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Abstract	

Genome-wide	 association	 studies	 have	 identified	 hundreds	 of	 genetic	 associations	 for	 complex	
psychiatric	 disorders	 and	 cognitive	 traits.	 However,	 interpretation	 of	 most	 of	 these	 findings	 is	
complicated	by	the	presence	of	many	significant	and	highly	correlated	genetic	variants	 located	 in	non-
coding	regions.	Here,	we	address	this	 issue	by	creating	a	high-resolution	map	of	the	three-dimensional	
(3D)	genome	organization	by	applying	Hi-C	 to	adult	and	 fetal	brain	 cortex	with	 concomitant	RNA-seq,	
open	 chromatin	 (ATAC-seq),	 and	 ChIP-seq	 data	 (H3K27ac,	 H3K4me3,	 and	 CTCF).	 Extensive	 analyses	
established	the	quality,	information	content,	and	salience	of	these	new	Hi-C	data.	We	used	these	data	to	
connect	 938	 significant	 genetic	 loci	 for	 schizophrenia,	 intelligence,	 ADHD,	 alcohol	 dependence,	
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Alzheimer’s	disease,	anorexia	nervosa,	autism	spectrum	disorder,	bipolar	disorder,	major	depression,	and	
educational	attainment	to	8,595	genes	(with	42.1%	of	these	genes	implicated	more	than	once).	We	show	
that	 assigning	 genes	 to	 traits	 based	 on	 proximity	 provides	 a	 limited	 view	 of	 the	 complexity	 of	 GWAS	
findings	and	that	gene	set	analyses	based	on	functional	genomic	data	provide	an	expanded	view	of	the	
biological	processes	involved	in	the	etiology	of	schizophrenia	and	other	complex	brain	traits.		

Introduction	

In	 the	 last	 decade,	 genome-wide	 searches	 for	 genetic	 variation	 fundamental	 to	 human	 maladies	 of	
exceptional	public	health	importance	became	feasible	1,2.	Genomic	studies	are	particularly	important	for	
idiopathic	psychiatric	disorders	 that	have	 few	proven/reproducible	biological	 risk	 factors	despite	 twin-
family	 studies	 conclusively	 establishing	 a	 role	 for	 inheritance	 3,4.	 Hopes	 that	 protein-coding	 variation	
would	provide	a	key	to	schizophrenia	5,6	have	not	eventuated	as	sizable	exome	sequencing	studies	have	
identified	only	two	genes	to	date	7,8.	 In	contrast,	exome	sequencing	studies	 for	autism	identified	~100	
genes	 with	 far	 fewer	 cases	 than	 for	 schizophrenia	 9.	 The	 lack	 of	 exonic	 findings	 for	 schizophrenia	 is	
unfortunate	 given	 the	 range	 of	 available	 tools	 for	 experimental	 modeling	 of	 single	 genes	 but	 exonic	
findings	are	more	prevalent	for	severe	psychiatric	syndromes	with	onset	early	in	life.		

Genome-wide	 association	 studies	 (GWAS)	 of	 common	 genetic	 variation	 have	 yielded	 more	 findings,	
particularly	 when	 the	 numbers	 of	 cases	 are	 large	 2,10.	 A	 landmark	 2014	 GWAS	 for	 schizophrenia	
identified	108	significant	loci	11	and	a	later	study	found	145	loci	12.	Most	of	the	“genetic	architecture”	of	
common	 psychiatric	 disorders	 and	 brain	 traits	 lie	 in	 common	 variants	 of	 relatively	 subtle	 effects	
identifiable	by	GWAS	 2.	Other	complex	human	diseases	have	similar	conclusions	 (e.g.,	 type	2	diabetes	
mellitus)	13.	There	have	been	3,029	GWAS	publications	that	identified	31,976	significant	associations	for	
2,520	diseases,	disorders,	traits,	or	lab	measures	(URLs,	Q4	2018),	and	these	are	almost	always	common	
variants	of	subtle	effects	(median	odds	ratio,	OR,	1.22)	and	ORs	infrequently	exceed	2	10.		

Although	 GWAS	 findings	 are	 surprisingly	 informative	 in	 aggregate	 across	 the	 genome	 14-16,	 delivering	
strong	hypotheses	about	their	connections	to	specific	genes	has	been	challenging	2.	Investigators	often	
rely	 on	 genomic	 location	 to	 connect	 significant	 SNPs	 to	 genes	 but	 this	 is	 problematic	 as	 GWAS	 loci:	
usually	contain	many	correlated	and	significant	SNP	associations	over	100s	of	Kb,	many	genes	expressed	
in	tissues	of	 interest,	and	long-range	effects	to	genes	far	outside	a	 locus	17-19.	These	issues	have	led	to	
efforts	 to	 use	 brain	 functional	 architecture	 2	 to	 connect	 GWAS	 loci	 to	 specific	 genes	 using	 gene	
expression	quantitative	trait	 loci	(eQTL),	SNP	prioritization	algorithms,	chromatin	interactions,	or	other	
approaches	 12,17-21.	 The	 lack	 of	 direct	 connections	 to	 genes	 constrains	 subsequent	 experimental	
modeling	and	development	of	improved	therapeutics.		

The	3D	arrangement	of	 chromatin	 in	 cell	 nuclei	 enables	physical	 and	 regulatory	 interactions	between	
genomic	 regions	 located	 far	 apart	 in	 1D	 genomic	 distance	 22.	 Chromatin	 conformation	 capture	 (3C)	
methods	enable	 identification	of	3D	chromatin	 interactions	 in	vivo	 23,24	and	can	clarify	GWAS	 findings.	
For	example,	 an	 intergenic	 region	associated	with	multiple	 cancers	was	 shown	 to	be	an	enhancer	 for	
MYC	via	a	 long-range	chromatin	 loop	25,26,	and	 intronic	FTO	variants	are	robustly	associated	with	body	
mass	but	 influence	expression	of	distal	genes	via	 long-range	 interactions	27.	To	 interpret	GWAS	results	
for	psychiatric	disorders,	Roussos	et	al.	20	used	3C	methods	to	identify	an	intergenic	chromatin	loop	for	
CACNA1C	(from	intronic	GWAS	associations	for	schizophrenia	and	bipolar	disorder	to	its	promoter).	Won	
et	 al.	 17	 and	Wang	 et	 al.	 19	 used	brain	 3D	 chromatin	 interactome	data	 to	 assert	 connections	 of	 some	
schizophrenia	associations	to	specific	genes.		

These	 examples	 suggest	 that	 knowledge	of	 the	 3D	 chromatin	 interactome	 in	 human	brain	 could	help	
clarify	 the	 meaning	 of	 GWAS	 findings	 for	 psychiatric	 disorders,	 brain-based	 traits,	 and	 neurological	
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conditions.	We	were	 particularly	 interested	 in	 schizophrenia	 12	 and	 intelligence	 28	 because	 these	 two	
traits	have	many	shared	loci,	a	significant	negative	genetic	correlation	12,28,	lower	premorbid	intelligence	
is	 a	 risk	 factor	 for	 schizophrenia	 29,	 and	 intellectual	 disability	 is	 an	 important	 comorbidity	 of	
schizophrenia	30.	Because	3D	interactome	data	from	human	brain	are	limited,	we	sequenced	adult	and	
fetal	 cortical	 samples	 to	 the	 greatest	 depth	 to	 date	 to	 enable	 a	 detailed	 portrait	 of	 the	 brain	 3D	
chromatin	interactome.	After	establishing	the	quality	and	informativeness	of	these	new	brain	Hi-C	data,	
we	compared	proximity/location-based	gene	identification	with	those	from	high-confidence	regulatory	
chromatin	interactions	for	10	brain	traits	with	sizable	GWAS.	We	found	that	location	provided	a	limited	
view	of	 the	 complexity	of	GWAS	 findings	whereas	 connections	based	on	 functional	 data	 from	human	
brain	 capture	 greater	 complexity.	 Gene	 set	 analyses	 based	 on	 functional	 genomic	 data	 provide	 an	
expanded	view	of	the	biological	processes	involved	in	schizophrenia	and	intelligence.		

Results	

General	properties	of	chromatin	organization	in	brain	

In	this	section,	we	describe	the	brain	Hi-C	data	we	generated	and	compare	them	to	external	datasets	to	
establish	their	relevance.	We	applied	“easy	Hi-C”	(eHi-C)	31	to	postmortem	samples	(N=3	adult	temporal	
cortex	and	N=3	fetal	cortex).	Using	eHi-C,	we	generated	10.4	billion	reads	and,	following	quality	control,	
identified	 1.323	 billion	 high-confidence	 cis-contacts	 that	 enabled	 a	 10	 Kb	 resolution	 map	 of	 the	
chromatin	 interactome.	 To	 our	 knowledge,	 these	 are	 the	 deepest	 Hi-C	 data	 from	 human	 brain,	 and	
contain	22.5X	as	many	cis-contacts	for	adult	cortex	and	1.56X	as	many	for	fetal	cortex	compared	to	the	
next	 largest	 datasets	 17,32	 (Figure	 1a,	Table	 S1).	We	 evaluated	 four	Hi-C	 readouts:	 “A”	 (active)	 or	 “B”	
(inactive)	 compartments	 (100	 Kb	 resolution)	 33;	 topologically	 associated	 domains	 (TADs,	 40	 Kb	
resolution)	 segment	 the	 genome	 into	 Mb-sized	 regions	 within	 which	 chromatin	 interactions	 have	 a	
strong	tendency	to	occur	34,35;	 frequently	 interacting	regions	(FIREs,	40	Kb	resolution)	are	regions	with	
significantly	greater	cis-connectivity	than	expected	under	a	null	hypothesis	of	random	collisions	32,36	(and	
can	occur	 as	 contiguous	 super	 FIREs	 37);	 and	 chromatin	 interactions	 identify	 genomic	 regions	 that	 are	
physically	proximal	 in	 the	nuclear	3D	space	22,36-42,	and	consisted	of	 two	10	Kb	anchors	20	Kb	to	2	Mb	
apart.	We	generated	or	obtained	RNA-seq,	open	chromatin	(ATAC-seq),	ChIP-seq	(H3K27ac,	H3K4me3,	
and	CTCF),	and	eQTL	data	 18,43,44	 from	adult	and	 fetal	cortex	 (Table	 S2).	By	combining	eHi-C,	RNA-seq,	
ATAC-seq,	 and	 ChIP-seq	 data	 from	 adult	 and	 fetal	 brain,	 we	 identified	 high-confidence	 regulatory	
chromatin	interactions	(HCRCI).	HCRCI	had	P	<	2.31x10-11	(Bonferroni	correction	of	0.001	for	43,222,677	
possible	 interactions)	 and	 HindIII	 fragment-level	 anchors	 that	 intersected	 open	 chromatin,	 active	
histone	marks,	or	brain-expressed	TSS	consistent	with	enhancer-promoter	(E-P)	or	promoter-promoter	
(P-P)	 interactions	 (Methods).	 We	 identified	 75,531	 HCRCI	 in	 adult	 cortex	 and	 75,246	 in	 fetal	 cortex	
(32,007	HCRCI	were	present	at	both	developmental	stages).	Figure	S1	shows	a	circular	genome	plot	of	
these	eHi-C	readouts	from	adult	and	fetal	cortex.		

We	analyzed	the	properties	of	these	brain	eHi-C	data	to	establish	a	foundation	in	support	of	our	goal	of	
understanding	GWAS	results	 for	 schizophrenia,	 intelligence,	and	other	brain	 traits.	These	analyses	are	
detailed	 in	 the	 Supplemental	 Note	 and	 summarized	 here.	 First,	 we	 compared	 our	 eHi-C	 readouts	 to	
external	Hi-C	datasets	 for	A/B	compartments,	TAD	boundaries,	FIREs,	and	chromatin	 interactions,	and	
found	good	agreement	with	external	Hi-C	data	(Figures	S2-S5).	Second,	we	evaluated	whether	these	Hi-
C	 readouts	 captured	 biologically	 relevant	 information	 (Tables	 1,	 S3).	We	 found	 that	 FIREs	 and	 super	
FIREs	recapitulated	key	functions	of	the	source	tissues:	differentiation	and	neurogenesis	in	fetal	cortex	
and	 core	 neuronal	 functions	 in	 adult	 cortex.	 As	 a	 control,	 FIREs	 and	 super	 FIREs	 from	heart	 ventricle	
were	consistent	with	basic	myocardial	functions.	GREAT	45	analyses	of	fetal	chromatin	interactions	were	
enriched	for	transcriptional	regulation	and	core	functions	of	the	major	cell	types	(glia	and	neurons),	and	
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the	 adult	 results	 pointed	 at	 postsynaptic	 density	 and	 excitatory	 synapse.	 TAD	 boundaries	 showed	 no	
enrichment	consistent	with	their	cell	type-independent	insulative	and	structural	roles.	Third,	evaluation	
of	 functional	 genomic	 features	 (Tables	 1,	 S4)	 showed	 that	 adult	 FIREs	were	enriched	 in	 adult	 cortical	
H3K27ac	marks,	enhancers,	and	open	chromatin	while	depleted	in	H3K4me3	marks	32.	Fetal	brain	FIREs	
were	enriched	for	fetal	H3K27ac	and	CTCF	marks.	Adult	cortex	chromatin	interactions	were	enriched	for	
open	chromatin,	enhancer,	CTCF,	H3K27ac,	and	protein-coding	TSS	while	depleted	in	H3K4me3	marks.	
In	fetal	cortex,	chromatin	interactions	were	enriched	for	H3K27ac	and	CTCF	with	depletion	of	H3K4me3	
and	gene	expression.	TAD	boundaries	in	adult	and	fetal	brain	were	enriched	for	CTCF	and	TSS	of	protein	
coding	genes	34.	Fourth,	we	evaluated	the	relation	between	LD	and	TADs	as	both	are	block-like	and	span	
105-106	bases.	TADs	are	defined	by	3D	chromatin	interactions	in	cell	nuclei	whereas	LD	reflects	historical	
events	 for	 a	 given	 human	 sample.	We	 confirmed	 that	 TADs	 and	 LD	 blocks	 identify	 different	 genomic	
regions	17,46.	Fifth,	we	conducted	evolutionary	analyses	for	brain	FIREs	and	found	that	these	regions	have	
stronger	evidence	 for	ancient	and	 recent	positive	 selection,	 less	population	differentiation,	 and	 fewer	
singleton/doubleton	single	nucleotide	variants	 (Table	S5).	These	observations	suggest	 that	brain	FIREs	
are	 important	genomic	regions	under	stronger	population	genetic	constraints.	Sixth,	we	evaluated	the	
importance	 of	 chromatin	 interactome	 on	 gene	 expression	 in	 fetal	 and	 adult	 brain	 and	 found:	 (a)	
developmentally	 specific	 adult	 vs	 fetal	 FIREs	 had	 a	 strong	 relation	 to	 gene	 expression;	 (b)	 in	 a	
multivariable	 model,	 we	 found	 that	 A/B	 compartments,	 FIREs,	 and	 chromatin	 interactions	 were	
significant	and	orthogonal	predictors	of	gene	expression	(model	R2	0.0475,	Figure	S6);	and	(c)	we	found	
a	strong	overlap	of	adult	cortex	chromatin	interactions	with	adult	cortex	eQTLs	18,	particularly	for	HCRCI	
(Figure	1b).		

