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Summary 

Microglia are increasingly recognized for their major contributions during brain 

development and neurodegenerative disease. It is currently unknown if these functions 

are carried out by subsets of microglia during different stages of development and 

adulthood or within specific brain regions. Here, we performed deep single-cell RNA  

sequencing (scRNA-seq) of microglia and related myeloid cells sorted from various 

regions of embryonic, postnatal, and adult mouse brains. We found that the majority of 

adult microglia with homeostatic signatures are remarkably similar in transcriptomes, 

regardless of brain region. By contrast, postnatal microglia represent a more 

heterogeneous population. We discovered that postnatal white matter-associated 

microglia (WAM) are strikingly different from microglia in other regions and express genes 

enriched in degenerative disease-associated microglia. These postnatal WAM have 

distinct amoeboid morphology, are metabolically active, and phagocytose newly formed 

oligodendrocytes. This scRNA-seq atlas will be a valuable resource for dissecting innate 

immune functions in health and disease.  
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Highlights 

• Myeloid scRNA-seq atlas across brain regions and developmental stages 

• Limited transcriptomic heterogeneity of homeostatic microglia in the adult brain 

• Phase-specific gene sets of proliferating microglia along cell cycle pseudotime 

• Phagocytic postnatal white matter-associated microglia sharing DAM gene 

signatures 
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Introduction 

Microglia are brain parenchymal macrophages that are implicated in numerous 

neurological diseases, such as Alzheimer’s disease, amyotrophic lateral sclerosis, stroke, 

and brain tumors (Colonna and Butovsky, 2017; Prinz et al., 2011). In addition to their 

classical immune surveillance and scavenging functions, microglia have recently been 

found to actively participate in neural development by modulating neurogenesis and 

pruning synapses (Cunningham et al., 2013; Li and Barres, 2017; Paolicelli et al., 2011; 

Schafer et al., 2012; Ueno et al., 2013). Despite the importance of these multitasking cells, 

little is known about their molecular heterogeneity under physiological conditions and 

especially during development when they perform many critical non-immune functions. In 

addition, due to their transcriptomic resemblance to other myeloid cells which may 

infiltrate the brain parenchyma in disease (Goldmann et al., 2016; Prinz et al., 2017), a 

systematic comparison between microglia and these related immune cells remains an 

imperative task. Therefore, identifying functional subsets of microglia in the context of 

other myeloid cells is an essential step towards a better understanding of brain 

development as well as guiding therapeutic interventions for disease and injury.  

Microglia and most other tissue macrophages are long-lived, self-renewing cells that are 

generated by waves of erythro-myeloid progenitors in the yolk sac, independently of bone 

marrow-derived cells (Gomez Perdiguero et al., 2015; Hoeffel et al., 2015; Li and Barres, 

2017). In mice, microglia migrate to the brain around embryonic day 9.5 (E9.5) and blood-

brain barrier closure around E13.5 has been proposed as a mechanism to confine 

microglia inside the parenchyma (Ginhoux et al., 2010). Consistent with this convoluted 

developmental route, bulk RNA-sequencing (RNA-seq) data demonstrated a roughly 

step-wise differentiation program for microglia (Matcovitch-Natan et al., 2016). However, 

the reliance on general surface markers in these studies could overlook microglial 

heterogeneity, particularly potential transient populations during development, thereby 

underestimating developmental complexity of microglia. Furthermore, although mature 

microglia in different brain regions were shown to have uneven distribution with distinct 

morphologies (Lawson et al., 1990), which seem to correlate with region-specific 

expression profiles (Ayata et al., 2018; De Biase et al., 2017; Grabert et al., 2016), it 
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remains unclear whether there are molecularly defined subtypes of microglia in the adult 

brain and, if so, how they are distributed across brain regions.  

We took an unbiased approach to investigate the heterogeneity of microglia along with 

other brain myeloid cells by performing deep single cell RNA-seq (scRNA-seq) on sorted 

cells across mouse brain regions and developmental stages. scRNA-seq has been 

proved as a powerful tool for dissecting cellular diversity from complex organs with 

minimal prior knowledge (Papalexi and Satija, 2018). We utilized the Smart-seq2 

approach on sorted cells, due to its superior sensitivity and remarkable accuracy 

(Svensson et al., 2017; Ziegenhain et al., 2017). In total, we sequenced 1922 cells to over 

1 million raw reads per cell. Clustering analysis of this complex dataset identified 15 

distinct cell populations, and differential gene expression analysis of these clusters further 

generated lists of marker genes for each population. Two microglia clusters expressed 

signature genes for dividing cells, which we used to reconstruct cell cycle phases and 

produced phase-specific gene sets for microglia. We also found that postnatal and adult 

choroid plexus macrophages were separated into distinct clusters, suggesting a 

developmental phenotypic switch for these particular brain resident macrophages. We 

created a searchable web interface for this dataset as an integrated component of our 

widely used brain RNA-seq website: www.brainrnaseq.org.  

Surprisingly, we found little population-wise heterogeneity among adult homeostatic 

microglia at the whole transcriptomic level. Furthermore, scRNA-seq and bulk RNA-seq 

consistently demonstrated that the typical homeostatic microglia, representing the vast 

majority of adult microglia in different brain regions, were remarkably similar in global 

gene expression despite tissue origins. By contrast, we observed much higher 

heterogeneity in early postnatal microglia. Particularly, we identified a population of 

developing white matter-associated microglia (WAM), that shared transcriptional 

signatures with degenerative disease-associated microglia (DAM) (Keren-Shaul et al., 

2017; Krasemann et al., 2017). We characterized specific molecular markers for postnatal 

WAM, and we further showed that they were amoeboid, metabolically active and highly 

phagocytic. Postnatal WAM transiently appeared in developing corpus callosum and 

cerebellar white matter around the first postnatal week, when they mainly engulfed newly 
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formed oligodendrocytes. Interestingly, unlike DAM (Keren-Shaul et al., 2017; 

Krasemann et al., 2017), appearance of postnatal WAM did not depend on a TREM2-

APOE axis, suggesting that different signals may trigger the emergence of these two 

microglial populations. 

We believe that our myeloid cell atlas with unprecedented resolution in gene expression 

across developmental stages and anatomical domains will serve as a valuable tool for 

dissecting innate immune cell contributions to normal development and brain disease. 

 

Results 

Clustering of brain myeloid cells across developmental stages by deep scRNA-seq 

To understand the spatiotemporal heterogeneity of microglia and other brain myeloid cells 

in an unbiased manner, we used a semi-automated Smart-seq2 platform to perform 

single-cell RNA sequencing (scRNA-seq) on index sorted innate immune cells from the 

mouse brain (Figure 1A). We sequenced a total of 1922 cells to a depth of at least 1 

million raw reads per cell, from embryonic day 14.5 (E14.5), postnatal day 7 (P7) and 

adult (P60) brain tissues. We reasoned that deeper sequencing would allow us to detect 

more genes compared with other scRNA-seq technologies, which could reveal even 

subtle differences among possible microglial subpopulations. We also analyzed non-

microglia myeloid cells, due to their resemblance to parenchymal microglia and possible 

links to degenerative diseases and injury. To uncover microglial regional heterogeneity, 

we isolated myeloid cells (for P7 and P60 stages) from six brain regions: cortex, 

cerebellum, hippocampus, striatum, olfactory bulb, and choroid plexus. We used a 

recently developed protocol for cell extraction to minimize microglial activation (Bennett 

et al., 2016). For the E14.5 stage, we gated on c-Kit-CD45+; for the P7 and P60 stages, 

we gated on CD45lowCD11b+ versus CD45hiCD11b+ for microglia and myeloid cells, 

respectively (Figures 1B and S1A). Fluorescence intensities from other relevant markers, 

such as F4/80 (macrophage marker), CD41 (hematopoietic progenitor marker) and 
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TMEM119 (homeostatic microglia marker), were recorded as part of the metadata in this 

multidimensional dataset (Figures 1A and S1A).  

Using stringent criteria, 1816 cells (94.5% of 1922) passed quality control for downstream 

analysis, including 142 E14.5 cells, 978 P7 cells, and 696 P60 cells from various brain 

regions (Figures S1B-S1D; see the Methods). To assess the sensitivity and accuracy of 

the data, we analyzed the sequencing results for External RNA Controls Consortium 

(ERCC) Spike-In RNA, and found that our Smart-seq2 platform had nearly single 

molecule detection limit and high precision (R=0.98) (Figures S1E and S1F; see the 

Methods). When comparing our sequencing data for adult microglia with two other 

published scRNA-seq datasets (Keren-Shaul et al., 2017; Matcovitch-Natan et al., 2016), 

our study detected about 3 times as many genes per cell, and produced higher detection 

rates for over 80% of genes (Figures S1G and S1H). In summary, we generated a high-

quality multidimensional scRNA-seq dataset for region-specific microglia and brain 

myeloid cells across developmental stages, and we incorporated these data into our 

widely used brain RNA-seq website (www.brainrnaseq.org). 

To study the transcriptomic heterogeneity of brain myeloid cells, we carried out 

unsupervised clustering analysis for all 1816 cells, which gave rise to 15 distinct clusters 

(Figure 1C). Through differential gene expression analysis, we discovered a list of 

enriched genes for each cluster as potential markers (Table S1). Expression of these 

genes uniquely or in combinations represented individual cluster identities (Figures 1F 

and 1G). Based on these gene lists and other metadata, such as the developmental stage 

and FACS gating information for the cells from each cluster (Figures 1D and 1E), we 

annotated the 15 clusters into distinct cell types or states. This included 7 microglia 

clusters, 2 choroid plexus macrophage clusters, 3 monocyte clusters and 3 other immune 

or epithelial cell clusters (Figure 1C). Of note, some clusters had less than 20 cells (e.g. 

cluster 14, Natural killer cells), but were robustly identified as distinct and biologically 

meaningful clusters, suggesting the reliability of the current technology even for small 

numbers of cells. 
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Interestingly, we observed that different clusters of microglia, choroid plexus cells or 

monocytes tended to be most closely juxtaposed on the tSNE plot, implicating the overall 

similarities between clusters of each cell type (Figure 1C). For example, neighboring 

clusters 0-6 were deemed “microglia-like” cells (Figures 1C and 1D). They all expressed 

microglial signature genes such as P2ry12 and Slc2a5 (Figure 1G) (Bennett et al., 2016; 

Zhang et al., 2014), and these cells were largely isolated from the CD45low gate, whereas 

cells from other “non-microglia” clusters were almost exclusively from the CD45hi gate 

(Figure 1D). We noticed the presence of many CD45hi cells from the P7 stage in 

“microglia-like” clusters, suggesting the heterogeneity of CD45 immunophenotypes in 

early postnatal microglia. Furthermore, according to the developmental stages, these 7 

microglia clusters were segregated into unidirectionally shifted domains on the tSNE plot, 

consistent with progressive changes in gene expression during microglial development 

(Figure 1E) (Matcovitch-Natan et al., 2016).  

