categories.	 If	 some	categories	are	enriched	 in	causal	variants,	 the	 relationship	between	χ2	 statistics	
and	 LD	 scores	 should	 be	 stronger	 than	 for	 categories	with	 few	 causal	 variants.	 This	 allows	 estimation	 of	 the	
degree	of	enrichment	of	SNP-heritability	in	one	or	more	functional	categories.	We	used	the	partitioned	LD	score	
regression	 baseline	 model	 which	 consists	 of	 53	 functional	 categories.	 LD	 scores	 are	 computed	 for	 each	
annotation	 based	 on	 the	 presence	 of	 the	 SNP	 in	 the	 annotation	 (1	 if	 a	 SNP	 is	 located	 in	 the	 annotation,	 0	
otherwise).	 For	 each	 annotation	 of	 interest	 (e.g.	 FIREs),	 we	 added	 SNPs	 from	 the	 “baseline	 model”	 located	
within	the	genomic	coordinates	of	the	regions	as	an	extra	annotation	(1	if	a	SNP	is	in	the	region,	0	otherwise).	
For	heritability	enrichment,	we	added	an	extra	annotation	surrounding	the	annotation	of	interest	(e.g.	FIREs)	by	
500	bp	on	each	side	as	recommended	in	order	to	prevent	upward	bias	in	the	heritability	enrichment	estimates	
100.	 Significance	 was	 assessed	 using	 the	 enrichment	 P-value,	 which	 is	 not	 corrected	 for	 other	 genomic	
annotations	 (e.g.	 conserved	 regions).	 For	 comparison	 of	 annotations	 across	 tissues,	 we	 only	 added	 the	
annotation	 of	 interest	 and	 used	 the	 coefficient	 Z-score	 P-value,	 which	 is	 corrected	 for	 other	 genomic	
annotations,	 to	 compare	 the	 same	 annotation	 across	 different	 tissues	 (as	 recommended)	 100.	 For	 continuous	
annotations	across	the	genome	(e.g.,	FIRE	scores),	we	added	the	continuous	value	as	an	extra	annotation	to	the	
baseline	model	and	the	relevance	of	the	continuous	annotation	was	estimated	using	the	coefficient	Z-score	P-
value	101.		

Hi-C	features	and	human	evolutionary	history	

We	assessed	two	main	ideas.	First,	we	wished	to	evaluate	whether	TADs	had	any	relation	to	LD	blocks.	TADs	and	
LD	blocks	 are	Kb	 to	Mb	 sized	 genomic	 regions	 that	define	 key	 regions	of	 interest	 in	 functional	 genomics	 and	
human	 genetics.	We	 did	 this	 by	 evaluating	 recombination	 rates	 and	 LD	 decay	 centered	 on	 TAD	 boundaries.	
Second,	given	the	importance	of	brain	FIREs,	we	assessed	whether	these	regions	had	evidence	of	evolutionary	
selection.		
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TAD	boundaries	and	recombination	rates	

To	examine	 the	 relationship	between	TAD	boundaries	and	 recombination	 rates,	we	downloaded	 the	HapMap	
recombination	map	(URLs)	102.	We	divided	the	genome	in	40	Kb	bins	and	excluded	regions	with	<10	SNPs	as	well	
as	those	with	poor	mappability,	GC	content,	centromeric	 location,	or	poor	performance	 in	 functional	genomic	
assays	via	the	ENCODE	blacklist.	Each	remaining	40kb	bin	was	dichotomized	as	a	TAD	boundary	or	not,	based	on	
our	TAD	calling	results.	For	each	bin,	we	calculated	minimal,	maximal	and	median	recombination	rate.	Previous	
studies	have	suggested	that	GC	content	and	SNP	density	both	influence	recombination	rate	103,104.	We	therefore	
calculated	summary	statistics	for	these	two	factors	and	tested	their	differences	in	TAD	boundaries	and	non-TAD	
boundary	bins.		

To	test	whether	recombination	rates	differ	in	TAD	boundaries,	we	took	two	approaches,	one	based	on	multiple	
regression	 and	 that	 other	 on	 resampling	 to	 account	 for	 GC	 content	 and	 SNP	 density	 103,104.	 The	 regression	
approach	 simultaneously	 adjusted	 for	 GC	 content	 and	 SNP	 density	 103,104.	 The	 resampling	 approach	 also	
controlled	 for	 GC	 content	 or	 SNP	 density.	 Specifically,	 let	 n	 denote	 the	 number	 of	 TAD	 boundary	 bins.	 We	
repeated	the	following	procedure	10,000	times:	from	the	set	of	TAD	non-boundary	bins,	we	created	a	subset	si,	i	
=	1,2,	…	1,000	of	length	n	bins,	by	sampling	bins,	with	replacement,	such	that	the	distribution	of	GC	content	(or	
SNP	 density)	 in	 si	matched	 that	 in	 the	 set	 of	 TAD	 non-boundary	 bins.	 For	 each	 si,	 we	 calculated	 the	median	
(across	 the	n	 bins)	 of	 relevant	 summary	 statistics	 (median,	mean	 and	max	 recombination	 rates),	 ti.	We	 thus	
generated	an	empirical	null	distribution	based	on	which	empirical	p-values	were	derived	for	significance	testing.		

TAD	boundaries	and	linkage	disequilibrium	

To	examine	the	relationship	between	TAD	boundaries	and	LD,	we	computed	LD	r2	values	for	variants	in	the	1000	
Genomes	 Project	 67.	 After	 removing	 structural	 variants	 105	 and	 SNPs	 overlapping	 with	 small	 insertions	 and	
deletions,	 we	 grouped	 SNPs	 by	 whether	 they	 reside	 in	 a	 TAD	 boundary	 bin,	 similarly	 as	 in	 the	 previous	
recombination	rate	analysis.	We	then	evaluated	LD	decay	pattern	for	SNPs	in	or	not	in	TAD	boundary	bins.		

Brain	FIREs	and	ancient	positive	selective	sweep	

We	 first	 determined	 whether	 brain	 FIREs	 have	 evidence	 of	 positive	 selection	 since	 human	 divergence	 from	
Neanderthals,	as	indicated	by	the	top	5%	Neanderthal	selective	sweep	scores	(NSS,	URLs)	106.	We	first	compared	
brain	FIRE	bins	 to	non-FIRE	bins	 to	assess	enrichment	 for	NSS	 scores.	 Since	FIRE	and	non-FIRE	bins	differ	 in	a	
number	of	other	aspects,	which	may	also	 relate	 to	positive	 selection	since	divergence	 from	Neanderthals,	we	
performed	Fisher’s	exact	test	as	well	as	performed	logistic	regression	analysis	adjusting	for	GC	content.		