In	conclusion,	the	brain	eHi-C	data	we	generated	were	consistent	with	prior	Hi-C	datasets.	Although	Hi-C	
data	 directly	 incorporate	 few	 genomic	 annotations,	 Hi-C	 readouts	 are	 an	 informative	 functional	
datatype	 often	 orthogonal	 to	 other	 datatypes	 but	 with	 a	 strong	 relation	 to	 brain	 gene	 expression.	
Evaluating	the	relation	of	eHi-C	readouts	to	genetic	risk	for	psychiatric	disorders	and	brain	traits	is	thus	
empirically-grounded.		

Human	GWAS	and	functional	genomics	

Having	shown	the	salience	of	our	brain	eHi-C	data,	we	now	focus	on	human	complex	 traits.	Here,	we	
evaluate	 GWAS	 results	 with	 respect	 to	 tissue-specific	 gene	 expression,	 Hi-C	 readouts,	 and	 brain	
functional	 genomic	 annotations	 using	partitioned	 LD	 score	 regression	 (pLDSC)	 47.	 pLDSC	 leverages	 LD,	
and	 its	 use	 here	 is	 appropriate	 as	 GWAS	 results	 and	 functional	 genomic	 annotations	 are	 both	 at	 a	
genome-wide,	 gigabase	 scale	 (LD-based	 approaches	 become	 problematic	 for	 individual	 GWAS	 loci	 of	
100s	 of	 Kb,	 see	 below).	 Although	 our	main	 interests	 are	 schizophrenia	 and	 intelligence,	we	 obtained	
summary	statistics	for	27	human	traits	that	had	been	the	subject	of	large	GWAS	(Table	S2):	6	psychiatric	
disorders,	5	CNS	traits,	6	neurological	conditions,	and	10	traits	not	generally	thought	to	be	rooted	in	the	
nervous	system	(e.g.,	coronary	artery	disease,	total	cholesterol).		

First,	we	used	GTEx	43	bulk	tissue	gene	expression	data	from	48	regions	to	identify	the	tissues	implied	by	
the	 GWAS	 results	 (Figure	 2a,	 Table	 S6).	 These	 analyses	 in	 essence	 looked	 for	 enrichment	 of	 SNP-
heritability	 in	 genes	whose	expression	was	 specific	 for	 a	 tissue.	Of	 the	27	GWAS,	15	had	a	 significant	
finding,	 and	 the	 12	 GWAS	 without	 a	 significant	 finding	 had	 relatively	 few	 GWAS	 hits.	 The	 control	
conditions	largely	corresponded	to	expectations:	coronary	artery	disease	with	aorta,	tibial,	and	coronary	
artery;	 hemoglobin	A1c	with	whole	blood;	 inflammatory	bowel	disease	with	whole	blood	and	 spleen;	
total	cholesterol	with	 liver;	waist:hip	ratio	with	adipose;	age	at	menarche	with	uterus;	and	body	mass	
index	 with	 brain	 48.	 Coronary	 artery	 disease,	 height,	 and	 inflammatory	 bowel	 disease	 had	 other	
significant	 enrichments	 for	 tissues	 not	 immediately	 known	 to	 be	 involved	 –	 we	 believe	 this	 resulted	
from	 cell	 type	mixtures	within	 the	 bulk	 tissues	 studied.	 The	 psychiatric	 disorders/CNS	 traits	with	 the	
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largest	 number	 of	 GWAS	 hits	 (schizophrenia,	 major	 depression,	 bipolar	 disorder,	 intelligence,	
educational	 attainment,	 and	 neuroticism)	 enriched	 for	 multiple	 brain	 regions	 with	 the	 strongest	
associations	usually	for	brain	cortex,	frontal	cortex,	and	nucleus	accumbens.	Gene	expression	specificity	
findings	 are	 consistent	 with	 the	 high	 genetic	 correlations	 between	 these	 traits	 16.	 None	 of	 the	
neurological	conditions	had	a	significant	association,	likely	due	to	the	small	sizes	of	the	primary	studies.		

Second,	 we	 evaluated	 SNP-heritability	 enrichments	 of	 these	 GWAS	 with	 functional	 genomic	 data	
including	 Hi-C,	 open	 chromatin,	 and	 H3K27ac	 histone	 marks	 (Figure	 2b	 and	 Table	 S7).	 Chromatin	
interactions	 had	 notable	 SNP-heritability	 enrichment	 for	 psychiatric	 disorders	 and	 CNS	 traits	 –	
particularly	the	anchors	of	HCRCI	(adjusted	P<0.001	and	an	E-P	or	P-P	chromatin	interaction)	which	were	
a	subset	of	all	significant	chromatin	interactions	(adjusted	P<0.05).	H3K27ac	marks	showed	enrichments	
for	most	 brain	 traits	 but	 also	 for	 BMI	 and	 height.	 There	was	 a	 tendency	 for	 stronger	 SNP-heritability	
enrichment	in	functional	annotations	in	adult	brain	for	schizophrenia,	and	in	fetal	brain	for	educational	
attainment	 and	 intelligence.	 FIREs	 had	 modest	 enrichments	 without	 clear	 specificity	 by	 organ	 or	
developmental	 stage.	 In	 contrast,	 TAD	boundaries	 showed	no	 significant	 SNP-heritability	 enrichments	
and	open	chromatin	compartments	(“A”)	had	significant	enrichments	for	many	traits	and	tissues.		

From	these	results,	we	conclude	 that	using	 functional	genomic	data	 from	adult	cortex	 is	a	 reasonable	
choice	 for	 evaluation	 of	 schizophrenia	 and	 intelligence,	 particularly	 when	 complemented	 by	 fetal	
cortical	 data.	 The	 functional	 annotations	 that	 showed	 the	most	 specific	 connections	 to	 schizophrenia	
and	brain	traits	were	open	chromatin	and	HCRCI.	Thus,	genome-wide	annotations	that	capture	dynamic	
genome	processes	central	to	gene	regulation	in	brain	have	particular	salience	to	genetic	risk	for	multiple	
brain-based	traits.		

Interpreting	GWAS	loci	using	a	3D	perspective	on	brain	nuclear	architecture	

The	preceding	sections	support	our	choices	of	tissue	(adult	and	fetal	cortex)	and	salience	of	functional	
genomic	 readouts	 for	 interpretation	of	GWAS	 findings	 for	 schizophrenia,	 intelligence,	 and	other	brain	
traits.	In	this	section,	we	attempt	to	“connect”	significant	GWAS	loci	to	specific	genes	as	this	is	a	crucial	
deliverable	 of	 GWAS	 for	 idiopathic	 disorders	 of	 the	 brain.	 Our	 approach	 had	 the	 following	 steps:	 (a)	
curate	all	genome-wide	significant	loci	for	schizophrenia,	intelligence,	and	eight	other	CNS	traits;	(b)	as	a	
special	 case,	 identify	 statistically	 independent	 loci	 functionally	 connected	 to	 the	 same	 gene;	 (c)	 as	 a	
special	case,	evaluate	GWAS	loci	that	intersect	no	genes	(intergenic)	or	a	single	gene	to	test	the	strong	
assumption	 that	 GWAS	 findings	 connect	 to	 the	 nearest	 or	 intersecting	 gene;	 (d)	 identify	 all	 genes	
implicated	 by	 location,	 HCRCI,	 and/or	 eQTL	 evidence;	 and	 (e)	 contrast	 the	 biological	 pathways	
implicated	by	these	methods	of	assigning	associated	SNPs	to	genes.		

We	focused	on	cortex	given	empirical	data	connecting	this	tissue	to	schizophrenia	and	intelligence	using	
orthogonal	 functional	 genomic	 data	 (bulk	 tissue	mRNA-seq,	 single-cell	 RNA-seq,	 enhancer	marks,	 and	
open	chromatin)	28,49-51.	We	selected	an	inclusive	set	of	16,308	genes	(77.8%	of	all	protein-coding	genes,	
GENCODE)	with	any	expression	 in	adult	or	 fetal	 cortex	 43,44.	 Second,	we	selected	eQTL	SNP-gene	pairs	
from	CommonMind	or	GTEx	 (q<0.05)	 18,43.	Third,	using	our	eHi-C	data,	we	 identified	HCRCI	 in	adult	or	
fetal	cortex	(P<2.31x10-11,	Bonferroni	correction	of	a=0.001	for	43,222,677	possible	interactions).	As	in	
ENCODE	and	PsychENCODE	19,52,	we	identified	anchors	that	overlapped	enhancers	(E)	or	promoters	(P)	
using	cortical	functional	genomic	data	from	the	same	developmental	stage	(Table	S2).	E	were	defined	as	
the	intersection	of:	eHi-C	HindIII	fragment	within	an	anchor,	open	chromatin,	and	either	a	H3K27ac	peak	
or	a	H3K4me3	peak	overlapping	the	start	site	of	a	brain-expressed	transcript.	P	were	defined	as	brain-
expressed	transcripts	overlapping	open	chromatin.	We	focused	on	75,531	adult	and	75,246	fetal	cortex	
E-P	or	P-P	HCRCI.	Figures	8a-g	show	representative	examples	as	browser	tracks.		
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First,	 we	 obtained	 results	 for	 the	 most	 recent	 GWAS	 of	 schizophrenia,	 ADHD,	 alcohol	 dependence,	
Alzheimer’s	 disease,	 anorexia	 nervosa,	 autism	 spectrum	 disorder,	 bipolar	 disorder,	 and	 major	
depression	 along	with	 intelligence	 and	 educational	 attainment	 (Table	 S2).	 Loci	were	 defined	 similarly	
across	 studies	 using	 LD-based	 “clumping”,	 merging	 of	 loci	 ±50	 Kb,	 and	 removal	 of	 loci	 with	 a	 single	
significant	SNP.	Each	locus	 is	an	LD-based	genomic	region	containing	multiple	genome-wide	significant	
SNP	associations	for	one	of	these	10	traits.	There	were	938	 loci	across	these	10	traits:	≤12	for	alcohol	
dependence,	autism,	anorexia	nervosa,	and	ADHD;	24	for	Alzheimer’s	disease;	29	for	bipolar	disorder;	
44	for	major	depression,	145	for	schizophrenia;	205	for	intelligence;	and	467	for	educational	attainment.	
The	median	P-value	per	locus	was	1.17e-9	(interquartile	range,	IQR	1.19e-8	–	1.21e-11).	The	loci	had	a	
median	size	of	197	Kb	(IQR	87-424	Kb),	and	21.9%	were	intergenic,	38.4%	intersected	a	single	gene,	and	
39.8%	 were	 multigenic	 (containing	 a	 median	 of	 4	 genes,	 IQR	 2-8).	 As	 anticipated	 from	 the	 primary	
studies,	overlap	was	common	as	39.4%	of	the	loci	were	for	≥2	disorders.		

Second,	 we	 identified	 genes	 that	 were	 implicated	 by	 different	 statistically	 independent	 loci	 for	 each	
trait.	 (a)	 As	 listed	 in	 Table	 S8a,	 16	 genes	 had	 two	 statistically	 independent	 trait	 associations	 located	
>100	Kb	apart	for	a	trait	(e.g.,	RBFOX1	had	two	hits	separated	by	>1.2	Mb	for	both	major	depression	and	
intelligence,	and	DPYD,	Figure	S8a).	 (b)	We	found	that	40	eQTL-genes	had	an	eQTL-SNP	 in	statistically	
independent	 loci	 >100	 Kb	 apart	 (30	 genes	 for	 educational	 attainment,	 7	 for	 schizophrenia,	 and	 3	 for	
intelligence,	Table	S8b).	For	example,	the	expression	of	SATB2	in	adult	cortex	is	significantly	associated	
with	 SNPs	 in	 schizophrenia	 loci	 located	 242	 Kb	 apart	 (Figure	 S8b).	 (c)	 Unexpectedly,	 brain	 Hi-C	 data	
showed	 that	 some	 LD-defined	 loci	 nonetheless	 contained	 evidence	 of	 functional	 interactions	 (Table	
S8c).	 The	 presence	 of	 many	 bridging	 HCRCI	 suggests	 that	 these	 statistically	 independent	 loci	 have	
functional	regulatory	activity	 in	nuclei	from	adult	and	fetal	cortex	(e.g.,	9	genes	 in	three	schizophrenia	
loci	from	chr2:198.1-201.3	Mb	may	form	a	functionally	connected	unit,	Figure	S8c).		