Postnatal transcriptional alteration of choroid plexus macrophages 

We first focused on non-microglia clusters. Consistent with the bone marrow origin of 

circulating myeloid cells, we observed that monocyte and neutrophil clusters comprised 

intermingled P7 and P60 cells within each cluster (Figures 1C and 1E). On the other hand, 

choroid plexus macrophages (CP MΦ) as resident macrophages at central nervous 

system (CNS) interfaces, have yolk-sac and bone marrow dual origins (Goldmann et al., 

2016). Remarkably, CP MΦ were separated into two distinct clusters (cluster 7 and cluster 

9) largely confined to their developmental stages (Figure 1E). Only in the adult CP MΦ 

cluster (cluster 7) did we detect high levels of MHC-II gene expression (e.g. H2-Ab1, Cd74, 

H2-Aa, H2-Eb1) (Figure 2A). Along with these genes involved in antigen presentation, we 

also found elevated expression of other immunoregulatory genes, such as Fkbp5, 

Tsc22d3, Axl and Lilra5 in cluster 7. By contrast, postnatal CP MΦ (cluster 9) expressed 

many genes that function in endocytosis and intracellular trafficking of nutrients or 

signaling molecules (e.g. Snx6, Snx2, Dab2, Cd36, Ap1b1, Mrc1) (Figure 2A). We 

identified H2-Eb1 and Lilra5 as molecular markers for adult CP MΦ and Clec4n for their 

postnatal counterparts, and validated this selective gene expression by RNA in situ and 

immunohistochemistry (Figures 2B-2D). Our lab has previously demonstrated that 
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microglia turn on homeostatic genes during postnatal development (Bennett et al., 2016). 

Here we show that CP MΦ are a second example of brain resident macrophages that 

undergo a postnatal transcriptional alteration.  

Limited transcriptomic heterogeneity of adult homeostatic microglia 

Within the 7 microglia clusters, adult microglia were almost exclusively present in cluster 

0 and cluster 6 (Figures 1C-1E). Both clusters expressed similar levels of homeostatic 

microglial signature genes (Figure S2A), with the exception of slightly reduced P2ry12 

expression in cluster 6 (Figure 3A). Compared with cluster 0, only 27 total genes 

(including P2ry12) were differentially expressed in cluster 6, out of which half were 

immediate early genes (IEG) (Table S2; Figure 3A). Therefore, we annotated cluster 6 as 

“IEG+” microglia. Since these immediate early genes can be rapidly induced in response 

to environmental stimuli, and the microglia extraction procedure is likely to trigger such 

an artificial response, we examined the expression of the two most up-regulated IEG 

genes, Fos and Egr1, on tissue sections. Indeed, adult microglia stained negative for 

Fos/Egr1 transcripts or proteins, whereas their expression was readily detected in the 

surrounding non-microglial cells (Figures 3B, 3C, S2B and S2C). This result is consistent 

with recent studies showing that immediate early gene expression by microglia was only 

found in sorted cells but not with the RiboTag technology (Ayata et al., 2018; Haimon et 

al., 2018). Taken together, if we consider the contribution of IEGs to the clustering result 

as an experimental artifact, the vast majority of adult microglia from different brain regions 

appear to show the classical homeostatic phenotype with remarkable transcriptomic 

similarity.  

Since we collected cells from different areas of the brain, these analyses imply that adult 

homeostatic microglia have a similar expression profile despite varying regions-of-origin. 

Indeed, we found that less than 20 genes were differentially expressed (FDR < 0.05) in 

typical adult microglia (cluster 0) between regions (Figure 3F; Table S3). To rule out a 

sensitivity issue of scRNA-seq, we performed region-specific bulk RNA-seq of highly 

purified homeostatic microglia sorted with TMEM119 antibodies, which label over 90% of 

microglia in the adult brain (Bennett et al., 2016). Consistent with our scRNA-seq data, 
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samples from cortex, cerebellum, hippocampus and striatum were highly correlated 

(R>0.99), and individual samples did not cluster according to tissue origins, suggesting 

remarkable similarities between homeostatic microglia from different brain regions 

(Figures 3D and 3E). Moreover, we could not detect any differentially expressed genes 

(FDR < 0.05) between regions from the bulk samples (Figure 3F; Table S3). Conversely, 

we found that certain genes previously attributed to microglial regional heterogeneity were 

largely expressed by different populations of non-microglial cells from our scRNA-seq 

data (Grabert et al., 2016) (Figure S2D). These data suggest that classical adult microglia 

with homeostatic signatures (e.g. Tmem119 and P2ry12), as the most dominant microglial 

population in the healthy brain, have only limited, if any, transcriptomic heterogeneity 

across brain regions. 

Phase-specific gene expression of dividing microglia along cell cycle pseudotime 

We next characterized postnatal microglia, which were distributed among clusters 0-5 

(two P7 cells in the IEG+ cluster 6 were excluded from the analysis) (Figure 4A, upper 

left). These included two clusters corresponding to dividing cells in two cell cycle phases 

(cluster 3 and 4), one embryonic-like cluster (cluster 5), two postnatal cell-specific clusters 

(cluster 1 and 2), and a few cells in the adult homeostatic cluster (cluster 0) bordering 

cluster 2.  

Microglia in the first two postnatal weeks are highly proliferative (Nikodemova et al., 2015). 

Previous work showed that in scRNA-seq analysis, cell cycle genes can overload the 

major principal components that underlie cell-to-cell variations, thereby masking other, 

more functionally relevant, differences between cells (Buettner et al., 2015). Indeed, many 

cell cycle genes ranked at the top of the first 3 principal components explaining variations 

in P7 microglia, and using conserved cell cycle genes for clustering, these cells were 

clearly segregated based on their presumable cell cycle phases (Figures S3A and S3C). 

To eliminate this confounding factor and unmask the underlying microglial heterogeneity, 

we used an established algorithm to regress out cell cycle effects followed by re-clustering 

of these P7 microglial cells (Figures S3B and S3C; see the Methods). This approach 

yielded three clusters: P7-C0, P7-C1 and P7-C2 (Figure 4A). Interestingly, these three 
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clusters largely corresponded to the three dominant cell cycle-independent clusters 

(cluster 1, 2 and 5) found in the original analysis, and the two original cycling clusters 

(cluster 3 and 4) were simply re-distributed among P7-C0, P7-C1 and P7-C2 following 

cell cycle regression (Figure 4A). These findings suggested that, irrespective of cell cycle 

states, there were only 3 categories of microglia at the P7 stage, and that the two major 

clusters (P7-C0 and P7-C1) were each comprised of non-dividing cells and their 

corresponding dividing cells in two cell cycle phases (Figure 4A).  

It is of great interest to understand the gene regulation of microglial division because 

microgliosis is prevalent in disease and injury. We took advantage of the scRNA-seq data 

that presumably included gene expression information of individual dividing microglia at 

various phases of the cell cycle, and computationally reconstructed this dividing process 

(Figures 4B, S4A and S4B; see the Methods). To obtain cell cycle phase-specific gene 

sets for endogenous microglia, we analyzed the P7 microglia (P7-C0 and P7-C1 were 

analyzed separately) due to their sufficient population sizes, although we could also 

detect 11 dividing adult microglia in our data (Figure 1E). We used lists of conserved 

genes from a well-established dataset for HeLa cell lines as the “seeds” to reconstruct 5 

cell cycle phases along microglial division pseudotime (see also Methods) (Macosko et 

al., 2015; Whitfield et al., 2002). Then the algorithm searched for other genes correlated 

with phases and refined the ordering of cells based on updated phase-specific gene 

expression. Through a number of repetitions, lists of genes stably assigned to each phase 

were obtained (Figures 4B, S4B, and S4D; Table S4). Averaged expression of these gene 

sets showed a “wave-like” pattern along the dividing pseudotime, whereas microglial 

signature genes were expressed at a consistent level (Figures 4C and S4C).  

In total, we identified 315 periodically expressed genes for P7-C0 cells, and 347 genes 

for P7-C1 cells (some genes were expressed in more than one phase) (Table S4). 

Excluding the seeds input, 254 (81% of 315) genes for P7-C0 and 227 (65% of 347) 

genes for P7-C1 were identified by the algorithm, and 183 genes overlapped in both 

clusters. We compared these machine-reported gene lists with four published datasets 

for experimentally characterized cell cycle genes (including the HeLa data we used as 

seeds), and found that the majority of newly identified genes appeared in at least one of 
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the four datasets (Figures 4D and S4E), suggesting the robustness of this analysis. More 

importantly, we identified many genes that have yet to be described as periodically 

expressed in dividing cells, although more than half of these new genes have possible 

links to cell proliferation based on gene function annotations (Figures 4E and S4F). For 

example, we discovered genes that are involved in DNA damage response and repair 

(Ankle1, Lig1, Rpa1), histone mRNA decay (Eri1), and genes with epigenetic functions 

such as replication-independent histones (H2afz, H3f3b) and chromatin modifiers 

(Hmgn2, Dnmt1) (Figure 4F).  

Heterogeneity of postnatal microglia revealed by scRNA-seq 

To understand early postnatal microglial heterogeneity, we next examined three P7 

clusters (after cell cycle regression). Interestingly, P7-C2 was a small cluster that mainly 

included cells clustered together with embryonic E14.5 microglia (cluster 5) in the initial 

analysis, suggesting the presence of primitive microglia in the postnatal brain (Figures 1C 

and 5A). Cells belonging to P7-C2 expressed microglial signature genes at lower levels 

(e.g. Tmem119, Selplg, P2ry12, Tgfbr1), and displayed up-regulation of genes in metal 

homeostasis (Fth1, Ftl1, Mt1), actin cytoskeleton dynamics (Tmsb4x, Pfn1, Cfl1), and 

ribosomal components (e.g. Rps14, Rps18, Rpl35, Rps29) (Figure 5B; Table S5).  

The majority of P7 microglia fell into either P7-C0 or P7-C1 cluster. Microglia from both 

clusters expressed homeostatic genes, such as Tmem119, P2ry12, Tgfbr1, Siglech, and 

Sall1, but P7-C1 cells expressed them at lower levels (Figure 5C; Table S5). Remarkably, 

P7-C1 microglia exhibited characteristic expression of many genes that have recently 

been shown to be up-regulated in degenerative disease-associated microglia (DAM) 

(Keren-Shaul et al., 2017; Krasemann et al., 2017). These included Spp1, Gpnmb, Igf1, 

Clec7a, Lpl, Cd9, Cd63, Lgals3, Fabp5, Itgax, Apoe and Tyrobp (Figure 5C). When we 

directly compared differentially expressed genes in P7-C1 (relative to P7-C0) with those 

mis-regulated in DAM, we found that they were strikingly similar in that up-regulation of 

the disease genes was accompanied by down-regulation of the homeostatic gene 

cassette (Figure 5D). To obtain a better understanding of the genes underlying P7 

microglial heterogeneity, we generated a gene network based on correlation between 
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pairs of genes in all P7 microglia (Figure 5E; see the Methods). We highlighted the nodes 

with colors corresponding to the significance levels in differential gene expression 

analysis and cluster signatures they represented. We found that three interconnected 

gene modules explained P7 microglia identities and, more importantly, many DAM 

signature genes occupied the “hub” positions in the network.  