Since	 FIREs	 are	 dichotomized	 by	 thresholding	 on	 continuous	 FIRE	 scores	 (Online	 Methods),	 signals	 may	 be	
diluted	by	 lumping	the	remaining	~95%	all	as	the	“other”	non-FIRE	category.	We	therefore	also	(a)	contrasted	
the	extremes	(i.e.,	top	versus	bottom	5%	of	FIRE	score	bins,	or	FIREs	versus	DIREs,	depleted	interacting	regions)	
using	 logistic	 regression	and	 (b)	 regressed	on	continuous	FIRE	scores.	For	covariates	 in	 regression	models,	we	
assessed	 GENCODE	 gene	 density,	 CTCF	 intensity,	 the	 histone	 marks	 brain	 H3K27ac	 and	 H3K4me3),	 open	
chromatin	 in	 DLPFC,	 and	 enhancer	 status	 in	 hippocampus	 (Table	 S2).	 We	 included	 only	 those	 that	 were	
nominally	significant	at	0.05	level	as	covariates	in	testing	for	FIRE	effects.		

Brain	FIREs	and	extent	of	population	differentiation	

Global	population	differentiation	 (measured	by	 the	 fixation	 index,	Fst)	 is	 informative	 for	 soft	 selective	 sweeps	
where	adaptive	mutations	increase	in	frequency	but	do	not	reach	fixation	107,108.	We	obtained	global	Fst	scores	
from	the	1000	Genomes	Selection	Browser	(URLs)	109.	For	each	bin,	we	calculated	summary	statistics	(including	
mean	and	median)	for	Fst	scores	for	SNPs	within	the	bin.		
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Brain	FIREs	and	signals	of	recent	positive	selection	

Signatures	of	classical	and	recent	selective	sweeps	can	be	gauged	by	a	number	of	metrics	110-114.	We	focused	on	
the	 integrated	 haplotype	 score	 (iHS)	 statistic	 that	 accommodates	 variants	 that	 have	 not	 reached	 fixation	 for	
signals	of	recent	selection,	integrating	signals	over	1,000	generations	111,114.	We	obtained	iHS	statistics	from	the	
1000	Genomes	Selection	Browser	(URLs)	109.	For	each	bin,	we	calculated	summary	statistics	(including	mean	and	
median)	for	iHS	scores	for	SNPs	within	the	bin.	

Brain	FIREs	and	extremely	rare	variant	frequency		

We	 assessed	mutation	 tolerance	 for	 extremely	 rare	 variant	 frequency	 by	 comparing	 singleton	 and	doubleton	
density	based	on	TOPMed	freeze	5b	(URLs,	N=62,784	whole	genome	sequences).		

URLs	
1000	Genomes	Selection	Browser,	http://hsb.upf.edu		

ENCODE	“blacklists”,	http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg19-human		

FUMA,	http://fuma.ctglab.nl/gene2func		

gnomAD,	http://gnomad.broadinstitute.org		

GREAT,	http://bejerano.stanford.edu/great		

HapMap	recombination	map,	ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37		

HUGIn,		 http://yunliweb.its.unc.edu/hugin		

Juicer,	https://github.com/theaidenlab/juicer		

Neanderthal	selection,	ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/ntSssTop5p.txt.gz		

NHGRI/EBI	GWAS	catalog,	https://www.ebi.ac.uk/gwas		

PsychENCODE	portal,	https://www.synapse.org//#!Synapse:syn4921369/wiki/235539		

Psychiatric	Genomics	Consortium,	http://www.med.unc.edu/pgc/results-and-downloads		

SALMON,	https://combine-lab.github.io/salmon		

TOPMed,	https://www.nhlbiwgs.org		

TOPMed	Bravo	server,	https://bravo.sph.umich.edu/freeze5		
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Table	1.	Analysis	of	Hi-C	features	

Hi-C	feature	 Dataset	 Analysis	 Summary	of	significant	findings	
FIREs	 Fetal	 GREAT	 CNS	axonogenesis,	stem	cell	differentiation,	neural	nucleus	development	
	 	 Model	 Enriched:	H3K27ac	and	CTCF	in	fetal	cortex	

Depleted:	H3H4me3	in	fetal	cortex	and	TSS	
	 Adult	 GREAT	 Regulation	of	autophagy,	phosphoprotein	phosphatase,	neural	nucleus	development,	

detection	of	calcium	ion	
	 	 Model	 Enriched:	typical	enhancers,	open	chromatin,	&	H3K27ac	in	adult	cortex	

Depleted:	H3K4me3	in	adult	cortex	
	 Ventricle	 GREAT	 Actin	cytoskeleton,	myofibril,	contractile	fiber,	sarcomere	
Super	FIREs	 Fetal	 GREAT	 Stem	cell/neuron/CNS	differentiation,	neurogenesis,	cortex	radial	cell	migration	
	 Adult	 GREAT	 Cytoskeletal	protein	binding,	ion	channel	binding,	membrane	organization,	neuron	

differentiation/migration,	etc.		
	 Ventricle	 GREAT	 Actin	binding,	cytoskeletal	protein	binding	
Chromatin		 Fetal	 GREAT	 Transcription	regulation,	glial	proliferation,	oligodendrocyte	differentiation,	growth	cone	

Interactions	 	 Model	 Enriched:	H3K27ac	and	CTCF	in	fetal	cortex	
Depleted:	H3K4me3	&	gene	expression	in	fetal	cortex	

	 Adult	 GREAT	 Postsynaptic	density,	excitatory	synapse	
	 	 Model	 Enriched:	open	chromatin,	typical	enhancer,	CTCF,	&	H3K27ac	in	adult	cortex;	TSS	

Depleted:	H3K4me3	in	fetal	cortex	
TAD		 Fetal	 GREAT	 None	
Boundaries	 	 Model	 Enriched:	CTCF	in	fetal	cortex;	TSS	

Depleted:	H3K27ac	in	fetal	cortex	
	 Adult	 GREAT	 None	

	 	 Model	 Enriched:	CTCF	in	adult	cortex;	TSS	
Depleted:	typical	enhancer	in	adult	cortex	

	 Ventricle	 GREAT	 None	

GREAT	results	for	biological	enrichments	are	summarized	above	with	full	results	in	Table	S3	(binomial	FDR	q-
value	<	0.01).	Super	FIREs	are	relatively	few,	and	the	results	represent	all	fetal	brain	samples	(our	fetal	cortex	
plus	 fetal	 germinal	 zone	 and	 cortical	 plate)	 and	 all	 adult	 brain	 samples	 (our	 adult	 cortex	 plus	 DLPFC	 and	
hippocampus).	Most	of	the	genome	had	≥1	chromatin	interactions,	so	we	evaluated	genomic	regions	with	≥50	
interactions	for	our	adult	brain	data	and	≥100	interactions	for	our	fetal	data.	The	statistical	modeling	is	also	
summarized	above	(there	were	no	available	data	for	heart	ventricles),	and	full	results	are	in	Table	S4.		
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Table	2.	Gene	set	analyses	of	genes	implicated	by	location	or	by	functional	genomic	evidence	