Third,	 we	 evaluated	 199	 intergenic	 loci	 and	 360	 loci	 that	 intersected	 a	 single	 gene	 (excluding	 the	
extended	MHC	region).	Intergenic	loci	were	a	median	of	191.7	Kb	from	the	nearest	protein-coding	gene	
(IQR	69.2-412.5	Kb),	and	total-stranded	RNA-seq	from	an	adult	and	a	fetal	cortical	sample	did	not	reveal	
unannotated	transcripts.	The	standard	assumption	is	to	assign	a	GWAS	locus	to	the	nearest	gene:	based	
on	brain	eQTL	and	HCRCI,	this	assumption	was	strictly	correct	for	only	19	loci	(9.6%),	partly	correct	for	
25	loci	(12.6%,	the	nearest	gene	was	implicated	but	so	were	1-9	additional	genes),	incorrect	for	47	loci	
(23.6%,	eQTL	and/or	HCRCI	connected	to	1-7	genes	that	were	not	 the	closest	 to	 the	 locus),	and	there	
were	no	eQTL	or	HCRCI	connections	for	108	loci	(54.3%).	For	single	gene	loci,	the	standard	assumption	is	
to	 assign	 the	 GWAS	 locus	 to	 the	 gene	 it	 intersects.	 This	 assumption	 was	 strictly	 correct	 for	 112	 loci	
(31.1%),	 partly	 correct	 for	 208	 loci	 (57.8%,	 the	 intersecting	 gene	 was	 implicated	 but	 so	 were	 1-37	
additional	genes),	and	incorrect	for	19	loci	(5.3%).	Genes	implicated	via	eQTL	or	HCRCI	are	often	far	from	
a	locus	and	beyond	typical	LD	block	sizes:	a	median	of	543.1	Kb	(IQR	146.9-896.2	Kb)	from	intergenic	loci	
and	 409.1	 Kb	 (IQR	 171.5-825.2	 Kb)	 from	 single	 gene	 loci.	 Thus,	 functional	 genomic	 data	 from	human	
brain	 indicate	 that	 typical	 assumptions	 used	 in	 bioinformatics	 analyses	 of	 GWAS	 results	 are	 usually	
incorrect	or	oversimplifying.		

Fourth,	 we	 systematically	 evaluated	 GWAS	 results	 using	 functional	 genomic	 data.	 We	 used	 three	
approaches	 to	 create	 explicit	 hypotheses	 for	 subsequent	 biological	 experiments:	 (a)	 implication	 by	
genomic	location,	that	significant	SNPs	in	a	GWAS	locus	implicate	the	genes	it	intersects	(directly	or	by	
LD-proxy);	(b)	eQTL	pairs	consist	of	an	eQTL-SNP	in	a	GWAS	locus	that	is	significantly	associated	with	the	
expression	 level	 of	 an	 eQTL-gene	 that	 may	 or	 may	 not	 be	 in	 the	 locus;	 and	 (c)	 HCRCI	 capture	 the	
regulatory	potential	created	by	physical	proximity	of	two	genomic	regions	in	brain	nuclei:	one	anchor	is	
in	 a	GWAS	 locus	and	 the	other	 anchor	 is	 in	 a	 gene	 that	may	or	may	not	be	 in	 the	 locus	 (HCRCI	have	
properties	 consistent	 with	 E-P	 or	 P-P	 regulation).	 The	 latter	 two	 methods	 are	 based	 on	 functional	
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genomic	 data	 from	 adult	 and	 fetal	 cortex.	We	 did	 not	 apply	 statistical	 prioritization	 algorithms	 (e.g.,	
TWAS,	 co-localization,	 or	 credible	 SNP)	 as	 these	 were	 not	 aligned	 with	 our	 goal	 of	 generating	 an	
inclusive	 set	 of	 locus-to-gene	 hypotheses.	 Some	 methods	 are	 highly	 restrictive	 (e.g.,	 only	 69	 of	 18K	
significant	 SNPs	 in	 CLOZUK	were	 “credible”	with	 posterior	 probabilities	 >0.9)	 and,	 to	 our	 knowledge,	
these	methods	have	not	been	rigorously	benchmarked	in	experimental	models.		

We	compared	our	results	to	Wang	et	al.	19	on	the	same	schizophrenia	results	12	(Methods).	There	was	
substantial	 overlap	 with	 81.0%	 (596/736)	 of	 the	 protein-coding	 genes	 identified	 by	Wang	 et	 al.	 also	
found	 by	 us,	 particularly	 for	 their	 “high-confidence”	 genes	 (95.9%,	 260/271).	 However,	 our	 method	
identified	many	more	genes	(1,300	vs	736)	mainly	due	to	our	far	deeper	eHi-C	data.		

Encouraged	 by	 this	 overlap,	 we	 applied	 our	 strategy	 to	 938	 significant	 GWAS	 loci	 for	 10	 psychiatric	
disorders	and	brain	traits.	Using	location,	eQTL,	and/or	HCRCI,	we	connected	these	loci	to	8,595	genes.	
The	 implicated	 genes	 are	 listed	 in	 Table	 S9.	 These	 genes	 had	 the	 expected	 locus	 type	 distributions:	
84.7%	 in	multigenic	 loci,	 13.0%	 in	 single	 gene	 loci,	 and	 2.3%	 in	 intergenic	 loci.	 Figure	 3a	 shows	 the	
number	of	genes	identified	per	trait	(range	12-3,657)	which,	as	expected,	was	highly	correlated	with	the	
number	of	significant	 loci	(Spearman	r=0.988).	Many	genes	were	identified	by	≥2	traits	(42.1%,	Figure	
3b)	consistent	with	the	primary	papers	that	reported	considerable	locus	overlap	for	many	traits.	Figure	
3c	is	a	Venn	diagram	of	the	interrelations	of	the	three	methods	of	connecting	GWAS	loci	to	genes.	Genes	
identified	 by	 location	 usually	 (94.4%,	 3,091/3,276)	 also	 have	 eQTL	 (58.1%)	 and/or	 HCRCI	 evidence	
(86.9%).	 However,	 location	 provides	 a	 simplified	 portrait	 of	 the	 genes	 involved	 with	 respect	 to	
functional	genomic	data	from	human	brain:	3,276	genes	are	implicated	by	location	(38.1%),	3,121	genes	
by	 eQTLs	 (36.3%),	 and	 7,581	 by	 HCRCI	 (88.2%).	 See	 Figures	 S8d-g	 for	 examples.	 Genomic	 location	
appears	to	be	a	specific	but	insensitive	indication	of	the	involvement	of	a	gene.		

Fifth,	 for	 schizophrenia	 and	 intelligence,	 given	 clear	 evidence	 of	 polygenicity	 (that	 “many	 genes”	 are	
involved),	 a	 crucial	 unanswered	 question	 is	 enumeration	 of	 the	 biological	 processes	 implied	 by	 the	
identified	sets	of	genes.	Identification	of	biological	processes	has	major	implications	for	development	of	
unifying	 etiological	 hypotheses	 and	 therapeutic	 strategies.	 Many	 statistical	 approaches	 to	 gene	 set	
analysis	 are	 based	 on	 proximity	 and/or	 LD	 53,	 but	 functional	 genomic	 readouts	 (eQTL	 and	HCRCI)	 are	
based	 on	 regulatory	 processes.	 We	 conducted	 a	 comprehensive	 set	 of	 gene	 set	 analyses	 using	
hypergeometric	rather	than	LD-based	tests.	The	gene	sets	evaluated	are	listed	in	Table	S2,	and	include	
standard	 gene	 sets	 as	well	 as	 gene	 sets	 previously	 found	 to	 be	 important	 or	 of	 interest	 to	 us	 10,54,55.	
Location,	 eQTL,	 or	HCRCI	 implicated	 45	 gene	 sets	 for	 schizophrenia	 (Table	 S10)	 and	 46	 gene	 sets	 for	
intelligence	(Table	S11).	For	both	schizophrenia	and	intelligence,	most	gene	sets	were	implicated	either	
by	 location	 or	 HCRCI	 alone.	 Crucially,	 biological	 inference	 differed:	 location	 evidence	 suggested	 gene	
sets	 relating	 to	 transcript	 binding	 and	 neuronal/synaptic	 processes	 whereas	 HCRCI	 implicated	 more	
fundamental	 regulatory/chromatin	 biology.	 For	 intelligence,	 there	 were	 exceptionally	 strong	
connections	to	two	overlapping	cell	adhesion	gene	sets	(P<1e-300),	and	the	169	brain-expressed	genes	
included	 neurexin	 1,	 neuroligin	 1,	 multiple	 cadherin	 genes,	 and	 genes	 relevant	 to	 developmental	
neuronal	 migration;	 these	 gene	 sets	 connect	 genetic	 variation	 in	 human	 intelligence	 to	 neuronal	
migration	and	establishment	of	synaptic	contacts.		

Finally,	3	genes	have	notable	connections	to	specific	brain	maladies:	Alzheimer’s	disease-APOE,	alcohol	
dependence-ADH1B,	and	schizophrenia-C4A.	Each	of	these	genes	is	in	the	most	significant	GWAS	locus	
for	that	disorder,	and	additional	data	implicate	the	protein	product.	Integrating	functional	genomic	data,	
however,	suggests	that	a	sole	focus	on	these	single	genes	may	be	oversimplifying	–	e.g.,	eQTL	or	HCRCI	
implicate	 many	 genes	 outside	 the	 GWAS	 locus	 for	 Alzheimer’s	 disease	 (37	 genes)	 and	 alcohol	
dependence	(5	genes),	and	C4A	has	a	dense	pattern	of	HCRCI	to	other	genes.	Therefore,	although	the	
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pathological	 insights	 provided	 by	 these	 single	 genes	 may	 be	 important,	 an	 exclusive	 focus	 on	 these	
genes	may	be	inadequate	to	fully	understanding	the	etiological	processes	implied	by	the	GWAS	findings.		

A	taxonomy	of	TADs	

In	 studying	 the	 schizophrenia	 results	 in	Table	 S10,	 we	 observed	 that	 genes	 implicated	 by	 HCRCI	 had	
significantly	greater	expression	in	adult	cortex	(R2=0.0058,	P=1.64e-21)	compared	to	genes	identified	by	
location	(R2=0.0014,	P=1.45e-6)	or	eQTLs	(R2=0.0013,	P=7.84e-6).	Inspection	of	these	results	in	genomic	
context	suggested	a	relation	to	adult	brain	TADs	as	11.9%	of	these	TADs	contained	an	association	with	
schizophrenia.	We	note	that	most	CLOZUK	loci	were	entirely	within	an	adult	brain	TAD	(136/145,	and	8	
loci	spanned	2	TADs	and	the	MHC	locus	encompassed	3	TADs).	It	was	readily	apparent	that	these	TADs	
had	markedly	 different	 properties	 leading	 us	 to	 investigate	 quantitative	 characterization	 of	 TADs.	 As	
described	 in	 the	Supplemental	Note,	we	applied	PCA	to	six	 features	 for	each	adult	TAD	(gene	density	
plus	measures	of	adult	cortical	function	including	gene	expression	and	four	adult	brain	Hi-C	readouts).	
None	of	these	six	features	directly	index	schizophrenia	risk.	PC1	captured	44.9%	of	the	variance,	and	the	
item	loadings	indicated	that	PC1	reflected	active	functional	status.		

PC1	was	greater	in	TADs	with	versus	without	a	significant	schizophrenia	association	(P=0.008).	PC1	had	
modest	 predictive	 capacity	 for	 whether	 genetic	 variants	 within	 a	 TAD	 would	 become	 genome-wide	
significant	 in	subsequently	 larger	studies	(using	3	schizophrenia	GWAS:	PGC1	9,394	cases,	7	 loci;	PGC2	
36,989	cases,	108	loci;	and	CLOZUK	40,675	cases,	145	loci)	11,12,56.	TADs	that	did	not	contain	a	significant	
association	 in	 PGC1	 but	 which	 subsequently	 became	 significant	 had	 greater	 mean	 PC1:	 P=0.047	
comparing	PGC1	to	PGC2,	and	P=0.0095	for	PGC1	to	CLOZUK.		

We	converted	PC1	to	deciles.	Of	the	105	TADs	in	the	top	decile	for	PC1,	22.9%	contained	a	genome-wide	
significant	 association	 for	 schizophrenia.	 The	 highest	 PC1	 decile	 was	 significant	 enriched	 for	
schizophrenia	 SNP-heritability	 (pLDSC	 enrichment	 1.64,	 SE=0.113,	 P=5.53e-8),	 the	 lowest	 decile	 was	
significantly	depleted	for	schizophrenia	SNP-heritability	(pLDSC	enrichment	0.68,	SE=0.062,	P=9.19e-7),	
and	all	other	deciles	showed	no	significant	enrichment	 (Figure	S7).	 Intriguingly,	we	observed	a	similar	
pattern	 of	 SNP-heritability	 enrichment	 in	 the	 highest	 decile	 with	 depletion	 in	 the	 lowest	 decile	 for	
diverse	 human	 traits	 (body	mass	 index,	 total	 cholesterol,	 height,	 hemoglobin	 A1C,	 and	 inflammatory	
bowel	disease)	even	 though	PC1	was	mainly	based	on	brain	 functional	genomic	data.	TADs	 in	 the	 top	
decile	were	broadly	expressed	 in	adult	organs	(mean	of	21.0	of	30	GTEx	organs)	compared	to	TADs	 in	
the	bottom	decile	(mean	5.4).	TADs	in	the	top	decile	were	more	likely	to	have	significant	associations	–	
excluding	psychiatric	disorders	–	in	the	NHGRI-EBI	GWAS	catalog	(mean	of	13.8	associations	vs	1.8	in	the	
bottom	 decile).	 The	 proportions	 of	 genes	 in	 a	 TAD	 that	 are	 intolerant	 to	 loss-of-function	 variation	
(pLI>0.9)	 57	 and	which	were	 specific	 to	 pyramidal	 neurons	 and	medium	 spiny	 neurons	 (the	 brain	 cell	
types	 we	 previously	 identified	 to	 be	 enriched	 for	 schizophrenia	 heritability)	 49	 were	 greatest	 in	 the	
second	and	third	deciles	and	lower	in	the	top	or	bottom	deciles.		

As	an	example,	Figure	S9	shows	the	TAD	with	this	highest	PC1	value	(chr11:63.98-67.38	Mb).	This	region	
contains	 two	significant	 loci	 for	bipolar	disorder	and	a	 significant	 locus	 for	 schizophrenia.	Most	of	 the	
TAD	is	a	FIRE	or	super	FIRE,	and	it	is	dense	with	adult	cortex	eQTLs	and	HCRCI.	The	TAD	contains	dozens	
of	genes	expressed	at	high	levels	in	many	tissues.	It	contains	many	significant	associations	from	GWAS	
as	well	as	multiple	disease	connections	in	OMIM.		

