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SUB-OPTIMAL SENSORIMOTOR RESPONSES TO LARGE LOSSES 

Abstract 41 

 42 

The rationality of human behavior has been a major problem in philosophy for centuries. 43 

The pioneering work of Kahneman and Tversky provides strong evidence that people 44 

are not rational. Recent work in psychophysics argues that incentivized sensorimotor 45 

decisions (such as deciding where to reach to get a reward) maximizes expected gain, 46 

suggesting that it may be impervious to cognitive biases and heuristics. We rigorously 47 

tested this hypothesis using multiple experiments and multiple computational models. 48 

We obtained strong evidence that people deviated from the objectively rational strategy 49 

when potential losses were large. They instead appeared to follow a strategy in which 50 

they simplify the decision problem and satisfice rather than optimize. This work is 51 

consistent with the framework known as bounded rationality, according to which people 52 

behave rationally given their computational limitations.   53 

 54 

Introduction  55 

 56 

The rationality of human behavior has been a key problem in philosophy and 57 

psychology for centuries and remains so today. Broadly, rationality refers to the 58 

conformity of thought and action to reason. In thought, this amounts to forming justified 59 

beliefs; in action, this amounts to adopting suitable means to ends. Setting aside issues 60 

about what makes something “justified” or “suitable”, it is prima facie intuitive that 61 

humans are rational. However, research in behavioral economics has provided 62 

evidence that human behavior deviates from what would be expected of perfectly 63 

rational utility-maximizing agents(Tversky and Kahneman, 1985, 1979). A prominent 64 

example is the work of Kahneman and Tversky which catalogues a rich array of 65 

cognitive biases and heuristics that influence human choice behavior, often in 66 

detrimental ways(Tversky and Khaneman, 1974). This research has had a tremendous 67 

influence on discourse about human rationality and has provided substantial support for 68 

the view that humans are fundamentally not rational.  69 

Notwithstanding the doctrine of behavioral economics, many prominent 70 

computational models across the subfields of psychology suggest that the human brain 71 

continually performs inferences and actions that are optimal in that they minimize costs 72 

or maximize gains. Optimization models have proved useful for explaining human 73 

perception (Bastos et al., 2012; Feldman and Friston, 2010; Friston, 2010; Knill and 74 

Richards, 1996; Ma et al., 2006), cognition (Baker et al., 2011; Dayan and Daw, 2008; 75 

Griffiths et al., 2008; Howes et al., 2016; Lewis et al., 2014; Pezzulo et al., 2018; Tauber 76 

et al., 2017), and action (Braun et al., 2011; Brown et al., 2011; Diedrichsen et al., 2010; 77 

Friston, 2011, 2010; Körding and Wolpert, 2006, 2004; Manohar et al., 2015; Neyedli 78 
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and Welsh, 2013); however, for a discussion of systematic sub-optimality in human 79 

decision-making see (Rahnev and Denison, 2018). One especially compelling 80 

demonstration of optimal human behavior is found in studies using a psychophysics 81 

task created by Julia Trommershauser and colleagues (Trommershäuser et al., 2008, 82 

2006, 2005, 2003). In these studies, subjects perform rapid reaching movements to 83 

small rewarding targets while avoiding overlapping loss regions. This task was designed 84 

to be conceptually equivalent to more classical decision-making tasks in behavioral 85 

economics in which people display biases such as loss aversion and risk aversion.  A 86 

key finding from this work is that people shift their aim-points away from the loss regions 87 

when losses are larger. The most prominent model of this phenomenon is a utility-88 

maximizing statistical decision model. According to this model, people select aimpoints 89 

that maximize expected utility, where expected utility is computed using information 90 

about outcome probabilities and outcome values, where outcome probabilities are 91 

determined using an internal estimate of outcome variance. This work suggests that 92 

utility-maximization may be a fundamental principle of sensorimotor control in humans.  93 

In this paradigm, subjects are presented with perceptual targets and financial 94 

incentives, then they plan and execute rapid reaching movements towards these 95 

targets. While these adaptations may be optimal in some situations, we suspect that 96 

there are situations in which people will deviate systematically from the optimal strategy. 97 

In particular, we hypothesize that when payoffs are large, subjects may experience too 98 

much motivation, leading them to paradoxically fail. Indeed, choking under pressure in 99 

sensorimotor and decision-making tasks is well documented in the literature (Chib et al., 100 

2014; DeCaro et al., 2011; Englert and Oudejans, 2014; Gray, 2004; Kinrade et al., 101 

2010; Lee and Grafton, 2015; Oudejans et al., 2011). According to one prominent 102 

account of choking, it occurs when pressure leads to excessive top-down cognitive 103 

influences on performance (DeCaro et al., 2011; Englert and Oudejans, 2014; Lee and 104 

Grafton, 2015; Oudejans et al., 2011; Snyder and Logan, 2013; Yu, 2015). We expect 105 

that this increased reliance on cognition will make task performance susceptible to 106 

cognitive biases and heuristics. 107 

We administered an incentivized reaching task to 33 healthy human subjects 108 

across two experiments to test whether human sensorimotor control maximizes 109 

expected gain, or instead deviates from optimal because of deleterious interactions 110 

between motivation and cognition. Consistent with prior work, we found that subjects 111 

adapted their reaching movements to payoff information, shifting their aimpoints away 112 

from the loss region when losses were large. Formal model comparison revealed that 113 

behavior was described best by the optimal model when the losses and gains were of 114 

equal magnitude, suggesting that visuomotor decision making may be optimal in 115 

medium stakes situations. However, when the losses were large, subjects’ behavior 116 

deviated substantially from the optimal model’s predictions, and was described better by 117 

a simple heuristic model. Subjects’ visuomotor adaptations to large losses were 118 
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consistently less-than-optimal, suggesting that subjects are not following the optimal 119 

strategy. Overall, our results suggest that human visuomotor control is sensitive to 120 

payoffs but not strictly optimal. Instead, when the stakes are high, people appear to 121 

abandon the optimal task strategy in favor of a heuristic strategy that is simpler and 122 

more stable across people and payoffs.  123 

 124 
Figure 1. Example trial and utility surface. (a) Participants are first presented with information about the potential 125 
payoffs. Next, they initiate the trial by pressing and holding down the spacebar. A fixation cross is presented for a 126 

variable delay interval. Next, the stimuli are presented, and the participant releases the spacebar and reaches out to 127 
touch the stimulus. They are shown feedback at the end of each trial indicating the location they touched and the 128 
payoff they received. (b) Using the optimal model, we can estimate the expected earnings associated with each 129 

possible aimpoint. Here we show the shape of this utility surface over a range of x-coordinates and participants (i.e., 130 
training variances).   131 

 132 

Results  133 

Experiment 1 134 

 135 

17 healthy human subjects performed a modified version of the incentivized 136 

reaching task used in prior work (Figure 1a). This task was designed to generate 137 

heightened motivational pressure, which we hypothesize will make subjects more likely 138 
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to deviate from the optimal strategy. The task featured varying distances between the 139 

origins of gain and loss circles (32px or 44px), and a wide range of payoff conditions ([-140 