GO	category	 Gene	set	 eQTL	and/or	Hi-C	 Location	
BP	 Cellular	response	to	UV	 yes	 	
	 Chromosome	organization	 yes	 	
	 Establishment	of	localization	in	cell	 yes	 	
	 Modulation	of	synaptic	transmission	 yes	 	
	 Positive	regulation	of	mitochondrion	organization	 yes	 	
	 Regulation	of	cellular	component	biogenesis	 yes	 	
	 Regulation	of	dephosphorylation	 yes	 	
	 Regulation	of	mitochondrion	organization	 yes	 	
	 Regulation	of	organelle	organization	 yes	 	
	 Regulation	of	synaptic	plasticity	 yes	 	
CC	 Cell	body	 yes	 yes	
	 Cell	projection	 yes	 yes	
	 Chromatin	 yes	 	
	 Dendrite	 	 yes	
	 Excitatory	synapse	 	 yes	
	 Mitochondrial	part	 yes	 	
	 Mitochondrion	 yes	 yes	
	 Neuron	part	 yes	 yes	
	 Neuron	projection	 yes	 yes	
	 Neuron	spine	 	 yes	
	 Postsynapse	 	 yes	
	 Ribonucleoprotein	granule	 yes	 	
	 Somatodendritic	compartment	 yes	 yes	
	 Synapse	 	 yes	
	 Synapse	part	 	 yes	
MF	 Chaperone	binding	 yes	 	
	 Enzyme	binding	 yes	 	
	 Identical	protein	binding	 yes	 	
	 Poly	A	RNA	binding	 yes	 	
	 RNA	binding	 yes	 	

Gene	 set	 analyses	 for	 schizophrenia,	 contrasting	 LD/location-based	 gene	 implication	 and	 implication	 by	
results	for	biological	enrichments.	Significant	gene	sets	(corrected	P	<	0.001)	are	summarized	above	with	full	
results	in	Table	S6.		
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Supplemental	Note	–	Additional	evaluation	of	brain	Hi-C	data	

Giusti-Rodriguez	et	al.,	Schizophrenia	and	a	high-resolution	map	of	the	three-dimensional	chromatin	interactome	
of	adult	and	fetal	cortex.		
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Comparative	analysis	of	brain	eHi-C	data	with	external	Hi-C	datasets	

We	investigated	four	major	Hi-C	readouts	in	our	adult	and	fetal	eHi-C	data.	Here	we	compare	our	data	to	a	total	
of	25	Hi-C	datasets	from	a	range	of	human	tissues	and	cell	lines.	The	key	readouts	we	evaluated	were:	

• At	a	100	kb	scale,	we	used	these	Hi-C	data	to	determine	“A”	(active)	and	“B”	(inactive)	compartments	1.		
• Topologically	 associating	domains	 (TADs)	 2,3	 are	Mb-scale	 regions	within	which	 chromatin	 interactions	

have	a	strong	tendency	to	occur	2,3.		
• Frequently	interacting	regions	(FIREs,	40	kb)	are	genomic	regions	with	significantly	greater	cis-connectivity	

than	expected	under	a	null	hypothesis	of	random	collisions.	4,5	FIREs	can	exist	in	isolation	or	in	contiguous	
blocks	called	superFIREs	6.		

• Chromatin	interactions	are	a	key	Hi-C	readout,	and	identify	genomic	regions	that	are	physically	proximal	
in	 the	 nuclear	 3D	 space	 despite	 being	 far	 apart	 in	 1D	 genomic	 location	 5-12	 (FIREs	 are	 the	 subset	 of	
chromatin	 interactions	 with	 considerably	 more	 3D	 contacts).	 Chromatin	 interactions	 in	 this	 study	
consisted	of	two	anchors	(10	kb,	20	Kb	to	2	Mb	apart).	Some	chromatin	interactions	occur	transiently,	
randomly,	or	in	subsets	of	cells,	but	many	others	are	stable	structural	or	regulatory	features	of	cells	in	a	
tissue.		

Hi-C	and	gene	expression	in	brain	

We	used	these	Hi-C	data	to	determine	“A”	(active)	and	“B”	(inactive)	compartments	1	as	data	on	chromatin	spatial	
organization	in	brain	is	limited.	Using	Hi-C	contact	matrices	in	100	Kb	bins,	we	extracted	PC1	that	was	combined	
with	 transcription	 start	 site	 (TSS)	 density	 to	 assign	 A	 versus	 B	 compartments.	 Figure	 S2a	 shows	 results	 of	 a	
principal	 component	 analysis	 (PCA)	 applied	 to	 the	 compartment	 scores	 in	 100	 Kb	 bins.	 Fetal	 brain	 samples	
clustered	tightly	on	PC1	and	PC2	as	did	adult	brain	samples.		

The	100	Kb	compartment	A/B	assignments	had	far	stronger	overlap	within	the	adult	brain	samples	(ORs	>150,	
P<1x10-300)	 and	 within	 the	 fetal	 brain	 samples	 (ORs	 >95,	 P<1x10-300)	 than	 between	 our	 adult	 and	 fetal	 brain	
samples	(OR=24.5,	P<1x10-300).	A	heat	map	of	all	pairwise	Jaccard	indices	(Figure	S2b)	paralleled	the	PCA	with	tight	
clustering	of	adult	and	fetal	brain	samples.	Jaccard	indices	for	the	adult	brain	samples	were	around	0.83,	fetal	
brain	samples	around	0.83,	and	adult	versus	fetal	0.66	(for	comparison,	the	Jaccard	index	for	left	versus	right	heart	
ventricle	was	0.91).		

Topologically	associating	domains	(TADs)	

Chromatin	interactions	have	a	strong	tendency	to	occur	within	TADs	(discrete	megabase-scale	regions	with	less	
frequent	interactions	outside	the	regions)	2,3.	Figure	S3a	shows	results	of	PCA	applied	to	insulation	scores	in	40	
Kb	bins	(used	to	define	TAD	boundaries)	13.	As	with	FIRE	scores,	brain	samples	with	high	read	depth	clustered	on	
the	dominant	PC1.		

As	anticipated	from	Figure	S3a,	TAD	boundaries	in	six	brain	Hi-C	datasets	strongly	overlapped	with	pairwise	ORs	
generally	exceeding	50	(P<1x10-300).	A	heat	map	of	all	pairwise	Jaccard	indices	showed	prominent	clustering	of	
TAD	boundaries	in	our	adult	and	fetal	data	along	with	fetal	cortical	plate	and	germinal	zone	(although	not	with	
the	lower	read	depth	DLPFC	and	hippocampal	samples,	Figure	S3b).	Adult	and	fetal	TAD	boundaries	clustered	very	
strongly	(OR=173,	P<1x10-300)	with	a	Jaccard	index	of	0.41	(for	comparison,	the	Jaccard	index	for	TAD	boundaries	
in	left	and	right	heart	ventricle	was	0.48).		