Thus,	TADs	are	heterogeneous	with	respect	to	functional	characteristics	and	disease	salience.	TADs	with	
the	most	genes	and	greatest	functional	indices	tended	to	contain	genes	expressed	in	most	of	the	body	
along	with	GWAS	associations	for	many	different	traits.	Top	decile	TADs	are	 large,	complex	multigenic	
regions.	However,	the	lower	end	of	the	functional	spectrum	tended	to	have	intergenic	and	single-gene	
associations	that	may	provide	easier	entrée	into	molecular	networks	underlying	schizophrenia.		
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Rare	genetic	variation	associated	with	neuropsychiatric	disorders	

Exonic	variation.	We	evaluated	the	salience	of	Hi-C	readouts	for	genes	implicated	in	rare	variant	studies	
of	intellectual	disability	(i.e.,	the	lower	tail	of	the	cognitive	ability	distribution).	We	compiled	a	gene	set	
from	literature	reviews,	OMIM,	and	exome	sequencing	studies	58-60.	We	could	not	analyze	schizophrenia	
because	 too	 few	genes	have	been	 identified.	Full	details	of	 this	analysis	are	 in	Table	 S12.	 There	were	
significant	univariate	associations	between	the	implication	of	a	gene	in	intellectual	disability	via	exonic	
variation	 and	 its	 intersection	with	 FIREs,	 TAD	boundaries,	 or	 the	number	of	 chromatin	 interactions	 in	
both	adult	and	fetal	eHi-C	datasets.	In	a	multivariable	model	for	the	adult	eHi-C	data,	intersection	with	a	
TAD	boundary	increased	the	odds	of	being	an	intellectual	disability	gene	by	54%	(OR=1.54,	P=2.56e-4)	as	
did	 the	 number	 of	 chromatin	 interactions	 (OR=1.26	 for	 each	 doubling	 of	 the	 number	 of	 interactions,	
P=6.61e-11).	Intersection	with	an	adult	FIRE	was	not	significant	in	this	model.	In	a	multivariable	model	
for	 the	 fetal	 eHi-C	data,	 the	odds	of	being	an	 intellectual	 disability	 gene	 increased	markedly	with	 the	
number	of	chromatin	interactions	(OR=4.11	for	each	doubling	of	the	number	of	interactions,	P=8.0e-13)	
but	fetal	FIRE	and	TAD	boundary	intersections	were	not	significant	in	this	model.		

Copy	number	variation	(CNVs).	Cases	with	schizophrenia	have	more	rare	CNVs	than	controls	 61.	Excess	
CNV	“burden”	in	cases	can	be	attributed	to	genic	CNVs	with	greater	effects	for	deletion	than	duplication	
CNVs	62,63.	Greater	CNV	burden	 in	cases	persists	after	removing	~10	 large	CNVs	 individually	associated	
with	schizophrenia	 (e.g.,	22q11	or	16p11)	62.	 It	 is	plausible	that	a	CNV	that	disrupts	a	FIRE	or	a	TAD	64	
could	 explain	 some	 of	 the	 excess	 CNV	 burden.	We	 evaluated	 this	 hypothesis	 using	 carefully	 curated	
CNVs	 in	 4,719	 schizophrenia	 cases	 and	 5,917	 controls	 63,65.	 We	 excluded	 large	 CNVs	 known	 to	 be	
associated	with	schizophrenia	 62,	and	controlled	 for	genotyping	batch	and	ancestry.	The	presence	of	a	
CNV	deletion	intersecting	one	or	more	adult	brain	FIREs	was	significantly	associated	with	schizophrenia	
(OR=1.72,	P=3.27e-6)	whereas	CNV	duplications	were	not	associated	(OR=1.10,	P=0.17).	The	presence	of	
a	CNV	deletion	 intersecting	one	or	more	fetal	brain	FIREs	was	modestly	associated	with	schizophrenia	
(OR=1.31,	P=4.7e-3)	 as	were	 CNV	duplications	 (OR=1.22,	P=7.9e-3).	 CNVs	 that	 intersected	 TADs	were	
not	 notably	 associated	with	 schizophrenia:	 adult	 TAD-CNV	 deletion	OR=1.08	 (P=0.60);	 adult-TAD	 CNV	
duplication	OR=1.16	(P=0.047);	fetal	TAD-CNV	deletion	OR=1.07	(P=0.64);	and	fetal-TAD	CNV	duplication	
OR=1.16	(P=0.042).		

Discussion	

Our	 understanding	 of	 human	 genetic	 variation	 is	 currently	 best	 at	 the	 extremes.	 At	 a	 chromosomal	
scale,	there	is	considerable	knowledge	of	the	prevalence	and	medical	relevance	of	variation	(i.e.,	 large	
structural	 variants).	 At	 the	 base	 pair	 scale,	 we	 have	 increasingly	 detailed	 surveys	 of	 the	 nature	 and	
frequency	of	genetic	variation	from	studies	like	TOPMed	and	gnomAD.	Between	these	extremes,	some	
annotations	 appear	 to	 be	 increasingly	 complete	 for	 a	 few	 crucial	 topics	 (e.g.,	 gene	models,	 variation	
causal	 for	 single-gene	 diseases,	 or	 expression	 patterns	 in	 human	 tissues).	 However,	 particularly	 for	
complex	 psychiatric	 disorders	 of	 profound	 societal	 importance,	 there	 is	 an	 unsolved	 problem	 at	
intermediate	 scales:	 given	 the	 typical	 paucity	 of	 exonic	 findings,	 precisely	 how	 do	 the	 thousands	 of	
significant,	 subtle,	 and	 common	 associations	 that	 account	 for	 most	 of	 inherited	 liability	 act	
mechanistically	to	increase	risk	for	disease?		

In	 this	paper,	we	used	deep	eHi-C	datasets	 from	human	cortex	 to	evaluate	 its	utility	 to	systematically	
connect	 GWAS	 loci	 to	 genes.	 This	 is	 a	 key	 deliverable	 of	 these	 genetic	 studies,	 to	 provide	 an	
enumeration	 of	 the	 genes	 implicated	 which	 are	 difficult	 to	 obtain	 otherwise.	 Our	 approach	 was	
somewhat	different	from	prior	efforts	in	that	we	carefully	evaluated	our	data	and	their	salience	prior	to	
the	 major	 component	 of	 the	 paper,	 systematic	 evaluation	 of	 GWAS	 for	 seven	 psychiatric	 disorders,	
Alzheimer’s	disease,	 intelligence,	and	educational	attainment.	 Instead	of	only	considering	 the	genome	
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as	a	1D	object	defined	by	LD	relationships,	we	used	a	3D	functional	snapshot	of	genome	organization	in	
brain	cells.	Moreover,	we	sought	 to	delimit	complexity	via	a	 fuller	evaluation	of	all	 implicated	regions	
(e.g.,	 not	 focusing	on	a	 far	 smaller	 set	of	 “credible”	 SNPs).	 In	doing	 so,	we	 sought	 to	 identify	 a	more	
complete	 parts	 list.	We	 used	 this	 strategy	 to	 connect	 938	 significant	GWAS	 loci	 for	 10	 brain	 traits	 to	
8,595	genes.	These	connections	provide	solid	hypotheses	for	subsequent	biological	experiments.		

We	found	that	genomic	location	is	a	problematic	way	to	understand	the	genes	implicated	by	GWAS	19.	
LD	is	a	fundamental	feature	of	the	genome	with	a	large	body	of	supporting	statistical	genetic	theory	and	
analytical	 methods	 66,67.	 Indeed,	 LD	 has	 been	 essential	 to	 genetic	 discovery	 for	 decades:	 crucial	 to	
linkage	 mapping	 for	 Mendelian	 diseases	 in	 large	 affected	 pedigrees	 and	 a	 fundamental	 reason	 why	
GWAS	“works”	(the	information	in	millions	of	polymorphic	SNPs	can	be	captured	by	many	fewer	SNPs).	
LD	 is	 a	 double-edged	 sword:	 following	 identification	 of	 a	 significant	 locus	 for	 a	 complex	 disease,	 LD	
almost	 always	 confounds	 attempts	 to	 identify	 specific	 genes.	 There	 usually	 are	 many	 loci	 with	
approximately	 the	 same	 significance	 values	 and,	 even	with	 dense	 additional	 genotyping,	 rarely	 can	 a	
single	variant	with	markedly	greater	significance	be	identified.	Leveraging	1D	epigenetic	information	can	
help	in	prioritization	52	although	many	epigenetic	marks	are	common	(e.g.,	brain	open	chromatin	regions	
are	 about	 as	 large	 as	 the	 exome)	 50,	 and	 LD	 remains	 a	 significant	 hindrance	 with	 large	 number	 of	
significant	SNPs	 in	high	LD	 that	overlap	promoters,	open	chromatin,	and	histone	marks.	Difficulties	of	
LD-based	 approaches	 following	 locus	 identification	 in	 complex	disease	warrant	 incorporation	of	more	
informative	data	 types.	 LD	arises	 from	historical	population	genetic	processes	whereas	 the	 chromatin	
interactome	captures	the	functional	organization	of	cells	in	a	disease-relevant	tissue.	These	two	features	
do	not	overlap	well.	Our	results	provide	support	for	the	 idea	that,	 following	genetic	 identification	of	a	
locus	 for	 a	 complex	 disease	 like	 schizophrenia,	 it	 is	 essential	 to	 incorporate	 knowledge	 of	 the	 3D	
interactome	 in	a	disease-relevant	tissue.	Connecting	GWAS	findings	to	genes	using	1D-based	methods	
like	LD	is	often	misleading	given	that	the	genes	 implicated	by	3D	interactome	are	not	 in	LD	or	not	the	
nearest	gene.		

Above	and	beyond	efforts	 to	 connect	 loci	 to	 genes,	we	 identified	 a	widespread	phenomenon	–	 there	
exist	dozens	of	genomic	regions	within	 functionally-defined	TADs	that	contain	 large	numbers	of	genes	
expressed	 in	 brain	 and	 enriched	 for	 schizophrenia	 associations.	 Surprisingly,	 these	 regions	 were	 also	
enriched	for	many	other	brain	and	non-brain	diseases	and	contained	many	genes	with	broad	expression	
patterns.	Within	these	high-activity	megabase-scale	TADs,	however,	different	genes	were	implicated	for	
different	traits.	We	suggest	that	these	observations	expose	a	phenomenon	for	which	we	currently	have	
no	 theory,	 the	 molecular	 mechanisms	 by	 which	 GWAS	 findings	 for	 complex	 disorders	 alter	 the	
coordinate	 regulation	 of	 genes	 in	 these	 dense,	 highly	 active	 genomic	 regions.	 This	 observation	 has	 a	
superficial	 similarity	 to	 the	 “omnigenic”	model	 68	 (but	 see	 also	 69),	 but	differs	 as	we	explicitly	 suggest	
that	 GWAS	 signal	 is	 concentrated	 in	 identifiable	 high-activity	 TADs	 that	 are	 common	 across	multiple	
disorders	as	well	as	in	different	TADs	of	simpler	and	more	accessible	functional	architectures.	We	do	not	
provide	 a	 solution	 to	 this	 complex	 topic;	 however,	 we	 suggest	 that	 articulating	 the	 questions	 and	
acknowledging	the	complexity	is	a	key	initial	step	toward	deriving	a	solution.		

Figure	legends	

Figure	1.	Comparisons	of	high-level	Hi-C	metrics	and	features.	Figure	1a:	Metrics	 for	25	Hi-C	datasets.	
The	 X-axis	 is	 the	 total	 number	 of	 reads	 passing	 quality	 control	 (uniquely	 mapped,	 PCR	 duplicates	
removed),	 and	 the	 Y-axis	 is	 the	 number	 of	 informative	 cis-reads	 (uniquely	 mapped,	 PCR	 duplicates	
removed,	intra-chromosomal,	>15kb	apart).	Point	sizes	are	proportional	to	the	numbers	of	informative	
cis-reads.	Red	diamonds	show	data	we	generated	in	human	brain	using	eHi-C:	filled	red	diamond	is	adult	
temporal	 cortex	 (Adult,	 N=3),	 and	 open	 red	 diamond	 is	 fetal	 cortex	 (Fetal,	 N=3).	 Yellow	 open	 circles	
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show	 fetal	 germinal	 zone	 (GZ,	 N=3)	 and	 cortical	 plate	 (CP,	 N=3)	 17.	 From	 Schmitt	 et	 al.	 32,	 filled	 grey	
circles	 show	 14	 human	 tissues	 and	 7	 cell	 lines.	 Tissues:	 AD=adrenal	 gland;	 AO=aorta;	 BL=bladder;	
DLPFC=brain	dorsolateral	prefrontal	 cortex;	Hippo=brain	hippocampus;	LG=lung;	LI=liver;	 LV=heart	 left	
ventricle;	 OV=ovary;	 PA=pancreas;	 PO=psoas	 skeletal	 muscle;	 RV=heart	 right	 ventricle;	 SB=small	
intestine;	 SX=spleen.	 Cell	 lines:	 GM12878=lymphoblast;	 H1=human	 embryonic	 stem	 cell	 (hESC);	
IMR90=lung	 fibroblast;	 MES=mesoderm;	 MSC=mesenchymal	 stem	 cell;	 NPC=neural	 progenitor	 cell;	
TRO=trophoblast-like	 cell.	 Figure	 1b:	 Brain	 eQTLs	 and	 chromatin	 interactions.	 Scatter	 plot	 of	 genomic	
distance	 between	 chromatin	 interaction	 anchors	 (X-axis)	 and	 mean	 Hi-C	 contact	 frequency	 (Y-axis).	
Using	 the	 CommonMind	 DLPFC	 eQTL	 dataset,	 we	 stratified	 by	 these	 data	 when	 the	 chromatin	
interaction	anchors	did	not	overlap	an	eQTL	(red),	when	they	did	overlap	an	eQTL	(blue).	The	subset	of	
the	chromatin	interaction-eQTL	overlapping	which	have	H3K27ac	or	H3K4me3	mark	are	in	green.		