$0,+$1], [-$1,+$1], [-$3,+$3], [-$5,+$1], [-$15,+$3]). We classify these payoff conditions 141 

based on the loss ratio (0:1, -1:1, -5:1) and the payoff multiplier (1x, 3x). Task conditions 142 

varied trial-wise and monetary earnings were determined by the subject’s performance 143 

on a trial selected at random at the end of the experiment. Subjects started with a 144 

training session that included hundreds of reaches to random dots, as well as a few 145 

blocks of practice with each task condition. Subjects returned two days later to perform 146 

10 blocks of 60 trials with opportunities for monetary gain and loss. We measured 147 

participants reaction time, movement time, and their reach endpoints. After the 148 

completing the test session, subjects performed a separate economic choice task to 149 

assess their trait-level loss aversion (Tom et al., 2007).  150 

 151 

Reaching behavior was sensitive to financial stakes and target size 152 

 153 

We fit a multilevel gaussian regression model to subjects’ reach endpoints. The 154 

model included categorical fixed effects of loss ratio (-1:1 vs -5:1), payoff multiplier (1x 155 

vs 3x), and separation distance between loss and gain regions (32px vs 44px), as well 156 

as continuous fixed effects of training variance and loss aversion, both of which are 157 

constant within subject. If reaching behavior is guided by the optimal strategy, then it will 158 

be affected by loss ratio and training variance but not loss aversion or payoff multiplier. 159 

We used Bayesian parameter estimation with weakly informative priors (β ~ 𝒩(0,1)) to 160 

estimate the effects of interest. The outcome variable and continuous predictors were 161 

mean-centered and scaled to have standard deviations of 0.5 (Gelman, 2008; Gelman 162 

et al., 2008). This transformation ensures that our priors assign high probability to small 163 

effects (especially, zero) and low probability to large effects. It also ensures that all 164 

effects on a common scale, enabling easy comparisons between them. Our model 165 

included fixed effects of separation distance, loss ratio, payoff multiplier, loss-aversion, 166 

and training variance, as well as random intercepts for each subject. We report the 167 

posterior median (β), 89% highest density intervals (HDI) (Kruschke, 2014), and 168 

Probability of Direction (pd)(Makowski et al., 2019). Figure 2a shows posterior 169 

probability densities over sizes of our effects of interest, Figure 2b shows predicted 170 

marginal effects of interest, and Figure 2c shows posterior predictive checks against 171 

observed means and standard deviations. We excluded data from the zero-penalty trials 172 

because there was no 3x multiplier variant for these trials. 173 

We found strong evidence for a small (8%sd) positive effect of loss ratio on reach 174 

endpoint, suggesting that our subjects reached further from the origin when the ratio of 175 

loss to gain was high compared to when it was low (β = 0.04, HDI = [0.02, 0.05], pd = 176 

1.0). We also found strong evidence for a large (50%sd) negative effect of separation 177 

distance on reaching endpoint, suggesting that our participants aimed closer to the 178 
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origin when the separation distance was large compared to when it was small (β = -179 

0.25, HDI = [-0.28, -0.24], pd = 1.0). We found strong evidence for a very small (2%sd) 180 

positive effect of payoff multiplier on reach endpoint, but this effect may be negligibly 181 

small (β = 0.02, HDI = [0.00, 0.04], pd = 0.97). We found weak evidence for a small 182 

(12%sd) negative effect of loss aversion (β = -0.06, HDI = [-0.12, 0.00], pd = 0.94) and 183 

weak evidence for a very small (4%sd) negative effect of training variance (β = -0.02, 184 

HDI = [-0.12, 0.00], pd = 0.94), but we refrain from drawing inferences from these 185 

estimates given their high posterior uncertainty. In sum, this analysis revealed that 186 

human reaching behavior was highly sensitive to visuospatial information and minimally 187 

sensitive to financial stakes.  188 

 189 

 190 
Figure 2. Results from a Bayesian multilevel regression model of horizontal endpoint. (a) Marginal effects of 191 

separation distance and loss-to-gain ratio on mean horizontal endpoint. People aimed closer to the loss region when 192 
the distance between the circles was greater, and they aimed a bit further from the loss region when the loss ratio 193 

was high. (b) Posterior parameter estimates for the effects shown in (a). The shape and location of these posteriors 194 
show that sign and magnitude errors are unlikely.  (c) Recovery of the empirical grand endpoint mean and sd from 195 

4000 posterior draws. 196 

 197 

Optimal and suboptimal models of reaching behavior 198 

 199 

The analysis above showed that reaching behavior in the present task had 200 

optimal features, such as sensitivity to loss ratio and training variance, as well as 201 

suboptimal features, such as sensitivity to payoff multiplier and loss aversion. We 202 

therefore considered multiple computational models of task performance that 203 

instantiated different combinations of these features. The first model that we considered 204 

has been used in prior work and we refer to it as the optimal model. This model states 205 

that a person selects reach aimpoints that maximize expected utility conditioned on an 206 

internal estimate of their own reach variance. We implement this model by estimating 207 

expected utility surfaces over the stimulus space for each subject and payoff condition 208 

and selecting the points that maximize these surfaces (Figure 1b). The shape of the 209 

utility surface is determined by the loss-to-gain ratio and the subject’s reach variance 210 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/406439doi: bioRxiv preprint 

https://doi.org/10.1101/406439
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUB-OPTIMAL SENSORIMOTOR RESPONSES TO LARGE LOSSES 

estimate, which we estimate from performance in training (Figure 1b). When the loss 211 

ratio is high, the peaks of the utility surfaces are shifted away from the loss region 212 

suggesting participants are somewhat sensitive to loss ratio (Figure 3a). As for the 213 

effect of variance, the utility surfaces for low variance subjects are more extreme (higher 214 

peaks, lower valleys), but the maxima of these surfaces are closer to the loss region, 215 

compared to the utility surfaces for high variance subjects.   216 

We refer to our second model as the loss-averse model. The only difference 217 

between this model and the optimal model is that the loss magnitudes were given 218 

outsized weight when estimating the utility surfaces. The losses were weighted 219 

according to a subject’s trait-level loss aversion that was measured in a separate choice 220 

task. This model assumes that people still maximize utility, but the utility is subjective 221 

and biased. The overweight losses decrease the utilities of nearby aimpoints and shifts 222 

the utility maxima away from the loss region (Figure 3a).  223 

The final model that we considered is called the heuristic model. This model 224 

states that people follow a simple intuitive strategy that produces satisfactory albeit 225 

strictly suboptimal outcomes. The idea behind this model is that people tend to simplify 226 

difficult problems to make them more computationally tractable. In other words, when 227 

faced with vast decision-spaces, people tend to satisfice rather than optimize (Simon, 228 

1955).. Therefore, the heuristic model states that people simplify the incentivized 229 

reaching task by maximize the probability of hitting the pure-reward region, while 230 

ignoring the vertical (less relevant) spatial dimension. In the present task, this strategy 231 

leads to aimpoints that depend only on (1) the presence/absence of a potential loss, 232 

and (2) the horizontal spatial configuration of the stimuli. When there is a potential loss, 233 

the heuristic agent aims at the midpoint of ‘pure gain’ portion of the midline axis (Figure 234 