Frequently	interacting	regions	(FIREs)	

FIREs	 4,5	 are	 perhaps	 the	 simplest	 Hi-C	 readout.	 FIREs	 are	 genomic	 regions	 with	 significantly	 greater	 cis-
connectivity	than	expected	under	a	null	hypothesis	of	random	collisions.	FIREs	capture	key	observations	about	
the	 functional	 genome,	 that	 chromatin	 interactions	 cluster	 non-randomly	 in	 a	 tissue-specific	 manner.	 We	
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computed	FIRE	scores	from	Hi-C	contact	matrices	(bin	size	40	Kb,	15-200	Kb	cis	windows).	Figure	S4a	shows	PCA	
of	FIRE	scores	in	25	Hi-C	datasets.	Brain	samples	with	high	read	depth	clustered	on	the	dominant	PC1	with	clear	
separation	of	several	cell	lines.		

We	 defined	 FIREs	 as	 40	 Kb	 genomic	 bins	 with	 significantly	 more	 Hi-C	 interactions	 (FIRE	 score	 P<0.05,	 an	
intentionally	liberal	threshold	for	sensitivity	in	cross-tissue	comparisons	given	lesser	read	depths).	We	found	that	
FIREs	 in	our	adult	and	 fetal	brain	agreed	well	with	external	Hi-C	datasets,	and	unsupervised	clustering	 largely	
recapitulated	cell	identity.	FIREs	in	our	adult	cortex	data	were	strongly	predictive	of	FIREs	in	the	most	similar	tissue	
(adult	DLPFC,	OR=58.0,	P<1x10-300)	as	well	as	hippocampus	(OR=5.67,	P<1x10-300)	4.	FIREs	in	fetal	cortex	were	more	
strongly	 associated	with	 FIREs	 in	 fetal	 cortical	 plate	 (OR=52.4,	P<1x10-300)	 than	 fetal	 germinal	 zone	 (OR=42.6,	
P<1x10-300)	14.	Fetal	cortex	are	more	similar	to	post-mitotic	fetal	cortical	plate	neurons	than	to	cells	in	the	actively	
dividing	germinal	zone.	Our	adult	and	fetal	FIREs	had	a	lesser	tendency	to	overlap	(OR=8.24,	P<1x10-300).	A	FIRE	
was	present	in	14.17%	of	40	Kb	bins	in	at	least	1	of	6	brain	datasets,	23.95%	of	bins	in	12	non-brain	human	tissue	
datasets	4,	18.18%	of	bins	in	7	cell	line	datasets	4,	and	31.29%	of	bins	in	any	of	these	25	datasets.	A	heat	map	of	
all	pairwise	Jaccard	indices	is	in	Figure	S4b,	and	clustering	tended	to	follow	cell	identity.		

Using	GENCODE	gene	models,	the	presence	of	a	FIRE	was	strongly	associated	with	the	number	of	protein-coding	
genes	overlapping	that	bin	in	adult	and	fetal	brain	(Wilcoxon	P<1x10-300	for	both).	A	FIRE	was	also	associated	with	
the	 number	 of	 protein-coding	 transcription	 start	 sites	 (TSS)	 in	 adult	 (Wilcoxon	 P<1x10-300)	 but	 not	 fetal	 brain	
(Wilcoxon	P=0.30)	as	well	as	with	the	number	of	protein-coding	exons	in	adult	(Wilcoxon	P<1x10-300)	but	not	fetal	
brain	 (Wilcoxon	P=0.01).	There	were	no	 significant	associations	 for	other	 types	of	genes	 (e.g.,	RNA	genes	 like	
miRNA	or	lincRNA).		

FIREs	tended	to	cluster	in	genomic	regions.	Adapting	algorithms	for	super-enhancers	15,16,	we	identified	regionally	
clustered	FIREs	or	“super	FIREs”.	There	were	151	autosomal	super	FIREs	in	our	adult	cortex	data	(median	size	320	
Kb,	interquartile	range	280-440	Kb),	and	186	super	FIREs	in	fetal	cortex	data	(median	size	240	Kb,	interquartile	
range	200-360	Kb).	Across	all	25	Hi-C	datasets,	a	super	FIRE	was	present	in	one	sample	in	9.03%	of	the	genome,	
in	two	samples	in	4.08%,	and	in	≥3	samples	in	6.11%.		

Chromatin	interactions	

Chromatin	interactions	are	a	key	readout	of	Hi-C	data,	and	identify	genomic	regions	that	are	physically	proximal	
in	the	nuclear	3D	space	despite	being	far	apart	in	genomic	location	5-12.	FIREs	are	a	small	subset	of	all	chromatin	
interactions	which	have	considerably	more	3D	contacts.	Some	chromatin	interactions	occur	transiently,	randomly,	
or	in	subsets	of	cells,	but	many	others	are	stable	structural	or	regulatory	features	of	cells	in	a	tissue.		

We	 identified	 intra-chromosomal	chromatin	 interactions	between	10	Kb	bins	that	were	>20	Kb	apart	 (i.e.,	not	
contiguous)	and	≤2	Mb	apart.	This	definition	is	analogous	to	that	for	cis	gene	expression	eQTLs	(typically	defined	
as	an	eQTL-SNP	within	±1	Mb	of	an	eQTL-gene).	More	distal	 interactions	may	well	occur;	we	did	not	evaluate	
these	because	most	interactions	are	likely	to	be	in	cis	and	experience	suggests	limited	resolution	due	to	low	raw	
read	counts	4,17.	We	evaluated	chromatin	interactions	in	four	brain	Hi-C	datasets	with	sufficient	read	depth:	our	
adult	cortex	and	fetal	cortex	datasets	plus	with	fetal	cortical	plate	and	germinal	zone	14	(Figure	1a).	Because	we	
wished	to	use	chromatin	interactions	to	interpret	GWAS	results,	we	desired	specificity	over	sensitivity	and	applied	
a	conservative	Bonferroni	correction	to	each	dataset	(P<2.31x10-11,	or	a=0.001	corrected	for	43,222,677	potential	
bin	pair	interactions).		