Figure	2.	Connecting	GWAS	summary	statistics	to	tissues	using	pLDSC	and	bulk	RNA-seq	data	from	GTEx.	
Figure	2a:	Results	of	analyses	connecting	GWAS	summary	statistics	to	tissues	using	bulk-tissue	RNA-seq	
using	pLDSC.	RNA-seq	data	were	 from	48	GTEx	 tissues	 (v7,	after	 removing	5	 tissues	with	N<100).	The	
significance	level	was	0.001	corrected	for	1296	comparisons	(27	GWAS	x	48	tissues),	or	P	<	7.72e-7.	The	
panels	along	the	X-axis	show	the	GWAS	trait.	The	Y-axis	shows	GTEx	tissues.	The	circles	show	significant	
trait-tissue	associations.	Circle	sizes	are	proportional	to	–log10(P).	Blue	circles	are	psychiatric	disorders,	
red	circles	are	 for	brain	trait,	and	green	circles	are	other	traits	and	diseases.	For	clarity,	 traits	with	no	
significant	 associations	 are	 omitted	 from	 the	 figure	 (ADHD,	 age	 at	 menarche,	 Alzheimer's	 disease,	
amyotrophic	 lateral	 sclerosis,	 anorexia	 nervosa,	 autism	 spectrum	 disorder,	 epilepsy,	 hippocampal	
volume,	Parkinson's	disease,	 stroke,	 and	 type	2	diabetes).	 Figure	2b	depicts	a	heat	map	 for	 results	of	
partitioned	LD	score	regression	for	seven	large	GWAS	for	functional	genomic	readouts	(Hi-C,	ChIP-seq,	
gene	expression,	and	open	chromatin)	for	multiple	tissues.	See	Figure	1a	legend	for	abbreviations.		

Figure	 3.	 HCRCIs	 provide	 the	most	 comprehensive	 viewpoint	 of	 SNP-to-gene	 connections.	 Figure	 3a:	
Histogram	of	the	number	of	genes	identified	using	location,	eQLT,	or	HCRCI	evidence	for	each	of	the	10	
brain	disorders,	diseases,	or	traits.	Figure	3b:	Histogram	and	percentages	for	the	number	of	times	a	gene	
was	identified.	A	total	of	5,218	genes	were	implicated,	57.9%	genes	for	one	of	the	ten	traits	and	42.1%	
for	 two	 or	more	 traits.	 Figure	 3c:	 Venn	 diagram	 of	 the	 number	 of	 genes	 implicated	 by	 location	 in	 a	
GWAS	locus	(Location),	by	brain	cortex	eQTL	data,	or	by	HCRCI.	The	latter	dominates.	Genes	implicated	
by	 location	usually	have	eQTL	or	HCRCI	evidence	as	well	but	sole	 reliance	on	 location	yields	an	overly	
simplified	view	of	the	potential	complexity	of	the	implicated	biology.		

Supplemental	figure	legends	

Figure	 S1.	 Circos	plot	 summarizing	 the	 adult	 and	 fetal	 brain	Hi-C	 readouts	 in	 the	 autosomal	 genome.	
From	 the	 outside	 inward,	 the	 tracks	 are:	 (a)	 ideogram	 (chr1ptel	 to	 22qtel	 in	 clockwise	 direction);	 (b)	
gene	density	per	Mb;	1	Mb	A	(green)	and	B	(yellow)	compartment	in	(c)	fetal	brain	and	(d)	adult	brain;	
locations	of	super	FIREs	in	(e)	fetal	brain	(red)	and	(f)	adult	brain	(green);	TAD	boundary	locations	in	(g)	
fetal	brain	and	(h)	adult	brain;	and	chromatin	 interaction	density	per	Mb	in	(i)	 fetal	brain	and	(j)	adult	
brain.		

Figure	S2.	Figure	S2a:	Results	of	PCA	on	Hi-C	compartment	scores	(100	Kb	bins)	from	25	Hi-C	datasets.	X-
axis	is	PC1	(75%	of	variance)	and	Y-axis	is	PC2	(8.0%	of	variance).	The	fetal	samples	clustered	together	as	
did	the	adult	brain	samples.	Point	sizes	are	proportional	to	the	numbers	of	informative	cis-reads.	Filled	
red	diamond	is	our	adult	anterior	temporal	cortex	dataset	(Adult)	and	the	open	red	diamond	is	our	fetal	
cortex	dataset	(Fetal).	Yellow	open	circles	are	fetal	brain	germinal	zone	(GZ)	and	cortical	plate	datasets	
(CP).	Filled	grey	circles	show	14	human	tissues	and	7	cell	lines	(see	Figure	1a	legend	for	abbreviations).	
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Figure	 S2b:	 Clustered	 heat	 map	 of	 Jaccard	 index	 values	 describing	 the	 degree	 of	 overlap	 of	
compartments	across	Hi-C	datasets.		

Figure	S3.	Figure	S3a:	Results	of	PCA	on	Hi-C	TAD	boundary	scores	(40	Kb	bins)	from	25	Hi-C	datasets.	X-
axis	 is	 PC1	 (77%	of	 variance)	 and	 Y-axis	 is	 PC2	 (5.0%	 of	 variance).	 All	 brain	 samples	 clustered	 on	 the	
dominant	PC1.	Point	sizes	are	proportional	to	the	numbers	of	informative	cis-reads.	Filled	red	diamond	
is	 our	 adult	 anterior	 temporal	 cortex	 dataset	 (Adult)	 and	 the	 open	 red	 diamond	 is	 our	 fetal	 cortex	
dataset	 (Fetal).	Yellow	open	circles	are	 fetal	brain	germinal	 zone	 (GZ)	and	cortical	plate	datasets	 (CP).	
Filled	grey	circles	show	14	human	tissues	and	7	cell	lines	(see	Figure	1a	legend	for	abbreviations).	Figure	
S3b:	 Clustered	 heat	map	of	 Jaccard	 index	 values	 describing	 the	 degree	 of	 overlap	 of	 TAD	boundaries	
across	Hi-C	datasets.		

Figure	 S4.	 Figure	S4a:	Results	of	principal	 components	analysis	 (PCA)	on	Hi-C	FIRE	 scores	 (40	Kb	bins)	
from	25	Hi-C	datasets.	X-axis	 is	PC1	 (69%	of	variance)	and	Y-axis	PC2	which	captured	 far	 less	variance	
(5.4%).	 All	 brain	 samples	 had	 high	 scores	 on	 PC1.	 Point	 sizes	 are	 proportional	 to	 the	 numbers	 of	
informative	cis-reads.	Filled	red	diamond	 is	our	adult	anterior	temporal	cortex	dataset	 (Adult)	and	the	
open	red	diamond	 is	our	 fetal	cortex	dataset	 (Fetal).	Yellow	open	circles	are	fetal	brain	germinal	zone	
(GZ)	and	cortical	plate	datasets	(CP).	Filled	grey	circles	show	14	human	tissues	and	7	cell	lines	(see	Figure	
1a	 legend	 for	 abbreviations).	 Figure	 S4b:	 Clustered	 heat	 map	 of	 Jaccard	 index	 values	 describing	 the	
degree	of	overlap	of	FIREs	across	Hi-C	datasets.	

Figure	 S5.	 Venn	 diagram	 of	 chromatin	 interactions	 in	 our	 Adult	 and	 Fetal	 eHi-C	 datasets	 and	 fetal	
cortical	plate	(CP)	and	germinal	zone	(GZ).	Chromatin	interactions	are	between	10	Kb	bins	that	were	≥20	
Kb	apart	and	≤2	Mb	apart	(i.e.,	in	cis).	We	evaluated	these	four	brain	Hi-C	datasets	because	of	relatively	
high	 read	 depths	 (Figure	 1a).	 At	 nominal	 significance	 (Bonferroni	 adjusted	 P<0.05),	 we	 identified	
2,195,401	 chromatin	 interactions	 in	 any	 of	 these	 four	 brain	 Hi-C	 datasets.	 Fetal	 cortex	 had	 greatest	
number	of	chromatin	interactions	(1.25	million),	somewhat	more	than	CP	and	GZ	(0.998	million	each),	
and	more	than	adult	cortex	(0.509	million).		

Figure	 S6.	Multivariable	models	 used	 to	 evaluate	 the	 importance	 of	 chromatin	 interactome	 on	 gene	
expression	 in	 fetal	 and	 adult	 brain.	 A/B	 compartments,	 FIREs,	 and	 chromatin	 interactions	 were	
significant	and	orthogonal	predictors	of	gene	expression	(Model	3,	R2	0.0475).	

Figure	 S7.	 Relationship	 between	 TAD	 PC1	 deciles	 and	 genome-wide	 significant	 findings	 for	 complex	
human	disorders	and	traits.	The	highest	PC1	decile	was	significant	enriched	for	SNP-heritability	while	the	
lowest	 decile	 was	 significantly	 depleted	 for	 SNP-heritability	 for	 diverse	 human	 traits	 and	 disorders.	
bmi2018	 =	 Body	 mass	 index	 GWAS	 (Yengo	 2018);	 choltotal	 =	 Total	 cholesterol	 GWAS	 (Willer	 2013);	
clozuk	 =	 Schizophrenia	 GWAS	 (Pardiñas	 2018);	 edu2018	 =	 Educational	 attainment	 GWAS	 (Lee	 2018);	
giantheight2014	=	height	(GIANT	2014);	hba1c2017	=	Hemoglobin	A1c	GWAS	(Wheeler	2017);	ibd2015	=	
inflammatory	bowel	disese	(2015);	and	iq2018	=	Intelligence	GWAS	(Savage	2018).	

Figure	 S8.	Representative	 loci	with	 evidence	of	 high-confidence	 regulatory	 chromatin	 interactions	 for	
schizophrenia	GWAS.	UCSC	browser	tracks	(top	to	bottom):	GWAS	clumps;	GENCODE	gene	model;	adult	
cortex	 regulatory	 chromatin	 interactions	 (HCRCI);	 adult	 cortex	 eQTLs;	 VISTA	 non-coding	 human	
enhancers	 from	 LBNL	 (if	 present).	 Figure	 S8a:	DPYD	 (chr1:98,220,320-98,562,260)	 is	 a	 representative	
example	 of	 a	 single-gene	 locus.	 Figure	 S8b:	 example	 of	 HCRCI	 bridging	 two	 independent	 loci	
(chr14:30,000,405-30,208,630	 and	 chr14:29,466,667-29,506,667).	 Figure	 S8c:	 SATB2	 is	 in	
chr2:199,908,378-200,305,460	 that	 connects	 via	 multiple	 HCRCI	 to	 another	 locus	 chr2:198,146,381-
198,940,251.	 Figure	 S8d:	 representative	 example	 of	 complex,	 multigenic	 loci	 with	 dense	 patterns	 of	
HCRCI	 (chr22:41,027,819-41,753,603	 and	 chr22:39,840,130-40,091,818).	 Figure	 S8e:	 example	 of	 a	 SCZ	
locus	 (chr3:52,273,421-53,175,017)	 that	overlaps	with	 loci	 for	bipolar	disorder	and	 intelligence.	Figure	
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S8f:	MEF2C	(chr5:87,676,693-88,195,380).	Figure	S8g:	schizophrenia	loci	on	chr6:84,173,028-84,409,255	
and	chr6:83,789,798-83,897,565.		

Figure	S9.	The	TAD	with	the	highest	value	for	PC1	(chr11:63980001-67380000).	From	the	top,	the	tracks	
show:	 significant	 SNP	 associations,	 GWAS	 loci,	 adult	 cortex	 Hi-C	 readouts,	 adult	 cortex	 HCRCI,	 adult	
cortex	eQTLs	 (too	many	 to	display),	 gene	expression	 from	GTEx	 (yellow	 is	 for	brain	 tissue),	 significant	
SNPs	from	the	GWAS	catalog,	and	OMIM	entries.	This	TAD	is	dense	with	genes	expressed	at	high	levels	
across	the	body	and	has	many	disease	connections.		

Online	Methods	

General	&	data	availability	

All	 procedures	 on	 data	 from	 human	 research	 subjects	 were	 approved	 by	 the	 appropriate	 ethical	
committees.	All	genomic	coordinates	are	given	in	NCBI	Build	37/UCSC	hg19.		

Upon	acceptance	of	this	paper,	eHi-C	readouts	will	be	posted	on	the	PGC	website	and	GEO	and	made	
available	in	FUMA	and	HUGIn	(URLs).		

Samples	

Anterior	 temporal	 cortex	 was	 dissected	 from	 postmortem	 samples	 from	 three	 adults	 of	 European	
ancestry	 with	 no	 known	 psychiatric	 or	 neurological	 disorder	 (Dr	 Craig	 Stockmeier,	 University	 of	
Mississippi	 Medical	 Center).	 Cortical	 samples	 from	 three	 fetal	 brains	 were	 obtained	 from	 the	 NIH	
NeuroBiobank	 (gestational	 age	 17-19	 weeks),	 and	 none	 were	 known	 to	 have	 anatomical	 or	 genomic	
disease.	 Samples	were	 dry	 homogenized	 to	 a	 fine	 powder	 using	 a	 liquid	 nitrogen-cooled	mortar	 and	
pestle.	 All	 samples	 were	 free	 from	 large	 structural	 variants	 (>100	 Kb)	 detectable	 using	 Illumina	
OmniExpress	arrays.	Genotypic	sex	matched	phenotypic	sex	for	all	samples.		

Easy	Hi-C	(eHi-C)	methods	

We	used	eHi-C	to	assess	chromatin	interactome	31.	The	eHi-C	protocol	is	biotin-free	and	uses	sequential	
enzymatic	 reactions	 to	 maximize	 the	 recovery	 of	 DNA	 products	 from	 proximity	 ligation.	 The	 main	
advantage	of	this	Hi-C	adaptation	is	that	it	can	generate	Hi-C	libraries	that	are	comparable	to	traditional	
Hi-C	 but	 with	 lower	 sample	 input	 (as	 little	 as	 10	 mg	 brain	 tissue)	 and	 increased	 yield.	 All	 of	 these	
features	of	eHi-C	are	crucial	for	relatively	uncommon	human	postmortem	brain	samples.		