Validation of postnatal developing white matter-associated microglia  

We were fascinated by the resemblance of the P7-C1 microglia to DAM in gene 

expression, and examined these postnatal microglia in greater detail. We noticed that the 

top ranked marker genes, Spp1 and Gpnmb, also distinguished this microglial subset 

from all other myeloid cell populations (Figures 6A and S5A; Table S5). Surprisingly, RNA 

in situ labeling demonstrated that expression of these two genes overlapped almost 

exclusively in the corpus callosum and cerebellar white matter, and that Spp1+Gpnmb+ 

cells were positive for the microglia marker Cx3cr1 (Figure 6B). scRNA-seq data 

suggested that this P7-C1 population also had higher levels of Igf1 and Itgax expression. 

Indeed, we detected co-expression of both transcripts in Gpnmb-positive cells (Figures 

6C and S5B). Because the Gpnmb-labeled P7-C1 microglia were intermingled with Mbp+ 

oligodendrocytes in the developing white matter (Figure 6D), we named them postnatal 

white matter-associated microglia (WAM).  

Intriguingly, we discovered that postnatal WAM and periventricular myeloid cells 

specifically expressed CLEC7A protein (Figure 6A, 6E, and S5A), which labels microglia 

surrounding amyloid plaques in mouse models of Alzheimer’s disease (AD) and has been 

described as a marker for DAM (Keren-Shaul et al., 2017; Krasemann et al., 2017). To 

further characterize postnatal WAM, we stained P7 microglia with the surface proteins, 

CLEC7A and GPNMB, and sorted the double positive cells by FACS (Figure 6F). 

GPNMB+CLEC7A+ cells also expressed higher levels of LILRB4 and CD63 which were 

part of the P7-C1 RNA signature and further established the identity of this microglial 

population (Figures 6A, 6F, and 6G). Additionally, scRNA-seq of microglia freshly isolated 

based on GPNMB and CLEC7A co-expression validated the original gene expression 

pattern observed with the initial P7 clustering results; the clustering algorithm also 
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reported another GPNMB+CLEC7A+ concentrated cluster which overlapped with a portion 

of P7-C1 cells (Figure 6H and 6I). This new double positive cluster expressed all the 

markers identified in P7-C1, just at higher levels on average and in a much higher 

percentage of the cells (Figure 6I; Table S5). This was possibly due to the enrichment of 

this postnatal WAM subset at their most polarized state. Consistent with this interpretation, 

Spp1 was detected in close to 100% of the double positive cells by scRNA-seq, and SPP1 

only labeled a portion of CLEC7A+ cells on tissue sections, presumably representing the 

most typical form of postnatal WAM (Figure S5C). Interestingly, postnatal WAM also 

displayed distinct cytokine/chemokine secretion profiles, including Ccl3 and Ccl4 which 

have been linked to microglia in aging and AD models (Kang et al., 2018) (Figure S5D). 

Because there seemed to be a gradient shift in overall gene expression from P7-C0, to 

P7-C1, to P7-GPNMB+CLEC7A+ cells (Figure 6H), we performed developmental 

pseudotime analysis to computationally reconstruct possible developmental trajectories 

of postnatal microglia. We discovered that one trajectory pointed towards the 

development of postnatal WAM, while the other pointed towards homeostatic, mature 

cells (Figure 6J). These data suggest that postnatal immature microglia can either turn 

on genes specific for classical microglia found in the adult brain (P60-homeostatic) or 

assume the WAM phenotype (P7-C1 and P7-GPNMB+CLEC7A+) similar to DAM in aging 

and neurodegeneration (Figure 6K).  

Transient appearance of WAM with peak at P7, independent of TREM2 or APOE 

To investigate the temporal and spatial appearance of postnatal WAM during 

development, we stained brain sections from E17.5 to P60 with CLEC7A antibodies. In 

general, we discovered that CLEC7A+ microglia were associated transiently with the 

developing white matter, and found in regions of neurogenesis. During the late embryonic 

(E17.5) stage, CLEC7A+ microglia appeared almost exclusively in the neurogenic niches 

near the lateral ventricles (Figure 7A), while CLEC7A-IBA1+ cells were present throughout 

the brain parenchyma. Starting at P4, CLEC7A+ microglia populated the corpus callosum 

and cerebellar white matter (Figure 7B), and they continued to expand and peaked 

around P7 (Figures 6E and 7E). By P14, these white matter-associated microglia were 
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barely detectable (Figures 7C and 7E). Interestingly, starting at P14 and becoming more 

prominent during adulthood, CLEC7A+ microglia were also observed in the hippocampal 

dentate gyrus region, the subventricular zone and along the rostral migratory stream 

where adult neurogenesis and precursor migration occur (Figures 7C and 7D). The 

presence of CLEC7A+ microglia in these strategic niches indicated that they might be 

involved in embryonic and adult neurogenesis. Morphologically, CLEC7A+ microglia in 

the P7 white matter were amoeboid in shape and had thicker primary branches with larger 

cell bodies (Figures 7F-7H). By contrast, CLEC7A- microglia in the cortex were much 

more ramified. These CLEC7A+ cells also congregated at a higher density compared with 

CLEC7A- immature microglia (Figures 7F, 7H, and S6A). Taken together, these data 

suggest that postnatal WAM represent a specialized population which transiently appears 

in the developing white matter, rather than a general immature state for all microglia.  

It has been shown that transcriptional changes in degenerative disease-associated 

microglia depend on the TREM2-APOE pathway, and the DAM signature genes such as 

Spp1, Gpnmb and Clec7a are suppressed in disease models that also lack Trem2 or 

Apoe (Keren-Shaul et al., 2017; Krasemann et al., 2017). Surprisingly, despite their 

similarity in gene expression to DAM, amoeboid Gpnmb+Spp1+CLEC7A+ microglia were 

still densely populated in the P7 white matter of Trem2 or Apoe knockout mice (Figures 

7I and S6B-6E). These data suggest that, unlike DAM, postnatal WAM do not depend on 

TREM2 or APOE for their polarization to occur. 

Phagocytosis of newly formed oligodendrocytes by postnatal WAM 

To investigate the biological functions of postnatal WAM, we followed up on our 

histological observation that CLEC7A+ microglia in the developing white matter had 

amoeboid shapes and frequently contained pyknotic nuclei (Figures 8A and 8B; Movie 

S1). Amoeboid morphology has indeed been associated with a phagocytic state in 

microglia or macrophages (Bohlen et al., 2017; Ling and Wong, 1993). To compare the 

phagocytic capability between CLEC7A+ and CLEC7A- microglia in the postnatal brain, 

we exposed acutely sectioned brain slices to pH-sensitive beads and quantified 

percentages of microglia that engulfed fluorescent beads based on CLEC7A expressivity 
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and brain regions. We found that only CLEC7A+ microglia in the corpus callosum and 

cerebellum preferentially phagocytosed beads (Figures 8C, 8D, S7A, and S7B), and this 

phenomenon was independent of opsonizing factors or other components in serum 

(Figure 8D). These results suggest that postnatal WAM are highly phagocytic. 

Since the occurrence of postnatal WAM effectively correlates with the onset of CNS 

myelination when newly formed oligodendrocytes undergo massive cell death (Barres et 

al., 1992; Trapp et al., 1997), we hypothesized that postnatal WAM might phagocytose 

some of these oligodendrocytes. Labeling oligodendrocytes with MBP in the CX3CR1-

GFP mouse showed that microglia extensively interacted with star-shaped MBP+ cells in 

the developing white matter (Figure 8E). More importantly, we observed postnatal WAM 

containing cleaved Caspase-3 (cCASP3)-positive inclusions, which were MBP positive 

and possessed pyknotic nuclei (Figures 8E, 8F, and S7E; Movie S2). These data suggest 

that postnatal WAM phagocytose dying newly formed oligodendrocytes during 

myelination. Interestingly, cCASP3-negative oligodendrocytes were frequently “hugged” 

by postnatal WAM, raising the possibility of them actively contributing to elimination of 

cells (Figure 8G). Moreover, we rarely observed juxtaposition of PDGFRA+ 

oligodendrocyte precursor cells (OPCs) with postnatal WAM (Figures 8H and S7C), 

suggesting that this phagocytic activity mainly targets newly formed oligodendrocytes but 

not their precursors. In addition, we could not find cCASP3+ Aldh1l1-GFP labeled 

astrocytes, although substantial interactions between astrocytes and postnatal WAM 

existed (Figures 8H, S7D, and S7F). Remarkably, Mbp and Gfap transcripts were 

detected in certain percentages of P7-C1 (32/323=9.9% for Mbp; 5/323=1.5% for Gfap) 

and P7-GPNMB+CLEC7A+ microglia (26/192=13.5% for Mbp; 17/192=8.9% for Gfap) by 

scRNA-seq, while Pdgfra counts were zero in all P7 microglia (Figure 8I). Because the 

detection rates for P7-C0 microglia (8/274=2.9% for Mbp; 2/274=0.7% for Gfap) were 

more than 2 folds lower for both genes (P<0.001 for either gene, Chi-squared test), these 

differences were unlikely due to mRNA contamination during cell isolation. The simplest 

explanation is that scRNA-seq sufficiently captured transcripts from engulfed 

oligodendrocytes (Mbp) or astrocytes (Gfap) in postnatal WAM. Taken together, these 
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data suggest that postnatal WAM phagocytose newly formed oligodendrocytes and 

perhaps to a lesser extent, astrocytes. 

 

Discussion 

Microglia and related brain myeloid cells are now recognized as functional modulators of 

developmental processes and neurodegeneration (Li and Barres, 2017). It is commonly 

accepted that heterogeneous myeloid populations are involved throughout the course of 

disease progression (Prinz et al., 2011). The extent of microglial heterogeneity and its 

functional significance in the mature homeostatic brain, however, remains elusive. The 

picture is even less clear when the additional variable of developmental stages is 

considered. In this study, we used deep single-cell RNA sequencing (scRNA-seq) to 

address the question of microglial heterogeneity in the broad context of innate immune 

cells, and we systematically analyzed transcriptomes of these cells from distinct brain 

regions and across developmental time points.  