3a), otherwise the heuristic agent aims at the center of the gain circle. The heuristic 235 

strategy is not influenced by the exact payoff values or the agent’s endpoint variance. 236 

 These models represent three plausible hypotheses about how people make 237 

rapid sensorimotor decisions under risk: (1) people are optimal and maximize expected 238 

objective value, (2) people are suboptimal and maximize a biased subjective utility, or 239 

(3) people are suboptimal and follow a simple heuristic that works well enough. To test 240 

these hypotheses, we generated predictions from the models and compared these 241 

predictions to human performance.  We first evaluated the models’ absolute goodness 242 

of fit, by graphically comparing observed mean reach endpoints with model-predicted 243 

mean endpoints. If subjects’ behavior were perfectly captured by a model, then their 244 

mean endpoints would be identical to the model-predicted endpoints. We next 245 

evaluated the models’ relative goodness of fit by estimating the pointwise likelihood of 246 

the data under different models. To compared models, we performed likelihood ratio 247 

tests using the Vuong statistic (zv) which is the summed log-likelihood ratios (LLRs) 248 

between two models, scaled by variance of the LLRs and the sample size (Vuong, 249 

1989). Since this statistic is normally distributed, we infer that one model fits better than 250 
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another when zv > 1.96 or zv < -1.96, which corresponds to a 95% confidence interval 251 

for the null hypothesis zv = 0.  252 

 253 

Reaching behavior deviated from optimal when financial stakes increased 254 

 255 

In terms of absolute goodness of fit, the observed mean endpoints systematically 256 

diverged from the model-predicted mean endpoints (Figure 3a,b). In general, people 257 

tend to aim closer to the loss region than predicted by the models. This was especially 258 

prevalent for the optimal and loss-averse models. The data appeared to be captured 259 

better by a perceptual heuristic strategy compared to a utility maximizing strategy.  260 

In terms of relative goodness of fit, the full dataset was more likely under the 261 

heuristic model than the optimal model (zv = -7.40) and the loss averse model (zv = 262 

22.7), though the data were more likely under the optimal than the loss averse model (zv 263 

= 22.9). The heuristic model had a large advantage over the optimal model when the 264 

ratio of loss to gain magnitude was large (zv = -15.4), but when the ratio was small, the 265 

optimal model provided a better fit than the heuristic model (zv = 3.82) (Figure 3c). 266 

When loss circle was near the gain circle the heuristic model had a large advantage 267 

over the optimal model (zv = -7.49), though this advantage was smaller when the circles 268 

were more distant (zv = -2.74) (Figure 3d). 269 

We also examined subject-level fits to check whether some subset of the 270 

subjects did follow the optimal strategy. No subject’s overall dataset was fit better by the 271 

optimal or loss-averse models compared to the heuristic model, but six subjects were fit 272 

best by the heuristic model (-8.10 < zv < -1.96), and for the remaining eleven subjects 273 

the differences of fit between the heuristic and optimal models were not statistically 274 

significant (-1.5 < zv < 0.30). Since the loss-averse model fits always provided the worst 275 

relative fit, we focus exclusively on the heuristic and optimal models in what follows.  276 

When the loss ratio was -1:1, nine subjects were fit better by the optimal model 277 

than the heuristic model (2.41 < zv < 5.27), one subject was fit better by the heuristic 278 

model (zv = -7.80), and the differences of fit were not statistically significant for the 279 

remaining four subjects (-1.78 < zv < 1.50) (Figure 3e). When the loss ratio was -5:1, all 280 

subjects were fit better by the heuristic model compared to the optimal model (-7.52 < zv 281 

< -2.13) (Figure 3e). When the loss region was nearest to the gain region, eight subjects 282 

were fit better by the heuristic model compared to the optimal model (-4.19 < zv < -2.12), 283 

and the differences of fit were not statistically significant for the remaining nine subjects 284 

(-1.55 < zv < 1.51) (Figure 3f). When the loss region was furthest from the gain region, 285 

three subjects were fit better by the heuristic model (-7.98 < zv < -2.35) and the 286 

differences of fit were not statistically significant for the remaining 14 subjects (-1.02 < zv 287 

< 1.89) (Figure 3f). Overall, these results show that group-level predictive advantage of 288 

the heuristic model over the optimal model also obtained at the subject level for many 289 

subjects. However, the heuristic model provided better fit only when financial stakes 290 
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were high, consistent with the hypothesis that highly motivated performance depends 291 

more on top-down cognitive processing, which is susceptible to cognitive biases. 292 

 293 

 294 
 295 

 296 

Figure 3. Computational modeling results for Experiment 1. (a) Endpoint distribution and average model 
predictions for the two loss-ratio conditions. The observed mean endpoint (blue dot) does not move much 
between the two payoff conditions, similar to the heuristic aimpoint (orange). The optimal aimpoint (yellow) 
shifts away from the loss region when the loss ratio increases, and this effect is exaggerated for the loss-
averse model (purple). This plot is for illustrative purposes, so we show only subjects with above average 

endpoint variance and above average loss-aversion, to ensure the predictions of the models are visibly distinct. 
(b) Model-predicted aimpoints vs observed aimpoints. Points on the Y = X line represent perfect 

correspondence between the model and the data. Most people shift less than predicted by the models, but the 
heuristic predictions provide the best match to the observed data. There is a separate point for each 

combination of subject, condition and model. (c) Summed log-likelihoods of the data under each model in each 
payoff condition—greater log-likelihood indicates better fit. The optimal model fits the best in the -1:1 condition 

by a small amount, and the heuristic model fits best in the -5:1 condition by a greater amount. It also seems 
that all three models fit worse in in the higher stakes condition. (d) Log-likelihoods for each spatial condition. It 

appears that the models fit better in the wide spatial condition. (e) Vuong’s statistic supports likelihood-ratio 
tests for comparing models. Here we show the results of Vuong’s test comparing the optimal and heuristic 

models, separately for each subject and payoff condition. These results show that the group-level patterns hold 
for most individual subjects. (f) Vuong’s statistics for subject-level heuristic vs optimal comparisons for each 

spatial condition. 
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Experiment 2 297 

 298 

We obtained results in experiment 1 that were inconsistent with behavior 299 

reported in prior work. For this reason, we sought to replicate our results in a second 300 

experiment. Importantly, the second experiment was a much closer direct replication of 301 

the seminal task used by Trommershauser et al. (Spatial Vision, 2003). 16 healthy 302 

human subjects performed this incentivized reaching task. Subjects first trained to 303 

quickly reach to visuospatial targets for 10 blocks of 30 trials. This training session 304 

included loss and gain regions, but the loss value was always zero. During training, time 305 

limits were unlimited in block one, 850ms in blocks two through four, and 700 ms in 306 

blocks five through ten. We obtained an estimate of subjects reaching variance using 307 

their endpoints from blocks five through ten. According to the optimal model, subjects 308 

use this estimate of their own variance to decide where to reach, since their variability 309 

determines the probabilities of various outcomes conditioned on a candidate aim-point. 310 