We	 followed	 the	 protocol	 described	 in	 Lu	 et	 al.	 31.	 Pulverized	 tissue	 (~100	mg)	 was	 crosslinked	with	
formaldehyde	(1%	final	concentration)	and	the	reaction	was	quenched	using	glycine	(150	mM).	We	lysed	
samples	on	ice	with	brain	tissue-specific	lysis	buffer	(10	mM	HEPES;	pH	7.5,	10	mM	KCl,	0.1	mM	EDTA,	1	
mM	dithiothreitol,	0.5%	Nonidet-40	and	protease	inhibitor	cocktail),	Dounce	homogenized,	and	digested	
using	 the	 six	 base	 pair	 restriction	 enzyme	HindIII.	 This	was	 followed	by	 in	 situ	 ligation.	 Samples	were	
reverse	 cross-linked	with	 proteinase	 K	 and	 purified	 using	 phenol-chloroform.	 DNA	was	 then	 digested	
with	four	base	pair	restriction	enzyme	DpnII	followed	by	size	selection	using	PCRClean	DX	beads	(Aline	
Biosciences)	(choosing	fragments	between	100-1000	bp).	The	DNA	products	were	self-ligated	overnight	
at	 16°C	 using	 T4	 DNA	 ligase.	 Self-ligated	 DNA	 was	 purified	 with	 phenol-chloroform,	 digested	 with	
lambda	exonuclease,	and	purified	using	PCRClean	DX	beads.	For	re-linearization	of	circular	DNA,	bead-
bound	DNA	was	 eluted	 and	 digested	with	HindIII	 and	 purified	 using	 PCRClean.	 Bead-bound	DNA	was	
eluted	 in	 50	 µl	 nuclease-free	 water.	 Re-linearized	 DNA	 (~50	 ng	 for	 one	 library)	 was	 used	 for	 library	
generation	(Illumina	TruSeq	protocol).	DNA	was	end-repaired	using	End-it	kit	(Epicentre),	“A-tailed”	with	
Klenow	 fragment	 (3ʹ–5ʹ	 exo–;	NEB),	 and	purified	with	PCRClean	DX	beads.	 The	4	µl	DNA	product	was	
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mixed	with	5	µl	of	2X	quick	ligase	buffer,	1	µl	of	1:10	diluted	annealed	adapter	and	0.5	µl	of	Quick	DNA	
T4	ligase	(NEB).	Ligation	was	done	by	incubating	at	room	temperature	for	15	minutes.	DNA	was	purified	
using	 DX	 beads,	 and	 eluted	 using	 14	 µl	 nuclease-free	 water.	 To	 sequence	 eHi-C	 libraries,	 we	 used	
custom	TruSeq	adapters	in	which	the	index	is	replaced	by	6	base	random	sequences.	Libraries	were	then	
PCR-amplified	and	deeply	 sequenced	 (2-5	 independent	 libraries/sample)	using	 Illumina	HiSeq4000	 (50	
bp	paired-end).		

Because	nearly	all	mappable	reads	start	with	the	HindIII	sequence	AGCTT,	we	trimmed	the	first	5	bases	
from	every	read	and	added	the	6-base	sequence	AAGCTT	to	the	5’	of	all	reads.	These	reads	were	aligned	
to	the	human	reference	genome	(hg19)	using	Bowtie	70.	After	mapping,	we	kept	reads	where	both	ends	
were	exactly	at	HindIII	cutting	sites.	PCR	duplicates	with	the	same	positions	and	UMI	were	removed	31.	
We	also	removed	read	pairs	with	the	two	ends	within	the	same	HindIII	fragment.	To	further	filter	valid	
ligation	products	 from	cis-	HindIII	 pairs,	we	 split	 reads	 into	 three	 classes	based	on	 strand	orientation:	
“same-strand”	had	both	ends	on	the	same	strand;	“inward”	had	the	upstream	end	on	forward	strand;	
and	“outward”	where	 the	upstream	end	was	on	 the	 reverse	strand	 31.	 “Outward”	 read	pairs	with	gap	
distance	<1	Kb	between	the	two	corresponding	fragments	were	removed	because	they	might	originate	
from	 undigested	 HindIII	 sites.	 “Inward”	 read	 pairs	 with	 gap	 distance	 <25	 Kb	 between	 the	 two	
corresponding	 fragments	 were	 removed	 because	 they	 might	 come	 from	 self-circled	 DNA	 with	
undigested	HindIII	 sites.	 All	 other	 reads	 are	 valid	 ligation	 products	 and	were	 processed	 as	 described	
below	(FIREs,	chromatin	interactions,	TADs,	and	compartment	A/B	designation).		

Hi-C	readouts	

We	adapted	 in-house	pipelines	 to	process	eHi-C	and	conventional	Hi-C	data	 from	external	datasets	as	
described	previously	 32,71	with	 slight	modifications.	We	used	bwa	mem	 to	map	each	 read	 to	 the	hg19	
reference	 genome,	 retaining	 only	 uniquely	mapped	 reads.	 For	 chimeric	 reads	 overlapping	HindIII	 cut	
sites,	we	only	used	the	5’	end.	We	kept	reads	within	500	bp	of	the	nearest	HindIII	cut	site,	and	removed	
any	intra-chromosomal	read	pairs	within	15	Kb	71.	Processed	data	from	our	eHi-C	and	external	Hi-C	were	
binned	into	100	Kb,	40	Kb,	and	10	Kb	resolution	contact	matrices	for	downstream	analysis.	As	shown	in	
Figure	 S1a,	 we	 evaluated	 Hi-C	 read	 summary	 statistics	 including:	 total	 number	 of	 uniquely	 mapped	
reads	 per	 sample	 (PCR	 duplicates	 removed),	 total	 number	 of	 intra-chromosomal	 reads,	 and	 total	
number	of	informative	intra-chromosomal	reads	which	are	>15	Kb.	For	comparison,	we	include	in	Table	
S1	all	Hi-C	human	tissue	data	available	as	of	mid-2018.	Hi-C	comparison	data	included	Schmitt	et	al.	32	
(14	adult	tissues	and	7	cell	lines)	and	Won	et	al.	17	(3	paired	fetal	samples	from	brain	germinal	zone	and	
cortical	plate).	Data	quality	from	this	study	was	comparable	to	prior	studies	although	our	read	depth	is	
the	highest	of	any	currently	available	Hi-C	dataset	from	human	brain	tissue.		

We	 evaluated	 the	 reproducibility	 of	 the	 40	 Kb	 bin	 resolution	 eHi-C	 contact	 matrices.	 The	 biological	
replicates	of	each	sample	showed	high	reproducibility	(Pearson	correlation	coefficients	>	0.96)	enabling	
pooling	of	all	biological	replicates	for	downstream	analyses.	eHi-C	analyses	are	based	on	N=3	adult	and	
N=3	fetal	cortex	samples	for	chr1-chr22	and	N=2	male	adult	and	N=2	male	fetal	samples	for	chrX	(given	
that	chromatin	interactions	are	distinctive	in	females).		

A/B	compartments	

An	output	of	Hi-C	is	determination	of	“A”	and	“B”	compartments	corresponding	to	contiguous	regions	of	
active	 (A)	 and	 inactive	 chromatin	 (B)	 which	 tend	 to	 self-associate.	 A/B	 compartment	 analysis	 was	
accomplished	with	 an	 in-house	pipeline	 following	 initial	 paper	by	 Lieberman-Aiden	et	 al.	 33.	Hi-C	data	
from	our	adult	cortex,	our	fetal	cortex,	fetal	germinal	zone	and	cortical	plate	samples	from	Won	et	al.	17,	
and	 the	 21	 Hi-C	 datasets	 from	 Schmitt	 et	 al.	 32	 were	 all	 processed	 identically.	 We	 identified	 A/B	
compartments	 at	 100	 Kb	 bin	 resolution.	 We	 applied	 quantile	 normalization	 using	 the	 R	 package	
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“preprocessCore”	 for	 batch	 effect	 removal	 across	 samples.	 We	 then	 applied	 PCA	 to	 the	 quantile	
normalized	matrix	of	compartment	scores,	and	graphed	samples	in	PC1	vs.	PC2	plots.	The	PCA	analysis	
shows	clear	distinctions	between	human	brain	and	non-brain	tissues	and	cell	 lines,	and	developmental	
stage	differences	for	the	brain	samples.		

Topographically	associated	domains	(TADs)	

We	 identified	 TAD	 boundary	 regions	 using	 an	 in-house	 pipeline	 to	 implement	 the	 insulation	 score	
method,	as	described	 in	Crane	et	al.	 72.	Starting	from	40	Kb	bin	resolution	raw	Hi-C	contact	matrix	we	
applied	HiCNorm	73	to	obtain	the	normalized	chromatin	interaction	frequency	matrix.	Next,	each	40	Kb	
bin,	one	at	a	 time	treated	as	 the	anchor	bin,	obtained	 its	“insulation	score”	by	calculating	 the	sum	of	
normalized	 interaction	 frequency	 between	 the	 anchor	 bin	 and	 all	 bins	 ±1	Mb	 of	 the	 anchor	 bin.	We	
further	performed	quantile	normalization	on	the	insulation	score	across	all	samples	using	the	R	package	
“preprocessCore”.	 Finally,	 we	 called	 a	 40	 Kb	 bin	 a	 TAD	 boundary	 region	 if	 its	 insulation	 score	 is	 the	
minimal	in	its	local	neighboring	±1	Mb	region.		

Frequently	interacting	regions	(FIREs)	

Following	our	prior	study	32,	we	applied	an	in-house	pipeline	to	identify	FIREs	using	40	Kb	resolution	Hi-C	
contact	 matrices	 for	 each	 chromosome.	 For	 each	 bin,	 we	 calculated	 the	 total	 number	 of	 cis	 (intra-
chromosomal	15-200	Kb)	interactions.	We	then	applied	HiCNormCis	32	to	remove	systematic	biases	from	
local	genomic	features,	including	effective	fragment	size,	GC	content	and	mappability	73.	We	removed	40	
Kb	bins	in	the	MHC	region.	After	filtering,	64,222	40	Kb	bins	remained	for	analysis.	The	normalized	total	
number	 of	 cis	 intra-chromosomal	 reads	 is	 defined	 as	 the	 FIRE	 score	 32.	We	 then	 performed	 quantile	
normalization	 of	 FIRE	 scores	 across	 all	 samples	 using	 the	 R	 package	 “preprocessCore”	 to	 remove	
potential	batch	effects	among	different	 samples.	We	 transformed	FIRE	 score	using	 log2(FIRE	 score+1),	
and	transformed	FIRE	scores	to	Z-scores	(mean=0	and	standard	deviation=1).	We	designated	FIRE	bins	
as	40	Kb	regions	with	a	FIRE	score	one-sided	P-value	<	0.05.	FIREs	often	cluster	into	contiguous	runs	of	
bins	termed	super	FIREs.	We	used	an	in-house	pipeline	to	call	super	FIREs,	motivated	by	super	enhancer	
calling	algorithms	74,75.	The	method	is	also	described	in	our	previous	study	32.	For	each	Hi-C	sample,	we	
began	 with	 40	 Kb	 FIRE	 bins	 as	 described	 above.	 We	 then	 merged	 consecutive	 40	 Kb	 FIRE	 bins	 into	
contiguous	FIRE	regions,	allowing	for	up	to	one	40	Kb	bin	gap.	We	ranked	these	contiguous	FIRE	regions	
by	 their	 cumulative	Z-scores,	and	plotted	 the	 ranked	FIRE	 regions	as	a	 function	of	 their	 cumulative	Z-
score.	Finally,	we	identified	the	inflection	point	of	such	plot,	and	designated	all	FIRE	regions	to	the	right	
of	the	inflection	point	as	super	FIREs.		

Chromatin	interactions	

We	 applied	 a	 combination	 of	 Fit-Hi-C	 76	with	 default	 parameters	 and	 our	 FastHiC	 77,78	 to	 detect	 long-
range	chromatin	interactions.	Starting	from	10	Kb	bin	resolution	raw	Hi-C	contact	matrices,	we	removed	
any	 10	 Kb	 bin	 overlapping	 the	 ENCODE	 “blacklist”	 (uniquely	mappable	 regions	 that	 nonetheless	 yield	
artificially	high	signal,	URLs)	or	the	MHC	region.	We	then	ran	the	Fit-Hi-C+FastHiC	combination	caller	on	
all	10	Kb	bin	pairs	≥20	Kb	and	≤2	Mb	apart,	resulting	in	a	total	of	43,222,677	bin	pairs.	We	first	applied	
Fit-Hi-C	 to	generate	 informative	 initial	 values,	 from	which	we	 ran	our	FastHiC.	We	applied	a	 stringent	
Bonferroni	correction,	and	only	considered	10	Kb	bin	pairs	with	P	<	0.001/43,222,677	or	P	<	2.31x10-11	
as	 statistically	 significant	 chromatin	 interactions.	 Since	 we	 used	 the	 six	 base	 pair	 restriction	 enzyme	
HindIII	 in	 eHi-C,	 it	 was	 not	 possible	 to	 directly	 apply	 HiCCUPS,	 another	 method	 to	 detect	 chromatin	
interactions	 (predominantly	 CTCF-mediated	 chromatin	 loops)	 as	 it	 was	 designed	 for	 in	 situ	 Hi-C	 data	
with	 the	 four	 base	 pair	 restriction	 enzyme	 MboI.	 Our	 approach	 is	 consistent	 with	 the	 long-range	
chromatin	interaction	calling	algorithm	adopted	by	Won	et	al.	17.	Because	Fit-Hi-C	and	FastHiC	model	the	
global	 background,	 the	 resulting	 chromatin	 interactions	 identified	 (i.e.,	 3D	 peaks	 called)	 are	 enriched	
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with	 long-range	enhancer-promoter	 interactions.	 In	contrast,	HiCCUPS	adopts	a	 local	background,	and	
thus	the	resulting	peaks	are	enriched	with	CTCF	mediated	chromatin	loops.		

Additional	functional	genomic	data	

To	aid	in	the	interpretation	of	our	eHi-C	data,	we	generated	additional	data	from	human	brain	samples.	
Table	 S2	 summarizes	 the	 data	 types	 and	 sample	 developmental	 stage/brain	 region.	Methods	 for	 the	
data	we	 generated	 are	 provided	 below,	 and	methods	 for	 external	 data	 can	 be	 found	 in	 the	 primary	
publications.		