We utilized a semi-automated Smart-seq2 platform to perform deep sequencing for 

individual cells. The superb sensitivity and accuracy of this scRNA-seq technology 

compensates for its limitation in throughput (Svensson et al., 2017; Ziegenhain et al., 

2017), allowing us to robustly identify cell populations with fewer than 20 cells. Importantly, 

this approach provides a better chance for detecting low abundance genes such as 

transcription factors. With its unprecedented depth, this resource will be useful to 

generate hypotheses for cellular origins of certain biological or pathological processes, 

which in turn could be tested with the molecular markers identified here for cell purification 

or functional manipulation. 

Our scRNA-seq data along with histology validation showed that adult and early postnatal 

choroid plexus macrophages (CP MΦ) were distinctively different in their gene expression 

profiles. For example, we found that high MHC-II expression, previously associated with 

CP MΦ (Prinz et al., 2017), was only detected in the adult brain. Interestingly, it has been 

shown that immune response in the choroid plexus is also altered in the aged brain 
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(Baruch et al., 2014), suggesting dynamic changes of CP cells across lifespan. It will be 

interesting to identify the signals that contribute to this phenotypic change as well as its 

functional relevance. 

Genes upregulated in proliferative cells are highly correlated with cell cycle genes in 

tumor and many other cell types (Whitfield et al., 2002). In vivo studies of periodical gene 

expression through cell cycle stages have been challenging due to the limited numbers 

of cycling cells that can be obtained and lack of phase-specific markers. We took 

advantage of scRNA-seq data as a random sampling of individual cells along a continuum, 

and reconstructed molecular features throughout microglial cell division without the need 

of artificial synchronization. We generated cell cycle phase-specific gene sets for 

microglia which will not only provide a fresh perspective on our understanding of 

microglial proliferation, but also serve as a valuable resource for studies of mammalian 

cell cycle.  

Using this deep sequencing approach, we discovered surprisingly little transcriptomic 

heterogeneity among adult homeostatic microglia. The one cluster distinctively separated 

from other homeostatic cells showed elevated expression of immediate early genes, 

which we attributed to isolation artifacts. Our data point to a lack of prominent 

transcriptomic differences among classical adult microglia even across varying brain 

regions, a finding we confirmed by bulk RNA-seq of highly purified region-specific 

homeostatic (TMEM119+) microglia. These results indicate that the previously observed 

regional differences in adult microglia might mainly arise from genes expressed by small 

percentages of TMEM119low/- microglia (e.g. residual CLEC7A+ cells shown in Figure 7C-

7E), which were gated out in our bulk RNA-seq analysis (Ayata et al., 2018). Consistent 

with this interpretation, many genes (Apoe, Igf1, Lilrb4, Lyz2, Colec12, Msr1, Map1lc3b) 

that were shown to be part of the phagocytic signature in adult cerebellar microglia (Ayata 

et al., 2018) were also up-regulated in postnatal WAM (Table S5). Meanwhile, other 

genes previously attributed to microglial regional heterogeneity could be due to differential 

abundance of non-microglial populations in bulk samples with the CD11b selection 

(Grabert et al., 2016). Furthermore, additional brain regions may uncover transcriptomic 

differences not present in the 4 major regions tested here. For example, microglia in the 
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midbrain have been shown to possess distinct gene expression profiles compared with 

cortical microglia (De Biase et al., 2017). Microglial heterogeneity can also be represented 

by measurements other than gene transcription, such as electrophysiological properties, 

epigenetic features or functional readouts (Ayata et al., 2018; De Biase et al., 2017).  

In sharp contrast to microglia in the adult stage, early postnatal microglia are much more 

heterogeneous. First, we captured proliferative microglia with dividing cell signatures as 

discussed. Second, we detected a small cluster of P7 cells that resembled E14.5 

microglia. Whether this population merely reflects developmental asynchrony or holds a 

functionally important subset with certain stemness features awaits future investigation. 

Third, we identified a subset of microglia that we named postnatal white matter-

associated microglia (WAM). We validated the presence of postnatal WAM at both RNA 

and protein levels using different methods, and identified Gpnmb, Spp1 and Clec7a 

expression as characteristic molecular markers for these cells. We also demonstrated 

that GPNMB and CLEC7A surface antigens could be used to highly purify postnatal WAM, 

as nearly 100% of these sorted cells expressed the WAM gene signature. Comprehensive 

analyses of these cells in comparison with the other dominant population of immature 

microglia showed that postnatal WAM were amoeboid, accumulated at a higher density, 

and displayed gene expression patterns that mimic degenerative disease-associated 

microglia (DAM) (Keren-Shaul et al., 2017; Krasemann et al., 2017).  

The parallels between DAM and postnatal WAM are particularly interesting as they 

support the concept that genes expressed during development are reactivated in aging 

and degeneration (Hong et al., 2016). Functional characterization of postnatal WAM may 

thus provide valuable clues for understanding pathophysiology of neurodegenerative 

diseases. Indeed, while postnatal WAM engulf newly formed oligodendrocytes and 

possibly newborn astrocytes during development, DAM are also phagocytic and involved 

in phagocytosis of Aβ plaques in AD models (Keren-Shaul et al., 2017; Krasemann et al., 

2017). In addition, postnatal WAM enrich many metabolic genes including almost the 

entire molecular machineries for oxidative phosphorylation, glycolysis and beta oxidation 

(Figure S7G; Tables S6 and S7). We also found up-regulation of a large cohort of genes 

responsible for lysosomal acidification, lipid transport and metabolism, as well as 
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lysosomal enzymatic functions (Table S7). This indicates high levels of energy turnover, 

particularly lipid metabolism, in postnatal WAM that may be required for phagocytosis of 

lipid-rich oligodendrocytes. Interestingly, mis-regulated lipid metabolism has also been 

observed in DAM and in many other disease situations (Keren-Shaul et al., 2017; Yadav 

and Tiwari, 2014), leading to an open question of how altered metabolic states are linked 

to disease pathology. 

Remarkably, postnatal WAM do not depend on TREM2-APOE signaling to initiate the 

DAM gene signature. Understanding the molecular underpinnings of postnatal WAM 

polarization may provide handles to shift microglia in disease settings towards beneficial 

ones. The presence of DAM-like microglia early in life also raises the tantalizing 

hypothesis that AD pathogenesis may include a pathogenic re-appropriation of latent 

microglial functions, triggered by different upstream stimuli. 

We showed here that postnatal WAM are not a general intermediate step for microglia 

development, but specifically and transiently appear in the developing white matter. The 

timing of their appearance coincides with the onset of myelination, during which large 

numbers of newly formed oligodendrocytes die (Barres et al., 1992; Trapp et al., 1997). 

Overproduction of cells, balanced by controlled apoptosis, is a common theme during 

development of multicellular organisms, although the biological significance behind this 

is often unknown. Dying or dead cells need to be cleared away by professional 

phagocytes in order to maintain tissue homeostasis. Alternatively, these phagocytes may 

promote cell death to sculpt tissue structures and create functional circuits (Fuchs and 

Steller, 2011). It is thus possible that efficient engulfment of newly formed 

oligodendrocytes by postnatal WAM in the white matter is necessary to generate evenly 

spaced oligodendrocyte tiling and to make room for myelination. Besides the phagocytic 

function we presented here, postnatal WAM may play other roles by interacting with 

neural or immune cells through secreted molecules. We showed that postnatal WAM 

display unique cytokine/chemokine profiles and express many trophic factors including 

Igf1, Spp1, Lgals1, and Lgals3 (Figure S5D). Interestingly, and possibly related to our 

finding, a CD11c (ITGAX)-expressing microglial subset in the postnatal brain has been 
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suggested to promote CNS myelination via secreted IGF1, which may exert its effect by 

supporting OPC survival (Hagemeyer et al., 2017; Wlodarczyk et al., 2017).  

In summary, profiling individual mouse microglia during late embryonic and postnatal 

development provides a resource which complements current gene expression datasets 

of microglia from adult and diseased brains. The extraordinary sequencing depth detected 

many additional genes expressed in microglia at different developmental stages and brain 

regions, and led to the discovery of a unique microglial subset termed postnatal WAM. 

Future functional studies of the identified microglial and myeloid populations will likely 

provide insights into the pivotal roles innate immune cells play in brain development, 

homeostasis and disease.  
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Figure Legends 

Figure 1. Clustering of brain myeloid cells across developmental stages by deep 
scRNA-seq. (A) Schematic graph showing the experimental design for isolating microglia 
and other brain myeloid cells from different brain regions and across developmental 
stages. Whole brains were used for E14.5 samples, and c-Kit-CD45+ (bold) myeloid cells 
were gated for single-cell index sorting. These cells were also CD11b+F4/80+CD41-, 
which were recorded as metadata. For P7 and P60 samples, tissues from named six brain 
regions were dissected, and cells were gated on CD45+CD11b+ (bold) for microglia 
(CD45low, also TMEM119+), or other myeloid cells (CD45hi, also TMEM119-). Libraries 
were made by a semi-automated Smart-seq2 protocol, and every 320-380 samples (each 
with a unique barcode) were pooled for Illumina sequencing. scRNA-seq data were 
analyzed together with all metadata. (B) Representative FACS plots showing the cells 
sequenced (colored in red or blue) in our study. Microglia and myeloid cells were sorted 
separately. (C) tSNE plot showing 15 clusters from all 1816 cells (passed QC) identified 
by the clustering algorithm. Cell population annotations are labeled on the right with all 
microglia-like clusters in bold. The number of cells in each cluster is given in parentheses. 
(D) Overlaying FACS gating information onto the same tSNE plot in (C) highlighting 
distinctions between microglia-like and non-microglia clusters. The vast majority of P60 
microglia are CD45low, while P7 microglia are comprised of both CD45low and CD45hi cells. 
Almost all cells from non-microglia clusters are CD45hi. (E) Overlaying developmental 
stage information onto the same tSNE plot in (C) showing the shift of microglia-like 
clusters from embryonic-like cells (green) to postnatal (red) and then to adult microglia 
(blue). Both P7 (red) and P60 (blue) cells are found in each of monocyte (cluster 8, 10, 
11), or neutrophil (cluster 12) clusters, whereas choroid plexus macrophages are 
separated into two clusters (cluster 7 and 9) largely according to their developmental 
stages. Two dividing microglia clusters are also circled, which include mainly P7 and 
E14.5 cells with some P60 cells (blue). (F) Heatmap showing the top 20 markers (or all 
markers if less than 20) for each of the 15 clusters which are distinguished by unique sets 
of genes. (G) Bar plots showing gene expression levels of two representative markers for 
each cluster across all 1816 cells. See also Figure S1, Table S1. 