Subjects returned two days later to perform another 12 blocks of 30 trials, this time with 311 

real payoffs. Loss values (0, -100, -500 points) varied block-wise and the gain values 312 

were always +100 points. Subjects accumulated points throughout the training and test 313 

session and their total points were converted to cash bonuses at a rate of $0.25 per 314 

1000 points. Finally, subjects performed an independent choice task to assess their 315 

trait-level loss aversion. The primary dependent measure for our analyses was the 316 

horizontal position of subjects’ reaching endpoints.  317 

 318 

 319 

Reaching behavior was related to loss value, loss aversion, and an estimate of 320 

reach variance from training. 321 

 322 

We fit a multilevel gaussian family regression model to subjects’ reach endpoints 323 

to test whether people reached further from the loss region when (1) the loss was large, 324 

(2) they have high loss-aversion, or (3) they experienced high endpoint variance in 325 

training.  326 

We found strong evidence for no effect of loss ratio on reach endpoint, 327 

suggesting that our subjects did not reach further from the loss region when the ratio of 328 

loss to gain was large (β = -0.00, HDI = [-0.01, 0.00], pd = 1.0). We also found evidence 329 

for no effect of training variance on reach endpoint, suggesting that subjects who 330 

experienced large endpoint variance in training did not reach further from the loss 331 

region compared to subjects who experienced small variance (β = -0.02, HDI = [-0.08, 332 

0.04], pd = 0.67). Lastly, we found weak evidence of an effect of loss aversion on reach 333 

endpoint, suggesting oddly enough that subjects with higher loss aversion may have 334 

reached closer to the loss region compared to subjects with loser loss aversion (β = -335 
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0.06, HDI = [-0.13, -0.00], pd = 0.94). In sum, participants behavior did not appear to 336 

conform to the optimal strategy throughout the task. 337 

 338 
 339 

Figure 4. Computational modeling results for Experiment 1. (a) Endpoint distribution and average model predictions 340 
for the two loss-ratio conditions. The observed mean endpoint (blue dot) does not move much between the two payoff 341 

conditions, similar to the heuristic aimpoint (orange). The optimal aimpoint (yellow) shifts away from the loss region 342 
when the loss ratio increases, and this effect is exaggerated for the loss-averse model (purple). This plot is for 343 
illustrative purposes, so we show only subjects with above average endpoint variance and above average loss-344 
aversion, to ensure the predictions of the models are visibly distinct. (b) Model-predicted aimpoints vs observed 345 

aimpoints. Most people shift less than predicted by the models, but the heuristic predictions provide the best match to 346 
the observed data. There is a separate point for each combination of subject, condition and model. (c) Summed log-347 

likelihoods of the data under each model in each payoff condition. The optimal model fits the best in the -1:1 condition 348 
by a small amount, and the heuristic model fits best in the -5:1 condition by a greater amount. It also seems that all 349 
three models fit worse in in the higher stakes condition. (d) Vuong’s statistics for subject-level heuristic vs optimal 350 

comparisons for each payoff condition. The results show that the group-level model-fit patterns hold for most 351 
individual subjects. 352 

 353 

 354 
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Reaching behavior was suboptimal on high stakes trials 355 

 356 

In terms of absolute goodness of fit, the observed mean endpoints systematically 357 

diverged from the model-predicted mean endpoints (Figure 4a,b). In general, people 358 

tend to aim closer to the loss region than predicted by the models. This was especially 359 

prevalent for the optimal and loss-averse models. The data appeared to be captured 360 

better by a perceptual heuristic strategy compared to a utility maximizing strategy.  361 

In terms of relative goodness of fit (Figure 4c), the full dataset was more likely 362 

under the heuristic model than the optimal model (zv = -7.37) and the loss averse model 363 

(zv = 22.8), though the data were more likely under the optimal than the loss averse 364 

model (zv = 25.1). The heuristic model had a large advantage over the optimal model 365 

when the ratio of loss to gain magnitude was large (zv = -13.2), but when the ratio was 366 

small, the optimal model provided a better fit than the heuristic model (zv = 7.36).  367 

We also examined subject-level fits to check whether some subset of the 368 

subjects did follow the optimal strategy (Figure 4d). One subject’s overall dataset was fit 369 

best by the optimal model (zv = 3.70), nine subjects were fit best by the heuristic model 370 

(-5.57 < zv < -1.96), and for the remaining six subjects, the differences of fit between the 371 

heuristic and optimal models were not statistically significant (-1.60 < zv < -0.05). No 372 

subject was described better by the loss-averse model than the other models.  373 

When the loss ratio was -1:1, six subjects were fit better by the optimal model 374 

than the heuristic model (2.13 < zv < 4.57) and the differences of fit were not statistically 375 

significant for the remaining four subjects (0.37< zv < 1.88). When the loss ratio was -376 

5:1, twelve subjects were fit better by the heuristic model compared to the optimal 377 

model (-7.57 < zv < -2.45), one subject was fit better by the optimal model (zv = 3.09), 378 

and the differences of fit were not statistically significant for the remaining three subjects 379 

(-1.82 < zv < -1.20).  380 

 381 

Reach variance decreased when financial stakes increased 382 

 383 

Lastly, we considered the possibility that our participants respond adaptively to 384 

potential losses in ways other than shifting their aimpoint away from the loss region. In 385 

particular, we used multilevel Gaussian distributional model to test whether the variance 386 

of participants endpoints decreased as the loss ratio increased. Unlike the regression 387 

models fit above, this distributional model featured multilevel regression formulae for 388 

both the mean and the variance of the outcome variable. The model included fixed 389 

effects of loss ratio and random intercepts for each subject.  390 

The model revealed that endpoint variance decreased from the -0:+1 condition to 391 

the -1:+1 condition (β = -0.14, HDI = [-0.18, 0.10], pd = 1.0) and from the -1:+1 condition 392 

to the -5:+1 condition (β = -0.04, HDI = [-0.08, -0.01], pd = 0.97). This is interesting 393 

because endpoint variance limits performance by increasing the probability of outcomes 394 
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further away from the desired aimpoint, including endpoints in the loss region. Our 395 

results suggest that noise in the motor system may be regulated by motivational 396 

prospects.  However, we examined a variant of the optimal model that used separate 397 

variances for each payoff condition, directly estimated from the test data, but this model 398 

still provided a worse fit compared to the heuristic model.  399 

 400 

 401 

Discussion 402 

 403 

We measured sensorimotor decision making using a visually guided reaching 404 

task with monetary incentives. This task was of particular interest because it has an 405 

“optimal” solution, whereby a person selects reaching aimpoints with maximal expected 406 

utility. We tested the hypothesis that people make optimal sensorimotor decisions by 407 

comparing human behavior in two experiments to the precise quantitative predictions of 408 

optimal and suboptimal computational models. Across both experiments, we found 409 

compelling evidence that human behavior deviated systematically from the optimal 410 

strategy. The key deviation of human behavior from the ideal was manifest as a 411 

tendency to aim too close to the loss region on trials in which financial stakes were high. 412 