RNA-sequencing	

We	 generated	 bulk-tissue	 RNA-sequencing	 data	 from	 nine	 fetal	 cortex	 and	 nine	 adult	 DLPFC	
(dorsolateral	 prefrontal	 cortex)	 samples.	 The	 collection	 of	 dorsolateral	 prefrontal	 cortex	 and	 the	
psychiatric	 characterization	 are	 detailed	 in	 Zhu	 et	 al.	 79.	 All	 controls	 had	 no	 neurological	 disease	 or	
severe	mental	 illness.	All	 samples	were	 free	 from	 large	 structural	 variants	 (>100	Kb)	 detectable	using	
Illumina	OmniExpress	arrays.	Genotypic	sex	matched	phenotypic	sex	for	all	samples.	We	extracted	total	
RNA	 from	 25	 mg	 of	 pulverized	 tissue	 per	 sample	 using	 Norgen’s	 Fatty	 Tissue	 RNA	 Purification	 Kit	
(Norgen	Biotek,	Thorold,	ON	Canada).	Extracted	RNA	from	the	cell	pellets	(each	with	~3-6	million	cells)	
using	Norgen’s	Total	RNA	extraction	kit.	RNA	concentration	was	measured	using	fluorometry	(Qubit	2.0	
Fluorometer),	 and	 RNA	 quality	 verified	 using	 a	 microfluidics	 platform	 (Bioanalyzer,	 Agilent	
Technologies).	Barcoded	libraries	were	created	(Illumina	TruSeq	RNA	Sample	Preparation	Kit	v4)	using	1	
µg	 of	 total	 RNA	 as	 input.	 Samples	 were	 randomly	 assigned	 to	 bar	 codes	 and	 lanes.	 Libraries	 were	
quantified	using	 fluorometry	and	equal	amounts	of	all	barcoded	samples	were	pooled	and	sequenced	
using	 Illumina	 HiSeq	 2000	 (100	 bp	 paired-end).	 We	 used	 the	 quasi-mapping-based	mode	 of	 Salmon	
(version	 0.8.2)	 80	 to	 generate	 transcript-level	 counts	 from	 RNAseq	 reads	 using	 the	 GENCODE	 gene	
models	 (v26).	 We	 used	 tximport	 to	 generate	 gene-level	 counts	 81	 and	 DESeq2	 82	 for	 differential	
expression	analysis.	We	used	the	WGCNA	R	package	83	for	co-expression	network	analysis	of	our	RNA-
seq	data	from	fetal	and	adult	cortex.	We	also	generated	total-stranded	RNA-seq	from	one	control	DLPFC	
sample	and	one	fetal	cortical	sample.	The	purpose	was	to	enable	detection	of	RNA	sequences	present	in	
brain	but	not	in	GENCODE	gene	models.		

Open	chromatin	

Assay	 for	 transposase-accessible	 chromatin	 sequencing	 (ATAC-seq)	 was	 used	 to	 map	 chromatin	
accessibility	genome-wide	 84.	 This	method	probes	DNA	accessibility	with	hyperactive	Tn5	 transposase,	
which	 inserts	 sequencing	 adapters	 into	 accessible	 regions	 of	 chromatin.	 We	 used	 tissue	 from	 adult	
DLPFC	 with	 no	 history	 of	 psychiatric	 or	 neurological	 disorders	 (N=137)	 50.	 Approximately	 20	 mg	 of	
pulverized	brain	tissue	was	used	for	ATAC-seq.	Frozen	samples	were	thawed	in	1	ml	of	nuclear	isolation	
buffer	 (20	mM	Tris-HCL,	 50	mM	EDTA,	 5mM	Spermidine,	 0.15	mM	Spermine,	 0.1%	mercaptoethanol,	
40%	glycerol,	 pH	7.5),	 inverted	 for	 5	minutes	 to	mix,	 and	 samples	were	 filtered	 through	Miracloth	 to	
remove	 larger	pieces	of	 tissue.	Samples	were	centrifuged	at	1100	x	g	 for	10	min	at	4°C.	The	 resulting	
pellet	was	washed	with	 50	µl	 RSB	buffer,	 centrifuged	 again,	 and	 supernatant	was	 removed.	 The	 final	
crude	 nuclear	 pellet	 was	 re-suspended	 in	 transposition	 reaction	 mix	 and	 libraries	 prepared	 for	
sequencing	as	described	 in	Buenrostro	et	al.	 84.	All	 samples	were	barcoded,	and	combined	 into	pools.	
Each	pool	contained	8	randomly	selected	samples	(selection	balanced	by	case/control	status	and	sex).	
Each	pool	was	sequenced	on	two	lanes	of	an	Illumina	2500	or	4000	sequencer	(San	Diego,	CA,	USA).	Raw	
fastq	files	were	processed	through	cutadapt	(version	1.2.0)	85	to	remove	adaptors	and	low-quality	reads.	
cutadapt-filtered	reads	were	aligned	to	hg19	using	Bowtie2	70	using	default	parameters.	In	alignment,	all	
reads	are	treated	as	single-read	sequences,	regardless	of	whether	ATAC-seq	libraries	were	sequenced	as	
single-end	or	paired-end.	The	aligned	bam	files	were	sorted	using	samtools	(version	0.1.18)	86,	duplicates	
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removed	 using	 Picard	 MarkDuplicates,	 and	 then	 converted	 to	 bed	 format	 using	 BedTools	 (version:	
v2.17.0)	 87.	 ENCODE	 “blacklist”	 regions	 (URLs)	 were	 removed	 (i.e.,	 empirically	 identified	 regions	with	
artefactual	signal	 in	functional	genomic	experiments).	Narrow	open	chromatin	peaks	were	called	from	
the	final	bed	files	using	MACS2.		

ChIP-seq	

We	generated	epigenetic	marks	using	postmortem	adult	and	fetal	cortex	samples	(H3K27ac,	H3K4me3,	
and	CTCF).	All	assays	were	done	using	the	ChIPmentation	protocol	88.	Brain	tissues	were	crosslinked	with	
1%	 formaldehyde	at	 room	temperature	 followed	by	glycine	quenching.	To	 isolate	nuclei,	 tissues	were	
lysed	with	Lysis	buffer	 I	 (10	mM	HEPES;	pH	7.5,	10	mM	KCl,	0.1	mM	EDTA,	1	mM	dithiothreitol,	0.5%	
Nonidet-40,	 and	 protease	 inhibitor	 cocktail)	 for	 10	 minutes	 at	 4°C.	 The	 collected	 nuclei	 were	 then	
washed	with	a	lysis	buffer	II	(200mM	NaCl,	1	mM	EDTA	pH	8.0,	0.5	mM	EGTA	pH8.0,	10	mM	Tris-Cl	pH	
8.0	 and	 protease	 inhibitor	 cocktail)	 for	 20	 minutes	 at	 room	 temperature.	 The	 nuclei	 pellets	 were	
resuspended	 in	 lysis	 buffer	 III	 (10mM	Tris-Cl	 pH	8.0,	 100	mM	NaCl,	 1	mM	EDTA,	 0.5	mM	EGTA,	 0.1%	
sodium	 deoxycholate,	 0.5%	 N-lauroylsarcosine,	 and	 protease	 inhibitor	 cocktail)	 for	 sonication.	 The	
chromatin	was	sheared	for	10	cycles	(15	seconds	on	and	45	seconds	off	at	constant	power	3)	on	Branson	
450	 sonifier.	 For	 the	 pulldowns,	 20-50	µg	 of	 chromatin	was	 used	 for	H3K4me3	 (Abcam,	 ab8580)	 and	
H3K27ac	(Abcam,	ab4729),	and	100-150	µg	for	CTCF	(Abcam,	ab70303).	First,	11	µl	of	Dynabeads	M-280	
(Life	 Technologies,	 Sheep	 Anti-Rabbit	 IgG,	 Cat#	 11204D)	 was	 washed	 three	 times	 with	 0.5	 mg/ml	 of	
BSA/PBS	on	ice	and	then	incubated	with	each	designated	antibody	for	at	least	2	hours	at	4°C.	The	bead-
antibody	 complexes	were	 then	washed	with	 BSA/PBS.	 The	 pulldown	was	 down	 in	 binding	 buffer	 (1%	
Trixon-X	100,	0.1%	sodium	deoxycholate,	and	protease	inhibitor	cocktail	 in	1X	TE)	by	mixing	the	bead-
antibody	 complexes	 and	 chromatin.	 After	 pulling	 down	 overnight,	 the	 bead-antibody-chromatin	
complexes	were	washed	with	RIPA	buffer	(50mM	HEPES	pH	8.0,	1%	NP-40,	0.7%	sodium	deoxycholate,	
0.5M	 LiCl,	 1mM	 EDTA,	 and	 protease	 inhibitor	 cocktail).	 The	 bead	 complexes	 were	 then	 subjected	 to	
ChIPmentation	by	incubating	with	homemade	Tn5	transposase	in	tagmentation	reaction	buffer	(10mM	
Tris-Cl	pH	8.0	and	5mM	MgCl2)	for	10	minutes	at	37°C.	To	remove	free	DNA,	beads	were	washed	twice	
with	 1x	 TE	 on	 ice.	 The	 pulldown	 DNA	 was	 recovered	 by	 reversing	 crosslinks	 overnight	 followed	 by	
PCRClean	DX	beads	purification.	To	generate	ChIP-seq	libraries,	PCR	was	applied	to	amplify	the	pulldown	
DNA	with	illumina	primers.	Size	selection	was	then	done	with	PCRClean	DX	beads	to	choose	fragments	
ranging	from	100-1000	bp.	All	ChIP-seq	libraries	were	sequenced	on	Illumina	HiSeq2500	platform	(50	bp	
single-end).	All	ChIPmentation	reads	were	mapped	to	hg19	of	the	human	genome	using	Bowtie	70.	The	
first	36	bases	of	each	 reads	were	applied	 for	alignment	with	up	 to	2	mismatches	allowed.	To	 remove	
duplication,	 only	 uniquely	 mapped	 reads	 were	 kept	 for	 further	 analysis.	 Peak	 calling	 was	 performed	
using	MACS2	89.		

Comparing	Hi-C	readouts	to	human	genetic	results	

We	 compared	 the	 eHi-C	 readouts	 to	 multiple	 sets	 of	 human	 genetic	 results	 selected	 due	 to	 the	
availability	of	 large	GWAS	 (Table	 S2).	We	evaluated	 the	connection	between	Hi-C	 readouts	and	 these	
GWAS	using	partitioned	LD	score	 regression	 90,91.	 In	effect,	we	estimate	 the	degree	 to	which	 the	SNP-
heritability	of	a	trait	is	enriched	in	a	set	of	genomic	features	(e.g.,	FIREs).	Partitioned	LD	score	regression	
is	an	extension	of	LD	score	regression	allowing	to	estimate	whether	one	or	more	sets	of	pre-specified	
genomic	 regions	 are	 enriched	 for	 the	 SNP-heritability	 of	 a	 trait	 based	 on	 GWAS	 summary	 statistics.	
Briefly,	LD	score	regression	92	estimates	common-variant	SNP	heritability	by	regressing	the	χ2	association	
statistics	 from	 GWAS	 against	 LD	 scores	 (the	 sum	 of	 r2	 for	 each	 SNP	 in	 a	 reference	 population).	 For	
multigenic	traits,	SNPs	in	high	LD	should	on	average	be	more	associated	with	the	trait	than	SNPs	in	low	
LD	as	they	are	expected	to	capture	more	of	the	genetic	effects	on	the	trait.	The	relationship	between	χ2	
statistics	and	LD	scores	 is	directly	dependent	on	the	proportion	of	genetic	variance	of	 the	trait,	which	
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allows	estimation	of	SNP-heritability	92.	Partitioned	LD	score	regression	90	uses	the	same	principle	except	
that	SNPs	are	partitioned	into	functional	categories.	If	some	categories	are	enriched	in	causal	variants,	
the	 relationship	 between	 χ2	 statistics	 and	 LD	 scores	 should	 be	 stronger	 than	 for	 categories	with	 few	
causal	variants.	This	allows	estimation	of	 the	degree	of	enrichment	of	SNP-heritability	 in	one	or	more	
functional	categories.	LD	scores	are	computed	 for	each	category	based	on	the	presence	of	 the	SNP	 in	
the	annotation	(1	if	a	SNP	is	located	in	the	annotation,	0	otherwise).	For	each	annotation	of	interest	(e.g.	
FIREs),	we	added	SNPs	from	the	“baseline	model”	located	within	the	genomic	coordinates	of	the	regions	
as	an	extra	annotation	(1	if	a	SNP	is	in	the	region,	0	otherwise).	For	heritability	enrichment,	we	added	an	
extra	annotation	surrounding	the	annotation	of	interest	(e.g.,	FIREs)	±500	bp	to	prevent	upward	bias	in	
heritability	enrichment	estimates	(as	recommended)	90.	Significance	was	assessed	using	the	enrichment	
P-value,	which	 is	not	corrected	for	other	genomic	annotations.	For	comparison	across	tissues,	we	only	
added	the	annotation	of	interest	and	used	the	coefficient	Z-score	P-value,	which	is	corrected	for	other	
genomic	annotations	(as	recommended)	90.		

Connecting	GWAS	results	to	tissues	using	bulk-tissue	RNA-seq	

We	 obtained	 summary	 statistics	 for	multiple	 human	 traits	 that	 had	 been	 the	 subject	 of	 large	 GWAS	
(Table	 S2).	Our	main	 interests	were	 schizophrenia	 and	 intelligence	 .We	obtained	bulk	 tissue	RNA-seq	
gene	expression	data	from	GTEx	(v7)	43.	We	used	partitioned	LD	score	regression	90	to	test	whether	the	
top	10%	most	specific	genes	of	each	tissue	49	were	enriched	in	heritability.	SNPs	located	in	the	top	10%	
most	 specific	 genes	 (±100	 Kb)	 were	 added	 to	 the	 baseline	 model.	 We	 then	 selected	 the	 heritability	
enrichment	P-value	as	a	measure	of	the	association	with	the	traits.		

Identifying	genes	implicated	by	GWAS	

The	functional	datatypes	are	listed	in	Table	S2.	We	focused	on	adult	and	fetal	cortex.	For	schizophrenia,	
for	 examples,	 cortex	 is	 implicated	 using	 orthogonal	 functional	 genomic	 data	 (bulk	 tissue	 mRNA-seq,	
single-cell	 RNA-seq,	 enhancer	 marks,	 and	 open	 chromatin)	 28,49-51.	 We	 selected	 an	 inclusive	 set	 of	
protein-coding	 genes	with	expression	 in	human	brain	 (GTEx	 v7,	 TPM>1	 in	 any	brain	 region	or	 in	 fetal	
cortex)	43,44.		

We	selected	eQTL	SNP-gene	pairs	from	CommonMind	frontal	cortex,	GTEx	in	any	brain	region	(q<0.05),	
or	in	fetal	cortex	18,43,44.		