Figure 2. Postnatal transcriptional alteration of choroid plexus macrophages (CP 
MΦ). (A) tSNE plot on the left highlighting two stage-specific CP MΦ clusters. Heatmap 
on the right showing differentially expressed genes between two CP MΦ clusters. 
Underlined genes (bold) were validated by histology in (C) and (D). (B) Violin plots 
showing expression levels of three marker genes for CP MΦ across 15 clusters identified 
in Figure 1C. The relevant cluster 7 and 9 are shaded in gray. H2-Eb1 and Lilra5 are 
highly expressed by adult CP MΦ, whereas Clec4n is highly enriched in postnatal CP MΦ. 
(C) Validation of abundant H2-Eb1 and Lilra5 expression in P60 CP MΦ but not in P7 
cells by RNA in situ. Arrow heads point to H2-Eb1/Lilra5/Cx3cr1 triple positive CP MΦ in 
P60 tissue. H2-Eb1-Cx3cr1+Lilra5+ (arrows) cells were occasionally seen in both stages. 
H2-Eb1+Lilra5-Cx3cr1- non-myeloid cells are labeled with asterisks. (D) Validation of 
abundant CLEC4N expression in P7 CP MΦ but not in P60 cells by immunostaining. 
Arrow heads point to CLEC4N/CX3CR1-GFP double positive cells, which are more 
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prominent in P7. CLEC4N-CX3CR1-GFP+ (arrow) cells are also present in P7. Scale bars 
in (C) and (D) are 50um.  

Figure 3. Limited transcriptomic heterogeneity of adult homeostatic microglia 
across brain regions. (A) tSNE plot on the left highlighting two P60 microglia clusters. 
Violin plots on the right showing examples of differentially expressed genes between two 
P60 microglia clusters. (B) RNA in situ on fresh frozen sections of adult brains showing 
negative expression of Fos and Egr1 in microglia (Tmem119+), and positive signals from 
surrounding non-microglia cells. (C) Quantification of fluorescence signals in (B). n=30 
cells each, for microglia and non-microglia cells. (D) Pearson correlation between FACS 
sorted bulk RNA-seq samples from different brain regions showing resemblance of 
region-specific homeostatic (TMEM119+) microglia at the transcriptomic level in the adult 
stage. (E) Dendrogram showing hierarchical clustering of bulk RNA-seq samples. 
Replicates from each brain region do not cluster according to tissue origins. (F) Numbers 
of differentially expressed genes between homeostatic microglia from different regions by 
scRNA-seq and bulk RNA-seq. Scale bar in (B) is 50um. See also Figure S2, Table S2, 
Table S3. 

Figure 4. Phase-specific gene expression of dividing microglia (P7-C0 cluster) 
along cell cycle pseudotime. (A) tSNE plots demonstrating cell cycle regression and re-
clustering of P7 microglia. tSNE plot on the upper left highlighted P7 microglia and their 
cluster identities as determined in Figure 1C. tSNE plot on the lower left shows the result 
after cell cycle regression and re-clustering. Two tSNE plots in the box highlight the 
original cluster identities in order to demonstrate consistency of two analyses (before and 
after cell cycle regression) and how the original dividing clusters (cluster 3 and 4) are 
distributed into P7-C0, P7-C1 and P7-C2 following cell cycle regression. tSNE plots on 
the upper right and lower right highlight P7-C1 and P7-C0 microglia in the original plot, 
respectively, based on the re-clustering analysis. Cells in all tSNE plots are color coded 
exactly the same way as in Figure 1C. Numbers of cells in each cluster are given in 
parentheses. (B) – (F) are detailed analysis for the 264 P7-C0 microglia identified in (A). 
(B) Heatmap (upper panel) showing pseudotime ordering of P7-C0 microglia based on 
raw phase scores. Each column is a cell, and each row denotes raw scores for a specific 
cell cycle phase along the dividing pseudotime. G0 cells have no dominant phase scores 
for any phase. Heatmap (lower panel) showing expression levels of individual genes 
identified as phase-specific by the algorithm. Each column is a cell and each row is a 
gene. Such ordering is largely consistent with the original cell identities by the clustering 
analysis as shown in the bottom color-coded bar. (C) Dot plots showing expression levels 
of phase-specific genes along microglia dividing pseudotime. Genes for each phase are 
plotted in separate graphs with each dot representing the level of expression for a given 
gene in a given cell. Curves show average expression of all genes assigned to a phase 
along dividing pseudotime. Expression of microglial signature genes is shown at the 
bottom. (D) The gray pie chart showing overlaps of phase-specific genes identified by the 
algorithm compared with four published cell cycle gene sets. The “Novel” category means 
the percentage of genes found here that were not reported in any of the four datasets. 
Colored pie charts are breakdowns of the genes from each category based on the phase 
assignment. (E) Table showing gene names identified as “Novel” in (D). Genes that may 
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play a role in cell division are in bold. (F) Heatmap (upper panel) showing pseudotime 
ordering of P7-C0 microglia by normalized phase scores. The bottom panels use Ankle1 
as an example to show its expression dynamics along dividing pseudotime. The 
smoothened expression is the average expression of Ankle1 along the cell order 
computed with a fixed window size (length of ordered cells/10). Ankle1 peaks at G2/M 
and M. Each dot denotes its expression level for a single cell.  
See also Figure S3, Figure S4, Table S4. 

Figure 5. Heterogeneity of postnatal microglia revealed by scRNA-seq. (A) tSNE plot 
(left panel) showing re-clustering result of P7 microglia as delineated in Figure 4A (color 
coding is the same). Numbers of cells in each cluster are given in parentheses. tSNE plot 
on the right highlight P7 cells in the original embryonic-like cluster (cluster 5), showing 
that P7-C2 in the re-clustering are embryonic-like cells in the P7 brain. (B) Violin plots 
showing some differentially expressed genes between P7-C2 and the other two clusters 
(down-regulated genes are shown at the top; up-regulated genes are shown at the 
bottom). (C) Heatmap showing top 70 differentially expressed genes between P7-C0 and 
P7-C1. P7-C0 have higher expression levels for homeostatic genes and P7-C1 enrich 
many disease-associated genes. Genes that have been documented as mis-regulated in 
disease settings are labeled on the right. (D) Comparison of gene expression changes in 
DAM (relative to homeostatic microglia) with the changes in P7-C1 (relative to P7-C0) 
showing similar sets of up- and down-regulated genes in two cases. Genes that have 
been associated with diseases are labeled. (E) Gene network showing correlated gene 
modules underlying cluster identities of P7 microglia (See also Methods). Each gene is 
colored based on its differential expression levels among three P7 clusters (i.e. marker 
genes for P7-C0 are in red; marker genes for P7-C1 are in blue; marker genes for P7-C2 
are in green; genes that are up-regulated in both P7-C1 and P7-C2 are in turquoise; 
genes that are not differentially expressed are in gray).  Colors of different shades and 
tints indicate the significance levels of the changes. The size of a circle represents how 
well connected a gene is with other genes. The thickness of an edge denotes the level of 
correlation between two genes. Solid lines stand for positive correlation and dashed lines 
stand for negative correlation. See also Table S5.  

Figure 6. Validation of postnatal developing white matter-associated microglia. (A) 
Violin plots showing some top up-regulated genes in P7-C1 compared with the other two 
clusters. All of these genes have been linked to degenerative disease-associated 
microglia. (B) RNA in situ (RNAscope) validation of Spp1 and Gpnmb expression in P7-
C1 microglia. Spp1 and Gpnmb signals overlap in the corpus callosum and white matter 
region of cerebellum, and these cells are also positive for the microglia marker Cx3cr1. 
(C) RNA in situ (RNAscope) validation of Igf1 expression in P7-C1 microglia. 
Gpnmb+Cx3cr1+ microglia are positive for Igf1 in the corpus callosum and white matter 
region of cerebellum, and Gpnmb+Cx3cr1+Igf1+ cells are also seen in the ventricles 
(asterisk). Microglia in the cortex, hippocampus and striatum are negative for Gpnmb and 
Igf1 (arrow heads). Igf1+Cx3cr1- neural cells are also present in the cortex and 
hippocampus (arrows). (D) RNA in situ (RNAscope) showing Gpnmb+Cx3cr1+ microglia 
are intermingled with Mbp+ oligodendrocytes in the developing white matter. (E) 
Immunohistochemistry validation of CLEC7A expression by postnatal white matter-
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associated microglia (WAM). CLEC7A+CX3CR1-GFP+ microglia are populated in the 
developing white matter and near ventricles. (F) FACS plot showing P7 cerebellar 
GPNMB+CLEC7A+ cells (gated on live CD45lowCD11b+ single cells; orange box) isolated 
for scRNA-seq. Double negative cells (blue box) are used for comparisons in (G) by flow 
cytometry. (G) Histograms showing higher levels of LILRB4 and CD63 surface expression 
in GPNMB+CLEC7A+ microglia compared with GPNMB-CLEC7A- cells. (H) tSNE plot 
showing clustering result (dashed circles) after combining GPNMB+CLEC7A+ cells with 
the originally sequenced P7 microglia. Cells are color coded based on the identities of 
three previously identified P7 clusters and the newly isolated double positive cells. The 
arrow indicates gradual changes of transcriptomes from postnatal immature state (P7-C0) 
towards more polarized GPNMB+CLEC7A+ state. (I) Violin plots showing further up- or 
down-regulation of differentially expressed genes in P7-GPNMB+CLEC7A+ compared 
with P7-C1 microglia by scRNA-seq. Notably, almost 100% of the double positive cells 
expressed the Igf1 marker. (J) Pseudotime analysis of P7 microglia together with P7-
GPNMB+CLEC7A+ and P60 homeostatic microglia showing developmental trajectories 
from P7-C0/P7-C1 mixed starting point to P7-GPNMB+CLEC7A+ postnatal WAM branch 
(via P7-C1) and to P60 homeostatic branch (via P7-C0). Each dot is a cell. (K) Gene 
expression dynamics for two trajectories in (J) along developmental pseudotime, when 
the postnatal WAM branch gradually turns on disease-associated genes and down-
regulates homeostatic genes. The homeostatic branch displays the opposite trends of 
gene expression. Scale bars: 50um in (B)-(D), 500um in (E). CTX: cortex; CC: corpus 
callosum; LV: lateral ventricle; STR: striatum; HIP: hippocampus; TH: thalamus. See also 
Figure S5, Table S5.  