In these situations, human behavior was captured better by a sub-optimal heuristic 413 

strategy that was insensitive to exact payoff values.  414 

According to the optimal model of incentivized reaching behavior, participants 415 

use a memory of their endpoint variance in training and an observation of the current 416 

potential losses and gains to estimate the expected utility associated with different 417 

reach aimpoints. Thus, if participants follow this strategy they will aim further from the 418 

loss region when the loss-to-gain ratio is large (-5:1) compared to when it is small (-1:1), 419 

and participants with large endpoint variance will aim further from the loss region than 420 

participants with small endpoint variance. Across two experiments, Bayesian regression 421 

analyses showed that endpoint variance had minimal influence horizontal reach 422 

endpoint. This finding was inconsistent with the optimal model of human performance in 423 

this task. We therefore formulated a heuristic model of task performance that does not 424 

depend directly on endpoint variance. Follow-up model-comparison analyses revealed 425 

that reach endpoint data were significantly more likely under the heuristic model 426 

compared to the optimal model. Importantly, this advantage was driven by behavior in 427 

the large loss ratio condition, where nearly all subjects were fit significantly better by the 428 

heuristic model compared to the optimal. When the loss ratio was -1:1, the models had 429 

similar fits to the data, but the optimal model had a small advantage overall. These 430 

results suggest that participants deviated from the optimal strategy as the loss ratio 431 

increased from -1:1 to -5:1.  432 
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Prior work has similarly shown that human visuomotor decision making under 433 

risk is suboptimal in some variants of the incentivized reaching task. For example, 434 

human performance has been shown to be suboptimal with rapidly varying payoff 435 

conditions (Neyedli and Welsh, 2014), complex expected value landscapes (Wu et al., 436 

2006), and delayed onset of payoff-information (Trommershauser 2006b). However, 437 

much of this prior work assumes that the seminal work using this task provides strong 438 

evidence for near-optimal visuomotor decision making under risk.  We show that this 439 

assumption may be unfounded and that even the original paradigm elicits behavior that 440 

deviates from optimal when financial stakes are high. Sensorimotor behavior may be 441 

closer to optimal when stakes are lower because the person does not exert much 442 

attention or effort to the task, thus allowing the behavior to unfold in an automatic 443 

manner. However, when stakes are high, the behavior will be influenced more by top-444 

down cognitive control processes (Botvinick and Braver, 2014; Yee and Braver, 2018). 445 

While heightened investments of attention and effort are bound to enhance performance 446 

in some ways, this cognitive dependence may also render the behavior vulnerable to 447 

cognitive biases and heuristics. While we found no evidence that people followed the 448 

loss-averse strategy, we found consistent evidence that people followed the heuristic 449 

strategy when the stakes were high.  450 

A key computational difference between the heuristic and optimal strategies is 451 

that the heuristic does not depend on computationally costly estimations of expected 452 

utility. If the relative costs of relying on the optimal strategy outweigh its relative benefits 453 

for performance, then people may not rely on it. Thus, participants in our experiments 454 

may have deviated from the optimal strategy when the loss ratio was large because in 455 

that condition the costs of the optimal strategy outweighed its benefits. We confirmed 456 

using simulations that the extrinsic benefits of the optimal strategy over the heuristic 457 

strategy were smaller when the loss ratio was large (≈+0.15 expected gain, assuming a 458 

reward of 1) compared to when the loss ratio was small (≈+0.5 expected gain). 459 

Therefore, our subjects probably had less incentive to rely on the more costly on-line 460 

optimization strategy when the loss ratio was large. This alone may be sufficient to 461 

explain why subjects used the inexpensive heuristic when the loss ratio was large. 462 

Furthermore, motivational pressure induced by the high financial stakes might consume 463 

additional resources, thereby reducing the total amount of resources available for the 464 

decision-making task. This would further increase the effective costliness of the optimal 465 

strategy, leading a subject to rely on less expensive heuristic strategies.  466 

We find that subjects do not shift their aimpoints in response to payoff 467 

information to the extent that is predicted by the optimal model. The optimal strategy 468 

incorporates an estimate of the subject’s endpoint variance and assumes that their 469 

variance does not change in response to payoff information. But there is evidence that 470 

motivation facilitates the reduction of neuronal noise in the motor system (Manohar et 471 

al., 2015). Thus, it was plausible that our subjects had smaller endpoint variance when 472 
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the loss ratio was large, enabling them to aim closer to the loss region without 473 

increasing their risk of loss. Follow-up Bayesian analyses revealed that the variance of 474 

participants endpoints decreased as the loss ratio increased. The optimal model as 475 

formulated previously makes the dubious assumption that endpoint variance is 476 

constant, whereas our data show that endpoint variance varies systematically with 477 

financial stakes and may indeed be a key method by which people adapt their 478 

sensorimotor behavior in response to increasing financial stakes. However, when we 479 

examined a version of the optimal model with condition-specific variances estimated 480 

from the test session, it still provided a worse overall fit compared to the heuristic model.  481 

There are several questions unanswered by the present study that could be 482 

addressed by future work. Data in the low stakes condition were fit best by the optimal 483 

model but data in the high stakes condition were fit best by the heuristic model. 484 

However, it remains unknown whether this is because people are switching between the 485 

optimal and heuristic strategies, or because people are following some other unknown 486 

strategy that would generate the pattern of data observed here. Another unanswered 487 

question is whether Another issue with this work is that several theoretically distinct 488 

models make very similar predictions (typically within a few pixels) and are associated 489 

with similar expected gains in the present task. Therefore, it may be inherently difficult 490 

to empirically distinguish between plausible alternative models of behavior in this task 491 

and future work should explore alternative tasks that are designed specifically to 492 

distinguish optimal and plausible alternative suboptimal models. 493 

 In sum, we provide evidence across two incentivized reaching experiments 494 

(19,080 endpoints) that humans do not make perfectly rational decisions about where to 495 

aim their movements when there are large potential losses at stake. An optimal agent 496 

would integrate an estimate of its own endpoint variance with payoff and perceptual 497 

information to find an aimpoint with maximal utility. The optimal agent therefore aims 498 

further from the loss region when its variance estimate increases or when the potential 499 

loss-to-gain ratio increases. However, our subjects did not display these behavioral 500 

patterns to the extent that was predicted by the optimal model. Instead, our data 501 

suggest that participants may follow an alternative heuristic strategy when the potential 502 

losses are large. According to this model, the agent solves a simplified version of the 503 

decision problem, one in which the solution is more or less invariant to endpoint 504 

variance and loss-to-gain ratio. Our participants unequivocally deviated from the 505 

objectively rational strategy. However, they also did not behave in a manner fit to be 506 

described as irrational. Regarding the question of human rationality, our work provides 507 

support for a more moderate position according to which people, with their limited 508 

computational resources (time, memory, attention, etc.), tend to solve simplified 509 

versions of difficult problems, leading to behavior that satisfices, but does not optimize.   510 

 511 

 512 
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 513 

Methods 514 

 515 

Experiment 1 516 

 517 

Ethics statement 518 

All procedures were approved by the University of Michigan Institutional Review 519 

Board of Health Sciences and Behavioral Sciences and the experiment was carried out 520 

in accordance with the guidelines of this review board. 521 

 522 

Participants 523 

23 students (16 female) from the University of Michigan participated in 524 

experiment 1. All participants gave written informed consent to participate in the study.  525 