Figure	S5	shows	a	Venn	diagram	of	autosomal	chromatin	interactions	in	four	brain	Hi-C	datasets.	Our	fetal	cortex	
data	had	the	greatest	number	of	chromatin	 interactions	 (1.25	million),	somewhat	more	than	the	fetal	cortical	
plate	and	germinal	zone	data	(0.998	million	in	each),	and	over	twice	as	many	as	in	our	adult	cortex	data	(0.509	
million).	Even	at	a	stringent	threshold,	one	or	more	chromatin	 interactions	were	present	 in	53.2%	of	all	10	Kb	
genomic	 regions	 in	our	 adult	 data	 (median	1,	 interquartile	 range	0-5)	 and	65.3%	 in	our	 fetal	 data	 (median	3,	
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interquartile	range	0-14).	In	our	adult	data,	the	median	distance	was	220	Kb	(interquartile	range	80-530	Kb),	and	
370	Kb	in	our	fetal	data	(interquartile	range	130-830	Kb).	Greater	numbers	of	chromatin	interactions	in	earlier	
developmental	stages	were	observed	in	our	eHi-C	results,	similarly	processed	adult	and	fetal	brain	Hi-C	datasets	
(D	Geschwind,	personal	communication),	differentiation	of	iPSCs	into	neurons	and	glia	18,	and	differentiation	of	
mouse	 pluripotent	 stem	 cells	 19.	 Thus,	 chromatin	 interactions	 are	 common	 in	 brain,	 and	 greater	 chromatin	
interactions	appear	to	characterize	earlier	developmental	stages.		

TADs	and	LD	

We	evaluated	whether	TADs	had	any	relation	to	LD	blocks.	This	question	often	arises	as	TADs	and	LD	blocks	20	are	
both	on	the	scale	of	105-106	bases	and	define	regions	of	interest	in	functional	genomics	and	human	genetics.	TADs	
are	defined	via	observations	of	3D	chromatin	contacts	in	samples	of	cellular	nuclei,	and	LD	blocks	are	defined	via	
observations	of	haplotype	structure	 in	human	samples.	We	did	 this	by	evaluating	recombination	rates	and	LD	
decay	centered	on	TAD	boundaries.		

Recombination	rates	

We	 found	 that	 GC	 content	was	 slightly	 higher	 and	 SNP	 density	 slightly	 lower	 in	 40	 Kb	 genomic	 regions	 that	
contained	 a	 TAD	 boundary.	 The	 results	 were	 consistent	 in	 our	 adult	 and	 fetal	 eHi-C	 datasets	 (Table	 S8a).	
Resampling	 approaches	 taking	 into	 account	 differential	 GC	 content	 or	 variant	 density	 across	 bins	 resulted	 in	
largely	 significant	P-values,	 supporting	 that	 TAD	 boundaries	 have	 lower	 recombination	 rates	 (Table	 S8b).	 For	
example,	 the	median	recombination	rates	 in	adult	TAD	boundaries	 is	0.1879	 in	contrast	 to	0.2423	 in	non-TAD	
boundary	bins	(resampling	empirical	P-values	0.0013	and	<0.0001,	matching	distributions	of	SNP	density	and	GC	
content	respectively).	This	observation	was	consistent	across	adult	and	fetal	eHi-C	datasets,	and	across	different	
summary	 statistics	 (median,	 maximum,	 or	 minimum).	 Multiple	 regression	 adjusting	 for	 GC	 content	 and	 SNP	
density	 confirmed	 the	 resampling	 findings	 (P=2.49e-4	 and	 P=8.64e-3	 for	 adult	 and	 fetal	 eHi-C	 datasets),	with	
consistent	directions	of	effects	(i.e.,	TAD	boundary	bins	have	lower	mean	recombination	rates).		

Linkage	disequilibrium	decay	

We	evaluated	the	decay	in	LD	(measured	by	r2)	by	distance	from	TAD	boundaries	(Figure	S7).	The	patterns	of	LD	
decay	were	not	markedly	greater	in	TAD	boundaries.	These	findings	were	similar	in	adult	and	fetal	eHi-C	datasets.		

Our	results	suggest	that	historical	recombination	events	are	depleted	in	TAD	boundaries.	Structural	proteins	like	
CTCF	and	cohesin	are	enriched	at	TAD	boundaries	in	order	to	create	and	maintain	TADs	7,21-23,	and	the	presence	
of	these	proteins	may	interfere	with	recombination	leading	to	lowered	probability	of	crossover	events.	However,	
the	depletion	 in	 recombination	 is	modest	 and	 is	not	evident	at	 the	 LD	 level.	 This	 suggests	 that	differences	 in	
historical	 recombination	 rates	are	 subtle	or	were	diluted	over	generations	of	meiosis.	 For	example,	 given	 the	
observed	 recombination	 rates	 (adult	 and	 fetal	 median	 values	 of	 0.1879	 and	 0.2423)	 and	 20	 generations	 of	
recombination,	the	coefficient	of	LD	(“D”)	will	be	D=0.015	for	adult	and	D=0.0039	for	 fetal	TAD	boundaries	24,	
values	 close	 to	 linkage	 equilibrium.	 With	 50	 generations,	 the	 values	 of	 D	 would	 be	 even	 closer	 to	 linkage	
equilibrium	(D=3.0e-5	for	adult	and	D=9.4e-7	for	fetal	TAD	boundaries).		

Consistent	with	 prior	 studies	 14,25,	 these	 results	 imply	 that	 TADs	 and	 LD	 blocks	 are	 different	 and	 infrequently	
overlap.	This	conclusion	is	consistent	with	observations	in	highly	inbred	laboratory	mice	who	have	chromosome	
scale	LD	blocks	but	far	smaller	TADs	that	are	conserved	between	mouse	and	human	2.		

Brain	FIREs	and	human	evolutionary	history	

Given	the	importance	of	brain	FIREs,	we	assessed	whether	these	regions	had	evidence	of	evolutionary	selection.		
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Ancient	positive	selective	sweeps	

We	found	that	FIREs	tend	to	be	enriched	in	regions	with	signatures	of	selective	sweeps	since	divergence	from	the	
Neanderthals,	as	indicated	by	top	5%	of	Neanderthal	selective	sweep	scores	(NSS).	As	expected,	the	difference	is	
more	pronounced	when	focusing	on	the	two	extremes	(namely	FIREs	and	DIREs,	depleted	interacting	regions),	
resulting	in	significant	P-values	despite	much	smaller	sample	sizes	after	removing	regions	with	FIRE	scores	falling	
in	the	middle	90%.	For	example,	out	of	the	FIREs	identified	in	our	adult	samples,	39	(1.58%)	overlapped	top	5%	
NSS,	while	only	one	DIRE	(0.14%)	overlapped	top	5%	NSS	regions	(Fisher’s	exact	test	P=8.72e-4).	When	comparing	
FIREs	and	non-FIREs,	the	much	diluted	differences	were	no	 longer	significant.	We	observed	similar	patterns	 in	
fetal	and	adult	samples,	when	further	adjusting	for	potential	confounders	(Table	S9a).		