Figure 7. Transient appearance of amoeboid postnatal WAM, independent of 
TREM2-APOE regulation. (A)-(D) Immunohistochemistry on CLEC7A expression from 
different developmental stages. (A) E17.5 brain sections showing lack of CLEC7A+ cells 
in the corpus callosum and cerebellum, and their presence in the subventricular region 
(inset). (B) CLEC7A+ microglia start to populate in developing white matter at P4. They 
are also seen in the subventricular region. (C) At P14, only a few microglia with weak 
CLEC7A signals are seen in the white matter (arrow heads). Inset shows CLEC7A+ 
microglia in hippocampal dentate gyrus. (D) At P60, CLEC7A+ microglia are mostly 
absent in the white matter, but show in hippocampal dentate gyrus (arrow heads) and 
neurogenic regions (SVZ and RMS). Middle panels: 63X confocal images showing 
CLEC7A+ (arrow heads) and CLEC7A- (arrows) microglia in the hippocampus. (E) 
Quantification of CLEC7A+ microglia on 50um sagittal brain sections across 
developmental stages. n=3 for each stage. (F) 63X confocal images showing differences 
in morphology and density between CLEC7A+ and CLEC7A- microglia at P7. (G) 3D 
reconstruction of representative P7 microglia showing amoeboid morphology of CLEC7A+ 
microglia. (H) Quantification showing differences in morphology (n=10 each) and density 
(n=3 each) between CLEC7A+ and CLEC7A- microglia at P7. *** P<0.001, ** P<0.01, * 
P<0.05. One-way ANOVA followed by pairwise t-test with Bonferroni correction. (I) RNA 
in situ (RNAscope) showing presence of Gpnmb+Spp1+ microglia in the corpus callosum 
of Trem2 or Apoe knockout mice at P7. CTX: cortex; CC: corpus callosum; SVZ: 
subventricular zone; LV: lateral ventricle; HIP: hippocampus; DG: dentate gyrus; HL: hilus; 
RMS: rostral migratory stream; OB: olfactory bulb. Scale bars: 500um in (A)-(D), except 
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for 50um in the middle panels of (D); 50um in (F) and (I); 10um in (G). Data are 
represented as mean ± SEM in (E) and (H). See also Figure S6. 

 
Figure 8. Phagocytosis of newly formed oligodendrocytes by postnatal WAM. (A) 
Single optical section of a confocal image showing engulfment of nuclei (some with 
fragmented DAPI signals) by CLEC7A+ microglia in the P7 cerebellar white matter. 
Images from the X-Z and Y-Z axes are shown on the top and sides, respectively. (B) 3D 
reconstruction of a CLEC7A+ microglia engulfing a pyknotic nucleus. The microglia 
nucleus can be seen by transparent rendering for the CX3CR1-GFP (green) signal on the 
right. (C) Immunohistochemistry on brain sections after 4hr in vitro culturing with pHrodo 
Zymosan beads. Many CLEC7A+ microglia that phagocytosed beads are seen in the 
corpus callosum (arrow heads) and cerebellar white matter but they are rarely seen in 
other regions. CLEC7A+ cells near ventricles (arrows) also phagocytosed beads. (D) 
Quantification of the phagocytosis assay in (C). n=5 sections (3 fields for each section). 
*** P<0.001, ** P<0.01, * P<0.05. Two-way ANOVA followed by Tukey’s multiple 
comparisons test. (E) Immunostaining of P7 corpus callosum region showing extensive 
interactions between postnatal WAM and MBP+ oligodendrocytes (arrows). Some 
cleaved Caspase 3 signals overlap with MBP signals (asterisks). cCASP3+ inclusion is 
seen in microglial cells (arrow head). (F) Single optical section of a confocal image 
showing engulfment of dying (cCASP3+) MBP+ oligodendrocytes by CLEC7A+ microglia 
in the P7 corpus callosum. Images from the X-Z and Y-Z axes are shown on the top and 
left, respectively. At the upper right corner, a microglial cell (asterisk) physically contacts 
a cCASP3-MBP+ oligodendrocyte, which is 3D reconstructed in (G). (H) Quantification for 
percentage of each cell type that interacts with CLEC7A+ cells in the corpus callosum. 
Interaction is defined as >30% of cellular volume overlapping with the CLEC7A (or 
CX3CR1-GFP) signal. n=3 sections each. ** P<0.01, * P<0.05. One-way ANOVA followed 
by pairwise t-test with Bonferroni correction. (I) Detection of Mbp and Gfap transcripts in 
postnatal WAM by scRNA-seq. These two gene transcripts are disproportionally found in 
P7-C1 and particularly P7-GPNMB+CLEC7A+ microglia. tSNE plots (same as in Figure 
6H) on the right highlight cells that have detectable Mbp or Gfap expression. CTX: cortex; 
CC: corpus callosum; HIP: hippocampus; STR: striatum; CB: cerebellum. Scale bars: 
50um in (A), (E) and (F); 500um in (C); 10um in (B) and (G). Data are represented as 
mean ± SEM in (D) and (H). See also Figure S7, Table S6, Table S7, Movie S1, Movie 
S2. 
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Methods 

Animals  

All sequencing experiments were performed using C57BL/6 mice of defined ages 
(Charles River). Trem2 KO mice (C57BL/6J-Trem2em2Adiuj/J) and ApoE KO mice 
(B6.129P2-Apoetm1Unc/J) were purchased from Jackson Laboratories (027197 and 
002052). CX3CR1-GFP mice (B6.129P-Cx3cr1tm1Litt/J) were purchased from Jackson 
Laboratories (005582) and heterozygotes were used for the experiments. Aldh1l1-EGFP 
mice were used to visualize astrocytes (Chung et al., 2013). Male mice were used in all 
experiments. Animals were housed and handled in accordance with the guidelines of the 
Administrative Panel on Laboratory Animal Care of Stanford University. 	

Tissue dissection and cell isolation 

To isolate cells for scRNA-seq and bulk RNA-seq, P60 mice or pregnant mice with E14.5 
embryos were euthanized with CO2, and P7 mice were decapitated directly. For the 
E14.5 stage, whole brains were dissected out from timed embryos, and collected into 1ml 
PBS with 1% fetal calf serum (added 10ul Ambion DNase, 2ul RNase inhibitor) on ice. 
The sample was passed through a 26G needle 5-10 times to create single cell suspension. 
Cells were spun down (500g) at 4˚C for 5min, and suspended in 1ml PBS for FACS 
staining. For P7 and P60 stages, cortex, cerebellum, hippocampus, striatum, olfactory 
bulb and choroid plexus were dissected out. For P7 GPNMB/CLEC7A double sorting, 
only the cerebellum was dissected and used. Tissues from the same region were pooled 
from multiple mice (3-8 depending on the ages and regions) into a 6cm petri dish with 
200ul cold medium A on ice (15mM HEPES, 0.5% glucose in 1 X Hanks' Balanced Salt 
Solution (HBSS without phenol red)). Microglia (myeloid cells) extraction was carried out 
following a published protocol (Bennett et al., 2016). The whole procedure was done on 
ice with cold buffers. Briefly, tissues were chopped with razor blade into fine pieces and 
then transferred into a 5ml douncer containing 5ml medium A (added 200ul 12500 
units/mL DNase and 10ul recombinant RNase inhibitor). Tissues were dounced with 6-10 
full strokes until no visible chunks were present and then filtered into 50ml falcon tubes 
using 70um strainers to obtain single cell suspension. Cells were washed with medium A 
and resuspended in 1.8ml MACS buffer with 3.6ul RNase inhibitor (sterile-filtered 0.5% 
BSA, 2mM EDTA in 1 X PBS). To remove myelin, cells were incubated with 200ul myelin 
removal beads (MACS Miltenyl Biotec 130-096-433) for 10 min, and loaded onto LD 
columns (Miltenyi Biotec 130-042-901) assembled on a MACS magnet stand. Cells in the 
flow through were collected and washed for standard FACS staining.  

Single cell index sorting 

To stain the cells for sorting, 5ul mouse Fc block (BD Pharmingen 553142, 1:60) was 
added into each sample and incubated for 5 min on ice. Then the cells were incubated 
with antibodies conjugated with fluorophores or primary antibodies for 10 min at room 
temperature (RT) on shaker. After wash, if necessary, samples were stained with 
secondary antibodies for 10 min at room temperature and followed by wash. Cells were 
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resuspended in 300ul FACS buffer (sterile-filtered 1%FCS, 2mM EDTA, 25mM HEPES 
in 1XPBS) with DNase (1:100, Qiagen 79254) and RNase inhibitor (1:500) for single cell 
index sorting.  

Cell sorting/flow cytometry analysis was done on the cell sorter (BD InFlux) at the Stanford 
Shared FACS Facility. All events were gated with the consecutive gates: (1) forward 
scatter-area (FSC-A)/side scatter-area (SSC-A) (2) Trigger Pulse Width/ FSC (3) Live-
Dead negative (Green for E14.5; Far Red for P7 and P60 (Thermal Fisher Scientific 
L34960); Propidium Iodide for P7 GPNMB/CLEC7A double sorting) (4) P7/P60: 
CD45lowCD11b+, CD45hiCD11b+; E14.5: c-Kit-CD45+; P7 GPNMB/CLEC7A: 
GPNMB+CLEC7A+(gated on CD45lowCD11b+). Single cells were index sorted into 96-well 
plates containing 4uL lysis buffer (4U Recombinant RNase Inhibitor, Takara Bio 2313B), 
0.05% Triton X-100, 2.5mM dNTP mix (Thermo Fisher Scientific R0192), 2.5uM Oligo-
dT30VN (5′- AAGCAGTGGTATCAACGCAGAGTACT30VN-3′). Plates were briefly 
vortexed, spun down and snap frozen on dry ice. Plates were stored at −80°C freezer 
until library preparation. 

Antibodies used for FACS sorting/flow cytometry: Rat anti-mouse CD117 (c-Kit), APC 
(clone 2B8) (ThermoFisher Scientific 17-1171-82, 1:200); Rat anti-mouse CD45, PE-Cy7 
(clone 30-F11) (Thermo Fisher Scientific 25-0451-82,1:300); Rat anti-mouse CD11b, 
Brilliant Violet 421 (clone M1/70) (BioLegend 101236, 1:300); Rat anti-mouse F4/80, Per-
CP/Cy5.5 (clone BM8) (BioLegend 123128,1:100); Rat anti-mouse CD41, PE (BioLegend 
133906,1:200); Rabbit anti-mouse TMEM119 (abcam ab210405, 1:400); Goat anti-rabbit 
Alexa 488 (Thermal Fisher Scientific 11034, 1:300); Rat anti-mouse GPNMB, eFluor 660 
(clone CTSREVL) (ThermoFisher Scientific 50-5708-82, 1:20); Rat anti-mouse CD369 
(DECTIN-1/CLEC7A) (clone RH1) (BioLegend 144302, 1:50); Mouse anti-rat IgG1 
Antibody, FITC (clone MRG1-58) (BioLegend 407406, 1:200); Armenian Hamster anti-
mouse CD85k, PE (H1.1) (BioLegend 144904, 1:100); Rat anti-mouse CD63, PE/Cy7 
(clone NVG-2) (BioLegend 143910, 1:100). 