All participants were right-handed, free of neurological disorders, and had normal or 526 

corrected-to-normal vision.  At the end of the experiment, participants were 527 

compensated at a rate of $10/hour plus performance bonuses and their outcome from 528 

the loss aversion task described below. A participant’s base hourly compensation was 529 

not affected by their performance in any task.  530 

 531 

Apparatus 532 

Participants sat in an immobile chair in a small room in front of a 23” touchscreen 533 

computer monitor, and a keyboard positioned such that the spacebar was 21.5 cm away 534 

from the screen. We programmed the reaching task using PsychoPy (31) and the loss 535 

aversion task using the PyGame (www.pygame.org). 536 

 537 

Reaching task 538 

Participants performed an incentivized reaching task that has been argued to 539 

elicit movement strategies that are near-optimal adaptations to movement variability and 540 

payoffs (28). At the start of each trial (Figure 1), the participant was presented with the 541 

reward and penalty values for 1,500 ms. Next, the participant looked at a white fixation 542 

cross and then pressed and held the space bar with their right index finger when they 543 

were ready to begin. Once the space bar was pressed, the fixation cross became blue, 544 

and a blue box (88 mm x 88 mm) was presented at the center of the screen for a 545 

randomized duration of 400 to 600 ms to indicate the region where the imperative 546 

stimulus could appear.  Next, overlapping green and red circles (radii = 8.5 mm) 547 

appeared at a random location within the blue bounding box and the participant had 548 

1000 ms to reach out and touch the screen.  549 

If a participant touched within the boundary of the green “reward” circle before 550 

the time limit (1,000 ms), they earned a reward. If they touched within the boundary of 551 
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the penalty circle before the time limit, they incurred a penalty. If they touched within the 552 

boundaries of both circles before the time limit, they incurred the sum of the penalty and 553 

reward. A touch outside both the penalty and reward circles resulted in neither a penalty 554 

nor a reward.  If a participant completed their reach after the trial time limit had elapsed, 555 

they incurred a large penalty (-$5) for that trial and were shown feedback stating, “Too 556 

slow”. If a participant released the space bar before the reward and penalty circles 557 

appeared, the trial was aborted, and they were shown feedback stating, “Too soon”. 558 

The experiment consisted of training and test sessions completed on two 559 

separate days and lasting approximately one hour each. The training session was 560 

divided into three parts. In Part 1, which consisted of 12 blocks of 36 trials, participants 561 

reached at a single unchanging yellow dot. This provided a distribution of endpoints 562 

from which to estimate each participant’s reaching end-point variability.  Part 2 563 

consisted of 6 blocks of 36 trials. During Part 2, participants were exposed to six 564 

conditions: 3 payoff conditions ([-$0, +$1]; [-$1, +$1]; [-$5, +$1]) with one of two 565 

separation distances between the penalty and reward regions (1R; 1.4R, where R = 566 

8.55 mm). Participants were informed that performance in training did not affect their 567 

total earnings in the task and was just for practice.  Conditions varied randomly on a 568 

trial-by-trial basis.  Part 3 of training consisted of 2 additional blocks of 36 trials each in 569 

which two additional payoff conditions were added: [-$3, +$3] and [-$15, +$5]. These 570 

‘high-stakes trials’ were essential to the comparison between the loss-averse model and 571 

the optimal model as the former would predict more drastic shifts away from the penalty 572 

region on these trials.  573 

On Day 2, before the test session, participants took a “pre-test” to ensure they 574 

understood the task instructions.  This pre-test presented a series of hypothetical 575 

reaching endpoints for every possible payoff condition and asked the participant how 576 

much would be earned for each item. In order to advance to the test phase of the 577 

experiment, participants needed to complete the pre-test with 100% accuracy. If 578 

participants did not understand an item, we explained it to them. Only one participant 579 

failed to complete the test with 100% accuracy on their first attempt. After the pre-test, 580 

participants performed 10 blocks of 60 trials each, with all 10 conditions varying 581 

randomly on a trial-by-trial basis. At the end of the test session, one trial was selected at 582 

random from each block and participants gained and lost bonus earnings based on their 583 

performance on these randomly selected trials. After the reaching task was complete, 584 

participants performed the loss-aversion task described below. 585 

 586 

Loss-aversion task 587 

After participants completed the last block of the test session, they completed a 588 

gambling task which measured their loss-aversion, understood as the extent to which 589 

they weighted losses more than objectively equivalent gains (3,4). In this task, 590 

participants were presented with a randomized series of 50/50 gambles. Potential gains 591 
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ranged from +$10 to +$30, while potential losses ranged from -$5 to -$15.  Participants 592 

were instructed to evaluate each gamble independently and to accept or reject each of 593 

these gambles.  They were further instructed to avoid the use of simple decision-making 594 

rules, such as a rule to accept all gambles with potential rewards greater than $10. 595 

Participants were told that one of the gambles would be randomly selected after 596 

completing the task and that if they had accepted the chosen gamble, the participant 597 

would win or lose the amount displayed based on the outcome of a computerized coin 598 

flip. Participants were instructed that the outcome of the gamble could add to or take 599 

away from the bonus they earned from the reaching task.  600 

To calculate a measure of loss aversion from this task, logistic regression was 601 

performed with the size of the potential gain and the size of the loss as independent 602 

variables and acceptance/rejection as the dependent variable. This analysis was 603 

performed separately for each participant. Behavioral loss aversion (λ) was computed 604 

as λ = βloss/βgain where both βloss and βgain are the unstandardized regression coefficients 605 

for the gain and loss variables separately. This analysis makes the simplifying 606 

assumption that subjective value is linearly related to objective value for both losses and 607 

gains. Eight participants (four in each experiment) had performance that resulted in an 608 

implausible λ value that was less than one (loss-seeking) or greater than 15 (extremely 609 

loss-averse). These participants appeared to be following a simple decision-making rule 610 

rather than evaluating each gamble independently. If λ < 1, we let λ = 1, and if λ > 5, we 611 

let λ = 5. 612 

 613 

 614 

Experiment 2 615 

 616 

Ethics Statement 617 

All procedures were approved by the University of Michigan Institutional Review 618 

Board of Health Sciences and Behavioral Sciences and the experiment was carried out 619 

in accordance with the guidelines of this review board. 620 

 621 

Participants 622 

18 students (12 female) from the University of Michigan. All participants gave 623 

written informed consent to participate in the study. All participants were right-handed 624 

and had normal or corrected-to-normal vision.  At the end of the experiment, 625 

participants were compensated at a rate of $10/hour plus performance bonuses and 626 

their outcome from the loss aversion task described below, if applicable. A participant’s 627 

base hourly compensation was not affected by their performance in any task.  628 

 629 

Apparatus 630 
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Participants sat in an immobile chair in a small room in front of a 23” touchscreen 631 

computer monitor, and a keyboard positioned such that the spacebar was 21.5 cm away 632 

from the screen. We programmed the reaching task using OpenSesame (Mathôt et al., 633 

2012) and the loss aversion task using the PyGame (www.pygame.org) 634 

 635 

Reaching task 636 

Participants performed a task similar to the incentivized reaching task used in 637 

Experiment 1. All task parameters were identical except those described below. 638 