Extent	of	population	differentiation	

As	shown	in	Tables	S9b-c,	Fst	values	tend	to	be	slightly	lower	in	FIREs	than	in	DIREs,	suggesting	that	variants	in	
FIRE	regions	are	less	differentiated	(or	more	conserved)	across	populations.	These	observations,	consistent	across	
fetal	 and	 adult,	 and	 regardless	 of	 the	 choice	 of	 summary	 statistics	 imply	 that	 FIRE	 regions	 are	 functionally	
important.		

Signals	of	recent	positive	selection	

Tables	S9d-e	show	that	integrated	haplotype	score	(iHS)	statistics	tend	to	be	higher	in	FIREs	than	in	DIREs.	This	
suggests	that	genetic	variants	in	FIRE	regions	have	stronger	evidence	for	recent	positive	selection	acting	at	or	near	
SNPs	in	the	FIRE	bins,	with	evidence	aggregated	over	1,000	generations.	These	observations	are	consistent	across	
fetal	and	adult	and	hold	regardless	of	the	choice	of	summary	statistics	(mean	or	median).		

Frequency	of	extremely	rare	variants	

We	obtained	sets	of	extremely	rare	variants	from	the	Trans-Omics	for	Precision	Medicine	(TOPMed)	Bravo	server	
(URLs)	which	contains	463	million	variants	on	62,784	individuals	with	high-coverage	whole	genome	sequence	data	
(≥30X)	 26.	We	evaluated	ultra-rare	 single	 nucleotide	 variants	 that	were	observed	 in	 only	 one	or	 two	TOPMed	
subjects	(so-called	singletons	and	doubletons	with	allele	frequencies	on	the	order	of	8.0e-6	and	1.6e-5).	As	shown	
in	Tables	S9f-g,	we	observed	marked	and	highly	significant	depletion	of	rare	single	nucleotide	variants	in	FIREs	
(regions	with	many	Hi-C	contacts)	compared	to	DIREs	(depleted	interacting	regions	with	few	Hi-C	contacts)	in	both	
adult	and	fetal	brain	(all	P	values	<1e-8).	For	example,	the	mean	number	of	singletons	in	adult	FIRE	bins	is	2846.3,	
significantly	less	than	3074.7	in	adult	DIREs	(Wilcoxon	P<2.2e-16).		

Taken	together,	these	evolutionary	analyses	of	several	population	genetic	signatures	resulted	in	very	consistent	
findings.	FIREs,	particularly	in	contrast	to	DIREs,	have	stronger	evidence	for	ancient	and	recent	positive	selection,	
less	 population	 differentiation,	 and	 fewer	 singleton	 and	 doubleton	 single	 nucleotide	 variants.	 These	 highly	
consistent	observations	suggest	that	brain	FIREs	are	important	genomic	regions	under	stronger	population	genetic	
constraints.		

Hi-C	and	gene	expression	in	brain	

Given	the	role	of	the	chromatin	interactome	on	transcriptional	regulation,	we	evaluated	the	relative	importance	
of	chromatin	interactome	features	and	gene	expression	in	fetal	and	adult	brain.		

FIREs	in	adult	and	fetal	brain	and	specificity	of	gene	expression	

We	used	RNA-seq	data	on	26,871	autosomal	genes	with	non-zero	expression	in	one	or	more	samples	from	nine	
fetal	and	nine	adult	cortices.	After	transformation,	scaling,	and	quantile	normalization,	we	obtained	the	mean	
gene	expression	in	the	fetal	and	adult	samples	and	considered	genes	whose	TSS	were	within	200	Kb	of	a	FIRE	bin.	
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Fetal	gene	expression	was	significantly	greater	than	adult	gene	expression	in	the	vicinity	of	a	fetal	FIRE	(P=1.31e-
4,	Table	S10)	although	adult	gene	expression	was	marginally	greater	than	fetal	gene	expression	in	the	vicinity	of	
an	adult	FIRE	(P=0.016).	However,	these	comparisons	were	more	significant	for	developmentally	specific	FIREs.	
Fetal	gene	expression	was	greater	than	adult	gene	expression	in	the	vicinity	of	fetal-specific	FIREs	(P=3.03e-15),	
and	adult	gene	expression	was	greater	than	fetal	gene	expression	in	the	vicinity	of	adult-specific	FIREs	(P=4.81e-
13).	These	results	suggest	that	FIREs	play	an	important	role	in	fetal/adult-specific	transcription	regulation.		

Developmental	differences	and	the	brain	chromatin	interactome	

We	evaluated	the	relative	importance	of	chromatin	interactome	features	and	gene	expression	in	fetal	and	adult	
brain.	We	compared	chromatin	interaction	anchors,	FIRE	scores,	insulation	scores,	and	A/B	compartment	scores.	
For	example,	regions	with	more	anchors	may	be	associated	with	greater	gene	expression;	higher	FIRE	scores	have	
more	cis	interactions	and	are	usually	near	genes	with	high	expression;	insulation	scores	dip	in	TAD	centers	that	
are	 enriched	 for	 genes	with	 tissue-specific	 expression;	 and	 A	 compartments	 are	 associated	with	 higher	 gene	
density	and	gene	expression.		

To	systematically	evaluate	the	joint	effect	of	four	Hi-C	readouts	and	gene	expression,	we	mapped	the	TSS	of	all	
26,871	autosomal	 genes	 into	distinct	 10	Kb	bins	 (if	multiple	 TSSs	 are	within	 the	 same	bin,	 the	 summed	gene	
expression	was	assigned	to	that	bin).	For	each	10Kb	bin,	we	matched	its	corresponding	 loop	anchors	and	FIRE	
scores	separately	 for	our	 fetal	and	adult	datasets.	 Insulation	and	compartment	scores	were	mapped	similarly.	
Univariate	 analysis	 shows	 that	 the	 chromatin	 interactomic	 features	 between	 fetal	 and	 adult	 are	 positively	
correlated	 with	 the	 gene	 expression	 between	 fetal	 and	 adult.	 The	 Pearson	 correlation	 coefficients	 of	 gene	
expression	difference	(adult	vs.	fetal)	with	adult	vs.	fetal	loop	anchor	difference,	FIRE	score	difference,	insulation	
score	difference,	and	A/B	compartment	difference	are:	0.0713	(P<2.2e-16),	0.0861	(P<2.2e-16),	0.0653	(P=1.33-
e15),	 and	 0.0444	 (P=5.62e-9).	 We	 next	 evaluated	 active	 enhancer	 (H3K27ac)	 and	 active	 promoter	 marks	
(H3K4me3)	in	fetal	and	adult	brain.	As	expected,	developmental	stage	differences	in	these	marks	were	associated	
with	fetal-	and	adult-specific	gene	expression.	