Library preparation for scRNA-seq and bulk RNA-seq  

For scRNA-seq, sequencing libraries were prepared following the published Smart-seq2 
protocol with the aid of liquid handling robotics (Picelli et al., 2014). Briefly, plates with 
sorted cells were thawed on ice and incubated at 72˚C for 3 min in order to anneal RNAs 
to the Oligo-dT30VN primer. After that, 6ul reverse transcription mixture (95U 
SMARTScribe™ Reverse Transcriptase (100U/ul, Clontech 639538), 10U RNase 
inhibitor (40U/ul), 1XFirst-Strand buffer, 5mM DTT, 1M Betaine, 6mM MgCl2, 1uM TSO 
(Exiqon, Rnase free HPLC purified)) was added into each well, and RT was performed at 
42˚C for 90 min, followed by 70˚C, 5 min. To amplify cDNA, 15ul PCR amplification mix 
(1X KAPA HIFI Hotstart Master Mix (Kapa Biosciences KK2602), 0.1uM ISPCR Oligo 
(AAGCAGTGGTATCAACGCAGAGT), 0.56U Lambda Exonuclease (5U/ul, New England 
BioLabs M0262S)) was added, and the following PCR program was used: (1) 37˚C 30 
min; (2)95˚C 3 min; (3) 21 cycles of 98˚C 20 sec, 67˚C 15 sec, 72˚C 4 min; (4) 72˚C 5 
min. Amplified cDNA samples were then purified with PCRClean DX beads (0.7:1 ratio, 
Aline C-1003-50), and resuspended in 20ul EB buffer. cDNA quality was examined with 
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a Fragment Analyzer (AATI, High Sensitivity NGS Fragment Analysis Kit:1 bp - 6000 bp) 
following the manufacture’s instruction. Samples with sufficient amount of cDNA content 
(>0.05ng/ul) and normal peaks on the quantification graphs were retained for library 
preparation. To make libraries, all samples were first diluted down to 0.15ng/ul (only if 
higher than 0.15ng/ul) in 384-well plates using Mantis Liquid Handler (Formulatrix) and 
Mosquito X1 (TTP Labtech) with customized scripts. Nextera XT DNA Sample Prep Kit 
(Illumina FC-131-1096) was used at 1/10 of recommendation volume, with the help of a 
Mosquito HTS robot for liquid transfer. Specifically, tagmentation was done in 1.6ul (1.2ul 
Tagment enzyme mix, 0.4ul diluted cDNA) at 55˚C, 10 min. Neutralization buffer was 
added 0.4ul per well and incubated at room temperature for 5 min to stop the reaction. 
Then 0.8ul Illumina 384 Indexes (0.4ul each, 5uM) and 1.2ul PCR master mix were added 
to amplify whole transcriptomes using the following program: (1) 72˚C 3 min; (2) 95˚C 30 
sec; (3) 10 cycles of 95˚C 10 sec, 55˚C 30 sec, 72˚C 1 min; (4) 72˚C 5 min. Libraries from 
a single 384 plate were pooled together in an Eppendorf tube and purified twice with 
PCRClean DX beads. The quality and concentrations of the final mixed libraries were 
measured with Bioanalyzer and Qubit, respectively, before Illumina Nextseq sequencing.  

For bulk RNA-seq, TMEM119+ cells from P60 brain regions were sorted (SONY SH800) 
into a 1.5ml Eppendorf tube containing 350ul RLT buffer (3000 cells per sample). RNA 
was extracted using RNeasy Micro Kit (Qiagen 74004) and eluted with 14ul nuclease-
free water. To make cDNA, Smart-Seq v4 ultra low input RNA kit (Clontech 634890) was 
used following manufacture’s instruction (9.5ul RNA input). cDNA was amplified for 9 
cycles, and cDNA concentrations were measured with Qubit. Libraries were prepared 
using Nextera XT DNA Sample Prep Kit (380pg cDNA per sample) following the standard 
protocol. Nextera 24 Indexes (Illumina 15055293) were used during whole transcriptomes 
amplification (13 cycles). Library quality was assessed with Bioanalyzer and Qubit. 
Nextseq sequencing was performed to a depth of (1.6±0.33)	X107raw reads per sample 
and (1.07±0.24) X107 mapped reads per sample. This led to the detection of 11727±563 
genes, comparable to 11407±2177 genes detected in P60 microglia from our previously 
published dataset (Bennett et al., 2016).  

Processing of scRNA-seq raw data and generation of gene counts 

Prinseq was first used to filter sequencing reads shorter than 30 bp (-min_len 30), trim 
the first 10 bp at the 5’-end (-trim_left 10) of the reads, trim reads with low quality from 
the 3’-end (-trim_qual_right 25) and remove low complexity reads (-lc_method entropy, -
lc_threshold 65). Then, Trim Galore was applied to trimmed the Nextera adapters (--
stringency 1). The remaining reads were aligned to the mm10 genome by calling STAR 
with the following options: --outFilterType BySJout, --outFilterMultimapNmax 20, -- 
alignSJoverhangMin 8, --alignSJDBoverhangMin 1, --outFilterMismatchNmax 999, - -
outFilterMismatchNoverLmax 0.04, --alignIntronMin 20, --alignIntronMax 1000000, --
alignMatesGapMax 1000000, --outSAMstrandField intronMotif. Picard was then used to 
remove the duplicate reads (VALIDATION_STRINGENCY=LENIENT, 
REMOVE_DUPLICATES=true). Finally, the aligned reads were converted to counts for 
each gene by using HTSeq (-m intersection-nonempty, -s no). 
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Quality control for scRNA-seq data 

To filter out cells with low sequencing quality, three criteria, namely the number of total 
reads, the number of total detected genes and correlation coefficient between ERCC 
spike-ins input and corresponding read counts, were each evaluated based on the 
distributions of the data. The distribution of the total reads (in logarithmic scale) was fitted 
by a truncated Cauchy distribution, and data points in two tails of the estimated distribution 
were considered as outliers and eliminated. Fitting and elimination were then applied to 
the remaining data. This process was run iteratively until the estimated distribution 
became stable. The threshold was set to the value where the cumulative distribution 
function of the estimated distribution reaches 0.05. Similarly, cells with small numbers of 
detected genes, and poor correlation coefficients for ERCC (low sequencing accuracy) 
were dropped. After filtering, 1816 cells, out of 1922, were retained. 

Sensitivity and accuracy assessment of scRNA-seq data using ERCC spike-ins 

We used a previously published algorithm to estimate sensitivity and accuracy of scRNA-
seq data based on ERCC spike-ins with known concentrations (Svensson et al., 2017). 
To estimate sensitivity, for each cell, binomial logistic regression was used to fit the actual 
numbers of ERCC spike-in molecules and the responses (detected or not) and then the 
number of ERCC molecules (detection limit) corresponding to 0.5 detection probability 
was determined. Distribution of detection limit for all cells that passed quality control (QC) 
was plotted in Figure S1E, which indicates the overall sensitivity level of the assay. To 
estimate accuracy, Pearson correlation coefficient between the actual numbers of spike-
in molecules used as input and the corresponding average reading counts across all cells 
(passed QC) was calculated and shown in Figure S1F.  

Clustering analysis of scRNA-seq data 

The Seurat package was used to perform unsupervised clustering analysis on scRNA-
seq data (Macosko et al., 2015). Briefly, gene counts for cells that passed QC were 
normalized to the total expression and log-transformed, and then highly variable genes 
were detected (y.cutoff=0.5). Depending on the analysis, cell cycle effect could be 
regressed out using the ScaleData function. Using highly variable genes as input, 
principal component analysis was performed on the scaled data in order to reduce 
dimensionality. Statistically significant principal components were determined by using 
the JackStrawPlot function. These principal components were used to compute the 
distance metric, which then generated cell clusters. Non-linear dimensional reduction 
(tSNE) was used to visualize clustering results. Differentially expressed genes were found 
using the FindAllMarkers (or FindMarkers) function that ran Wilcoxon rank sum tests. 

Differential gene expression analysis on region-specific microglia  

To identify differentially expressed (DE) genes of adult microglia in each of the four 
regions (cerebellum, hippocampus, striatum, and cortex), we performed DE gene analysis 
(one versus rest) on both scRNA-seq and bulk RNA-seq data by using EdgeR. For 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 1, 2018. ; https://doi.org/10.1101/406363doi: bioRxiv preprint 

https://doi.org/10.1101/406363


 31 

scRNA-seq data, genes expressed (CPM>2) in at least 5% of total cells were tested by 
the likelihood ratio method for DE gene identification. For bulk RNA-seq data, genes that 
were detected (CPM>2) in at least 2 samples were used to perform quasi-likelihood F-
test to identify DE genes across regions. 

Cell cycle regression on scRNA-seq data 

We used Seurat package to regress out cell cycle effects in scRNA-seq data when 
analyzing P7 microglia heterogeneity. Briefly, each cell was assigned with a G2M score 
and an S score, based on its expression of G2/M and S phase markers. Then for each 
gene, the relationship between the gene expression and the G2M and S scores across 
all cells was modeled. A “corrected” expression matrix, determined by the scaled 
residuals of this model was obtained and used for downstream analysis.  

Pseudotime analysis of dividing microglia to generate phase-specific gene sets 

This algorithm is based on a published method with modifications (Macosko et al., 2015). 
The same analysis was conducted on P7-C0 and P7-C1 microglia separately. Simply, 5 
conserved gene sets from studies on HeLa cell lines that are periodically expressed in 5 
cell cycle phases (G1/S, S, G2/M, M and M/G1) were curated (see below) and used as 
the initial seeds in order to discover microglia-specific cell cycle genes. Cells that had 
significantly different expression levels (ANOVA test) for the 5 curated gene sets were 
selected as “dividing cells” for pseudotime ordering, and the rest were temporarily labeled 
as “non-dividing cells”. Dividing cells were ordered based on expression of these phase-
specific genes as previously described (Macosko et al., 2015). Then new genes that were 
expressed by cells non-randomly distributed along the order and correlated with average 
expression of gene seeds specific to any one or two adjacent phases, were assigned with 
a phase label and added to the corresponding seeds gene list (see below). After this, 
using updated seeds as input, the whole process was run iteratively, that is “cell 
selection”-“dividing cell ordering”-“seeds updating with new genes”, until the cell ordering 
was stable (the correlation between current ordering and previous ordering larger than 
0.9) for more than ten times. During the iteration, the initial gene seeds were always kept 
in the updated list for the next round to avoid random drifting by noise. Once cell ordering 
became stable, genes that were frequently identified (larger than five times) in the last ten 
iterations were saved as final cell cycle phase-specific genes. The final gene lists were 
then used again to determine dividing cells versus G0 cells (cells expressing genes of all 
phases at high levels were manually excluded), and the final pseudotime order of dividing 
cells. 

Initial gene seeds curation 
Five sets of conserved genes, each specific to a single phase of the cell cycle (G1/S, S, 
G2/M, M and M/G1), were selected from a published dataset (Macosko et al., 2015). A 
gene with low correlation (R<0.3) between its expression level (log2(FPKM+1)) and the 
average expression of its own gene set was discarded from the list. To ensure the phase 
label for each remaining gene is applicable to microglia, correlations between its 
expression and the average expression of each gene set were calculated, and the gene 
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was assigned to the gene set that had the maximal correlation with it. The correlation 
examination and re-assignment were run iteratively until no more genes were re-assigned. 
Such 5 gene sets were used as initial gene seeds.  