Experiment 2 consisted of training and test sessions completed on two separate days 639 

and lasting approximately one hour each. The training session was composed of 10 640 

blocks of 30 trials each. In training, participants always saw the overlapping reward and 641 

penalty regions, but the penalty value was zero.  The time-limit for each reaching 642 

movement decreased from unlimited in block 1 to 850 ms in blocks 2 – 4 to 700 ms in 643 

blocks 5 – 10. The only penalties in the training session were due to reaches completed 644 

after the time-limit.  The separation distance between the reward and penalty circles 645 

was fixed at 1R (32 pixels). We estimated participants’ movement variability from their 646 

data in blocks 5 through 10 of training.  647 

The test session was composed of 12 blocks of 30 trials each.  In the test 648 

session, participants accrued points throughout the experiment that were translated into 649 

cash earnings at a rate of 25 cents per 1000 points at the conclusion of the experiment.  650 

The reward value was fixed at +100 points and the penalty value was fixed within each 651 

block at either zero, -100, or -500 points (4 blocks each, in random order). The time-limit 652 

was 700 ms and the penalty for completing a movement after the time-limit was -700 653 

points. 654 

 655 

 656 

Statistical modeling 657 

 658 

Pre-processing 659 

 660 

Raw endpoint data were mapped to a standard space with the gain circle centered 661 

around the origin and the loss circle offset to the right of the target circle. We next 662 

exclude endpoints falling outside of +/- 3 sd of the grand mean in the horizontal or 663 

vertical direction, so that subsequent mean and variance estimations were not biased 664 

by extreme outliers. Our statistical modeling focused solely on the horizontal dimension 665 

of the data, because only this dimension should be systematically related to financial 666 

stakes. Finally, we scaled and centered these data to have a grand mean of zero and a 667 

grand standard deviation of 0.5 (Gelman, 2008). We transform our continuous 668 
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predictors (e.g., training variance, loss aversion) in the same manner. We performed all 669 

data wrangling using the R package {dplyr}. 670 

 671 

 672 

Multilevel linear mean endpoint model 673 

 674 

We first fit multilevel gaussian regression models of horizontal endpoint mean. The 675 

model for Experiment 1 included fixed effects of loss ratio, loss multiplier, separation 676 

distance, variance from training, and loss aversion, while the model for Experiment 2 677 

only included effects of loss ratio, variance, and loss aversion. Both models included 678 

random intercepts for each subject and treated variance as an auxiliary constant 679 

parameter. The model can be expressed as: 680 

 681 

𝜇 = (𝛼𝜇   + 𝛼𝜇𝑠
) + 𝑋𝛽𝜇 682 

𝑦 ~ 𝑁(𝜇, 𝜎2) 683 

 684 

where 𝑦 is an endpoint, 𝜇 is an endpoint mean, 𝜎 is a constant group-level endpoint sd, 685 

𝛼 is a group-level intercept term, 𝛼𝑠 is a subject-level intercept term, 𝑋 are the predictors 686 

(e.g., loss ratio), and 𝛽 are the group-level coefficients for those predictors..  687 

 688 

 689 

Multilevel linear distributional endpoint model 690 

 691 

We fit a second multilevel gaussian regression model to the endpoint data from 692 

Experiment 2. This model included regression formulae for both the mean and variance 693 

of the endpoints. The formulae were the same as those used in the previous models. 694 

The model can be expressed as: 695 

 696 

𝜇 = (𝛼𝜇 + 𝛼𝜇𝑠
) + 𝑋𝛽𝜇 697 

𝜎 = (𝛼𝜎 + 𝛼𝜎𝑠
) + 𝑋𝛽𝜎 698 

𝑦 ~ 𝑁(𝜇, 𝜎2) 699 

 700 

where 𝑦 is an endpoint, 𝜇 is an endpoint mean determined by the linear equation, 𝜎 is 701 

an endpoint sd determined by the linear equation, 𝛼 is a group-level intercept term, 𝛼𝑠 is 702 

a subject-level intercept, 𝑋 are the predictors (e.g., loss ratio), and 𝛽 are the group-level 703 

coefficients for those predictors.  704 

 705 

 706 

Parameter estimation 707 
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 708 

We used weakly informative 𝑁(0,1) priors for all free parameters. This assigns high 709 

probability to small estimates and low probability to large estimates because our 710 

outcome and predictors have means of zero and standard deviations of 0.5. We 711 

estimate the posterior probability distribution over our multidimensional parameter 712 

space using No-U-Turns Markov Chain Monte Carlo sampling with 4000 iterations and 713 

50% burn-in. We examine marginal posterior distributions to draw inferences about the 714 

size and direction of specific parameter estimates.  715 

 716 

Our models were specified and fit using the R package {brms} (Bürkner, 2018, 2017), 717 

which compiles probabilistic models in Stan (Carpenter et al., 2017). To quantify the 718 

strength of evidence for the median effect size, we use the width of the 89% highest 719 

density interval (HDI) (J. Kruschke, 2014). To quantify the strength of evidence for the 720 

median effect direction, we use the probability of direction (pd). We estimated these 721 

measures using the tidy_stan() function from the R package {sjstats} (Lüdecke, 2019). 722 

There were no divergent transitions in sampling, the MCMC traces had normal 723 

appearances, the r-hat statistics for all parameters were 1.0, the effective sample sizes 724 

were large, and the Markov chain standard errors were approximately zero.  725 

 726 

To check the predictive validity of the models, we performed posterior predictive checks 727 

using 4000 draws from the estimated posterior. These posterior replications were used 728 

to predict observed endpoint densities, means, and variances, and graphical tests 729 

revealed a good fit between the predicted and observed summary statistics. We 730 

extracted posterior predictions using the function posterior_predict() from the R package 731 

{rstantools}. To visualize the predicted effects, we estimated marginal effects of 732 

predictors on the outcome using brms::marginal_effects(). All plots were created using 733 

the R package {ggplot2} (Wickham, 2016). 734 

 735 

 736 

Computational modeling 737 

 738 

Linear regression models are useful for detecting simple linear relationships between 739 

behavior and predictors of interest, but they give little insight about the precise 740 

computations that are performed by the subject to generate their behavior. To address 741 

this, we formulated some computational models which embody different hypotheses 742 

about the computations used to generate observed reaching behavior in our task.  743 

 744 

Optimal model 745 

 746 
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This model is a very slightly modified variant of the MEGaMove model 747 