We	 identified	high-confidence	chromatin	 interactions	 in	 cortex	 (P<2.31x10-11,	Bonferroni	 correction	of	
a=0.001	for	43,222,677	possible	10	Kb	 interactions	that	were	20	Kb	to	2	Mb	apart,	excluding	any	that	
intersected	centromeres,	ENCODE	blacklist	regions,	or	bins	with	poor	mapping	qualities).	We	identified	
anchors	that	overlapped	enhancers	(E)	or	promoters	(P).	E	regions	were	the	intersection	of:	the	HindIII	
Hi-C	fragment	within	a	10	Kb	anchor,	open	chromatin	in	cortex	50,93,94,	and	either	H3K27ac	peak	95,96	or	
H3K4me3	peak	atop	a	brain-expressed	transcript	start	site.	P	regions	were	defined	as	a	brain-expressed	
transcripts	 overlapping	 open	 chromatin	 in	 cortex	 50,93,94.	 These	 were	 identified	 separately	 using	
functional	 genomic	 data	 from	 adult	 and	 fetal	 cortex.	 For	 adult	 cortex,	 there	 were	 370,994	 high-
confidence	chromatin	interactions	(P<2.31x10-11)	of	which	75,531	were	regulatory	interactions	(E-P	or	P-
P).	For	 fetal	 cortex,	 there	were	969,302	high-confidence	chromatin	 interactions	of	which	75,246	were	
regulatory	interactions	(E-P	or	P-P).	A	down-sampling	analysis	showed	that	the	greater	number	of	high-
confidence	chromatin	interactions	we	due	to	greater	read	depth.		

We	did	not	apply	statistical	prioritization	algorithms	(e.g.,	TWAS,	co-localization,	or	credible	SNP):	these	
widely	used	and	respected	approaches	were	not	aligned	with	our	goal	of	generating	an	inclusive	set	of	
hypotheses.	 Some	 of	 these	methods	 are	 restrictive	 –	 e.g.,	 only	 69	 of	 18K	 significant	 SNPs	 in	 CLOZUK	
were	credible	SNPs	with	posterior	probabilities	>0.9.	Moreover,	to	our	knowledge,	these	methods	have	
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not	 been	 rigorously	 benchmarked	 in	 high-throughput	 experimental	models,	 and	 some	methods	 often	
make	the	limiting	assumption	of	a	single	causal	SNP	per	locus.		

We	compared	our	approach	to	Wang	et	al.	19	who	evaluated	142	SCZ	GWAS	loci	from	the	CLOZUK	study	
12.	The	original	study	reported	145	significant	loci,	and	Wang	et	al.	excluded	the	extended	MHC	region	
and	two	chrX	loci.	Using	their	Hi-C	and	QTL	data,	they	reported	connections	of	SCZ	loci	to	1,111	genes	of	
which	321	were	“high-confidence”	(i.e.,	supported	by	more	than	one	source	of	evidence).	We	used	the	
same	set	of	SCZ	results	but	evaluated	protein-coding	genes	expressed	in	adult	or	fetal	cortex.	The	list	of	
1,111	genes	 in	Wang	et	 al.	 included	786	protein-coding	genes	and	325	genes	of	 less	 certain	 salience:	
pseudogenes	(106),	miscellaneous	RNA	genes	(78),	antisense	transcripts	(71),	and	lincRNAs	(70).	Of	the	
786	protein-coding,	autosomal,	non-MHC	genes	from	Wang	et	al.,	271	were	labelled	as	high-confidence.	
We	 found	 substantial	 overlap	 of	 our	 result	 with	Wang	 et	 al.:	 81.0%	 (596/736)	 of	 the	 protein-coding	
genes	identified	by	Wang	et	al.	were	also	found	by	us,	particularly	their	“high-confidence”	genes	(95.9%,	
260/271).	However,	we	identified	many	more	genes	(1,300	vs	736)	mainly	due	to	our	far	deeper	eHi-C	
data.		

Hi-C	features	and	human	evolutionary	history	

We	assessed	two	main	ideas.	First,	we	wished	to	evaluate	whether	TADs	had	any	relation	to	LD	blocks.	
TADs	and	LD	blocks	are	Kb	to	Mb	sized	genomic	regions	that	define	key	regions	of	interest	in	functional	
genomics	and	human	genetics.	We	did	this	by	evaluating	recombination	rates	and	LD	decay	centered	on	
TAD	boundaries.	Second,	given	the	 importance	of	brain	FIREs,	we	assessed	whether	these	regions	had	
evidence	of	evolutionary	selection.		

TAD	boundaries	and	recombination	rates	

To	 examine	 the	 relationship	 between	 TAD	 boundaries	 and	 recombination	 rates,	 we	 downloaded	 the	
HapMap	recombination	map	(URLs)	97.	We	divided	the	genome	in	40	Kb	bins	and	excluded	regions	with	
<10	SNPs	as	well	as	those	with	poor	mappability,	GC	content,	centromeric	location,	or	poor	performance	
in	functional	genomic	assays	via	the	ENCODE	blacklist.	Each	remaining	40kb	bin	was	dichotomized	as	a	
TAD	boundary	or	not,	based	on	our	TAD	calling	 results.	For	each	bin,	we	calculated	minimal,	maximal	
and	median	recombination	rate.	Previous	studies	have	suggested	that	GC	content	and	SNP	density	both	
influence	recombination	rate	98,99.	We	therefore	calculated	summary	statistics	for	these	two	factors	and	
tested	their	differences	in	TAD	boundaries	and	non-TAD	boundary	bins.		

To	test	whether	recombination	rates	differ	in	TAD	boundaries,	we	took	two	approaches,	one	based	on	
multiple	regression	and	that	other	on	resampling	to	account	for	GC	content	and	SNP	density	 98,99.	The	
regression	 approach	 simultaneously	 adjusted	 for	 GC	 content	 and	 SNP	 density	 98,99.	 The	 resampling	
approach	also	 controlled	 for	GC	content	or	 SNP	density.	 Specifically,	 let	n	 denote	 the	number	of	TAD	
boundary	bins.	We	repeated	the	following	procedure	10,000	times:	from	the	set	of	TAD	non-boundary	
bins,	we	created	a	subset	si,	i	=	1,2,	…	1,000	of	length	n	bins,	by	sampling	bins,	with	replacement,	such	
that	the	distribution	of	GC	content	(or	SNP	density)	 in	si	matched	that	in	the	set	of	TAD	non-boundary	
bins.	For	each	si,	we	calculated	the	median	(across	the	n	bins)	of	relevant	summary	statistics	(median,	
mean	and	max	recombination	rates),	ti.	We	thus	generated	an	empirical	null	distribution	based	on	which	
empirical	p-values	were	derived	for	significance	testing.		

TAD	boundaries	and	linkage	disequilibrium	

To	examine	the	relationship	between	TAD	boundaries	and	LD,	we	computed	LD	r2	values	for	variants	in	
the	 1000	 Genomes	 Project	 67.	 After	 removing	 structural	 variants	 100	 and	 SNPs	 overlapping	with	 small	
insertions	and	deletions,	we	grouped	SNPs	by	whether	they	reside	in	a	TAD	boundary	bin,	similarly	as	in	
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the	previous	recombination	rate	analysis.	We	then	evaluated	LD	decay	pattern	for	SNPs	in	or	not	in	TAD	
boundary	bins.		

Brain	FIREs	and	ancient	positive	selective	sweep	

We	 first	determined	whether	brain	 FIREs	have	evidence	of	positive	 selection	 since	human	divergence	
from	Neanderthals,	as	indicated	by	the	top	5%	Neanderthal	selective	sweep	scores	(NSS,	URLs)	101.	We	
first	compared	brain	FIRE	bins	to	non-FIRE	bins	to	assess	enrichment	for	NSS	scores.	Since	FIRE	and	non-
FIRE	 bins	 differ	 in	 a	 number	 of	 other	 aspects,	 which	 may	 also	 relate	 to	 positive	 selection	 since	
divergence	from	Neanderthals,	we	performed	Fisher’s	exact	test	as	well	as	performed	logistic	regression	
analysis	adjusting	for	GC	content.		

Since	FIREs	are	dichotomized	by	thresholding	on	continuous	FIRE	scores	(Online	Methods),	signals	may	
be	diluted	by	 lumping	the	remaining	~95%	all	as	the	“other”	non-FIRE	category.	We	therefore	also	 (a)	
contrasted	the	extremes	(i.e.,	top	versus	bottom	5%	of	FIRE	score	bins,	or	FIREs	versus	DIREs,	depleted	
interacting	regions)	using	logistic	regression	and	(b)	regressed	on	continuous	FIRE	scores.	For	covariates	
in	 regression	 models,	 we	 assessed	 GENCODE	 gene	 density,	 CTCF	 intensity,	 the	 histone	 marks	 brain	
H3K27ac	and	H3K4me3),	open	chromatin	in	DLPFC,	and	enhancer	status	in	hippocampus	(Table	S2).	We	
included	only	those	that	were	nominally	significant	at	0.05	level	as	covariates	in	testing	for	FIRE	effects.		

Brain	FIREs	and	extent	of	population	differentiation	

Global	 population	differentiation	 (measured	by	 the	 fixation	 index,	Fst)	 is	 informative	 for	 soft	 selective	
sweeps	where	adaptive	mutations	 increase	 in	 frequency	but	do	not	 reach	 fixation	102,103.	We	obtained	
global	 Fst	 scores	 from	 the	 1000	 Genomes	 Selection	 Browser	 (URLs)	 104.	 For	 each	 bin,	 we	 calculated	
summary	statistics	(including	mean	and	median)	for	Fst	scores	for	SNPs	within	the	bin.		

Brain	FIREs	and	signals	of	recent	positive	selection	

Signatures	 of	 classical	 and	 recent	 selective	 sweeps	 can	 be	 gauged	 by	 a	 number	 of	metrics	 105-109.	We	
focused	 on	 the	 integrated	 haplotype	 score	 (iHS)	 statistic	 that	 accommodates	 variants	 that	 have	 not	
reached	 fixation	 for	 signals	 of	 recent	 selection,	 integrating	 signals	 over	 1,000	 generations	 106,109.	 We	
obtained	iHS	statistics	from	the	1000	Genomes	Selection	Browser	(URLs)	104.	For	each	bin,	we	calculated	
summary	statistics	(including	mean	and	median)	for	iHS	scores	for	SNPs	within	the	bin.	

Brain	FIREs	and	extremely	rare	variant	frequency		

We	 assessed	 mutation	 tolerance	 for	 extremely	 rare	 variant	 frequency	 by	 comparing	 singleton	 and	
doubleton	density	based	on	TOPMed	freeze	5b	(URLs,	N=62,784	whole	genome	sequences).		

URLs	
1000	Genomes	Selection	Browser,	http://hsb.upf.edu		

ENCODE	“blacklist”,	http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg19-human		

FUMA,	http://fuma.ctglab.nl/gene2func		

gnomAD,	http://gnomad.broadinstitute.org		

GREAT,	http://bejerano.stanford.edu/great		

HapMap	recombination	map,	ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37		

HUGIn,	http://yunliweb.its.unc.edu/hugin		

Neanderthal	selection,	ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/ntSssTop5p.txt.gz		
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NHGRI/EBI	GWAS	catalog,	https://www.ebi.ac.uk/gwas		

PsychENCODE	portal,	https://www.synapse.org//#!Synapse:syn4921369/wiki/235539		

Psychiatric	Genomics	Consortium,	http://www.med.unc.edu/pgc/results-and-downloads		

SALMON,	https://combine-lab.github.io/salmon		

TOPMed,	https://www.nhlbiwgs.org		
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Table	1.	Analysis	of	Hi-C	features	

Hi-C	feature	 Dataset	 Analysis	 Summary	of	significant	findings	
FIREs	 Fetal	 GREAT	 CNS	axonogenesis,	stem	cell	differentiation,	neural	nucleus	development	
	 	 Model	 Enriched:	H3K27ac	and	CTCF	in	fetal	cortex	

Depleted:	H3K4me3	in	fetal	cortex	and	TSS	
	 Adult	 GREAT	 Regulation	of	autophagy,	phosphoprotein	phosphatase,	neural	nucleus	development,	

detection	of	calcium	ion	
	 	 Model	 Enriched:	typical	enhancers,	open	chromatin,	&	H3K27ac	in	adult	cortex	

Depleted:	H3K4me3	in	adult	cortex	
	 Ventricle	 GREAT	 Actin	cytoskeleton,	myofibril,	contractile	fiber,	sarcomere	
Super	FIREs	 Fetal	 GREAT	 Stem	cell/neuron/CNS	differentiation,	neurogenesis,	cortex	radial	cell	migration	
	 Adult	 GREAT	 Cytoskeletal	protein	binding,	ion	channel	binding,	membrane	organization,	neuron	

differentiation/migration,	etc.		
	 Ventricle	 GREAT	 Actin	binding,	cytoskeletal	protein	binding	
Chromatin		 Fetal	 GREAT	 Transcription	regulation,	glial	proliferation,	oligodendrocyte	differentiation,	growth	cone	

Interactions	 	 Model	 Enriched:	H3K27ac	and	CTCF	in	fetal	cortex	
Depleted:	H3K4me3	&	gene	expression	in	fetal	cortex	

	 Adult	 GREAT	 Postsynaptic	density,	excitatory	synapse	
	 	 Model	 Enriched:	open	chromatin,	typical	enhancer,	CTCF,	&	H3K27ac	in	adult	cortex;	TSS	

Depleted:	H3K4me3	in	fetal	cortex	
TAD		 Fetal	 GREAT	 None	
Boundaries	 	 Model	 Enriched:	CTCF	in	fetal	cortex;	TSS	

Depleted:	H3K27ac	in	fetal	cortex	
	 Adult	 GREAT	 None	

	 	 Model	 Enriched:	CTCF	in	adult	cortex;	TSS	
Depleted:	typical	enhancer	in	adult	cortex	

	 Ventricle	 GREAT	 None	

GREAT	results	for	biological	enrichments	are	summarized	above	with	full	results	in	Table	S3	(binomial	FDR	q-
value	<	0.01).	Super	FIREs	are	relatively	few,	and	the	results	represent	all	fetal	brain	samples	(our	fetal	cortex	
plus	 fetal	 germinal	 zone	 and	 cortical	 plate)	 and	 all	 adult	 brain	 samples	 (our	 adult	 cortex	 plus	 DLPFC	 and	
hippocampus).	Most	of	the	genome	had	≥1	chromatin	interactions,	so	we	evaluated	genomic	regions	with	≥50	
interactions	for	our	adult	brain	data	and	≥100	interactions	for	our	fetal	data.	The	statistical	modeling	is	also	
summarized	above	(there	were	no	available	data	for	heart	ventricles),	and	full	results	are	in	Table	S4.		
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