We	fit	a	multi-variable	linear	regression	model	using	gene	expression	differences	between	fetal	and	adult	as	the	
response	 variable	 and	 the	 dynamic	 loop	 anchor,	 FIRE	 score,	 insulation	 score,	 and	A/B	 compartment	 score	 as	
predictors.	Consistent	with	the	univariate	analyses,	all	four	Hi-C	readouts	were	significant	predictors	of	dynamic	
gene	 expression	 (R2=0.0124	 with	 P<2.2e-16),	 suggesting	 that	 1.24%	 of	 total	 variation	 of	 fetal-adult	 gene	
expression	differences	can	be	explained	by	differences	in	chromatin	interactome	between	fetal	and	adult	brain.	
We	next	evaluated	H3K27ac	and	H3K4me3	as	predictors	of	gene	expression	and	found	R2=0.0387.	Combining	the	
dynamic	chromatin	interactomic	and	ChIP-Seq	data,	the	R2	improves	to	0.0475,	and	three	of	four	Hi-C	readouts	
(loop	number,	 FIRE	 score,	 and	 insulation	 score)	were	 significant,	 suggesting	 that	 chromatin	 interactomic	data	
provide	orthogonal	information	compared	to	epigenetic	data	predicting	dynamic	gene	expression.		

Chromatin	interactome	and	eQTLs	

We	evaluated	the	relation	between	chromatin	interactions	and	eQTLs	in	adult	cortex	(Figure	1b).	For	eQTL	results	
from	the	CommonMind	Consortium	27,	we	selected	3,225,973	autosomal	SNP-TSS	eQTL	pairs	(distance	20	Kb	to	2	
Mb).	We	mapped	each	eQTL	and	TSS	 into	10	Kb	bins	for	a	total	of	437,687	distinct	bin	pairs	corresponding	to	
eQTL-TSS	pairs.	We	then	selected	the	adult	10	Kb	bin	Hi-C	contact	matrix	for	all	autosomal	bin	pairs	20	Kb	to	2Mb	
apart.	We	divided	the	bin	pairs	into	those	that	did	(group	A)	and	did	not	(group	B)	overlap	with	eQTL-TSS	pairs.	At	
each	1D	genomic	distance	from	20	Kb	to	1	Mb,	the	mean	chromatin	interaction	frequency	for	bin	pairs	that	overlap	
an	eQTL-TSS	pairs	(group	A)	is	significantly	greater	than	for	those	that	do	not	overlap	eQTL-TSS	pairs	(group	B).	
For	example,	for	bin	pairs	at	a	distance	of	100	Kb,	the	mean	chromatin	interaction	frequency	is	13.02	for	group	A	
and	11.03	for	group	B	(two	sample	t-test	P=2.02e-39).	In	addition,	we	identified	30,725	and	61,405	10	Kb	bins	as	
active	promoters	and	active	enhancers	(based	on	adult	H3K4me3	and	H3K27ac	ChIP-seq).	Group	A	bin	pairs	that	
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had	 enhancer-enhancer,	 enhancer-promoter,	 or	 promoter-promoter	 interactions	 had	 strikingly	 greater	
interaction	frequencies.		

	

	 	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Page	8	

References	

1	 Lieberman-Aiden,	E.	et	al.	Comprehensive	mapping	of	long-range	interactions	reveals	folding	principles	
of	the	human	genome.	Science	326,	289-293,	doi:10.1126/science.1181369	(2009).	

2	 Dixon,	 J.	 R.	 et	 al.	 Topological	 domains	 in	 mammalian	 genomes	 identified	 by	 analysis	 of	 chromatin	
interactions.	Nature	485,	376-380,	doi:10.1038/nature11082	(2012).	

3	 Nora,	E.	P.	et	al.	Spatial	partitioning	of	the	regulatory	landscape	of	the	X-inactivation	centre.	Nature	485,	
381-385,	doi:10.1038/nature11049	(2012).	

4	 Schmitt,	A.	D.	et	al.	A	Compendium	of	Chromatin	Contact	Maps	Reveals	Spatially	Active	Regions	in	the	
Human	Genome.	Cell	reports	17,	2042-2059,	doi:10.1016/j.celrep.2016.10.061	(2016).	

5	 Burgess,	D.	J.	Epigenomics:	Deciphering	non-coding	variation	with	3D	epigenomics.	Nat	Rev	Genet	18,	4,	
doi:10.1038/nrg.2016.161	(2016).	

6	 Schmitt,	A.	D.,	Hu,	M.	&	Ren,	B.	Genome-wide	mapping	and	analysis	of	chromosome	architecture.	Nat	Rev	
Mol	Cell	Biol	17,	743-755,	doi:10.1038/nrm.2016.104	(2016).	

7	 Yu,	M.	&	Ren,	B.	The	Three-Dimensional	Organization	of	Mammalian	Genomes.	Annu	Rev	Cell	Dev	Biol	33,	
265-289,	doi:10.1146/annurev-cellbio-100616-060531	(2017).	

8	 Bonev,	 B.	 &	 Cavalli,	 G.	 Organization	 and	 function	 of	 the	 3D	 genome.	 Nat	 Rev	 Genet	 17,	 772,	
doi:10.1038/nrg.2016.147	(2016).	

9	 Dekker,	 J.	 Mapping	 the	 3D	 genome:	 Aiming	 for	 consilience.	 Nat	 Rev	 Mol	 Cell	 Biol	 17,	 741-742,	
doi:10.1038/nrm.2016.151	(2016).	

10	 Krijger,	P.	H.	&	de	Laat,	W.	Regulation	of	disease-associated	gene	expression	in	the	3D	genome.	Nat	Rev	
Mol	Cell	Biol	17,	771-782,	doi:10.1038/nrm.2016.138	(2016).	

11	 Engreitz,	J.	M.,	Ollikainen,	N.	&	Guttman,	M.	Long	non-coding	RNAs:	spatial	amplifiers	that	control	nuclear	
structure	and	gene	expression.	Nat	Rev	Mol	Cell	Biol	17,	756-770,	doi:10.1038/nrm.2016.126	(2016).	

12	 Rajarajan,	P.,	Gil,	S.	E.,	Brennand,	K.	J.	&	Akbarian,	S.	Spatial	genome	organization	and	cognition.	Nat	Rev	
Neurosci	17,	681-691,	doi:10.1038/nrn.2016.124	(2016).	

13	 Crane,	E.	et	al.	Condensin-driven	remodelling	of	X	chromosome	topology	during	dosage	compensation.	
Nature	523,	240-244,	doi:10.1038/nature14450	(2015).	

14	 Won,	H.	et	al.	Chromosome	conformation	elucidates	regulatory	relationships	in	developing	human	brain.	
Nature	538,	523-527,	doi:10.1038/nature19847	(2016).	

15	 Whyte,	 W.	 A.	 et	 al.	 Master	 transcription	 factors	 and	 mediator	 establish	 super-enhancers	 at	 key	 cell	
identity	genes.	Cell	153,	307-319,	doi:10.1016/j.cell.2013.03.035	(2013).	