(Trommershäuser et al., 2003). The model states that reaching behavior depends on 748 

the estimation and maximization of utility surfaces over the stimulus space. These utility 749 

surfaces depend on the perceived geometry of the stimulus, the financial stakes 750 

associated with different reach outcomes, and the subject’s internal estimate of their 751 

endpoint variance (i.e., outcome uncertainty). The model determines an expected utility 752 

for all aimpoints under consideration and the maximum of this surface (i.e., the optimal 753 

aimpoint) is given by: 754 

 755 

arg max
𝜇

E[U(𝜇)] =  𝑣(ℊ) 𝑝(ℊ|𝜇, 𝜎) − 𝑣(ℓ) 𝑝(ℓ|𝜇, 𝜎) 756 

 757 

where 𝜇 is a 2d aimpoint, ℊ is the gain circle, ℓ is the loss circle, 𝑣(𝑐) returns the value 758 

of an endpoint landing in a circle, and 𝜎 is the variance of endpoints from training. The 759 

probability a reach endpoint landing inside an offset circle is given by:  760 

 761 

𝑝(𝑐|𝜇, 𝜎) =
1

2𝜋𝜎𝑥𝜎𝑦
∫ ∫ exp [−

1

2
(

𝑥2

𝜎𝑥
2

+
𝑦2

𝜎𝑦
2

)] 𝑑𝑥
𝑘+√𝑅2−(𝑥−ℎ)2

𝑘−√𝑅2−(𝑥−ℎ)2

ℎ+𝑅

ℎ−𝑅

𝑑𝑦 762 

 763 

where the aimpoint 𝜇 = (0,0), 𝑐 is a circle centered around (ℎ, 𝑘) with radius 𝑅 and 764 

where the correlation between 𝑥 and 𝑦 is zero (DiDonato and Jarnagin, 1961). In the 765 

present study, we did not assume 𝜌 = 0, but instead used full variance-covariance 766 

matrices estimated from training data, however the simpler case is sufficient to illustrate 767 

how the model works. We used the function pmvnEll() from the R package {shotGroups} 768 

to numerically solve the above integrals.  769 

 770 

 771 

Loss-averse model 772 

 773 

This model is a simple extension of the optimal model. It differs only in that it 774 

incorporates an estimate of subjects’ trait-level aversion to financial loss. Loss aversion 775 

was estimated in a separate financial choice task in which participants chose whether or 776 

not to accept various 50/50 gambles (Tom et al., 2007). Choice data are used to 777 

estimate separate linear utility functions over gains and losses. Loss-aversion was 778 

defined as the ratio of the slopes of the utility functions for losses compared to gains. In 779 

the loss-averse model, losses are multiplied by participants loss aversion when the 780 

utility surfaces are estimated. This decreases the utility of aimpoints in proportion to 781 

their distance from the loss region and leads to utility maxima that are distinct from the 782 

maxima of the optimal utility surfaces, with the loss-averse maxima being further from 783 

the loss region compared to the optimal maxima. The loss-averse aimpoint is given by: 784 
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 785 

arg max
𝜇

E[U𝝀(𝜇)] =  v(ℊ) p(ℊ|𝜇, σ) − 𝜆v(ℓ) p(ℓ|𝜇, σ) 786 

 787 

where 𝜇 is a 2d aimpoint, ℊ is the gain circle, ℓ is the loss circle, v(𝑐) returns the value 788 

of an endpoint landing in a circle, 𝜎 is the variance of endpoints from training, and 𝜆 is a 789 

loss-aversion measure. 790 

 791 

 792 

Heuristic model 793 

 794 

We hypothesized that people might follow a simple heuristic and only keep track of the 795 

stimulus configuration and whether there is a potential loss, ignoring their endpoint 796 

variance and the exact loss-to-gain ratio. The heuristic involves two simplifications: (1) 797 

ignoring the vertical dimension of the stimuli and (2) binarizing the potential payoffs. 798 

This reframing isolates a 1d target (gain) interval with zero-return margins. The goal of 799 

the heuristic strategy is to maximize the probability of making contact with this 1d target 800 

interval: 801 

 802 

arg max
μx

p(Tx|μx) 803 

 804 

where T is the target interval and the μx is a candidate aimpoint. Interestingly, the 805 

solution to the above goal is invariant to the participant’s endpoint variance and is given 806 

by: 807 

 808 

h(ℓ, δ) = −sgn(ℓ) (
δ

2
) 809 

 810 

where ℓ is the loss value and δ is the distance between the centers of the loss and gain 811 

regions. 812 

 813 

The heuristic model is simpler than the previous models in terms of information-814 

processing complexity. For instance, the optimal model gives different predictions for 815 

each loss ratio and subject (given unique endpoint variances), while the heuristic model 816 

does not. These invariances also make the strategy more robust, since the heuristic 817 

strategy is locally optimal for any given endpoint variance (outcome uncertainty), 818 

changes in endpoint variance can be ignored. Nonetheless, performance (i.e., expected 819 

gain) using the heuristic strategy is enhanced when endpoint variance gets smaller, 820 

therefore motivational enhancements to heuristic performance may be mediated by 821 

changes in endpoint variance rather than changes in endpoint mean. 822 
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 823 

Model comparison 824 

 825 

The models provide quantitative predictions of mean endpoints across subjects and 826 

task conditions. The models and predictions were a priori in the sense that they were 827 

independent from the test data, with the exception of the heuristic model which was 828 

formed after looking at data from Experiment 1. For each observed endpoint and model, 829 

we estimated its likelihood given the model-predicted aimpoint (𝜇 = (𝜇𝑋, 𝜇𝑌)) and the 830 

subject’s covariance matrix (σ = [𝜎𝑋, cov(𝑋, 𝑌), 𝜎𝑌, cov(𝑌, 𝑋)]) estimated from training 831 

data. These likelihoods are given by: 832 

 833 

ℒ(𝑥, 𝑦|𝜇, σ) = log (
1

2𝜋𝜎𝑋𝜎𝑌√1 − 𝜌2
exp (−

1

2(1 − 𝜌2)
[
(𝑥 − 𝜇𝑋)2

𝜎𝑋
2 +

(𝑦 − 𝜇𝑌)2

𝜎𝑌
2 −

2𝜌(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌)

𝜎𝑋𝜎𝑌
])) 834 

 835 

where 𝜌 = cov(X, Y)/(𝜎𝑋𝜎𝑌) and represents the correlation between 𝑋 and 𝑌. We 836 

estimated these likelihoods using the dmvnorm() function from the R package 837 

{mvtnorm}.  838 

 839 

We then performed likelihood ratio tests between two models to test whether the data 840 

were significantly more likely under one model compared to another. Since our models 841 

were not nested, we used Vuong’s log-likelihood ratio test to compare their associated 842 

likelihoods (Vuong, 1989). And because our models all have no free parameters (𝑘 =843 

0), Vuong’s statistic between two models simplifies to: 844 

 845 

𝑍 =
Σℒ

√𝑛𝜎ℒ  
 ~ 𝑁(0,1)  846 

 847 

where 𝑛 is the number of observations and: 848 

 849 

Σℒ = ∑(ℒ(𝑋, 𝑌|𝝁𝟏, σ) − ℒ(𝑋, 𝑌|𝝁𝟐, σ)) 850 

 851 

and:  852 

 853 

σℒ = var(ℒ(𝑋, 𝑌|𝝁𝟏, σ) − ℒ(𝑋, 𝑌|𝝁𝟐, σ)) 854 

 855 

where 𝑋 and 𝑌 are vectors of observed horizontal and vertical endpoints, 𝜇𝑁 is a vector 856 

of predicted aimpoints from a model, and 𝜎 is a vector of subjects’ variance-covariance 857 

matrices estimated from training data. Vuong demonstrated that 𝑍 is normally 858 

distributed, therefore we use a threshold of 1.96 to decide whether to reject the null 859 

hypothesis that the likelihood of the data does not vary between models.  860 
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