New phase-specific gene discovery to update seeds  
For each gene, a sliding window with a certain size (length of ordered cells/10) was used 
to find out the windows with maximal average expression and minimal average 
expression along the cell order. The difference between the maximal and minimal 
average expression was calculated as the observed difference. Then the order of the cells 
was randomly permutated, and the same sliding window operation was performed to 
obtain a permutation difference. Permutation was repeated for 1.0e+05 times to generate 
a distribution of permutation differences, with which the observed difference was 
compared to calculate a p-value. Genes with adjusted p-values less than 0.05 (non-
randomly expressed along the cell order) were retained. To determine which phase(s) an 
identified gene belongs to, 10 scenarios of phase assignment were considered: five single 
phases and five dual phases (any two consecutive phases). Correlations between the 
gene expression and average expression of gene seeds corresponding to a single phase 
or two consecutive phases were calculated, and the phase(s) yielding the maximal 
correlation was assigned to the gene. Genes were ignored if they had poor correlations 
(R<0.3) with all of the ten scenarios mentioned above. 

Gene network construction for P7 microglia 

A gene network was built to reveal the relationship between different genes in P7 cells. 
To this end, genes that contributed most to cellular heterogeneity were chosen and 
correlations between these genes were shown on a network graph with features 
explained below. Specifically, genes that were expressed in at least 3% of total cells and 
contributed to the first 15 principal components underlying sources of variances were 
used for analysis. After quantile normalization for each gene’s expression, graphical lasso 
was used to explore the relationship between these genes. Graphical lasso estimated a 
sparse precision matrix (i.e., inverse covariance matrix) of the variables (genes) by using 
a lasso (L1) penalty. Such precision matrix revealed the conditional relationships between 
genes, upon which a gene network was built. In the network, each vertex was a gene, 
and the weight of each edge was the absolute value of the corresponding entry in the 
precision matrix. If two genes were nonadjacent (value of the corresponding entry in the 
precision matrix was 0), they were conditionally independent, given all the other genes. 
For better visualization, the width of each edge in the graph was proportional to its weight. 
Edges with small weights were not shown to simply the illustration. If the value of an entry 
in the estimated covariance matrix was positive, the corresponding edge was a solid line, 
indicating a positive correlation between the two genes. A negative value for an entry was 
translated to a dashed line, indicating a negative correlation. The area of each vertex 
(gene) was proportional to the total weights of all edges connecting to it. To illustrate how 
genes in the network contributed to cell clustering, genes were painted with different 
colors based on whether they were differentially up-regulated in any P7 cluster and, if so, 
in which cluster(s). Genes shown in the network that were significantly up-regulated in a 
single P7 cluster were colored according to a predefined colormap (P7-C0=red; P7-
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C1=blue; P7-C2=green). Genes significantly up-regulated in two clusters were mapped 
to a new colormap, which included mixed colors of the two corresponding clusters (e.g. 
P7-C1&P7-C2= turquoise). The shades and tints of colors were determined by the 
logarithmic transform of adjusted p-values. Genes not differentially expressed were in 
grey.  

Developmental pseudotime analysis for microglia 

Sequencing reads for 648 P7 microglia (excluding P7-C2), 218 P60 homeostatic microglia 
(excluding 3 cells with detectable Clec7a expression) and 133 P7-GPNMB+CLEC7A+ 
microglia were analyzed together to build developmental pseudotime using the Monocle 
package (Trapnell et al., 2014). First, clustering analysis was performed with Seurat after 
cell cycle regression as described above. Then the Seurat object was imported into 
Monocle, which used statistical models to find out differentially expressed (DE) genes 
based on the clustering result. Top 350 DE genes (q<0.01) were selected for cell ordering. 
Monocle then used reversed graph embedding (DDRTree method) to do dimensionality 
reduction. Finally, Monocle performed manifold learning in order to generate a tree-like 
structure reflecting the developmental trajectories from one cell state to others. 

GO term analysis 

PANTHER Classification System was used to perform Gene Ontology term analysis (Mi 
et al., 2010). The input included 782 genes up-regulated in P7-GPNMB+CLEC7A+ 
microglia (compared with P7-C0 immature microglia), and statistical overrepresentation 
test was run using default settings. Fold enrichment values and false discovery rate (-
log10 FDR) for the enriched GO-Slim Biological Process (BP) terms and GO-Slim Cellular 
Component terms were plotted. FDR was calculated by Fisher’s Exact with FDR multiple 
test correction.  

RNA in situ (RNAscope) 

Mouse brains were rapidly dissected out and immediately embedded in OCT (optimal 
cutting temperature) compound (Tissue-Tek). The fresh frozen sections (sagittal) were 
prepared with cryostat at 12um thickness and RNA in situ was performed using 
RNAscope technology (Advanced Cell Diagnostics) following the manufacturer’s protocol 
(RNAscope Multiplex Fluorescent Assay). Briefly, after fixation and dehydration, the 
slides were treated with protease IV for 20 min at room temperature. RNAscope probes 
were hybridized for 2 hours at 40 °C and then fluorescence staining was done through a 
signal amplification system. Pre-designed Probes (ACD) against the following mRNA 
were used: Cx3cr1 (314221), Gpnmb (489511), Spp1 (435191), Mbp (451491), Igf1 
(443901), H2-Eb1 (509081), Lilra5 (514461), Itgax (311501), Tmem119 (472901), Fos 
(316921), Egr1 (423371). 
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Immunohistochemistry 

Mice were transcardially perfused with PBS followed with 4% para-formaldehyde (PFA). 
Dissected brains were fixed with PFA overnight at 4°C and then cryopreserved with 30% 
sucrose for 24 hours at 4°C. Tissues were embedded in the optimal cutting temperature 
(OCT) compound (Tissue-Tek). Free floating sagittal sections (50um) were stored in 6-
well plates with PBS and then blocked and permeabilized with 10% serum/0.2% Triton-X 
in PBS for 15 min at room temperature. Sections were incubated with primary antibodies 
at 4°C overnight followed by secondary antibody staining for 2 hours at room temperature. 
After washes, the sections were transferred onto glass slides and mounted in Vectashield 
with DAPI (Vector Laboratories H-1200). Images were acquired using Zeiss LSM 880 
inverted confocal and Zeiss Axio Imager fluorescence microscopy, and imported into 
Image J for quantification or Imaris for 3D reconstruction.  

The following primary antibodies were used: Goat polyclonal anti IBA1 (Abcam ab5076, 
1:500); Rabbit monoclonal anti TMEM119 (clone 28-3) (Abcam ab209064, 1:100); Sheep 
polyclonal anti c-FOS (Abcam ab6167, 1:200); Rabbit monoclonal anti EGR1 (clone 15F7) 
(Cell Signaling Technology 4153, 1:50); Rabbit polyclonal anti cleaved CASPASE-3 
(Asp175) (Cell Signaling Technology 9661, 1:200); Rat neutralizing monoclonal anti-
mDECTIN-1-IgG (clone R1-4E4) (Invivogen mabg-mdect, 1:30); Rat monoclonal anti 
Myelin Basic Protein (clone 12) (Abcam ab7349, 1:100); Rat monoclonal anti-DECTIN 2 
(clone D2.11E4) (Abcam ab34724, 1:100); Rabbit monoclonal anti PDGF Receptor α 
(D1E1E) (Cell Signaling Technology 3174S, 1:500); Goat polyclonal anti 
Osteopontin/OPN (R&D Systems AF808, 1:13). The following secondary antibodies were 
used: Donkey anti-goat IgG (H+L) cross-adsorbed, Alexa Fluor 488 (Thermo Fisher 
Scientific 11055, 1:1000); Donkey anti-rabbit IgG (H+L), Alexa Fluor 488 (Thermo Fisher 
Scientific 21206, 1:1000); Donkey anti-sheep DyLight 594 (Jackson Immuno Research 
Laboratories 713-586-147, 1:200); Donkey anti-rabbit IgG (H+L) Highly cross adsorbed, 
Alexa Fluor 594 (Thermo Fisher Scientific 21207, 1:200); Donkey anti-rat IgG (H+L) highly 
cross-adsorbed, Alexa Fluor 594 (Thermo Fisher Scientific 21209, 1:200); Donkey anti-
rabbit IgG (H+L) highly cross-adsorbed, Alexa Fluor 647 (Thermo Fisher Scientific 31573, 
1:200); Donkey anti-rat IgG (H+L) AffiniPure, Alexa Fluor 647 (Jackson Immuno 
Research Laboratories 712-605-153, 1:200). 

Phagocytosis assay by slice culturing system  

P7 mice were decapitated and dissected brains were immediately put in pre-cooled 
culture medium with serum (65% MEM (Sigma  #M2279); 10% horse serum; 25% HBSS; 
6.5 mg/ml glucose; 2mM Glutamine; 1% Pen/Strep), or serum-free microglial culture 
medium (DMEM/F12, 1% Pen/Strep; 2 mM glutamine; 5 ug/mL N-acetyl cysteine; 5 
ug/mL insulin; 100 ug/mL apo-transferrin; 100 ng/mL sodium selenite; 2 ng/mL human 
TGF-2; 100 ng/mL murine IL-34; 1.5 ug/mL ovine wool cholesterol; 10 ug/mL heparan 
sulfate; 0.1 ug/ml oleic acid; 0.001 ug/ml gondoic acid) (Bohlen et al., 2017). The entire 
procedure was done on ice with pre-cooled solutions until culturing. Sagittal sections were 
prepared with vibratome (Leica VT1000S) at 250um thickness and then transferred to 
insert wells (Millicell Cell Culture Insert, 30 mm, Millipore #PICM03050) on a 6-well plate 
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with medium. The plate with the sections was incubated for 1 hour in the incubator (37°C, 
5% CO2) before pHrodo™ Red Zymosan Bioparticles (Thermo Fisher Scientific P35364) 
were added at 0.5mg/ml to cover the whole sections (about 150ul each). Then the plate 
was incubated for 4 hours for phagocytosis (37°C, 5% CO2). After washes with PBS, 
sections were fixed with 4% PFA for 30 min at room temperature and then blocked with 
10% serum/0.2% Triton-X in PBS for 15 min at room temperature. Immunohistochemistry 
was performed as described above.  

3D reconstruction of confocal images 

Confocal z-stacks were imported into Imaris software (Bitplane AG, Zurich, Switzerland). 
Regions of interest were isolated to make IsoSurfaces for each channel. To quantify 
interactions between postnatal WAM and other neural cell types, whole sections were 3D 
reconstructed, and overlapping volumes between postnatal WAM and corresponding cell 
types were obtained with the function of distance transformation. The percentage of the 
overlapping volume over the volume of a given cell (MPB+, Aldh1l1-GFP+ or PDGFRA+) 
was calculated to represent the level of interaction between this cell and the postnatal 
WAM. Substantial interaction was defined as 30% overlapping volume in the cell. Similar 
results were observed with higher percentages.  
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