16	 Hnisz,	 D.	 et	 al.	 Super-enhancers	 in	 the	 control	 of	 cell	 identity	 and	 disease.	 Cell	 155,	 934-947,	
doi:10.1016/j.cell.2013.09.053	(2013).	

17	 Jin,	F.	et	al.	A	high-resolution	map	of	the	three-dimensional	chromatin	interactome	in	human	cells.	Nature	
503,	290-294,	doi:10.1038/nature12644	(2013).	

18	 Rajarajan,	 P.	 et	 al.	 Neuron-specific	 signatures	 in	 the	 chromosomal	 connectome	 are	 associated	 with	
schizophrenia	risk.		(Submitted).	

19	 Novo,	C.	L.	et	al.	Long-Range	Enhancer	Interactions	Are	Prevalent	in	Mouse	Embryonic	Stem	Cells	and	Are	
Reorganized	 upon	 Pluripotent	 State	 Transition.	 Cell	 reports	 22,	 2615-2627,	
doi:10.1016/j.celrep.2018.02.040	(2018).	

20	 International	 HapMap	 Consortium.	 A	 haplotype	map	 of	 the	 human	 genome.	Nature	 437,	 1299-1320,	
doi:10.1038/nature04226	(2005).	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Page	9	

21	 Schwarzer,	W.	et	al.	Two	 independent	modes	of	chromatin	organization	revealed	by	cohesin	removal.	
Nature	551,	51-56,	doi:10.1038/nature24281	(2017).	

22	 McCord,	 R.	 P.	 Chromosome	 biology:	 How	 to	 build	 a	 cohesive	 genome	 in	 3D.	 Nature	 551,	 38-40,	
doi:10.1038/nature24145	(2017).	

23	 Pirrotta,	 V.	 Binding	 the	 boundaries	 of	 chromatin	 domains.	Genome	 Biol	15,	 121,	 doi:10.1186/gb4183	
(2014).	

24	 Slatkin,	M.	Linkage	disequilibrium--understanding	the	evolutionary	past	and	mapping	the	medical	future.	
Nat	Rev	Genet	9,	477-485,	doi:10.1038/nrg2361	(2008).	

25	 Whalen,	 S.	 &	 Pollard,	 K.	 S.	 Most	 regulatory	 interactons	 are	 not	 in	 linkage	 disequilibrium.	
doi:http://dx.doi.org/10.1101/272245	(Submitted).	

26	 Brody,	J.	A.	et	al.	Analysis	commons,	a	team	approach	to	discovery	in	a	big-data	environment	for	genetic	
epidemiology.	Nat	Genet	49,	1560-1563,	doi:10.1038/ng.3968	(2017).	

27	 Fromer,	M.	et	al.	Gene	expression	elucidates	functional	impact	of	polygenic	risk	for	schizophrenia.	Nature	
Neuroscience	19,	1442-1453,	doi:10.1038/nn.4399	(2016).	

	

	

	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


In
tra

-c
hr

om
os

om
al

 re
ad

s 
(>

15
 K

b)

0

50
0,0

00
,00

0

1,0
00

,00
0,0

00

1,5
00

,00
0,0

00

Fetal

Adult

IMR90

GZ

CP

H1

MES

LV

TRO

GM12878
NPC

MSC

LI

AO

RV
SX

BL

PAPO

Hippo

SB
OV

AD

DLPFC

0

50
0,0

00
,00

0

1,0
00

,00
0,0

00

1,5
00

,00
0,0

00

2,0
00

,00
0,0

00

2,5
00

,00
0,0

00

Unique mapped reads (PCR duplicates removed)

Figure	1a

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


M
ea

n 
H

i-C
 c

on
ta

ct
 fr

eq
ue

nc
y

0

5

10

15

20

25

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

50
0,0

00

60
0,0

00

70
0,0

00

80
0,0

00

90
0,0

00

1,0
00

,00
0

Distance in bp between bins

Red=group B mean contact frequency (no eQTL - chromatin interaction overlap)

Blue=group A mean contact frequency (eQTL - chromatin interaction overlap)

Green=subset of group A with H3K27ac or H3K4me3 mark

Figure	1b

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Figure	2

Adult
Adult
Adult
Fetal
Adult
Adult
Fetal
Adult
Fetal
Adult
Fetal
Adult
Fetal
Adult
Fetal
Adult

LI
IMR90

GM12878
LV

AO
Fetal
Adult

LI
IMR90

GM12878
LV

AO
Fetal
Adult

LI
IMR90

GM12878
LV

AO
Fetal
Adult

LI
IMR90

GM12878
LV

AO
Fetal
Adult

Liver_p50
Blood_p50
Brain_Exon

Brain_TSS+

Brain_p50

H3K27ac

Open chromatin

CTCF

Loop-REG

Loop-all

TAD boundary

superFIRE

FIRE

A compartment

clo
zu

k
iq20

18

ed
u2

01
8

bmi20
18

gia
nth

eig
ht2

01
4

ibd20
15

ch
olt

ota
l

sig

0
5

10
15
20
25
30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Figure	3

27 93
39

507

166 86

279

0

Location eQTL

Hi-C

Location eQTL Hi-C Genes Percent
no no yes 507 42.4% 
no yes no 93 7.8% 
no yes yes 86 7.2% 
yes no no 27 2.3% 
yes no yes 166 13.9% 
yes yes no 39 3.3% 
yes yes yes 279 23.3% 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Figure	S1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


PC
2 

(8
.0

%
)

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

PA

LG

Adult

RV

LI

SX

LV

Hippo

AD

DLPFC

PO

GM12878

MES

BL

SB

TRO

H1
NPC

AO

CP
Fetal

GZ

OV
IMR90

MSC

0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22
PC1 (74.8%)

Figure	S2a

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Figure	S2b

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


PC
2 

(5
.0

%
)

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

LG

BL

RV

AD

DLPFC

PA
LV

TRO

PO

AO

Hippo

MSC

MES

Adult

OV

H1

IMR90

LI

Fetal

GZ

CPNPC

SX

SB

GM12878

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21

PC1 (76.6%)

Figure	S3a

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Figure	S3b

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


PC
2 

(5
.4

%
)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

GZ

CP

RV

Fetal

Adult

MES
H1

AO

LV

TRO

PO

LG

AD
BL

DLPFC

MSC

LI

PA

Hippo

IMR90

SB

SX

NPC

OV

GM12878

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23
PC1 (69.4%)

Figure	S4a

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/406330doi: bioRxiv preprint 

https://doi.org/10.1101/406330


Figure	S4b
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Venn Diagram
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Model	1:	Hi-C	data	only Model	2:	ChIP-Seq data	only

Model	3:	Hi-C	data	+	ChIP-Seq	data
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